DETECTING THE MOMENTS OF INERTIA OF A MOLECULE VIA ITS
ROTATIONAL SPECTRUM

CRAIG J. SUTTON?

ABSTRACT. The moments of inertia of a molecule can be used to help recover information
about its structure. We show that for a spherical or symmetric molecule (e.g., methane,
benzene and chloromethane) its moments of inertia are determined by its rotational spectrum.
As we will explain, this is a corollary of the following geometric result: the left-invariant
naturally reductive metrics on SO(3) can be mutually distinguished via the Laplace spectrum.
We will establish this geometric result by first demonstrating that the systole of each left-
invariant naturally reductive metric on SO(3) is “clean” and “audible.” We then use the wave
invariants associated to the systole to show that within this class of metrics, each metric can
be uniquely identified by its spectrum.

1. INTRODUCTION

The spectrum of a (connected) closed Riemannian manifold (M,g) is defined to be the
sequence \g =0 < A} < A < --+ 7 400 consisting of the eigenvalues (counting multiplicities)
of the associated Laplace operator A, acting on L?(M, dvg). The inverse spectral problem is
concerned with the extent to which one can recover the geometry of a Riemannian manifold
from its spectrum. Two classes of spectral invariants that are widely used in inverse spectral
geometry are the heat invariants and the wave invariants. The heat invariants are defined via
the asymptotic expansion of the trace of the heat semi-group at its singularity at ¢t = 0:

o0 oo
Trace(e *A9) = Z et 0T (47t) ="/ Z ar(M, g)t*,

k=0 k=0
where n is the dimension of M. The coefficients ay (M, g) of this asymptotic expansion are
known as the heat invariants of the Riemannian manifold and they are clearly spectral invari-
ants. For each k, the heat invariant aj(M,g) can be expressed as ap(M,g) = [, ur(x)dvy,
where ug(x) is a universal homogeneous polynomial of degree 2k in the coefficients of the
curvature tensor R and its higher order derivatives. For instance, ag(M,g) = vol(M,g) and
a1(M,g) = % Jas Scal(x)dvy, where Scal denotes the scalar curvature. Therefore, the short-time
asymptotics of the heat trace reveals that the dimension, volume and total scalar curvature
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of a Riemannian manifold are encoded in its spectrum. The expressions for the higher heat
invariants are more convoluted. For example, az(M, g) = 55 [,, 2(|R|* — | Ric |?) + 5 Scal® di,
(cf. [Pol]). In spite of the fact that the heat invariants are determined by local geometric
data, they have been used to prove spectral uniqueness results. For instance, Tanno used the
first four heat invariants to establish that a round sphere of dimension 1 < n < 6 is uniquely
determined by its spectrum among all Riemannian manifolds [T1]. It is perhaps surprising
that four decades later it is still unresolved whether this is true for round spheres in dimension
7 and higher (cf. [T2]).

The wave invariants of a Riemannian manifold arise by considering the asymptotic behavior
of the trace of the wave group at its singularities. The wave group associated to (M, g) is the
family of operators U, (t) = etV L*(M,vy) — L*(M,v,), indexed by t € R and defined
via the functional calculus. That is, for each t € R, ¢*VAs acts on the A-eigenspace of Ay
via multiplication by the scalar e™VA | and we extend this to all of L*(M,v,) by linearity. The
wave group is the quantum mechanical analogue of the geodesic flow and its orbits u(t,z) =
Uq(t) f(x) satisfy the wave equation g—;u(t, x) + Agu(t,x) = 0. The trace of the wave group,
denoted by Trace(Uy(t)), is a tempered distribution on R defined by

(Trace(Uy(t)), @) = Trace/Ug(t)go dt,

and one can see that it is the Fourier transform of the “spectral distribution” o(t) = >_72, 8(t -
\/Aj). Therefore, the distribution Trace(Uy(t)) is completely determined by the spectrum of

(M, g) and is given by Trace(U,(t)) = > 72, etV

As with the heat semi-group, one considers the asymptotic behavior of the trace of the wave
group at its singularities. Interestingly, the singular support of the trace of the wave group,
denoted SingSupp(Trace(Uy(t))), is a subset of the length spectrum of our manifold, whereby
the length spectrum of (M,g) we mean the set Spec; (M, g) consisting of the lengths of the
smoothly closed geodesics in (M, g) [Ch, DuGu]. It is a major open problem to determine
whether this containment, known as the Poisson relation, is actually an equality. Indeed,
equality in the Poisson relation—which is known to hold generically [DuGu, p. 61]—would
show that the length spectrum of a manifold can be recovered from its spectrum.

Now, if we let & : R x SM — SM signify the geodesic flow on the unit tangent bundle of
our Riemannian manifold and let ®;(-) = ®(¢,-), then a length 7 € Spec; (M, g) is said to be
clean if

(1) the fixed-point set of ®., denoted Fix(®;), is a disjoint union of finitely many closed
manifolds;
(2) for each u € Fix(®,) the fixed point set of D, P, is precisely equal to T, Fix(®,).

Otherwise, we will say that 7 is unclean or dirty. Under the assumption that the length
T € Specy (M, g) is clean, Duistermaat and Guillemin determined that there is an interval
I containing 7 on which the wave trace can be expressed as a sum of compactly supported
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distributions

Trace(Uy(t)) = R(t — 1) + BV (t — 7) + B°Y(t — 1),
where R(r) is smooth on a neighborhood of 0 and the distributions 3¢V (x) and 3°%4(z) are
singular at 0 [DuGu, Theorem 4.5]. Since the distributions g¢V" and (e are compactly

odd

even and «®9?, respec-

supported their Fourier transforms are given by the smooth functions «
tively. Furthermore, Duistermaat and Guillemin showed that a®¥*® and a°d4 have the following
asymptotic expansions:

S
aeven(s) 5—>f;|'00 Z Wavezven (T)S(Deven—Qk:—l)/Z
k=0

and

aOdd(s) 5100 i Wavezdd (7_)8(130451*21671)/27
k=0

where Degyen (respectively, Doqq) equals the maximum taken over the dimensions of the even-
dimensional (respectively, odd-dimensional) components of Fix(®,) (see [DuGu, Theorem 4.5]
or Theorem 2.4). We note that the faster a®¥°" (respectively, a®dd) decays at infinity the less
singular 5°V°" (respectively, 5°94) is at 0. The coefficients Wave$'®® (1) and Wavedd(r) in the
asymptotic expansions above are complex numbers known as the k-th wave invariants of the
clean length 7. In contrast with the heat invariants, the wave invariants are semi-global in
nature and the trace formula implies that a clean length 7 is in the singular support of the
trace of the wave group if and only if at least one of its wave-invariants is non-zero.

We will agree to say that a Riemannian manifold is clean if each length in its length spectrum
is clean. And, in this case, the asymptotic behavior of the wave trace at its singularities provides
a wealth of spectral invariants. It can be seen that “cleanliness” is a generic property, so that
generically we have wave invariants at our disposal to address the inverse spectral problem.
Indeed, let M be a closed manifold and M(M) denote the space of all smooth Riemannian
metrics on M (equipped with the C*°-topology). A metric g € M(M) is said to be bumpy if
each smoothly closed geodesic v with respect to g has the property that the space of periodic
Jacobi fields along v is spanned by J(t) = +/(¢). Equivalently, the metric g is bumpy if for
each u € SM such that ®,(u) = u for some 7 # 0, we have that 1 is the only root of unity
that is an eigenvalue of D, ®, and it occurs with multiplicity one. A bumpy metric g € M (M)
has the property that for any length 7 € Spec; (M, g) there are finitely many geometrically
distinct closed geodesics of length 7 (see [A, Theorem 2] and [An, Section 4]). Therefore, we
may conclude that all bumpy metrics are clean. Now, the bumpy metric theorem of Abraham
[A, Theorem 1] states that the set of bumpy metrics on M contains a residual set (see [An] for
a complete proof), which establishes that cleanliness is a generic property.

Given that homogeneous spaces are far from generic (i.e., bumpy) and serve as important
model spaces in geometry, this article is motivated by the following questions:

(1) To what extent is “cleanliness” a common trait among homogeneous manifolds?
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(2) Among those homogeneous spaces that are clean, to what extent can wave invariants
be employed to distinguish these spaces via the spectrum?

As a test case, we consider the family of left-invariant naturally reductive metrics on SO(3),
which we will denote by Mnat(SO(3)). In a sense, the naturally reductive metrics on SO(3) are
close relatives of the metric of constant curvature on SO(3) (see Section 3), and in Theorem 5.14
we provide necessary and sufficient conditions for a naturally reductive left-invariant metric
on SO(3) to be clean. From this we are able to deduce that cleanliness is a generic property
within My, (SO(3)).

1.1. Theorem. Within the class of naturally reductive left-invariant metrics on SO(3) the clean
metrics form a residual set. In particular, the bi-invariant metric on SO(3) is clean. However,
the collection of unclean or dirty metrics contains certain normal homogeneous metrics.

For the dirty metrics in Theorem 1.1 and those observed by Gornet [Gt], the issue is the
existence of a length 7 that satisfies condition (1) of cleanliness, but fails to satisfy condition
(2). In our case, satisfying condition (2) will hinge on the behavior of the Poincaré map along
so-called Type II geodesics (cf. Remark 5.16), which (up to translation by the isometry group)
turn out to be iterates of certain one-parameter subgroups of SO(3). We pause to note that
we are not aware of any examples where cleanliness fails at condition (1).

Although the previous theorem tells us that there are left-invariant naturally reductive
metrics on SO(3) with dirty lengths, we will see that for any left-invariant naturally reductive
metric g on SO(3) the length of the shortest non-trivial closed geodesic, denoted Tmin(g), is
always clean and “audible.”

1.2. Theorem. Let g be a naturally reductive left-invariant metric on SO(3). Then, Tmin(g) is
clean and appears in the singular support of Trace(Uy(t)).

We note that in this setting a closed geodesic of length 7,in(¢g) is always non-contractible, so
Tmin(g) is also the systole of the metric.

In Theorem 1.2 we reach the conclusion that 7min(g) is in the singular support of Trace(Uy(t))
by noticing that for each naturally reductive metric g on SO(3) exactly one of its 0-th wave
invariants is non-zero (see Proposition 5.18). It will follow from the wave-trace formula that
dim Fix(®, . (4)) is spectrally determined. This along with Corollary 5.19—which establishes
that the volume of any left-invariant naturally reductive metric g on SO(3) is a function of
Tmin(9), dim Fix(®, . 4)), and Wave((Tmin(g)), where e denotes the parity of dim @ . ,)—will
allow us to conclude that within this class each metric g can be completely recovered from the

asymptotic expansion of the wave trace at the “audible” singularity Tmin(g).

1.3. Theorem. Within the class of left-invariant naturally reductive metrics on SO(3) each
metric is uniquely determined by its Laplace spectrum.

This theorem is an improvement of [GS, Theorem 4.1] in the case of SO(3), where (in collabora-
tion with Gordon) we demonstrated that within the class of naturally reductive left-invariant
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metrics on any simple Lie group each metric is spectrally isolated. Of particular interest,
however, is the following interpretation of Theorem 1.3 in terms of physical chemistry.

