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CONTINUOUS TRACE GROUPOID C*-ALGEBRAS, 11

PAUL S. MUHLY" and DANA P. WILLIAMS

Introduction.

In this note we continue our investigation of the properties that guarantee that
the C*-algebra of a locally compact groupoid is a continuous trace C*-algebra.
We follow the notation of [7] which is consistent with [11] except that we write
s (for “source”) for the map Renault writes d. We also assume that all our
groupoids are locally compact, Hausdorff, second countable, and admit a Haar
system. In [7] we showed that if ® is a principal groupoid in the sense that the
map 7 from & to ° x ®°, given by the formula n(y) = (r(7), s(y)), is one-to-one,
then for any Haar system A on ®, C*(®, 1) is a continuous trace C*-algebra if and
only if  is a proper map; i.e., if and only if n is a homeomorphism onto a closed
subset of ° x G°. In this case G is called a proper principal groupoid. In fact, we
showed that when C*(®, 1) has continuous trace, then C*(®, 1) is isomorphic to
the C*-algebra of a continuous field of elementary C-algebras defined by a con-
tinuous field of Hilbert spaces over °/®, where 6°/® is the quotient obtained
from the natural action of & on G° on the right. (The properness of  is equivalent
to the assertion that this action is proper [7; Lemma 2.17; and this, in turn, implies
that °/G is locally compact and Hausdorff.) Thus, in particular, we showed that
if C*(®, 1) is a continuous trace C*-algebra, then its Dixmier-Douady invariant
is trivial.

Our work in [ 7], then, leads naturally to the question: Assuming ® is principal,
but adding in a 2-cocycle w € Z*(®, T), when does C*(®, 4, w) have continuous
trace and what effect does the addition of w have on the Dixmier-Douady
invariant? We answer the first half of this question in the present paper
postponing the second half for future consideration. Actually, the second half has
received attention in the literature under hypotheses more restrictive than those
assumed here (e.g., [2, 9, 10]). In fact it follows from [9] that, if X is a paracom-
pact locally compact space, then any class in H3(X;Z) may arise as the Dix-
mier-Douady class of C*(®, 4, w) for suitable ® and w. However, the precise
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relationship between the cohomology of ® and Dixmier-Douady invariants is
complex.

Itis well known [11] that an element w in Z*(®, T) gives rise to a certain type of
extension € of ® which, in turn, is an example of what Kumjian [3] calls
a T-groupoid. Roughly, this is a groupoid € endowed with a T-action such that
the quotient /T is isomorphic to ®; the precise definition will be given in the next
section. The algebra C*(®, 4, w) is generalized by an algebra denoted C*(®; €, A).
As with C*(6, 4, w), it is a quotient of the C*-algebra C*(€, ) where ¢ is a Haar
system on € induced naturally by the Haar system 1 on 6.

The primary goal, then, of the present note is the following result which we
divide into two theorems below, Theorem 4.2 and Theorem 4.3.

MAIN THEOREM. Let € be a second countable, locally compact T-groupoid and
assume that ® = €/T is a principal groupoid admitting a Haar system A. Then
C*(®; €, 1) is a continuous trace C*-algebra if and only if ® is proper.

In particular, when G is principal and w e Z%(®, T) then C*(®, 4, w) is a con-
tinuous trace C*-algebra if and only if ® is proper. The proof resembles the proof
of Theorem 2.3 of [7] in broad outline, but the details are non-trivial, more
complex, and require additional finesse. Section 2 establishes notation and helps
to delimit the generality of our presentation. In particular, we show that the
notion of T-groupoid does indeed generalize properly the notion of an extension
determined by a 2-cocycle. In section 3, we investigate the structure of certain
irreducible represenations of C*(®; €, 1) and show in Proposition 3.3 that when
C*(®; €, 1) is a continuous trace C*-algebra, then these representations exhaust
C*(®; €, 1)". Finally, in section 4, we prove our main Theorem.

§2. Groupoid Extensions.

