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CROSS PRODUCTS 

OF STRONGLY MORITA EQUIVALENT C*-ALGEBRAS' 


RAUL E. CURTO, PAUL S. MUHLY AND DANA P. WILLIAMS 

ABSTRACT.Suppose that a locally compact group G acts on strongly Morita 
equivalent C*-algebras A and B and let A >Q G and B >a G denote the corresponding 
crossed products. We present conditions which imply that A >a G and B >a G are 
also strongly Morita equivalent and we apply our result to improve upon known 
theorems concerning strong Morita equivalence between certain transformation 
group C*-algebras. 

1. Denote the action of G on A by a and that of G on B on 0. Suppose, too, that X 
is a complete A-B-equivalence bimodule in the sense of [4, p. 2871. 

THEOREM such that for 1. If there is a strongly continuous action of G on X, {T,),,,, 
a E A, b E B and x, y E X, the following equations, (i) and (ii) are satisfied, then 
A >Q G and B >a G are strongly Morita equivalent. 

(0 ( 7 , ~ ~  ar((x, ~ ) A ) a n d  T,Y)A= 
(ii) ( 7 , ~ ~  B Pt((x, Y )  B). 7 , ~ )  = 

PROOF.Since (x,  y),(u, v), = (x (y ,  u) ,, v) for x, y, u, and v E X, it follows 
from the fact that each a, is an automorphism that 

Since range of (., a), spans a dense subset of B, we notice that T,(X . b) = r,(x)~,(b) 
for each x E X and b E B. Similarly, r,(a . x) = a,(a)r,(x). 

Let C be the linking algebra for A and B constructed in [I]. Then C consists of 
matrices ($ $)where a E A, b E B, x, y E X, and where y' denotes the image of y in 
the dual B-A-equivalence bimodule. Since Xis assumed complete, C is a C*-algebra 
and may be faithfully represented by bounded operators on the (right) B-rigged 
space M = X + B (with B-valued inner product ( ( i ) ,(:)), = (x, y ),+ b*c) 
according to the formula 

Define {y,),,, on C by the formula 
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and use hypotheses (i) and (ii), as well as the covariance property demonstrated 
above, to check that t -t yt is a homomorphism of G into the *-automorphisms of C. 
To see that {y,),,, is strongly continuous, it suffices to check that for c E C, 
lim,-, yt(c)(2) = c(2) uniformly in the B-norm on M as (2) ranges over bounded 
subsets of M. This is most easily done for elements in C with one nonzero entry and 
we omit the details. As in [I], let p = !) and q = (i $ B )  where id, and id, are( :A 

the identity maps of A and B onto themselves. Then p and q are complementary full 
projections in the multiplier algebra of C, M(C), and the maps i,: A -, C and i,: 
B -.C defined by i,(a) = (: :) and i,(b) = (0, i )are isometric imbeddings of A and 
B into C with images pCp and qCq respectively. Moreover, p and q are invariant 

and the maps i, and i, are equivariant, i.e., i, 0 a, = y, i, and 
i, 0 p, = y, 0 i,. If we form C X G using {y,),,,, and if we view p and q as elements 
in M(C >a G), then it is easy to see that p and q are complementary full projections 
in M(C >a G). Moreover, by equivariance, the maps i, and i, extend in the obvious 
way to imbeddings of A >a G and B >a G into C >Q G with images p(C >a G)p and 
q( C XI G)q, respectively. We conclude from [I, Theorem 1.11 that A >a G and B >a G 
are strongly Morita equivalent. 

2. In [S], Rieffel describes a number of circumstances under which certain 
transformation group C*-algebras are seen to be strongly Morita equivalent. His 
Situation 10 is the most general in the sense that all of the others are special cases of 
it. We use Theorem 1 to show how to improve upon Situation 10 and how to derive 
the improvement from Rieffel's Situation 2. Following [5], suppose that H and K are 
locally compact groups acting on a locally compact space P. We assume that H and 
K act freely, that for each action compact sets are wandering, and that the actions 
commute. The wandering hypothesis implies that the orbit spaces P/H and P/K 
are locally compact, and since the actions commute, there is a natural action of K on 
P/H and one of H on P/K. Consequently, we may form the transformation group 
C*-algebras, C*(H, P/K) and C*(K, P/H). On the other hand, since the actions 
commute, we may view H X K as acting on P in the obvious way, and so we may 
form C*(H X K, P).  

THEOREM2. The three algebras, C*(H, P/K), C*(K, P/H) and C*(H >a K, P), 
are strongly Morita equivalent. 

PROOF.Situation 2 of [S] asserts that since the action of K on P satisfies the 
wandering hypothesis, C*(K, P )  and Co(P/K) are strongly Morita equivalent and 
that a natural C*(K, P )  - Co(P/K)-equivalence bimodule X is the completion of 
Cc(P) in the Co(P/K)-valued inner product. The C*-algebra C*(K, P )  is a comple- 
tion of C,(K X P )  and one obtains an action of H on C*(K, P )  by defining it first 
on C,(K X P )  by the formula (ah@)(k, p )  = @(k, h-lp), @ E Co(K X P). Also, H 
acts on Co(P/K) according to the formula (PhQ)(p) = fi((h-lp)), Q E Co(P/K), 
where p denotes the image of p in P under the quotient map onto P/K. Finally, for 
h E Hand f E Cc(p), we define (rh f )(p) =f(h-'p). Then it is routine to check the 
formulas in Theorem 1 at the level of functions in the appropriate spaces, C,(K X P), 



530 R. E. CURTO. P. S. MUHLY AND D .  P.  WILLIAMS 

C,(P), and C,,(P/K). But it is also routine to check that {T,),,, is strongly 
continuous in the norm on C,(P) determined by the C,( P/K)-valued inner product. 
Thus {T,),,, extends to all of X and the hypotheses of Theorem 1 are satisfied. By 
Theorem 1, C*(K, P )  >a H and C,(P/K) >O H are strongly Morita equivalent, but 
since these algebras are isomorphic to C*(H X K, P )  and C*(H, P/K), respec-
tively, we conclude that C*(H X K, P )  and C*(H, P/K) are strongly equivalent. 
Since the equivalence of C*(H X K, P )  and C*(K, P/H) may be proved similarly, 
the proof is complete. 

REMARK.It may appear that we have given an entirely elementary proof of 
Rieffel's Situation 10 avoiding his slick but unintuitive argument. However, this is 
not quite the case; one still has to verify Situation 2. To be sure, Rieffel's argument 
simplifies somewhat in the context of Situation 2, but not materially. Another 
argument for Situation 2 may be fashioned easily from Green's Theorem 14 in [2] 
and Raeburn's Proposition 1.1 in [3].While t h s  approach is perhaps more intuitive 
than Rieffel's, it certainly is much longer. 

ADDEDIN PROOF.We recently received the preprint, Crossedproducts and Morita 
equivalence, by F. Combes, in which he also proves Theorem 1. 
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