Consider a three-dimensional rigid body W with its center of mass located at the origin.
We recall that the moment of inertia of W about the axis Rv determined by the unit vector
v € R? is given by the scalar (I(v),v), where I : R® — R3 is the moment of inertia tensor
associated to W and (-,-) is the standard euclidean inner product. The quantity (I(v),v)
measures the resistance of the rigid body to rotation about the axis Rv. For example, a figure
skater who wishes to increase their angular momentum during a spin does so by bringing in
their arms, which reduces the moment of inertia about the axis of rotation. The moment of
inertia tensor I is symmetric with respect to the standard inner product and, therefore, there is
an orthonormal basis e1, ez, e3 of R3, with (I(e;),e;) = I; for 0 < I; < I, < I5. The numbers
Iy, I and I3 are known as the principal moments of inertia of the body and the vectors e, ey
and e3 are named the principal azxes.

Now, the moments of inertia 0 < I; < I < I3 determine a left-invariant metric gy, 1, 1)
on SO(3) as follows. Let B(:,-) denote the Killing form on so(3) and let ©1, 02, O3 denote
the usual orthonormal basis of s0(3) with respect to the inner product —B (see 5.3). For each
triple 0 < I} < I < I3 we obtain a self-adjoint map Iy, 1, 1, : (s0(3),—B) — (s0(3), —B) given
by ©; — %j@j, for j = 1,2,3. We then let g(;, 1, 1,) denote the left-invariant metric on SO(3)
induced by the inner product —B(I, r,,1,(-),) on s0(3). Then, according to Proposition 5.2,
the map (I, I, I3) — 9(1.,I,,13) 15 a bijection onto the isometry classes of left-invariant metrics
on SO(3). With respect to the metric gy, 1, 1,), classical mechanics tells us that the geodesics
in SO(3) describe the free rotations of the rigid body W about its center of mass (cf. [GuSt,
Section 28]). Furthermore, in the event that W is a molecule, Schrédinger’s equation tells us
that the eigenvalues associated to the Laplacian of g(z, 1, 1,) describe the rotational spectrum
(or energy levels) of the molecule.

A molecule with moments of inertia 0 < I1 < I < I3 is said to be spherical in the event that
all the moments of inertia are equal (e.g., methane), symmetric in the case where exactly two of
the moments of inertia are identical (e.g., benzene and chloromethane) and asymmetric when
the moments of inertia are all distinct (e.g., water). It follows from 5.3 and Proposition 5.2
that the left-invariant metrics on SO(3) describing the free rotations and energy levels of the
spherical and symmetric molecules are precisely the left-invariant naturally reductive metrics.
Consequently, we have the following corollary of Theorem 1.3.

1.4. Corollary. Within the class of spherical and symmetric molecules, the rotational spectrum
of a molecule determines its moments of inertia.

In light of the discussion above it would appear to be an interesting problem to study whether
the left-invariant metrics on SO(3) can be mutually distinguished via their spectra. More
generally, one can ask whether homogeneous 3-manifolds can be mutually distinguished via
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their spectra.’ An affirmative answer to this question would stand in stark contrast to the state
of affairs for homogeneous spaces of higher dimension. For example, Schueth has demonstrated
the existence of continuous families of isopsectral left-invariant metrics on classical Lie groups
of sufficiently large rank [Sch]. We note that the results in this paper rely on our ability to
explicitly compute the geodesic flow and analyze the Poincaré map of the naturally reductive
metrics on SO(3). This appears to be infeasible for an arbitrary left-invariant metric on SO(3)
and most other homogeneous 3-manifolds; hence, a different approach appears to be needed
to address this problem.

The outline of this article is as follows. In Section 2 we review the trace formula of Duis-
termaat and Guillemin and discuss the ingredients needed to compute the 0-th wave invariant
associated to a clean length. In Section 3 we recall the definition of a naturally reductive met-
ric, review the classification of left-invariant naturally reductive metrics on simple Lie groups
due to D’Atri and Ziller and say a few words about geodesics on such spaces. In particular, we
recall a necessary and sufficient condition for a geodesic with respect to a naturally reductive
left-invariant metric to be closed. While on the topic of closed geodesics we note in Proposi-
tion 3.11 that there are no geodesic lassos in a homogeneous space, a fact previously known
to hold for naturally reductive spaces and left-invariant metrics on Lie groups. In Section 4
we study the derivative of the geodesic flow. In particular, we review Ziller’s method for com-
puting the Poincaré map along closed geodesics in naturally reductive spaces. The balance of
the paper, which is contained in Section 5, is devoted to proving Theorems 1.2 and 1.3. And,
we conclude Section 5 with a few comments on the feasibility of establishing equality in the
Poisson relation for the clean left-invariant naturally reductive metrics on SO(3) by making
use of the 0-th wave invariants.

Acknowledgments. We thank Alejandro Uribe for useful conversations concerning the trace
formula.

2. WAVE INVARIANTS AND THE DUISTERMAAT-GUILLEMIN MEASURE

In this section we will outline how one can compute the 0-th wave invariants associated to
a clean length. In particular, we will review the method of Brummelhuis, Paul and Uribe for
constructing the Duistermaat-Guillemin measure on clean fixed point sets of the geodesic flow.
Throughout we will adopt the following notation.

2.1. Notation.

(1) (M, g) will denote a closed Riemannian manifold
(2) A,y will denote the associated Laplacian and Speca (M, g) its spectrum;

1The existence of isospectral hyperbolic 3-manifolds (e.g., [Vi, R]) and the presence of a pair of isospectral flat
3-manifolds [DoRo] shows that this type of rigidity cannot hold within the larger class of locally homogeneous
3-manifolds.



DETECTING THE MOMENTS OF INERTIA OF A MOLECULE 7

(3) Specy (M, g) will denote the length spectrum of (M, g); i.e., it is the set consisting of
the lengths of all smoothly closed geodesics in (M, g);

(4) TM will denote the tangent bundle;

(5) ¢ : TM — R will be given by ¢(X,) = g(Xp,Xp)%. q is smooth on the punctured
tangent bundle TM — {0} and ¢(tX) = |t|g(z) for all ¢t € R;

(6) SM = g~'(1) is the unit tangent bundle;

(7) We will let © denote the standard symplectic form on 7'M induced by the Sasaki metric
g corresponding to g (see [Sa, Chp. 2 Sec. 4]).

(8) H, will denote the Hamiltonian vector field associated to ¢; i.e., dq(-) = Q(Hy, -);

(9) For each 7 € R we will let &, denote the time 7 map of the geodesic flow on T'M and
we will let &, denote its restriction to SM;

(10) For each 7 € R we let Fix(®,) denote the fixed point set of ®,.

2.2. Definition. A length 7 € Spec; (M, g) is said to be clean if

(1) Fix(®,) is a disjoint union of finitely many closed manifolds ©1,..., 0, of dimension
di,...,d,, respectively;

(2) For each u € Fix(®;) we have ker(D,®, — Id,) = T, Fix(®;). That is, J(t) is a
periodic Jacobi field along a geodesic of length 7 if and only if (J(0),J’(0)) is tangent
to Fix(®;).

Otherwise, we say that 7 is unclean or dirty. In the event that all lengths 7 € Spec; (M, g) are
clean, we will say that (M, g) is a clean manifold.

As is shown in [DuGul, if 7 is a clean length, then each component ©; of Fix(®,) admits a
canonical positive measure 7, which we will refer to as the Duistermaat-Guillemin Measure
(or density). We will now review the construction of the Duistermaat-Guillemin measure as
discussed in the appendix of [BPU].

Constructing the Duistermaat-Guillemin Measure. For simplicity we will assume that
© = Fix(®,) is connected and we will let © = {tX, : X, € Fandt > 0}. We will exploit
the symplectic structure of the tangent bundle to construct a canonical measure ™ on O and
obtain a canonical measure on © be dividing by the measure |dg| (in the transverse direction).
Indeed one can check that © is a clean fixed point set of CI’ Now, let z € © and consider
=1Id,— D,®,:V — V, where V =T, TM. Following [BPU, p. 524-525] we can construct
a density on T.O as follows.
o Let £ ={eq,...,er} be a basis for W = T.0;
o Let W = {veV:Quw,v)=0 for each w € W} be the Q-orthogonal complement of
W in V.
o Let F = {f1, f2,..., fx} be a basis for a complement of W* satisfying

Q(eia f]) = 51

e Let V ={vy,...,v9,_k} be a basis for a complement of W in V.
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With the above notation we have the following lemma.

2.3. Lemma (Lemma A.2 [BPUJ).

(1) ker(T) = W and the image of T equals W, so that TV U F is a basis for V.
(2) Let o € |V|V/2 be an arbitrary half-density on V. Then the DG-density i" on W = T,0
s given by
- e(VNE) 1
O =LV F) T e
where we abuse notation and have E =e1 A---Nep, F=fiN---Nfe, V=vi A--- A
v=2n—k, TV =Tuvy A+ NTvo_ and a(u) # 0 satisfies TV NF = a(2)V N E.

It then follows that if we let 3¢ denote the Riemannian density on © induced by the Sasaki
metric g on T'M, then the Duistermaat-Guillemin measure p™ on © is given by

T 1
/"[’ = |O[|1/2V§T®’

where for each z € © the function «(z) is computed as in the preceding lemma.

The Duistermaat-Guillemin Trace Formula. The trace of the wave group Trace(Uy(t)) =

Z‘;‘;O "™ s a spectrally determined tempered distribution on R that is equal to the Fourier
transform of the “spectral distribution” o(t) = 3772, 6(t — V/Aj)- As we noted in the intro-
duction, Chazarain [Ch] and the pair of Duistermaat and Guillemin [DuGu] independently
established the so-called Poisson relation which states that the singular support of this dis-
tribution is contained in the length spectrum of the Riemannian manifold (M, g). It is a
long-standing open problem to determine whether these sets are actually equal. The trace
formula of Duistermaat and Guillemin describes the nature of the singularities of Trace(Uy(t))
that occur at clean lengths and, in the event the manifold is clean, it establishes that equality
in the Poisson relation is synonymous with each length in the length spectrum having at least
one non-vanishing wave-invariant.

2.4. Theorem (Theorem 4.5 [DuGul). Suppose that 7 € Specy (M, g) is clean and let Deyen
(resp. Doga) denote the mazimum dimension of an even-dimensional (resp. odd-dimensional)
component of Fix(®.). Then we have the following.

(1) There is an open interval I C R such that I N Specy (M, qg) = {7};
(2) On the interval I, Trace(Uy(t)) is the sum of compactly supported distributions:

Trace(Uy(t)) = B (t — 1) + B°(t — 7) + R(t — 7),

where R is smooth in a neighborhood of 0 and " (z) and B°%4(x) are singular at
0. Furthermore, the Fourier transforms of V™ (z) and £°%(z) are smooth functions

¥ (s) and a9 (s) having the following asymptotic behavior behavior: a®¥™(s) * >

0, a®dd(s) 7> 0
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(2.5)
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Deven—2k—1
2

o0
a®ver(s) ST ZWaveZ"e“(T)s
k=0

aodd(s) s—400 i Wavezdd(T)SDodd;mV*l’
k=0
where WaveS¥® (1), Wave2dd(r) € C for all k.
Letting ©1, . .., O, denote the components of Fix(®;) of dimension Deyen and uj, ..., il
denote the corresponding Duistermaat-Guillemin measures, we see that

1 s
Wavel"™™ (1) = (f)(Deven_l)/2 ;703 / du’,
0 211 jzl 0; !

where o equals the Morse Index (in the space of closed loops) of a geodesic ~v; with
7;(t) € ©; (see [DuGu, p. 69-70]). And, an analogous expression holds for Wavesdd (7).
7T is in the singular support of Trace(Uy(t)) if and only if there is a non-negative integer

k such that at least one of Wave$ (1) and WaveSdd(7) is non-zero.