Throughout this note, ® will be a locally compact principal groupoid with unit
space ®° = X. As our eventual goal is to study groupoid C*-algebras which are
twisted by a (groupoid) 2-cocycle, it will be convenient to recall the notion of
a groupoid extension. As we shall see in Example 2.1, unlike the situation for
groups, this approach is more general than one which is specific to cocycles.
We let © = X x T, and consider a locally compact groupoid extension € of
® by ©. That is, we have an exact sequence of locally compact groupoids
@2.1) I—a0C -G 6,

i

where i is a homeomorphism onto a closed subgroupoid of € (which we often
identify with &) satisfying i(x) = x, and j is an open, continuous surjection.
Notice that € admits a free T-action defined for te T by
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t-y =i(r(y), )y,

and that the quotient space €/T may be identified with 6.
Conversely, suppose that € is a locally compact groupoid which is also
aT-bundle(i.e., €is afree T-space and /T is Hausdorff). We will also require that

r(t-y) = r(y), and
s(t-y) = s(y),

so that t,se T and (y,7) € €® imply that (¢ -y, s - n) e 2. If in addition, we always
have

(2.3) (t-yXs-n) = (ts) - (yn),

and if €/T is a principal groupoid, then we follow [3; Definition 2.2] and call
€ a T-groupoid. If in this case, we let

S = {ye€:r(y) = s(v)},

then €° = S and (u,t)— ¢t - uis easily seen to be a (topological) groupoid isomor-
phism of €° x T onto S. Therefore, if € is a T-groupoid, then we have an exact
sequence of locally compact groupoids

2.2)

G xT— € &,

where j is an open, continuous surjection. One should think of such an extension
as the groupoid analogue of a central circle extension of groups. From now on,
we'll assume that Sequence (2.1) is an extension which is determined by a second
countable, locally compact T-groupoid €. In particular, in the sequel ® will always
denote the principal groupoid €/T. Since u+ i(u, 1) is a homeomorphism of
X onto €°, we shall often identify €° and X.

Let {1“},.x be a Haar system for ®. Since we wish to study the twisted groupoid
C*-algebra C*(®; €, /) introduced in [12;§3], we review some of the basic
constructions in our rather special setting. We let C.(®, €) denote the collection
of f e C(€) which also satisfy

2.4 fe-y) =)
Given g, f € C.(®, €), we define

(2.5) f*gly) = jf (ymg(n~")dA" (),
G

and

*o) =G0,
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Here we have written # in place of j(n). Of course the integrand in Equation (2.5)is
a function of 17 in view of Equation (2.4) and Equation (2.3). We define Rep(®; €)
to be the collection of non-degenerate *-representations L: C.(®; €) —» B(H.)
which are continuous when C.(®; €) is given the inductive limit topology and
B(H,) is given the weak operator topology. It follows from [12; Théoréme 4.1
and Proposition 3.5] that

If1 = sup{I LNl : Le Rep(®; €)}

is finite and defines a pre-C*-norm on C (®; €). We denote the completion by
C*(®; €, A). Alternatively, one can define

If1l; = max [sus Jlf A7), sug flf (v)ldl..(?)]-
() G

It is a consequence of [12; Proposition 3.5 and Théoréme 4.1] that Rep(®; €)
consists exactly of non-degenerate I-norm bounded represenations of C (®; €).

It will be very convenient to realize that € has a naturally defined Haar system
of its own. For each ue X = €°, let ¢* be defined by

Jf (v)da*(y) = fjf (t-y)deda*(y). (feC(€)
¢ 6T

It is perhaps comforting to know that when using this Haar system on €, the
right hand side of Equation (2.5) becomes

J Sfemgn™1)da* " (n).
[

The point is: no dot! Another immediate consequence of this is the fact that
C*(®; €, ) is a quotient of the ordinary groupoid C*-algebra C*(€;0); this
follows from [12; Lemma 3.3] (in our case, x(t) = ).

We conclude this section with a discussion designed to place in perspective the
extent to which T-groupoids are more general than groupoid extensions asso-
ciated with continuous 2-cocycles as developed in [11]. We begin with an analysis
that will prove useful later. It shows that at the measure theoretic level,
T-groupoids do reduce to extensions and it helps to identify where the topologi-
cal problems lie.

Give a T-groupoid €, one may apply a lemma of Mackey [4; Lemma 1.1] to
find a Borel cross function c for the quotient mapj : € - ® in Sequence (2.1). (One
may even choose ¢ so that ¢(K) has compact closure for each compact set K in 6.
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This will be useful later. We call such cross sections regular.) The element
ye(j(y)) ~ ! lies in the image of i and so, effectively, defines a function ¢t : € — T such
that y = t(y)- c(y) where $ = j(y). Evidently ¢ is Borel since c is. Note, too, that ¢ is
continuous if and only if c is, because j is open. If for (x,y)e ®?, we set
a(x, y) = t{c(xy)” ' c(x)c(y)), then w is a Borel function from G® to T such that
a(x,y) cxy) = c(x)c(y). On the one hand c(x)c(y)c(z) = w(x, y)c(xy)c(z) =
o(x, y)a(xy, z)c(xyz), while on the other c(x)c(y)c(z) = ay, z)c(x)c(yz) =
a(y, 2)o(x, yz)c(xyz). Consequently, w(x,y)o(xy,z) = ey, z)w(x, yz). Thus w is
a Borel 2-cocycle on ®. (This cocycle is not normalized in the sense that
w(x, y) = 1, if either x or y is a unit, but that need not concern us here.)

