Rational generating functions and compositions

Bruce Sagan
Michigan State University
Thursday, February 16, 2006
L02 Carson Hall, 4:00 pm
(Tea 3:30 pm Math Lounge)

Abstract

A composition of the nonnegative interger n is a way of writing n as an ordered sum of positive integers. So the compositons of 3 are $1+1+1$, $1+2,2+1$, and 3 itself. It is well-known and easy to prove that if c_{n} is the number of compositions of n, then $$
c_{n}= \begin{cases}1 & \text { if } n=0, \text { and } \\ 2^{n-1} & \text { if } n \geq 1\end{cases}
$$

Equivalently, letting x be a variable, we have the generating function (power series) $$
\sum_{n \geq 0} c_{n} x^{n}=\frac{1-x}{1-2 x}
$$ which is a rational function. We show that this is a special case of a more general family of rational functions associated with compositions. Our techniques include the theory of formal languages from computer science. Surprisingly, identities about hypergeometric series are needed to do some of the computations.