2.6. Remark.

(1)

(2)

From (1) we see that the length spectrum of a clean manifold is a countable and discrete
subset of R. However, in general, this need not be the case. In fact, the length spectrum
of a manifold can even be uncountable [SS].

In our proofs of Theorems 1.2 and 1.3, we will make use of the 0-th wave invariants
associated to Tnin. And, from Equation 2.5 we see that in order to compute the 0-th
wave invariants it is generally necessary to compute the Morse index. However, as we
will only need the absolute value of these invariants, it will not be necessary to compute
the Morse index. Indeed, as we will see in Corollary 5.13, for each g € Mnat(SO(3)), the
submanifold Fix(®, . 4)) will have at most two components, and in the case where it
has two components it will be clear that the Morse index coming from each component
will be identical. Nevertheless, it is possible to compute these indices, an exercise that
we omit.

2.7. Definition. The constants Wave$'®(7) and Wavedd(r) in the asymptotic expansion
above are known as the k-th wave invariants associated to the length 7, for £k € NU {0}.

2.8. Corollary ([DuGu]). If (M, g) is a clean manifold, then the singular support of its wave
group equals the length spectrum if and only if each T € Specy (M, g) has a non-zero wave

nvariant.

2.9. Example (Recovering the length spectrum of a CROSS). A Riemannian manifold (M, g)
is said to be a Cy-manifold, for some ¢ > 0, if every non-trivial geodesic is closed and has the

same minimal period ¢ [Be]. It is then clear that each 7 in the length spectrum of (M, g) is
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clean, since Fix(®;) = SM. Therefore, since Fix(®,) = SM is odd dimensional and connected,
we see that for each 7 € Specy (M, g) the wave invariant Wave3dd(r) is non-zero. Hence, the
length spectrum of any Cp-manifold is encoded in its Laplace spectrum. In particular, the
length spectrum of a compact rank-one symmetric space (i.e., a CROSS) can be recovered

from its spectrum.

3. NATURALLY REDUCTIVE METRICS AND THEIR (GEODESICS

3.1. Classification of Naturally Reductive Metrics on Lie Groups. Let (M, g) be a
connected homogeneous Riemannian manifold. Choose a base point pg € M. Let H be a
transitive group of isometries of (M, g), and let K be the isotropy group of py. Now, suppose
the Lie algebra h of H decomposes into a direct sum h = K+ p, where R is the Lie algebra of K
and p is an Ad(K)-invariant complement of K. Given a vector X € h we obtain a Killing field
X*on M by X = %\t:e expytX - p for p € M. The map X — X* is an antihomomorphism
of Lie algebras. We may identify p with T,,,M by the linear map X — X/ . Thus, the
homogeneous Riemannian metric g on M corresponds to an inner product (-,-) on p. For
X € g, write X = Xg + X, with Xg € & and X, € p. Recall that for X,Y € p,

(31) (VYo = =5 (X VI + UGV,

where U : p X p — p is the symmetric bilinear map defined by
2AU(X,Y),Z) = <[27 X]P? Y) + (X, [Z7 Y]P)
3.2. Definition. Let (M, g) be a Riemannian homogeneous space and let H be a transitive

group of isometries of (M, g), so that M = H/K.

(1) (M,g) is said to be reductive (with respect to H) if there is an Ad(K)-invariant com-
plement p of K in b.

(2) (M, g) is said to be naturally reductive (with respect to H) or H-naturally reductive, if
there exists an Ad(K)-invariant complement p of K (as above) such that

<[Z7 X]F’Y> + <X7 [27 Y]p> =0,
or equivalently U = 0. That is, for any Z € p the map [Z, -], : p — p is skew symmetric
with respect to (-, ).

(3) (M, g) is said to be normal homogeneous if there is an Ad(H )-invariant inner product
Q@ on b such that

At our preferred point py, the Levi-Civita connection V of a naturally reductive space (M, g)
is given by

X,  ifXeR

(VoX")(e) = { [X,v], if X e€p.

N[ —
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In subsequent sections of this article, it will be useful to recall that there is a metric connection
v whose geodesics coincide with those of V, but whose torsion tensor TV and curvature
tensor RY are both %—parallel. The relationship between V and V is given by VxY =
VxY — %Tv (X,Y). At pg, we notice that %, TV and RY can be expressed in terms of the Lie
bracket. Indeed, for v € T, M = p and X € bh we have

(X,v] ifXeRr

(VuX")(e) = { [X,v], ifXep

and for X,Y, Z € p we have TV(X,Y) = —[X,Y], and RV(X,Y)Z = —[[X, Y]y, Z].
3.3. Remark.

(1) Any homogeneous Riemannian manifold is reductive. This is essentially a consequence
of the fact that for any Riemannian manifold (M, g) (not necessarily homogeneous)
and p € M the subgroup of the full isometry group of (M, g) fixing p is compact in
the compact open topology [Hel, Theorem IV.2.5]. The reader can consult [KS] for a
complete proof.

(2) M being reductive implies [R, p] C p.

(3) Normal homogeneous metrics are naturally reductive. Indeed, with respect to the
Killing form B the map [Z, ] : g — g is skew-symmetric. Then, for X,Y, Z € p we have

<[Z7X]P’Y> = <[Za X]aY> = —(X, [Z7YD = _<X7 [Z7Y]P>'

(4) Note that if H; < Hy are two transitive groups of isometries on (M, g), then the metric
can be naturally reductive with respect to Hs while failing to be naturally reductive
with respect to Hj and vice versa. See [DZ, p.20] for an example.

(5) Asisnoted in [DZ, p. 5], a theorem of Kostant implies that in order to find all naturally
reductive metrics on a manifold M one must (a) find all groups H which act transitively
on M; (b) for each such group H, find all Ad(H)-invariant bilinear forms @ on h such
that Q | p is positive definite, where p = &+ = Tp,M. The normal homogeneous
metrics are obtained from positive definite @ on h.

Naturally reductive spaces are a generalization of symmetric spaces. Although the geodesic
symmetries of naturally reductive metrics need not be isometries, they are (up to sign) volume
preserving [D]. Moreover, every geodesic in a naturally reductive space M = H/K is the orbit
of a one-parameter subgroup of the transitive group H. In fact, every geodesic through our
base point pg is of the form expy (tX) - pg, where X € p, and it follows from Equation 3.1 and
Remark 3.3(1) that the naturally reductive spaces are precisely the homogeneous Riemannian
manifolds with this property.

In [DZ], D’Atri and Ziller addressed the problem of classifying the naturally reductive left-
invariant metrics on compact Lie groups. Recalling that for any subgroup K of G the natural
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action of G x K on G is defined by (g,k) - x = gzk~!, D’Atri and Ziller’s classification of such
metrics is as follows.

3.4. Theorem ([DZ] Theorems 3 and 7). Let G be a connected compact simple Lie group
and let gy be the bi-invariant Riemannian metric on G induced by the negative of the Killing
form B. Let K < G be a connected subgroup with Lie algebra 8 = Ko B K1 & --- B Ky, where
Ro = Z(R) is the center of R and Ry, ..., R, are the simple ideals in K. Let u be a go-orthogonal
complement of R in g. Given any a,aq,...,a, > 0 and an arbitrary inner product h on Ry,
then the Ad(K)-invariant inner product on g given by

(3.5) ago [u@h[Ro®argo [Ri @ D argo [ R

induces a left-invariant metric go a,,...a.,n 00 G. Then:

(1) 9a,on,....ar,h 5 naturally reductive with respect to the natural action of G x K on G;
2

(2) every left-invariant naturally reductive metric on G arises in this fashion;
(3) Yaon,....ar,h 15 normal homogeneous if and only if h < ago | K.
(4)

4) Isom(ga.ay...arn)’, the connected isometry group, is given by G x Ng(K)°, where
N¢g(K) denotes the normalizer of K in G.

3.6. Remark.

(1) If g is naturally reductive with respect to G x K, then it is also naturally reductive
with respect to G x Kz ~! for any z € G. Conjugating K corresponds to changing
the choice of base point pg in G.

(2) There is a finite collection K of connected subgroups of a simple Lie group G such that
up to isometry every left-invariant naturally reductive metric on G is G x K naturally
reductive for some K € K [GS, Corollary 3.7].

(3) A Lie group G can admit metrics naturally reductive with respect to H x K where
H, K < G, but which are not left-invariant [DZ, p. 12-14]. Such metrics are sometimes
called semi-invariant.

(4) If G is an arbitrary connected compact Lie group it is known that left-invariant metrics
induced by inner products of the form given by Equation 3.5 are naturally reductive,
where we allow gy to denote any bi-invariant metric on G. However, it is unknown
whether (up to isometry) this list is exhaustive (see [DZ, Theorem 1 and p. 20]).

3.2. Geodesics. In our proof of Theorems 1.1 and 1.2 we will need an explicit description of
the closed geodesics of an arbitrary left-invariant naturally reductive metric on SO(3). There-
fore, since the geodesics through e with respect to a metric on G as in Equation 3.5 are of the
form expgy i (tX)- e, where X is an element of p (the Ad(AK)-invariant complement of AR in
g X R), it will be beneficial to review the recipe provided by D’Atri and Ziller for constructing

p.
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3.7. Constructing an Ad(AK)-invariant Complement. To begin we let A : 8, — R,
denote the gp-symmetric endomorphism satisfying h(X,Y) = go(AX,Y) for each X, Y € Ry.
Then as is described in [DZ, p. 9-11] there are two cases to consider:

(1)

(3.8)

(3.9)

a is not an eigenvalue of A and a; # o for each j =1,...,7.
In this case we consider the symmetric bi-linear form @ on g x & given by

Q=Fglag@0+h 00K +Figl0DK+-+ 690D R,
where 8 = «, 3; = ﬁ_aoij, and h(X,Y) = go(AX,Y) is defined by the go-symmetric

(6%
endomorphism A : 8y — £ satisfying A = BA(A + BI)~!. Q can be seen to be non-
degenerate on g x 8 and AR. We then take p to be the Q-orthogonal complement of
AR which is given by

P=PO®9P0ONnD - Dar,

where

(a) pr={(X,0): X € u};

(b) g0 = {(AX, —BX): X € Ro};

(c) q; ={(B;X,—BX): X e R} for j=1,...,r.
From this one may conclude that the metric g, o, ... a, 1 1S naturally reductive.

a is an eigenvalue of A or a; = « for some j =1,...,7.