Form & =T x ® with product defined by

(51, X1 M52, X2) = (515200(xy, X3), X1 X3),
if (x;,x,)€ ™, and inverse defined by
(s,%)7! = (seo(x T, x),x" 1)

Then ¢’ is a Borel groupoid, called the extension of ® by T determined by w, which
is Borel isomorphic to € via the map (s, x)— s c(x), (s, x)e €. The inverse is
y=(t(y), (j(y)), y € €. Note that this isomorphism is actually T-equivariant. Note,
too, that if ¢ were continuous then w would be also, and if € were endowed with
the product topology, then € would be a T-groupoid topologically isomorphic
to € as a T-groupoid.

Conversely, suppose w is a continuous 2-cocycle on ®, not coming a priori
from a cross section, and form the associated extension of ® by T, €. If € is
topologically isomorphic to € as a T-groupoid, then, in fact j has a continuous
cross section. Indeed, if «:€ - € is such an isomorphism, and if
&: € /T(=6) > E/T(=0) is the induced map at the level of quotients, then c,
defined by the formula

e(x) = a(1,67 ' (x)),

is a continuous cross section. Thus, a T-groupoid comes from an extension of
® by T via a continuous cocycle if and only if the map j admits a continuous cross
section.

Consequently, one way to show that T-groupoids are more general than
extensions is to produce a (principal) groupoid ® carrying a Borel cocycle
o yielding an extension @ with a new topology (inducing the original topology
on ®) that is not homeomorphic to the product topology. This can be done using
a theorem of Mackey [5] which shows that for locally compact groups there is
a one-to-one correspondence between locally compact group extensions by
T and Borel cocycles. (One applies this result to a suitable group and then builds
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asuitable transformation group.) In general, it is very difficult to see when a Borel
cocycle on a groupoid gives rise to a topological extension by T, but it is often
easy to discern when continuous cross sections fail to exist. This is illustrated in
the following example from [3] and is more in spirit with our earlier work. We are
greatful to the referee for calling it to our attention.

ExAMPLE 2.1. Let P be a principal T-bundle over a second countable locally
compact Hausdorff space X. In [3; Proposition 4.4], Kumyjian shows that if (P)
is the quotient of P x P by the (skew) diagonal action of T ((p;, p,) ~ (tp;,tp,))on
P, then E(P) carries the structure of a T-groupoid over the trivial groupoid
X x X.In fact, P is an equivalence between &(P) and T in the sense of [6] and,
moreover, two bundles give rise to (topologically) isomorphic T-groupoids if and
only if the bundles are isomorphic. The map j:E(P) - X x X is given by the
formula j([p,, p,]) = (n(p,), n(p,)) where [p,, p,] denotes the equivalence class of
(p1, p2) in €(P) and = denotes the bundle map from P — X. Thus, it is clear that
Jj admits a continuous cross section if and only if = does; i.e., j admits a section if
and only if P is trivial. Since spaces X exist that carry nontrivial P’s, the example
is complete.

We note, finally, that if the T-groupoid € is a groupoid extension of ® by
T coming from a continuous 2-cocycle w, then the map @:C (®,€) - C (®)
defined by &(f)x) = f(1, x), implements an isomorphism between C (®; €) and
C.(®) that extends to one between C*(®; €, 1) and Renault’s C¥*(®, w, 1) [11].

§3. Irreducible representations.

Now for each ue X, we want to define a representation L of C.(®; €). First, let
. be the collection of bounded Borel functions with compact support on
€, = s~ !(u), and with the property that f(t-y) = tf(y)forallte T and y € €. Then
for each &, ne # define

&mu= j EIn(y) dAuL)
(]

= J EynGy) do ().
¢

The Hilbert space completion of #° will be denoted by #,, and is clearly
a subspace of I2(€,,s,). Furthermore, we claim that the functions obtained by
restricting elements in C.(®; €) to s~ ' (u) form a dense subset of #,. To see this,
recall that by [12; Lemma 3.3], there is a surjective *-homomorphism
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1: C(€) - C (®; ) defined by

1N = Jf(t'v)t'dt-

T

Suppose that f € #2°, and that {f,f,), = 0for all f, e C.(®;E). Therefore, for all
geC(©),

0= {f, (@)

o) jg(t )t dt da,()
T

= J S)g(e-y)tde di )

L
6T

_ j FEDFED de i)
L

= | f0)9() do(y).
¢
Since g is arbitrary in C (€), it follows that f is the zero element of 5#,. This proves
the claim.

