A bijection between 2-triangulations and pairs of non-crossing Dyck paths

Sergi Elizalde
Dartmouth College

Wednesday, January 31, 2007 008 Kemeny Hall, 4:05 pm
(Tea 3:30 pm 300 Kemeny Hall)
(Note unusual time and place!

Abstract

Triangulations of a convex polygon are known to be counted by the Catalan numbers. A natural generalization of a triangulation is a k triangulation, which is defined to be a maximal set of diagonals so that no $k+1$ of them mutually cross in their interiors. It was proved by Jakob Jonsson that k-triangulations are enumerated by certain determinants of Catalan numbers, that are also known to count k-tuples of noncrossing Dyck paths.

There are several simple bijections between triangulations of a convex n-gon and Dyck paths. However, no bijective proof of Jonsson's result is known for general k. In this talk I will give a bijective proof for the case $k=2$, that is, I will present a bijection between 2-triangulations of a convex n-gon and pairs (P, Q) of Dyck paths of semilength $n-4$ so that P never goes below Q. The bijection is obtained by constructing isomorphic generating trees for the sets of 2-triangulations and pairs of non-crossing Dyck paths.