We find the Ad(AK)-invariant complement p of AR in g x & by considering a proper
subgroup K’ < K with respect to which the metric gq a,.... o, 5 falls into the previous
case. Indeed, consider the Lie algebra

R = 85 © (Da;=ay),

where R = {X € Ry : AX = aX}. Then we let & denote the gp-orthogonal comple-
ment of &” in K and let K’ denote the corresponding connected proper subgroup of K.
One can check that

R =R & (Boy2ak));
where K| is the gp-orthogonal complement of & in K. We can then view the metric
Ja,an,....ar,h s being induced by the inner product

ago r Ll/ @ h r ﬁé) ©® (@aj;éaajgo f ﬁ])7
where ' = u® R” is the gg orthogonal complement of &. The metric then falls into the
previous case with respect to K’ and we take p to be the corresponding complement of
AR in g x 8
p=p1©q D (Ba;2a9;),

where

(a) p1 = {(X,0): X e w'};
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(b) ap = {(AX, —BX) : X € Ko };

(c) q; ={(B;X,—BX): X e Rj} for j=1,...,r.
However, one can check that p is also an Ad(AK)-invariant complement of AR in g x 8
and we can then see that the metric is naturally reductive with respect to G x K.

For convenience we summarize our discussion of geodesics with respect to a left-invariant
naturally reductive metric on a simple Lie group.

3.10. Proposition. Let G be a simple Lie group and K a connected subgroup. Now, let
Ga.an,...ar,h e a G x K naturally reductive metric on G and p < g x £ the Ad(AK)-invariant
complement given by 3.7. Then the geodesics through g € G with respect to ga.a,.....a.,1n 0T€ Of
the form

expax i (tAd(9)X,Y) - g = gexpg(tX) expe(—tY),

where (X,Y) € p, and such a geodesic is smoothly closed if and only if expg(tX) = expg(tY)
for some t > 0.

Since, as we remarked earlier, the geodesics in a naturally reductive space are integral curves
of Killing fields, we see there are no geodesic lassos in a naturally reductive space (i.e., all self-
intersections of a geodesic are smooth). Although it is not needed elsewhere in the paper, we
observe that every homogeneous Riemannian manifold has this property.

3.11. Proposition. Let (M, g) be a homogeneous Riemannian manifold and v : R — M a
geodesic. If v(to) = v(t1), then 7/ (to) = 7/ (t1). That is, any self-intersection of a geodesic in
a homogeneous space is smooth.

Proof. As noted earlier in Remark 3.3(1), Kowalski and Szenthe have shown that any homo-
geneous Riemannian manifold (M, g) is reductive with respect to any connected Lie group H
acting transitively via isometries on (M, g). Let H < Isom(M, g) be a connected group acting
transitively on M with isotropy group K, and let p be the attendant Ad(K)-invariant comple-
ment of & in h. Then we recall that p may be identified with T}, M via the map X — X,
where for any X € b, X™ is the Killing filed X = % lt=0 expg (tX) - po, which is a complete vec-
tor field. We now recall that it follows from Noether’s theorem (cf. [Tak, Theorem 1.3]) that if
Z is a Killing field and () is a geodesic on a Riemannian manifold (N, h), then h(Z, ), (t))
is constant. Now, let 7 be a geodesic in (M, g) such that v(t9) = v(0) = po, for some ¢y # 0,
and let X™* be a killing vector field on M, then we have

9(7'(0), X5) = 9(7/(0), X2 0)) = 9(7 (t0), XJ10)) = 9(7' (t0), X5, )-

Therefore, since every vector in Tp, M is of the form X for some Killing field X*, we conclude
that 7/(0) = +/(¢). O

3.12. Remark. In the case of left-invariant metrics on Lie groups, this proposition was previ-
ously demonstrated to the author by Dorothee Schueth in 2008.
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4. THE POINCARE MAP OF NATURALLY REDUCTIVE METRICS

We recall that given a Riemannian manifold (M, g) the geodesic flow is the map & : R x

TM — TM given by
B(t,0) = Sn(t)
where 7, is the unique geodesic with +/,(0) = v. Throughout we will set ®;(v) = ®(¢t,v). Of
particular interest to us is the derivative of ®,. If for each v € TM we let T,TM = H, ®V,
be the decomposition into the horizontal and vertical spaces, then for any (A, B) € T,TM we
have
®..(A, B) = (Y(1), VY (1)),

where Y (t) is the Jacobi field along +y, such that Y (0) = A and VY (0) = B (see [Sa, p. 56]).
If the geodesic v, is periodic of period 7, then we set

P=%.,:T,7TM — T,TM.
Since 7,,(t) and tv,(t) are Jacobi fields along =, we see that
P(v,0) = (v,0) and P(0,v) = (Tv,v).

Hence, in order to understand P we must analyze how it behaves on the orthogonal complement
of (v,0) and (0,v); that is, we seek to understand

P:E®FE— E®E,

where E = {u € T,M : (u,v) = 0}. This map is called the (linearized) Poincaré map and from
the above if Y is a Jacobi field with initial data (Y (0), VY (0)) € E & E, then

P(Y(0),VY(0)) = (Y(7), VY (7)).

In the case of (compact) naturally reductive manifolds the Poincaré map has been completely
determined by Ziller as follows.

Let M = H/K be a naturally reductive space and as before let p < h be an Ad(K)-invariant
complement. For any unit vector v € p = T, M we let v,(t) be the unit speed geodesic
given by expy(tv) - pgo. Now, let v € p be a unit vector such that the geodesic ~,(t) is closed
and set F = {u € p : (u,v) = 0}. Then the restriction of the maps B(-) = —[v, [v,]g] and
T(-) = —[v,-]y to E are symmetric and skew-symmetric, respectively. Now let Ey denote the
0-eigenspace of B : ' — E and F; be the sum of its non-zero eigenspaces, and we express F
as the orthogonal direct sum Ey = E9 @ E3, where Es = {X € Ey: T(X) € E1}. Then as in
[Z2, p. 579] we define the following subspaces of £ @ E:

(1) Vi = {(X,i[X,v]p) : X € By & E3}

(2) Vo = (O,X) : X e El}

(3) Va3 = {(X, 3[v, X]y) : X € B}

(4) Va={(X,%[v, X]y) : X € B3} = {(X,—3T(X)) : X € Es}

(5) Vs ={(Z, X +%[v,Z);) : X € E»,Z € Ey and B(Z) = T(X) = [X,v],}
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4.1. Remark.

(1) In [Z2] there is an omission in the definition of V5 (cf. [Z1, p. 73]).

(2) We note that since B : E1 — FEj is an isomorphism, V5 is non-trivial if and only if E»
is non-trivial. In particular, for each X € FE», there exists a unique Z € Fj such that
B(Z)=T(X).

(3) It will be useful later to notice that E; < [],v]. Indeed, following [Z1, p. 72], we
recall that B : F — FE is a self-adjoint map. Let Xi,..., X, be an orthonormal

basis of eigenvectors with eigenvalues Aj,..., Ay, and set Z; = [v, X;]g € R Then
\iX; = B(X;) = [Zi,v] and for \; # 0 we get X; = /\%[Zi,v] € [R,v], which establishes
the claim.

With the notation as above we have the following theorem due to Ziller.

4.2. Theorem. Let (M = H/K, g) be a (compact) naturally reductive space and let v,(t) =
expy(tv) - po be a smoothly closed unit speed geodesic in M of length T with ~,,(0) = v € p =
TpoM. Then

(1) (122, Theorem 1)) E®@ E=Vi@Vad Vsa Vi Vs
(2) (|21, Theorem 1]) The Poincaré map P : E® E — E @& E along 7, is described as
follows:
(a) PIVioVao Vs =1d;
(b) P(X, Lo, X1y) = (W(X), (2o, X)) = (R(X), 3o, 9(X))y), for (X, Lo, X],) €
Vi, where U is the isometry e = Ad(expy (7v)), we recall that because 7, is a
geodesic it is given by expy (tv) - po and since it is closed of length T we have that
expy(Tv) € K;
(©) P(Z,X + v, 21y) = 7(X, 3o, X]p) + (Z, 30, Zp). Jor (Z,X + 3[u, Z],) € Vi,

4.3. Remark. The compactness condition in the above was used by Ziller to establish that a
Jacobi filed J(t) along v, with J(0) € V5 must have unbounded length, which is used to show
that Vs N (Vi @ Vo @ Vi @ Vy) is trivial [Z2, p. 579-80]. However, this argument only really
requires completeness, which is enjoyed by all naturally reductive spaces since geodesics are
precisely the orbits of one-parameter groups of isometries. Therefore, the above is true for all
naturally reductive manifolds.

The following observation is an immediate consequence of the previous proposition.

4.4. Corollary. Let v,(t) be a closed unit speed geodesic as above and let Y (t) be a Jacobi field
along v,. Then Y (t) is periodic if and only if Y (t) has the following initial conditions:

(Y(0),VY(0)) e Vi @ Vo @ V3 & V" @ Spang{(v,0)},

where VP = {(X, 3[v,X];) : X € E3 and (X) = X} < Vi
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5. DISTINGUISHING NATURALLY REDUCTIVE METRICS ON SO(3) VIA THE SPECTRUM

Let G be an arbitrary compact semi-simple Lie group with bi-invariant metric go induced

by the negative of the Killing form B on T.(G. Now for any left-invariant metric g on GG there

is a linear transformation €2 : T.G — T.G that is self-adjoint with respect to —B and such that

for any v,w € T,G we have (v,w) = —B(Q(v),w), where (-,-) is the restriction of g to T.G.

5.1. Definition. With the notation as above, the eigenvalues 0 < pu; < po < --+ <y, of  are

called the eigenvalues of the metric g.

5.2. Proposition ([BFSTW] Proposition 3.2). Two left-invariant metrics g1 and g2 on SO(3)
are wsometric if and only if g1 and go have the same eigenvalues counting multiplicities.

5.3. Notation and Remarks. We will now establish notation and collect some facts that will

prove useful throughout the remainder of this section.

(1)

(5.4)

For the remainder of this section we will let G denote the Lie group SO(3), g denote its
Lie algebra s0(3), and go will denote the bi-invariant metric on SO(3) induced by —B,
where B denotes the Killing form. Additionally, we will let exp denote the exponential
map expg : g = G.

With Proposition 5.2 in mind we let

1 (i o 1 (0 —i 1 [0 -1
0= = —— | Y —
! 2\/§(0 z) 2 2\/§<—z 0) s 2\/§<1 o)

denote the standard gp-orthonormal basis of s0(3) ~ su(2). Then for any choice of
positive constants ci,c2 and c3 the self-adjoint map 2 : (s0(3), —B) — (s0(3), —B)
given by Q(©;) = ¢;0; defines a left-invariant metric g, ¢, ;) on SO(3) and, by
Proposition 5.2, these account for all of the left-invariant metrics on SO(3) up to
isometry. Now, since SO(2) is the only non-trivial connected proper subgroup of SO(3)
it follows from Theorem 3.4 that up to isometry the left-invariant naturally reductive
metrics on SO(3) are the metrics g(q,q,4) given by:

I(aya,h) = go [ ud Ago [ &,

where & = 50(2) = Span(03) and u = £ = Span{©1, Oy} is the orthogonal comple-
ment of 8 with respect to go. We set K = expy(R).
Let p denote the Ad(K)-invariant complement of AR < g x K discussed in 3.7. Then
we have the following.
(a) If a = A, then by Equation 3.9 we see p = g @ 0. In which case

1 1 1

=S —(01,0), —(02,0), —(O03,0

p pan{\/a( 1, )7\/5( 25 )ﬂ\/a( 3 )}

and
AR = Span{D = (©3,03)},
where by Span{Aj,..., A;} we denote the linear span of Aj,..., A; over R.
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(b) If & # A, then by Equation 3.8 p = p; @ qo, where p; = {(X,0) : X € u = &0}

and qo = {(AZ,—aZ): Z € &} for A = %. In which case
1

1 1
p = Span{Z; = (\/a —

©1,0), Zo = ( (AO3, —aO3)}

@2, 0 ,Z3 = —F——"
NG ) VA(A + )
and
AR = Span{D = (03,03)}.
It is clear that the adjoint action of AK < G x K on p fixes Z3 and acts as the
group of rotations on Spanp{Zy, Z2} = p;.
(4) For any (V, W) € p, where p is as above, the geodesic vy, (t) with vy, (0) = e and
nyVW) (0) =V — W is given by

Yv,w)(t) = exp(tV) exp(—tW).