We define I on vectors in C (®; €) by the formula
E()Em) = f+E0)

= Jf ()& ) da*(&)
(]

= Jf (a)é(a™ ") do*(x)

for f,ée C(®;E). Of course, this only defines I¥ on a dense subspace of .
However, I’ is the restriction to C.(®;€) = C.(€) of the representation R* of
C.(€) in s#? defined by

RY(N)E() = x(f) *¢&.

But R“ is a representation of C.(€) in »#° which is continuous in the inductive
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limit topology. So by [12, Proposition 4.2], R* extends to a representation of
C*(€, 6) on J,. Since C*(®; €, 1) is a quotient of C*(€, ¢), it follows that each L(f)
is bounded — and hence extends to all of ), — and that f+ L'(f) is in Rep(®; €).

LeMMa 3.1. If ¢ € Co(X) and f € C(®; €), then the equation

R(@)f(2) = o(r()S ()

defines a homomorphism R of Cy(X) into M(C*(®; €, A)) (the corresponding right
multipication is given by S(¢)f(y) = (s(¥))f(¥).)

Proor. The only nonobvious fact to check is that R(¢) can be extended to an
operator on all of C*(®; €, A). However by [6; Proposition 2.10 and Lemma
2.12], C.(®; €) has an approximate identity {e,} for the inductive limit topology
such that |le, ||, tends to 1 (simply choose such an approximate identity for C(€),
and notice that y is I-norm decreasing as well as continuous in the inductive limit
topology [12; Lemma 3.3]). Since one clearly has

IR NI = lpllwoll s,

one computes that
IR(¢)f | = lim | R(¢)e, fl
< lim [|R(@)e 111 S

= lollxlfl

The result now follows.

LeEMMA 3.2. If € is a second countable locally compact T-groupoid, then the
representations I defined above are irreducible for each ue X. Furthermore if
[u] = [v], then L and L are unitarily equivalent.

Proor. Theidea of the proofis to realize I as (equivalent to) a representation
on I*([u], dpy,), where py,, is defined as in the proof of [7; Lemma 2.4], and then to
follow the proof there practically verbatim. The first step is to establish an
isomorphism of J, with I>(®,, ,).

Let c be a regular cross section to j, as discussed in §2. We claim that we may
normalize ¢ so that

(1) ifue X, then c(u) = u, and
() if xe ®, then c(x~!) = c(x) 1.

Indeed, if &(x) = t(r(x))- c(x), where y = t(y)- c(}) as before, then clearly ¢ satis-
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fies (1). Assuming, then, as we may, that ¢ satisfies (1), the function 6:® - T
defined by the equation

e(x)e(x ™) = &(x) clx)e(x) ™"
= d(x)r(c(x)) = dx)r(x),

is clearly Borel. Letting f:® — T be any Borel square root of § and setting
&(x) = P(x)- c(x), we obtain a regular Borel cross section satisfying both (1) and
2).

Define U : ), — I2(®,, 4,) by the formula U(&)x) = &(c(x)), £ € #L and xe 6.
Then a calculation shows that U is isometric and so extends to an isometry from
X, into [*(®,,4,). However, since ¢ is normalized, the function ¢ satisfies
t(s-y) = st(y) and so U has a left inverse defined by

V(EXY) = ty)e(h),

¢e [2(®,, 4,),7€€. Thus U is unitary.

Let w be the cocycle associated with c and define M*: C(®; €) - Z(I%(6,, 1,))
by

M*(f) k(x) = Jf (c(ey)) Ky ™ Hao(x, y) d2*(y)
®

= J Slex)e(y) k(y 1) da*(y)
®

for f € C(®; €) and k e I>(6,, 1,). Then one can compute that

M*(f(U)(x) = ULUXE) (x);
in short, M* > ¥,
On the other hand since  is a second countable principal groupoid, ®, is
Borel isomorphic to [u] (via the map y > r(y)). This map carries A, to the measure
My and defines a Hilbert space isomorphism V,: I2(6,, 4,) > *([u], u,;) which

implements an equivalence between M* and the representation T, on I*([u], uy;)
defined by

"N KR (x-u) = Jf (cCey) k(y ™" - uhax(x, y) dA“(y).
()

Now the proof proceeds exactly along the lines of [7; Lemma 2.4]. The key
point is that for ¢ € Co(X), f € C.(®; €), and k € I*([u], pp)),
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T(R($)N) kix-u) = | (R($)N) (cley) Ky~ - uheo(x, y) dA*(y)

= | $lr(clxyN)f(clxy) Ky ™" - upeo(x, ) dA*(y)

= | r(xy)) flexy) k(y™* - upeo(x, y) dA*(y)

v
®

= d(x - u) T*f) k(xir).