The geodesic (v, is a one-parameter subgroup of SO(3) if and only if V, W € s0(3)
are linearly dependent.

(5) For any compact Lie group endowed with a bi-invariant metric the sectional curvature
of a 2-plane ¢ in the Lie algebra spanned by two orthonormal vectors X and Y is given
by Sec(o) = 1[|/[X,Y]||®. Consequently, with respect to the metric go, the Lie group
SO(3) has constant sectional curvature 1 and is double covered by $3(2v/2), the round
3-sphere of radius 21/2. Tt follows that the geodesics in (SO(3), go) are all closed, have
a common (primitive) length £y = 2/2.

(6) It follows from the previous remark that any two primitive geodesics through a given
point of SO(3) with respect to go = g(1,1,1) have only one point in common or have
exactly the same image. Furthermore, since gg is bi-invariant, its geodesics through e
coincide with the one-parameter subgroups of SO(3). Given a vector X € g = s0(3) we
then define its period to be Per(X) = H;;OHO’ so Per(X) is the amount of time it takes
for the one-parameter subgroup exp(tX) to return to the identity element for the first
time.

(7) It will be useful to observe that vol(g(q,a,4)) = avVAVy, where Vy = vol(g(i,1,1)) =
3 vol(93(2v2)) = 16v2n2.

We now describe the closed geodesics of an arbitrary naturally reductive metric on SO(3)

and compute the length spectrum.

5.5. Theorem. Consider the naturally reductive metric g, 4y on SO(3) and let £y be as in
5.3(5).
(1) If « = A, then the closed geodesics through the identity are precisely the one-parameter
subgroups of SO(3) and the non-trivial primitive geodesics are all of length /Aly.
(2) If A# a, then the geodesic v,y is closed if and only if one of the following holds:
(a) (V,W) € p1, in which case y,w) is a one-parameter subgroup of SO(3) with
primitive length \/aly.
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(b) (V,W) € qo, in which case vy,w) is a one-parameter subgroup of SO(3) with
primitive length v/ Aly.

(c) (V,W)=(X+AZ —aZ) € p, where X #0 € u and Z # 0 € K& and there evist
p,q € N relatively prime integers such that:

. 2
0) > alop

.. 2,2 2,2
(i) X113 = o(p. g, 00 || ZI3, where o(p, g, 0, 4) = ©C5° — Aa?
In this case we see that the closed geodesic Yy is not a one-parameter subgroup

and its primitive length is given by \/aly[q® + p? aéA]%’ which is always strictly
larger than /aly.

Consequently, the length spectrum of g(a,qa,4) s given by

{kv/aly : k € N} U {0} a=A

Spect(g(aaa) = { {0} U {ky/aly, kv/Aly, k- k €N and 7 > 0 with Erqn # 2} A+ a,

where for each 7 > 0 we let £, 4o denote the finite collection of relatively prime ordered pairs
(p,q) € N x N satisfying % > |ﬁ| and /aly[q? +p2ﬁ]% =T

5.6. Definition. Let g(,,q, 4) be a naturally reductive metric on SO(3) with a # A.

(1) A geodesic of the form given in Theorem 5.5(2a) or a translate thereof is said to be of
Type I

(2) A geodesic of the form given in Theorem 5.5(2b) or a translate thereof is said to be of
Type I1.

(3) A geodesic of the form given in Theorem 5.5(2¢) or a translate thereof is said to be of
Type I11.

5.7. Remark. Theorem 5.5 shows us that if o # A, then the shortest non-trivial closed ge-
odesic with respect to g(q,q,4) is always of Type I or Type II. Therefore, since (primitive)
one-parameter subgroups of SO(3) are homotopically non-trivial, it follows that the systole
with respect to any metric in M, (SO(3)) coincides with the length of the shortest non-
trivial closed geodesic. We also note that it is easy to show that a prime geodesic of Type I11
is homotopically trivial if and only if p 4 ¢ is even.

5.8. Remark. In the case where A < « the primitive geodesics of Type I and II are shorter
than the primitive geodesics of Type III. However, when A > «, this need not be the case.
For example, if we let « = 1 and A = 10, then (p, q) = (1,2) gives rise to a primitive geodesic
that is not a one-parameter subgroup and is of length £y4/4 + %. However, if A > o and
(A — a)? < a, then the prime geodesics of Type I and II will still be shorter than the prime
geodesics of Type III.

Proof of Theorem 5.5. For any vector U € TG we will let |U||o (respectively ||U||) denote its
length with respect to the metric go (respectively giq,q,4))-



20 C. J. SUTTON

In the case where & = A we recall from 5.3 that p = p{ = g @ 0. Hence, the geodesics
Y(v,0)(t) = exp(tV) are one-parameter subgroups of G and the primitive non-trivial geodesics
are of length v/ Aly = \/aly with respect to 9(a,A,4)- Thus establishing (1).

In the case where o # A we recall that p = p; @ qo, where p; = {(X,0) : X € &0} and
qgo = {(AZ,—aZ) : Z € K&} (since K is abelian). To find the closed geodesics and their lengths
we consider the following three cases.

Case I: (V,WW) = (X,0) € p; for some X # 0 € /0.

In this case the geodesic vy (t) = exp(tX) is a non-trivial one-parameter subgroup of
SO(3). Consequently, it is closed and has primitive length

L(vww)) = Per(X)-[X]
= Per(X)vealXllo
= Val.

Case II: (V,W) = (AZ,—aZ) € qq for some Z # 0 € &

In this case the geodesic vy, (t) = expg (t(A+a)Z) is a non-trivial one-parameter subgroup
of SO(3). Consequently, it is closed and has primitive length

Livvwy) = Per((A+a)Z)-[[(A+a)Z|
= Per((A+ ) 2)VA||(A+ a)Z]|o
= VAl.

Case III: (V,W) = (X + AZ,—aZ), where X #0 € 810 and Z #0 € &

The geodesic yy,w(t) = exp(t(X + AZ)) exp(taZ) is clearly not a one-parameter subgroup
of SO(3), and it is closed if and only if there is a top > 0 such that

(5.9) exp(to(X + AZ)) = exp(—toaZ).

As noted in 5.3(5), the images of two non-trivial one-parameter subgroups exp(tX;) and
exp(tX2) in SO(3) either have only the identity element in common or are identical, and
the latter occurs if and only if X; and X, are linearly dependent. Therefore, since X + AZ
and aZ are linearly independent we see that Equation 5.9 holds if and only if there is a t5 > 0
such that

(510) etO(X-i‘ZZ) — e—tan —e,

which is equivalent to the existence of relatively prime integers p, g € N such that p Per(aZ) =
qPer(X +AZ). Writing out the period of aZ and X + AZ explicitly we find that Equation 5.10
holds if and only if there exist relatively prime p, ¢ € N such that
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2
(1) o(p,q,a, A) = QZ(Z—Q - ﬁ) > 0;
(2) X3 = o(p,q, 0, A1 Z]]5.

The function o has the property that o(p,q,a, A) = o(p, G, a, A) if and only if 1% = 1 and

clearly o(p,q,a, A) > 0 is equivalent to g—z > ﬁ.

Now, let X #0 € u, Z #0 € R and let p,q € N be relatively prime integers such that
Equation 5.10 holds. Then ~yy,w) is closed and its primitive length is given by

STIESY

Lvxsaz az) = laPer(X +AZ)||X + (A+ a)Z|]?
qlo —
= [m||X+(A+a)Z|H2
q2€3 = 2
- 0 x+ @+
XI5 + A7 Z]]5
q2€2 -
= 5 — 2(||X||2+(A+04)2||Z||2)
1 XI5+ A7 21|
q2£2 o
= T (o x|3+ (A+)2A) 2]
XI5 + A7 Z]|5
22 2
qlg 2 o 2 2
= al| X||g + (———)?Al|lZ
S eI i
2
B qu(allelo (:25)%411213)
- 2 -
IX1I5 + A7 2115
2 I+ 1210
1X112 + A% 2|12
X Z
g 1 X113 + A%;H 15
X113 + =55z 12113
A 2
_ e, Ko WM”X“O
SRR P F— -
0 A)?20(p,q,0,A) 0
X A
o 1 X11§ + A2a22H 15
X115 + 2HZHo
g 1 X113 + Z(pzqu PIIX
I1X13 + %H 13
20(p,q,
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Aap?
22 1+ q2(a*A)gfp2A2
= aq’ly- A22
1+ __Aapr
Z(a—A)Z—p2A2
2
242 p?Ala — A)
= (e
aq gO ( + qQ(a—A)Q)
_ 2 (2, .2

In the event that o > A it is clear that this geodesic will have length strictly greater than

Valy. To handle the case where a < A we note that aﬁg (¢* + p? (af A)) is greater than

2

al? if and only if Aéa = \A‘:‘a\ < qul. But we recall that p,q € N were chosen so that
2

% > |ﬁ\ = ﬁ > 1, and notice that for ¢ > p we have qul > %. Hence, for A # a, we see

that L(V(V,W)) > \/&EO
Cases I-11I establish statement (2) of the theorem and the statement concerning the length

spectrum of an arbitrary naturally reductive metric g(q, o,4) is now immediate. We conclude
the proof by showing that the set £, 4 is finite.

Indeed, in the case where A < o, we see that £, 4 is a subset of the intersection of an
ellipse with the integer lattice in R?, which implies it is finite. In the event that A > «, the
points (p,q) € Er.q,4 are a subset of the intersection of the integral lattice with the hyperbola

y2 :1;2

- -1
2/al3  T2(A—a)/al3A

having asymptotes y = + ﬁx. Now, suppose ;4 4 is infinite, then, since £ > |ALia| =

p
ﬁ > 1, we see that ¢ must become arbitrarily large. Then, since the hyperbola is asymptotic

toy =4/ ﬁw, we see that the expression [p— 4/ %q| can be made arbitrarily small in &7 4 4.

However, % > ﬁ > 1 implies

A—a< A—a«
A A ¢

p<

for any (p,q) € &rq,4, which implies the quantity |p — ,/%q| cannot be made arbitrarily
small. So, we see &; 4 4 is finite. O

For any 7 in the length spectrum of a symmetric metric g(s,a,0) 0n SO(3), we see that
Fix(®) is the entire unit tangent bundle and it follows that such metrics are clean. We now
wish to examine the “cleanliness” of the other naturally reductive metrics on SO(3). Towards
this end we begin by examining the fixed point sets of the geodesic flow for naturally reductive
metrics that are not symmetric.

5.11. Lemma. Consider the naturally reductive metric g(q,qo,4y on SO(3) where a # A and let
G x K = 80(3) x SO(2) be the connected component of the identity in the isometry group of
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I(a,a,4)- We let v=c121 + caZs+ c3Z3 € p =T.G be a unit vector where Z1, Zs, Z3 € TG is
the orthonormal basis given in 5.3(3).

(1) If 2+ =1, then (G x K) -v =~ SO(3) x S! and this 4-dimensional submanifold of
T'SO(3) accounts for all the unit speed primitive geodesics of Type I, all of which have
length \/aly. The manifold (G x K) - v is said to be a Type I component.

(2) If cg = £1, then (G x K) -v ~ SO(3) and the 3-dimensional submanifold (G x K)-vU
(G x K) - (—v) of T*SO(3) accounts for all the unit speed primitive geodesics of Type
II, all of which have length \/Aly. The manifold (G x K) - v is said to be a Type II
component.

(3) Let 7 > 0 be such that &4 a is non-empty. For each (p,q) € Era,4 fix a unit vector

Vipq) = C121 + caZa + c3Z3, where A +c3= 7067(2’7%:?2’?11 and 5 = 70(737%;714)“. Then
(GXK)-v.q) ~SO(3) XS(lpg), where S(lpg) = {221 +yZo+2Z3: 22 +9? = 577 = ¢},

and the 4-dimensional submanifold U, gyce, . ,(G X K) - (£v(,q)) accounts for the unit
speed primitive geodesics of Type III having length 7. The manifold (G x K) - v
said to be a Type III component.

p.q) S

Proof. We recall that the isotropy group of the identity element corresponding to the natural
action of G x K on SO(3) is AK = SO(3), and as we noted in 5.3(3) the isotropy action of
AK on p = T.G acts via rotations on p; = Spang{Zi, Z2} and fixes qo = Spang{Z3}. The
lemma now follows from Theorem 5.5. O

5.12. Lemma. For any B > 0, there are finitely many 0 < 7 < B such that E; o A is non-empty.

Proof. This follows immediately from the fact that a Type III geodesic has length of the form
Valylg? + p? A A}%, where p, ¢, € N, and the values of this function form a discrete subset of

«

R. n

Using Theorem 5.5 and Lemmas 5.11 and 5.12 the following is immediate.

5.13. Corollary. Let g(q,q,4) be a naturally reductive metric on SO(3) with unit tangent bundle
T1SO(3) and corresponding geodesic flow ®; : T SO(3) — T1SO(3), t € R. Then for each T
in the length spectrum of g(a,a,4) we see that Fix(®;) is a union of finitely many (homogeneous)
submanifolds of T* SO(3) and for each u € Fix(®,) the connected component of Fix(®,) con-
taining u is given by Isom(g(a,mA))O-u, where Isom(g(ma,A))O denotes the connected component
of the identity in the isometry group. In particular, we have the following:

(1) a= A if and only if T = \J/aly is the length of the shortest non-trivial closed geoedesic
and Fix(®,) = T1 SO(3) is 5-dimensional.

(2) A< aif and only if T = VAly is the length of the shortest non-trivial closed geodesic
and Fix(®,) ~ SO(3) U SO(3) is 3-dimensional. In which case all geodesics of length
T = Aly are of Type II.
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(3) A > « if and only if T = \/aky is the length of the shortest non-trivial closed geodesic
and Fix(®,) ~ SO(3) x S is 4-dimensional. In which case all geodesics of length

T = /aly are of Type 1.

We now give an explicit description of the naturally reductive metrics on SO(3) which fail
to satisfy the clean intersection hypothesis of Duistermaat and Guillemin.

5.14. Theorem. The naturally reductive metric g(q,q,a) i unclean if and only if A € Q4 —
{a}, where Q4 denotes the positive rational numbers. Moreover, if we express A € aQ4 — {a}
as A = %%, where k,j € N are relatively prime, then 7 € Spec,(9(a,a,4)) 5 unclean if and
only if T = mk\/Aly for some m € N.

5.15. Corollary. The length of the shortest non-trivial closed geodesic with respect to a left-
invariant naturally reductive metric on SO(3) is clean.

Proof. Let g(a,a,4) € MNat(SO(3)) and Tyin denote the length of its shortest non-trivial closed
geodesic. If A < «, then Tmin = VAl and in the event that A > a we see that T =
Valy. Now, let 7 € Specy(g(a,a,4)) be a dirty length. Then, by Theorem 5.14, we have
that A € aQ4 — {a} and, if we express A as %a, where j, k are relatively prime, then
T = mkyv/Aly for some positive integer m. It follows that if A < «, then k > 3 and, therefore,
T = mkvVAly > Tmin = VAly. Similarly, if A > «a, then 7 = mkvVAl) > Tmin = Valy.
Therefore, Tin is always clean. O

Proof of Theorem 5.1/. In Corollary 5.13 we have already established that for each 7 € SpecL(g(a,mA))
the fixed point set Fix(®;) is the disjoint union of finitely many homogeneous submani-

folds Ni,...,N,;. Hence, our objective is to show that for each 7 € SpecL(g(a@,A)), each
j=1,...,¢=q(7) and each u € N; we have

ker(D,®, —1d,) = T,,(N;).

That is, we must show that the periodic Jaocbi fields Y (¢) along the geodesic 7, () are precisely
those whose initial conditions satisfy (Y(0), VY'(0)) € T;,(NV;). Since g(q,q,4) is a homogeneous
metric, it is enough to verify this for some v € T,G N Fix(®,). And, since the connected
components are homogeneous, Corollary 4.4 informs us that ker(D,®, — Id,) = T, (Fix(®;))
if and only if V" = Vjs°.

In the case where A = q, it is clear that the metric is clean since all geodesics are closed
and have the same primitive length £3. Therefore, the remainder of our discussion will focus
on the case where A # «.

Suppose that A # a. Now, let p = T.G denote the Ad(AK)-invariant complement of
AR = Span{D} in g x R Then, following 5.3(3), the collection {Z, Z3,Z3} forms a g-
orthonormal basis for p. Hence, any unit vector v € p = T.G is of the form ¢1 21 + coZs + c3 23,
where ¢} + 3 + ¢3 = 1. By Theorem 5.5 the geodesic v,(t) = expay x (tv) - e is closed if and
only if one of the following hold:
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| A| B [ABlas | [AB), |

2| 22 || Jarim D a—@zg
7y | Zs 0 — 47
Zo | Z3 0 C%Z1
Zi| D 0 —%Zg
Zy| D 0 54
Zs | D 0 0

FI1GURE 1. The Lie Bracket in g x R =p & AR

(1) 2 +c2 =1 (ie., v, is of Type I);
==£1 (ie, 7 i ;
(2) e3 = =£1 (i.e., 7y, is of Type II)

(3) E+c3 = % and c3 = +, /m for some choice of p,q € N relatively
prime with Z—z > (ﬁﬁ (i.e., vy is of Type III).

In the case where 7, is closed we must determine the fixed point set of the associated Poincaré
map P: E® E — E @ E, where (as in Section 4) E' = {u € p : (u,v) = 0}. By Corollary 4.4,
this means we must determine the subspaces Vi, ...,V V5 < E® E. In particular, as noted
above, we want to determine whether V' = V. Towards this end, in Figure 1 we have
collected information concerning Lie brackets in g x 8 = p & AR that will be useful in our
computations. We now examine the behavior of the Poincaré map associated to the three types
of closed geodesics listed above.

Case I: v = ¢1 Z1 + ¢9Z9 with c% + c% =1.

By Theorem 5.5 and Corollary 5.13 we see that v € Fix(®;) if and only if 7 = ky/aly for
k € N, in which case the connected component of Fix(®,) containing v is the 4-dimensional
manifold (G x K)-v =~ SO(3) x St

Fix 7 = ky/aly. Since v = 121 + c2Z3 with v? + ¢3 = 1 we see that E = Span{c2Z; —
c1Z2,Z3}. We now compute the eigenspaces of the self-adjoint map B : F — FE given by
B(:) = —[v,[v,]ag]. We have

B(Z3) = —[c1Z1+ caZa,[c1Z1 + c2Z2, Z3)Ag]
= —[a1Z1 + c2Z2,0]
=0
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and
B(caZy — c1Z2) = [a1Z1+ caZs, [ Z1, Z2)as]
1
= [aZ1+c2Zyy—=—=—D
[c1Z1 + caZs VAt o) ]
Cc1 (&)
- 9 iz D+—2 7D
\/§(A—|-0z)[1 | \/§(A+oz)[2 ]
- 9 g 2z

+ - = = _
V2@ +a) " V2A+ )
1
= ——— (921 — 1 25).
ﬂ(A+a)( 071 — C122)
Hence, Ey = Span{Z3} and E; = Span{ceZ; — c1Z2}. Now, let T': E — E be the skew-
symmetric map 7'(-) = —[v, -],. Then
T(Z3) = —ci1|Zy, Z3)y — c2|Zo, Z3]
\/ZZ VA
cl——=2J9 — cg——
la\f 2 2()[\/§
JA

= 1 — 17
a\/—(Ql 122),

which is an element of E, and by skew-adjointness we have T'(coZ1 — ¢123) = \GZ3 which is
an element of Ey. Therefore, Fy = Ey and E3 = 0 which implies £ = E1 & F5. We then find
that

Z1

EeE=VieV,&Vs& Vs

In particular, V4 = 0. Consequently, we conclude that the fixed vectors of P coincide with the
isotropic Jacobi fields. It then follows that

ker(D,®, —1d,) = T, Fix(®,).

Case II: v = £73

By Theorem 5.5 and Corollary 5.13 we see that v € Fix(®,) if and only if 7 = kv/Aly for
k € N, in Which case the connected component of Fix(®,) containing v is the 3-dimensional
manifold (G x K) - v ~ SO(3).

Fix 7 = kv/Aly, form some k € N. Since v = 73, we find that E = Span{Z;, Zo}. It is
then clear that B = 0, and we conclude that Ey = F and E; = 0. The skew-adjoint map
T : FE — FE is given by the following:

T(Z1) = —[Z3, Z1]p = —ﬁ%
and
1(Z2) = —[Z3, Za]p = LZl

a2
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Hence, F; ={© € Ey, : T(O) € E1} =0, E3 = Ey = E and we conclude that
EFEaoE=Vi®V,.

Therefore, since V; is 2-dimensional and the connected component of Fix(®;) containing v is
3-dimensional we see that T, (Fix(®,)) = V4 @ Span{(v,0)}, which implies V*® = 0. This last
equality can also be seen by recalling that (X, [v, X],) € V4 gives rise to a non-trivial isotropic
Jacobi field along =, if and only if X # 0 € Ej3 is such that T(X) € [AR,v]. However, since
[AR,v] = 0and T : E — E is an isomorphism, no such vector exists and we see that V)% =0 .
Hence, if P has non-trivial fixed vectors in Vj (i.e., V'* # 0), they will not lie in T, (Fix(®,)).