Since the functions ¢(x - u), x e ®,, ¢ € Cy(X), are bounded Borel functions on [u]
separating points, when viewed as multiplication operators on I*([u], ), they
generate a masa. The above discussion and the analysis in [7; Lemma 2.4] shows
that if a projection commutes with T%(C.(®; €)), then it is given by a multiplica-
tion operator determined by a bounded Borel function ¢ on [u] satisfying
¢(x u) = ¢(u) almost everywhere with respect to p;; ie., ¢ is constant
Upp-almost everywhere. Thus, T*, and hence L, is irreducible.

PROPOSITION 3.3. Suppose that € is a second countable T-groupoid and that
C*(®; €, A) has continuous trace. Then ur [L'] induces a homeomorphism of X/®
onto CX®; €, 1)".

ProoF. If £, &, n e C (®; €), then ur— (L(f)E, 1), is continuous by virtue of the
continuity property of the Haar system. It follows from Lemma 3.2 that u+— [ I*]
induces a continuous map ¥:X/® — C*(®; €, 1)". Just as in the proof of [7;
Proposition 2.5], it follows that ¥ is an injection, that orbits are closed, and that
¥ is a homeomorphism onto its range.

The difficulty is to see that ¥ is surjective. Towards this end, let L be an
irreducible representation of C*(®; €, 1), and let N be the associated representa-
tion of Cy(X) (i.e., L(R(¢)f) = N(¢)L(f) for ¢ € Co(X) and f € C (®; €)). Also let
1:C*(€, o) - C*(®; €, 1) be the quotient map defined earlier. Standard argu-
ments show that ker(N) = J,;for some u € X, where Jy, is the ideal of functions in
C,(¥) which vanish on [u]. In particular, L - x factors through C*(€|,,;, o). Since
€|, is a transitive groupoid with isotropy group T, it follows from [6; Theorem
3.1] that

(31) C*(Ghu]a d) = CO(Zs f),

where X~ denotes the algebra of compact operators on a suitable Hilbert space.
For convenience, we will denote the image in Co(Z,¢") of f e C*(E|,, o) by f
A careful examination of the proof of [6; Theorem 3.1] reveals the fact that if
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¢ € C(T), then the isomorphism in Equation (3.1) carries ¢ * f to @f, where
&f (n) = d(n)f(n) (of course, (n) is simply the n'* Fourier coefficient of ¢). On the
other hand, x(¢ * ) = ¢(1)x(f) [12; Lemma 3.3]. It follows that x(C*(€|;, 0)) is
isomorphic to X, and hence has only one distinct class of irreducible representa-
tion. Therefore, L =~ L. This proves that ¥ is surjective.

§4. Proper T-groupoids.

Now it will be profitable to view L(f) as a special type of integral operator for
each f e C (®;E). In fact, let K(y,n) = f(yn~'). Then, if £ C (®;E),

4.1 E(NO G = | fon)éa ") dr"(@)

= | flya™ (@) dA)
s
= | K(y, 0)¢(@) do(2).

Y
(4

We assert that

(1) K(t-y,s n) = tsK(y,n) for all t,seT and y,n € €,, and
(2) if [u] is closed, then K € C (€, x €,).

Property (1) follows immediately from the fact that f e C(®; €). When [u] is
closed, flg,,, has compact support. Thus, Property (2) follows from [6; Theorem
2.2B] (here, H = T). Of course, any kernel K which satisfies properties (1) and (2)
above defines a Hilbert-Schmidt operator Ty : J, — ..

PrROPOSITION 4.1. Let € be a T-groupoid. Suppose that Ty : #, — 3, is a positive
integral operator of the type discussed above. Then Ty is trace class and

Tr(Tx) = j K(y,7) dA(3).
®
In particular, if points are closed in €°/€ = X/® and if f is positive in C.(®;€), in
the sense that f = g**g for some ge C(®;€), then L(f) is trace class for each
ueX and
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THE() = ff (r(v)) dA.(3)-
®

PROOF. Let P, be the orthogonal projection of I*(€,, 6,) onto . Notice that
K defines a Hilbert-Schmidt operator T on I*(€,,0,) in the obvious way.
Furthermore, T(),) < 5, and it follows from Equation (4.1) that
T([*(€,,0,) < C.(®;€) < A, Thus, T = P,T= TP,, and the restriction of T to
X, viewed as an operator on 3, is simply Tx. It follows that T is positive and
that

4.2) Tr(Tx) = To(T),

where the trace on the left-hand side is computed in 2(3£,) and the trace on the
right-hand side is computed in #(I*(€,, 5,)). It follows from Mercer’s Theorem
(e.g., [13; §98]) that

Combining this with Equation (4.2), the first assertion follows. The second
assertion follows immediately from the first.

THEOREM 4.2. If € is a second countable T-groupoid, and if & = &/T is a proper
principal groupoid, then C*(®; €, A) has continuous trace.

Proor. Notice that ® being proper forces orbits to be closed. Suppose that
[ is positive in C.(®; €) as in Proposition 4.1. Let u € X, and suppose that C is
a compact neighborhood of u,. Since ® is proper, there is a £ € C.(®) so that
£(x) = f(r(x)) provided s(x) e C. The point is that if ue C, then

THE() = J‘f (r(y) dAu()) = ff () Au(x)
® [

which is continuous in u since {4, },.x is a (right) Haar system. It follows that the
ideal m(C*(®; €, 1)) of continuous trace elements in C*(®; €, 1) is dense, and
hence that C*(®; €, 1) has continuous trace [1; 4.5.2].

At this point we should point out that in sharp contrast with the situation for
groupoid C*-algebras of proper principal groupoids [7; Proposition 2.2], when
C*(®; €, A) has continuous trace, the Dixmier-Douady invariant can be any class
in H3(%/®; Z). This was observed in its essential details by Raeburn and Taylor
[9; Remark 3] under the hypothesis that X is compact. Only minor changes are
necessary when X is locally compact. The idea, basically, is given a locally
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compact second countable (and hence paracompact) space X and a element a in
H3(X;Z), identified with H2(X, %) where & is the sheaf of germs of continuous
T-valued functions, one may choose a cover # = {U, },; and an alternating
2-cocycle u in Z*(#%, &) that represents a. Using %, one constructs in a natural
fashion a principal groupoid ® with Haar system A such that ‘®/® is homeo-
morphic to X, and using y, one constructs a 2-cocycle w € Z%(®, T) such that the
Dixmier-Douady invariant of C*(®, w, ) is a. Since C*(®, w, 1) = C*(®; ¢, 1),
where € is the T-groupoid associated to w, the cohomological richness of
T-groupoids is established. It should also be emphasized that it appears quite
difficult in the general case to determine the Dixmier-Douady invariant for
C*(®; €, A) in terms of the structure of € when this algebra has continuous trace.
We hope to investigate this in the future.

THEOREM 4.3. Suppose that € is a second countable T-groupoid and that
C*(®; €, A) has continuous trace. Then ® = €/T is a proper principal groupoid.

Before we begin the proof, we need some preliminary definitions and some
technical results. We suppose throughout that ® is not proper. Then there is
asequence {x,} = ® which is eventually disjoint from every compact set C  ®,
and s such that {r(x,)} and {s(x,)} converge to some z € X [7; Lemma 2.6]. We fix
a function g € C} (X) which is identically one on a neighborhood U of z. As in [7:
Lemma 2.7], we choose symmetric neighborhoods V;, and V; of z in ®, as well as
symmetric conditionally compact neighborhoods W, and W, of X in ® so that,
Vo < V,, W, is conditionally compact, W, = W,, and

r~'(X¥\suppg) = W17 ViW "\ WoVoW,p.

There is certainly no loss of generality if we assume that {r(x,)}, {s(x,)} = U.
Recall that j: € — ® is the quotient map. Define

W) = gr(y) if yej '(W,TViW,),
e [ P LAAA)

As in [7], g'¥ is continuous with compact support on €. Furthermore, g'" is
constant on T-orbits. Choose be C} (®) so that 0 < b < 1, that b is identically
one on W,V,W2V,W,, and so that b vanishes off W;*V,W,*. Replacing b by
(b + b*)/2, we may assume that b = b* (in C(®)).