We now recall that (X, 3[v, X]y) € V4 is fixed by P if and only if U(X) = X, where
U:FE — Fisgiven by ¥ = ead(kVAlov) Now, since Z; and Z3 span E and v = Zs, it follows
that ad v = —T'; therefore,

U — 6—k\/Z€0T

With respect to the basis {Z1, Z2} of E we see that —k\/AlyT is represented by the following

matrix
0 —0(a, A)
O(a, A) 0 ’

where 0(a, A) = ’;i‘/eg = k‘%. Hence, with respect to the basis {Z;, Z2}, ¥ has the following

matrix

cosf(a, A) sinf(a, A)
—sinf(a, A) cosf(a, A) |-

Therefore, ¥ has a fixed vector if and only if §(«, A) € 27N, which is equivalent to A € %‘N.

This implies that ker(D,®; — Id,) # T,(Fix(®,)) if and only if A € 22N. Since k € N

is arbitrary, we may conclude that in the case where A # « we have ker(D,®, — Id,) #

T, (Fix(®,)) if and only if A = %, where j and k are relatively prime, and 7 = m(kv/Afy) for

some m € N.

A
Case III: v = ¢1 21 + c2Z5 + c3Z3, where c% + c% = % and c3 = &+ m for

unique p, ¢ € N relatively prime such that g—i > (a_iA)Q.

By Theorem 5.5 and Corollary 5.13, we see that in this case v € Fix(®,) if and only if
T = kyaly(q® + p? (afA))% for £ € N, in which case the connected component of Fix(®;)
containing v is the 4-dimensional manifold (G x K) - v ~ SO(3) x S'.
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Fix 7 = k/alo(q?+p? (afA))% for some k£ € N and notice that F = Span{coZ1—c1Z2, c1c3Z1+
coc3Zy — (¢ + c3)Z3}. To find the eigenspaces of B : E — E we observe that

B(caZ1 —c1Z2) = —[v,[v,c2Z1 — c1Z2]aq]
= —[c1Z1 + c2Zs + 373, —(ci + ¢3)[Z1, Z2) agl
(e +3)
= —|e1ZicaZdy + 323, ———=—D
[c1Z1c2Z2 + 373 \/§(A+a)]
(ci +¢3)
= ———=(c1|41,D|+ 2|2y, D| + c3|Z3, D
\/§(A—|—oz)(1[ 1, D] + c2[Z3, D] + c3[Z3, D])
(ci +¢3)
= — 1 — 1z
ﬂ(A—ka)( 2241 122)
and
B(0163Z1 + cocgdy — (C% + C%)Zg) = —[’U, [U, c1c341 + cocgdo — (C% + C%)Zg]Aﬁ]

= —[c1Z1 + caZs + c3Z3, c1cac3[Z1, Zo|ag — c1¢2¢3[ 21, Zo|Ag]
= 0.
Hence, Ey = Span{cic3Z; + cac3Zo — (¢3 + ¢3)Z3} and E; = Span{caZ; — ¢1Z2}. We now
determine Fy and E3 by computing 7' : E — E:
T(c10321 + cocgZy — (C% + C%)Zg) = —[61Z1 4+ coZy + c343,c10321 + coc3ly — (C% + C%)Zg]p
= alZy, Zsly + 2|22, Zsly

VA
= (c2Zy — c1Z2)
av?2

and we also see that

VA 2, 2
c163241 + cacgZa — (c] + ¢3)Z3).
a\/§(131 20322 — (€1 + ) Z3)
It follows that Ey = {X € Ey : T(X) € E1} = Ey and E3 = 0, which allows us to see that
E = E{ ® Es. Therefore, V4 = 0 and

T(C2Zl — 0122) = —

EoE=VioVhoVsoVs.
Hence, the only fixed vectors of P come from isotropic Jacobi fields and we have

ker(D,®, — I,,) = T,(Fix(®;)).

Cases I - III now clearly imply the theorem. Indeed, when o # A, we see that the cleanliness
of 7 € Specy,(g(a,a,4) hinges on the behavior of the Poincaré map along geodesics of length 7
having Type II. The conclusion of Case II, then gives us the main statement of the theorem.

O
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5.16. Remark. It is clear from the proof of Theorem 5.14 that the cleanliness of a metric is
dictated by the behavior of the Poincaré map along Type II geodesics.

Proof of Theorem 1.1. The space of naturally reductive left-invariant metrics on SO(3) is iden-
tified with A = {(a, A) : a, A > 0} € R%. Now for each r € Q4 let A, = {(o, A) : A = ra}.
Then it follows from Theorem 5.14 that the class of clean metrics in A is given by C =
Nr21eq, (A — A;), which is a residual set containing the bi-invariant metrics A;.

The final statement follows from the fact that the normal homogeneous metrics on SO(3) are
identified with the set N' = {(«a, A) : @« < A} and, by Theorem 5.14, we see that N'N(A—C) #
. O

5.17. Proposition. Let g = g(4,a,4) be a left-invariant naturally reductive metric on G = SO(3)
with corresponding Sasaki metric g on the tangent bundle. Let T be a clean length in the length
spectrum of g and du” denote the corresponding DG-measure on Fix(®;) as in Section 2. And,
the set £r. 4 and function o(p.q, a, A) are as in Theorem 5.5.
(1) If @ = A, then Fix(®,,,) = T'SO(3) = SO(3) x S and du™ = dvgpix(s,). That
is, duy is the Riemannian density on Fix(®;) that is induced by the restriction of the
Sasaki metric. And, we have

/ du™ = vol(g) - vol(5%) = 4 vol(g)
Fix(®,)

i T ) ° °
(2) For a # A the components of Fix(®.) are of Type I, II or III (see Lemma 5.11)
(a) Suppose © C Fix(®;) is a component of Type 1. Then, the restriction of the DG-
measure to © is given by du” [ © = %dl/m@ and

/@d/f = \%vol(g) vol(S]) = \2/7;

(b) Suppose © C Fix(®,) is a component of Type II. Then, the restriction of the
DG-measure to © is given by du™ [ © = %dl/gr@ and

1
/ du™ = —vol(g).
<) T

(c) Suppose © C Fix(®;) is a component of Type III, so that © = (G x K) - v, ) for
(P, q) € Era,a and vy, gy € TG as in Lemma 5.11(3). Then, the restriction of the
DG-measure to © is given by du” | © = %dum@ and

vol(g).

27 o(p,q,a, A)
du™ = — vol(g).
L = o\ s 410
Proof. For this proof, the reader will find it useful to refer to the exposition of the Trace

formula in Section 2 and the corresponding notation. By Corollary 5.13, any component © of
Fix(®;) is homogeneous. Therefore, it is enough to compute the value of the DG-density at a
single point z € ©.
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CaseI: a=A
With respect to this metric, the geodesic in G = SO(3) are all closed and have a common
primitive period. Therefore we see that © = Fix(®,) = T'SO(3) = (G x G) - z for any unit
vector z € T.G. Now, fix a unit vector z € T,G.
Let X1, X2, X3 be an orthonormal basis for 7, SO(3) then
[ ] 5 = {61 = (X1,0),62 = (Xz, 0),63 = (Xg,O),€4 = (0,X1),65 = (0,X2),€6 = (O,Xg)} is
abasisfor W=T,06=T,0=1V.
o W is trivial.
o F = {fl = (OaXl)an = (07X2)7f3 = (07X3)7f4 = (X170)7f5 = (XQaO)afG = (X37O)}
is a basis for a complement of W such that
Q(ei, f]) = 5”
e As the complement of W is trivial we take V = & and it follows that TV = &.
e We then see that

TYNF = F
= (0, X1) A (0, X2) A (0, X3) A (X1,0) A (X2,0) A (X3,0)

= (=1)**(X1,0) A (X2,0) A (X3,0) A (0, X1) A (0, X2) A (0, X3)
= (-1)¢
= (-1)VYAE
Therefore, by Lemma 2.3, for any half-density ¢ € ]V|1/ 2 we have the DG-Density is given by
if“>=$§iﬁ?»=\_iuz=1
It then follows that
n = vge.

Case II: o # A

Suppose 7 is a clean length in the length spectrum of g, then a connected component © of
Fix(®;) is of Type I, IT or III. We will now compute the restriction of ™ to © in each of these
cases.

Subcase ITA: O is a Type I component

In this case © = (G x K) -z =~ SO(3) x S! for any unit vector z = ¢1ZycaZs € T = p.
Then we observe the following.
e & = {61 = (Zl,O),eg = (ZQ,O),eg = (Zg,O),€4 = (O,Zl),65 = (O, Zg),} is a basis for
W =T.6.
e W = Span{(Z3,0)}
o F = {fl = (07Z1)af2 = (0722)7f3 - <O7ZS)7f4 = (—Zl,O),f5 = (_Z270)} is a basis
for a complement of W* such that Q(e;, f;) = ;.
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o V ={(0,Z3)} is a basis for a complement of W

o TV ={(1775,0)}

e And, we obtain

TYNF =

(723,0) A ((0, Z1) A (0, Z2) A (0, Z3) A (=21,0) A (=22,0)
7(Z3,0) A ((0, Z1) A (0, Z2) A (0, Z3) A (—=Z1,0) A (=22, 0)
—7(0,Z3) A (Z3,0) A ((0, Z1) A (0, Z2) A (Z1,0) A (Z2,0)
—7(0,Z3) A (Z1,0) A (Z2,0) A (Z3,0) A ((0, Z1) A (0, Z2)
—TVNE

Therefore, by Lemma 2.3 for any half-density ¢ € |[V|'/? we have

It then follows, by homogeneity of ©, that

Subcase IIB: O is a Type II component

In this case © =

(Gx K)-z~8S0(3) forv=+Z35 € T.G = p. Then we observe the following.
(Z1,0),ea = (Z2,0),e3 = (Z3,0),e4 = (0, Z3)} is a basis for W = T.0 .

e W = Span{(Z1,0),(Z2,0)}

o F={fi=

(07 Z1)7 f2 =

(0, Z3), f3 = (0, Z3), fa = (—Z3,0)} is a basis for a complement

of WQ such that Q(ei, f]) = 5”

Therefore, by Lemma 2.3 for any half-density ¢ € |V

V ={(0,%1),(0,Z5)} is a basis for a complement of W
TV = {(Tzla O)’ (7—227 0)}
We then see that

TVANF =

(7Z1,0) A (1Z2,0) A (0, Z1) A (0, Z3) A (0, Z3) A (—Z3,0)
720, Z1) A (0, Z3) A (Z1,0) A (Z2,0) A (0, Z3) A (—Z3,0)
—72(0, Z1) A (0, Zo) A (Z1,0) A (Z2,0) A (0, Z3) A (Z3,0)
72(0, Z1) A (0, Z2) A (Z1,0) A (Z2,0) A (Z3,0) A (0, Z3)
2VAE
11/2 we have
i) = pVNE) _ 1
o(TVANF) 71

The homogeneity of ©, then allows us to conclude that

1
prle= ~Vjie-

Subcase IIC: O is a Type III component
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In this case there exists (p,q) € & 4,4 and a unit vector z = Vipq) = 121+ coldo + c323 €
T.G = p, where ¢ + 3 = _opaad) onq ey = £,/——L —— such that © = (G x K) -

o(p,q,0,A)+1 o(p,q,0,A)+1
Vip,g) = SO(3) x Sy, 1 where r = o q,olz T . Without loss of generality we may assume that

o(p,q,0,A) /
cpa.a, A1 2= 0 and c3 = o(p,q, A)+1

Now, let z = ¢1Z) + ¢3Z3 € © C © and let v, v+ € T.0 be given by v = ¢1Z1 + c3Z3 and
vt =321 — ¢1Z3. Then