Recall that as € is a T-groupoid, there is a topological isomorphism i of
S = X x Tinto €. Furthermore, s-i(u,t) = i(u, st). At this point, it is crucial to
recall that elements of €° are of the form i(u, 1) where u€ X. Let C be a compact
subset of X so that i(C x T) contains the intersection of € and supp g'*). Using
Tietze’s extension theorem, there is a function e C,(€) with the property that

4.3) hi(u,1) = ¢
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for all ue C and te T. Notice that we may replace & by (A + A*)/2 and still retain
the property in Equation (4.3). Thus, we may assume that / is self-adjoint in
C*(€, o) and that h = y(h) is self-adjoint in C*(®; €, 1). The point is that

4.4 h(i(u, 1)) = 1
for all ue C! Define F € C.(€) by

F(y) = g(r(y)) g(s()) b()h(y).

Since h(t-y) = th(y) while the other factor of F is T-invariant, it follows that
F e C.(®; €). Furthermore, observe that F is self-adjoint in C (®; €). Now let
E = j~Y(W,V,W,) and for each ue X let

gu,l =H,N Lz((Eu NE,o,)
gu,Z = Jﬁ. N LZ(QU\E’ 0',,).

Observe that &, ; and &, , are orthogonal complements in .
Now if &€ I, then

r»

4.5) L(FX¢XY) F(ya)é(a™ ') dA"(&)
®
= I F(t - ya)&(f ™ *) dt dA*(a)
®T
= | Fya)é(a™")do*(2)
A
= | Fya™")é(@) do (%)

Y
[ 1

g(r(v)) fﬂﬂa)) bjtya™ ")) h(ya ™ ')&(@) do(@)
¢

Following the argument of [7; Lemma 2.8], we see thatif y ¢~ !(W,”V; W, ") and
if aej~Y(WoVoW,), then b(j(ya~')) = 0. Using Equation (4.5), we see that if
teé, 1, then
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(4.6) LYFXO) = V() jg"’(a)W(va‘ Mhiya™1)e(e) doy(@)
[ 4

= gM(y) f gV @h(ya~")é() do(a),
[

since a,y € WoV, W, imply that b(j(ya 1)) = 1.

It also follows from Equation (4.6) and the fact that suppg'"’ c E, that
L(F)8,, < 8,,; since F=F* we see that L(F)8,, <&, (recall that
8., = 8,,). Let P! be the projection onto &, (i = 1,2).

LEMMA 4.4. With F defined as above,
ur— Tr(L(F * F)PY}),
is continuous at z.

Proor. From the above discussion, it follows that L'(F)P{ is an integral
operator Ty of the type considered in Proposition 4.1 with
K(y,n) = gV()g(nh(yn~1). Unfortunately, there is no reason to suspect that
LX(F)P{ is a positive operator, so we can’t apply Proposition 4.1 to compute the
trace. However, since L(F) is self-adjoint and commutes with Py,

L(F * F)P{ = E(F)P{L(F)P{
is a positive integral operator T,, where

K (v,m) = ¢V gV (mH(y, )
with

H(y,n) = _[g“’(a)’h(va “Yh(an 1) dAu(@).

Since g'" and h have compact support, it is not hard to see that H is the type of
kernel considered in Proposition 4.1. Consequently,

Tr(L(F * F)P}) = jg‘”(v)’H(v, 7) dA,().
®

The latter is continuous in u, and the result follows.

Now as in [7; Lemma 2.9], we choose a neighborhood V¥, of z in ® so that
V, « ¥,, and a conditionally compact neighborhood Y of X in ® so that
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rYx) = U whenever xe V,. For convenience, we assume that {x,} < V, and
Yo W,.

LEMMA 4.5. With F defined as above, there is a positive constant a > 0 so that
IE*(F = F)P$*"| 2 2a.

PrOOF. Let @, be a neighborhood of i(C x 1) in € so that Re(h(y)) > 4 for all
y€ 0,. An argument similar to [7; Lemma 2.9] shows that there is a conditionally
compact neighborhood Y, of X in ® so that CY, < j(0,). Of course, we may
assume that Yc Y.

Now let Ty = {t;}{2, be a countable dense subset of T, and let ¢ be a regular
cross section to j as discussed in §2. If ye Yx,, then

He(xa)ey) ™Y € J(Oy).
Therefore there is a te T, so that ¢ c(x,)c(y) ! € 0,. Define {,(y) to be t; where
i =min{k:t;-c)(x,)c(y) ' €0,}.
LEMMA 4.6. For each n, {, is a Borel function.