= {e1 = (v,0),e2 = (Z2,0),e3 = (v+,0),e4 = (0,v),e5 = (0,Z2)} is a basis for
W =T.0 .
W = Span{(vt,0)}
F={fi=(0,v), f2=(0,Z3), f3 = (0,vF), f1 = (—v,0), f5 = (—Z2,0)} is a basis for a
complement of W such that Q(e;, fj) = 6;;.
V = {(0,v1)} is a basis for a complement of W
TV = {(tv*,0)}
We then see that

TVAF = (tvF,0)A(0,0) A (0,Z2) A (0,00) A (—v,0) A (—Z2,0)
(v, 0) A (0,0) A (0, Zo) A (0,01) A (v,0) A (Z2,0)
= —7(0,01) A (v5,0) A (0,0) A (0, Z2) A (v,0) A (Z2,0)
= —7(0,v) A (v,0) A (Z2,0) A (vh,0) A (0,0) A (0, Z2)
= —TVAE
Therefore, by Lemma 2.3 for any half-density ¢ € |[V['/? we have

e(VAE) 1

= avar ~ v

From the homogeneity of ©, we conclude that the DG-measure is give by
1

T r@ = FVQ[@

The theorem now follows from Cases I and II. U

5.18. Proposition. Let g = g(a,a,4) be a left-invariant naturally reductive metric on SO(3).
Let Trin = Tmin(g) denote the length of the shortest closed geodesic with respect to g and o
denote the Morse index of any smooth closed geodesic with respect to g having length Tmin.
(1) If a = A, then Tmin = vVl is clean, Fix(®,_. ) is a connected manifold of dimension
5, and all of the closed geodesics of length Tiin have Morse index o = 0. Furthermore,
Waved (7in) = —% vol(g)

and Wave"™ (Tmin) = 0 for k > 0.
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If A < a, then Timin = VAl is clean, Fix(® . ) s a a manifold of dimension 3 having
two connected components, and the closed geodesics of length Tmin all have the same
Morse index o. Furthermore,

i~ @+ vol(g)

Wavegdd(Tmin) = —
min

Wave " (Tmin) = 0 for k > 0.
If A > a, then Tmin = /by is clean, Fix(®;, . ) is a connected manifold of dimension /,
and the closed geodesics of length Tin all have common Morse index o. Furthermore,

~

1\*? _, 2
Wavegven(Tmin):< > i vol(g).

2mi

Waveidd(rmin) =0 for k> 0.

By Corollary 5.13 we see that Tmin = /aly and Fix(®, . ) is the unit tangent bundle
with respect to g. It is also clear that the geodesics of length 7, must have Morse
index 0. It then follows from Theorem 2.4 and Proposition 5.17 that

Waveddd (rpin) = 1 ;i_"/ dvz i
0 min o T150(3) gIT* SO(3)

= ——vol(g)

And, since Fix(®_, ) has no even-dimensional components, we see that Wave}"" (Tinin) =

0 for any k£ > 0.

By Corollary 5.13 we see that Fix(®, . ) = ©4 U©O_ ~ SO(3) USO(3), where O =
(G x K)-(£Z3) = SO(3) x {£Z3} C T'SO(3). It is clear that the geodesics of this
length are translates of each other or the reverse parametrization, thereofre they all
have a common Morse index o It then follows from Theorem 2.4 and Proposition 5.17
that

Wavegdd (Tmin)

3—1
1 2
<2> ? U( dluTmin +/ dlu’Tmin)
T O+ e_
1 2

g

= %z — vol(g)
j—(o+1)
= vol(g)

TTmin




34 C. J. SUTTON

And, since Fix(®_, ) has no even-dimensional components, we see that Wave}"™" (Tinin) =

0 for any £ >0

(3) By Corollary 5.13 we see that Fix(®,_. ) = (G x K)-v ~ SO(3) x S! for a unit vector
v =121+ caZs € T.G. The geodesics of length m,;, are clearly all translates of each
other by the isometry group, so they have a common Morse index o. It then follows
from Theorem 2.4 and Proposition 5.17 that

1\ =z
WaVegven(Tmm) = <> i_a / d/“[/Tlnin
2mi S0(3)x S!

1 s 2T
= (—) ]
<2m'> ¢ ~/Tmin vol(g)
even

) has no odd-dimensional components, we see that Wave}"™ (Tinin) =

Njw

And, since Fix(®
0 for any £ >0

Tmin

O

Proof of Theorem 1.2. Let g be a left-invariant naturally reductive metric on SO(3). By Propo-
sition 5.18 the length Tmin = Tmin(g) is clean and one of Waveg"" (Tiin) or Wavegdd(Tmin) is
non-zero. Therefore, by Theorem 2.4(4), Tyiy is in the singular support of the trace of the wave
group associated to g. And, being the smallest non-zero element in SingSupp(Trace(Uy(t)))

we see that T, can be recovered from the spectrum of g O

It follows immediately from Theorem 1.2 and Proposition 5.18 that we have the following
result which states that the volume of a left-invariant naturally reductive metric g on SO(3)
can be recovered from the asymptotic expansion of the trace of its wave group at the singularity

Tmin (9)-
5.19. Corollary. There is a function f(-,-,-) such that for any g € Mnat(SO(3)) we have

VOl(g) = f(dlm Fix((I)Tmin(g))v Wave(.) (Tmin (g))v Tmin(Q))ﬂ

where o denotes the parity of dim Fix(®,  (4))-

Proof of Theorem 1.5. Let g = g(q,a,4) be a left-invariant naturally reductive metric on SO(3)
and let Tynin = Tmin(g) denote the length of the shortest non-trivial closed geodesic with respect
to g. By Theorem 1.2 7, is clean and is determined by the spectrum of g. Furthermore,
using the asymptotic expansion of the wave trace at the singularity 7,y we conclude that the
dimension of the manifold Fix(®, . ) is determined by the spectrum of ¢ and takes on the
values 3,4 or 5. We will now show that in each of these cases a and A can be expressed in
terms of the spectrally determined data 7yi, and vol(g) = a\/ZVo, where Vj is defined as in
5.3.

Case I: dimFix(®, , ) =5

2
It follows from Proposition 5.18 that « = A and 7 = /alp, so that « = A = (T;‘J) .
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Case II: dimFix(®, ) =4
2
In this case, Proposition 5.18 implies that A > « and Ty = /aly. Therefore, o = (%) .

2
Also, since vol(g) = av/ AV, we see that A = (\;31(9223)
Case III: dim Fix(®,, ) =3

2
Here, Proposition 5.18 tells us that A < o and Tnin = VAl Tt follows that A = <T}§%>

1
and o = 2920 (g%fo. O
Tmin V0

5.20. Remark. In the introduction we noted that in [Sut] we produced examples of normal
homogeneous manifolds of the form SU(n)/H; and SU(n)/Ha, which are isospectral. Hence,
there is no hope of showing that within the class of all naturally reductive manifolds each space
is uniquely determined by its spectrum.

The 0-th wave invariants and the Poisson Relation. In light of comments made in the
Introduction it is natural to wonder whether it is possible to use the 0-th wave invariants to
establish equality in the Poisson relation for the clean metrics in Mnat(SO(3)). Let g(a,q,4) be
such a clean metric. When @ = A we have a bi-invariant metric on SO(3), which is a CROSS,
and as we noted in Example 2.9 the Poisson relation is an equality for all CROSSes. So, we
consider the case where g(q o, 4) is clean and a # A.

First, we fix an element 7 in the length spectrum of g(4,q, 4) and recall that Fix(®,) consists
of components of Type I, IT and III. We observe that Fix(®;) cannot contain components of
Type I and Type II simultaneously. Indeed, if this were the case, then we could find natural
numbers m and n such that 7 = my/aly = nv/Aly, which would imply that A € aQ, — {a},
contradicting the fact that the metric g, q, 4) is clean (see Theorem 5.14). It is also the case
that Type I components cannot occur along with Type III components. For otherwise, there
exist natural numbers m and n such that 7 = m+/afy = ny/aly(q® + pQCy_iA)l/ 2 which implies
that A € aQ4 — {a} and leads us to conclude that the metric g, q,4) is actually unclean,
which is a contradiction.

Now, let 7 = n+/afy be the length of Type I geodesic. Then, the previous paragraph dictates
that Fix(®,) consists of the lone Type I component. Therefore, since the Type I component
is of dimension 4 we see that Waveg""(7) # 0. Therefore, the length of any Type I geodesic is
contained in the singular support of the trace of the wave group.

To analyze lengths arising from Type II and Type III geodesics, we recall that the Type
II and Type IIT components are all of dimension 3. If the only odd-dimensional components
in Fix(®,) are the Type II components ©1 = (G x K) -v and O3 = (G x K) - —v, where v
is the initial velocity of some unit speed Type II geodesic (see Lemma 5.11), then since the
Morse index associated to these components is clearly the same, we conclude that Wavegdd(r)
is non-zero and, therefore, 7 is also in the singular support of the trace of the wave group.

An issue arises in using the 0-th wave invariants when Type III components occur in Fix(®.).
Indeed, one can show that the conjugate points along a Type III geodesics are as follows.
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5.21. Proposition. Suppose Vogp.g U5 G Type III geodesic with v, q) = c1Z1 + c2Z2 + c323 €

a(p,q,2,A) 1
o(p,q,a,A)+1 o(p,g,0, A)+1

A) 1 — 1 —
And, let a(p,q, o, A) = \/go + 0(pz’icf4)+1 i)’ where ¢ = E\/> and A = 714
(1) If « > A, then %( ( 0), to > 0, is conjugate to e = Yoy, >( ) along Vop.q O and only

p = T.G, where ¢} + c3 = and c3 = + for a unique (p,q) € Era,A-

ifto#0 € - q o A)N And, in this case the conjugate point has multzplzczty one.
(2) Ifa< A, then Yo ( 0), to > 0, is conjugate to e = Yorp.a) (0) along Yoy U and only

ifto #0 € TA)N ortyg = (14—04)4"%' And, in this case the conjugate point

o o(p,q,a,A)+1
has multiplicity one.
Proof. We omit the long computation, which makes use of Ziller’s recasting of the Jacobi
equation for naturally reductive metrics [Z2] and our explicit understanding of the Poincaré
map. O

Using the previous proposition one can compute the Morse index associated to each Type I11
component (G x K)-v, 4
spirit of those used to establish Proposition 5.17(2c), allows one to compute the contribution

of each Type III component to the wave invariant Wavegdd(T). However, some inspection will

) contained in Fix(®,). This, in conjunction with computations in the

demonstrate that these contributions behave rather erratically making it difficult to rule out
the possibility of cancellations, in general. Therefore, the best we can say at the moment is
the following.

5.22. Proposition. Let g, q,4) be a clean left-invariant naturally reductive metric on SO(3)
and T an element in the length spectrum of ga,a,a)- If T is a multiple of Valy, or T is a
multiple of VA for which Fix(®;) contains no Type III components, then T is in the singular
support of the trace of the wave group of g(a,a,a)-
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