ProoF. It is clearly suffices to show that B; = {, *({i}) is Borel for each i.
Define

Ai={ne€:t; c(x,n ' €0,}.
Since A; is open, ¢~ !(j(A;)) is Borel. The lemma follow as
B, = ¢ '(j(4,)), and
k-1
B, = ¢ '(j(4)\ U B
i=1

Now observe that if we define

Dn = {(Cn(Y)c(xn)c(y)_ ! ‘Y€ Yxn},

then | )=, D, = 0, and | )%, D, = j~(CY). Since the last set is compact in €,
the closure of ( 2., D, is compact and contained in 0,. Let 0, be the neighbor-
hood of i(C x 1) containing those ye® such that Re(h(y)) > 3. Of course,
0, < 0,. As above, there is a conditionally compact neighborhood ¥; of €° in
€ so that for all n,

‘f’lCn(y)c(xu)c(Y)—l < 02

for all ye Yx,. Since j(¥,) is a conditionally compact neighborhood of X in ®, we
may assume that j(¥)) = Y.
Let f, be the characteristic function of Yx,, and define
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Ea(y) = ty)a() fn(3)-

where ¢ is defined as before. Then &,€ 9, (since t(s-y) = s-t(y) for all seT and
y € €, and since {, is measurable by Lemma 4.6). In fact, we may choose N so that
{Xn}nzn is disjoint from the compact set W; 2V, W;2. Notice that if n 2 N and
x € Yx,, then x ¢ Wy VoW, (since Y = W;). Therefore, £,€ &, , whenevern = N.In
the sequel, we’ll assume that N = 1.

Notice next that if y,nej~!(Yx,), then j(yn ') < Yx,x, 'Y< YV, Y « W,V W,.
Thus, b(j(yn ~!)) = 1. We compute, using Equation (4.5), that if y € ¥, c(x,), then

@7  E*(F)(E)) = gr0) J.g(r(a)) bityer™ ) by ™ )Eu(@) dAgix,) (@)
[

= g(r(y)) I g(r(y)) h(ye(y) ™) Eulc(y)) dAse, ),

Yxn

which, since y € ¥;¢(x,) and ye Yx, implies that both r(y),(y)e U,

f hiye(y) ™) Enlc(y)) dAse, V),

Yxn

and since t(c(y)) = 1,

J R a(V)c(y) ™) dAge, (9)-

Yxn

Our constructions imply that, if y € ¥, c(x,), then for all ye Yx,,
Re(h(y,(1)c(y) ™) > 4.
Thus, y € Y, c(x,) implies that
Re(LX(F) (Ea)7)) 2 $Ase,0(Yxa)
= } A (Y).

Hence,
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P = (I E) O e
(]

g f T%lr(x,,)( Y)2 dls(x,.)(i’)
Yxn
= '1%}70:,,)( Y)3

Since &2 = Ayey(Y) and &u€&ieyzr IESFIPE| 2 $hys (Y). Since
r(x,) = z, it follows, as in the argument at the end of the proof of Theorem 2.3 in
[7], that 4, ,(Y)is bounded away from zero. This concludes the proof of Lemma
4.5.

PROOF OF THEOREM 4.3. Define ¢q:(— o0, 0) — [0, c0) by

0 if t <a,
qt)= 2(tt—a) fa=stZ2a,
t if 2a <t

Since F * F is positive, so is E*”(F * F)P3*»), Thus, by Lemma 4.5, L*7(F * F)P5*
has an eigenvalue at least as large as 2a, and so g(L*"(F * F)P5>") s positive with
norm at least 2a. Since E*?(F * F)P{*n) = PsCn [S(F » F)P{*) for i = 1,2, we
have

q( B(x..)( F* F) Pl_s(xn)) = q( E(xn)( F*F)) Pis(xn) = E(xn)(q( F*F)) Pl,v(x..)’

because g can be approximated uniformly by polynomials p with p(0) = 0.
A similar argument shows that

QL(F » F) = q(E(F » FXP{™ + P=")
= GUE(F » PP + g(L=(F  F)PS™".

In view of Lemma 4.4, it follows that u+— Tr(L(g(F * F))P}) is continuous at z. In
particular, Tr(E>"(g(F * F))P{*) converges to Tr(LZ(q(F * F))P?) = Tr(LZ(q(F * F)).
(The last equality follows from the fact that g(r(y)) = g'*(y) provided y € €,.) On
the other hand, it follows from Lemma 4.5 that

Tr(q(E*"(F * F)P*™)) = Tr(E*"(q(F * F)) P5*) = 2a > 0.
Since
Tr(E(q(F * F))) = THE((F * F) P{*) + THE(g(F * F)) P{*"),

it follows that Tr(E*~(g(F * F))) does not converge to Tr(IZ(q(F * F))). But g(F * F)
is a positive element of the Pedersen ideal [8; p. 134]; thus, C*(®; €, A) cannot
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have continuous trace. This completes the proof of Theorem 4.3, as well as the the
proof of our Main Theorem.
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