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1. Introduction

Suppose A is a continuous-trace C*-algebra with spectrum A. (Throughout,
unless otherwise stated, all C*-algebras will be assumed to be separable and all
topological spaces and groupoids will be assumed to be locally compact,
Hausdorff, and second countable.) In [4], Dixmier and Douady showed how to
associate an element 8(A) in the Cech cohomology group H (A ;Z) with A in
such a way that two algebras, Ax and A2, are stably isomorphic if and only if
8(Ai) = 8(A2)- The element 8(A) has therefore come to be known as the
Dixmier-Douady class of A. It is well known that every class in H3(A ; Z) can
arise as a 8(A) and that 8(A) = 0 precisely when A is stably isomorphic to C0(A).
(See [17, § 3] for more details and further references. As is customary, we identify
H*(A ;Z) with H2(A, ¥), where Sf denotes the sheaf of germs of continuous
T-valued functions on A.) Suppose, now, that A is the C*-algebra of a locally
compact groupoid G with Haar system {A"}ueC(o), that is, A = C*(G, A). In various
contexts, in recent years, the problems of deciding when C*(G, A) has continuous
trace and identifying its Dixmier-Douady class has arisen (cf., for example,
[10,11,12,14,15,6,7]). In [11], we showed that if R is a principal groupoid, then
C*(R, A) is a continuous-trace algebra if and only if the usual action of R on its
unit space X is proper. (A principal groupoid is essentially an equivalence relation
on its unit space. Consequently, we have made the consistent notational
convention of denoting them by R. Further, when discussing a relation R on a
space X, we shall simply refer to the unit space of R as X.) In this event,
8(C*(R, A)) = 0, because as we also showed in [11], (C*(R, A))A is homeomorphic
to the quotient space of /^-equivalence classes X/R with the quotient topology,
and C*(R, A) is stably isomorphic to CQ(X/R). On the other hand, for certain
principal groupoids R, it is possible to find a groupoid 2-cocycle a such that the
twisted groupoid C*-algebra determined by a (and A) C*(R, a, A) in the sense of
Renault [18] has continuous trace with non-zero Dixmier-Douady class [14].
Indeed, as Raeburn and Taylor show, there is a very tight relation between Cech
cohomology and groupoid cohomology in the particular setting they considered.
They showed that given a locally compact space Y, and an element 8 G H2(Y, y),
one can build a relation R on a space X such that X/R is homeomorphic to Y and
one can construct an explicit a e H2(R, T) from 8 so that the Dixmier-Douady
class of C*(R, a, A) is 8 for any choice of A. This, then, begs the question of what
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the precise relation is between groupoid cohomology and topological
cohomology.

A fairly complete answer was given by Kumjian [6] under the hypothesis that R
is an r-discrete principal groupoid in the sense of Renault [18]. To state his
answer, one must recognize that a 2-cocycle on R gives rise to a certain extension
of R by the groupoid X X T and it turns out to be important to consider all
extensions of R by this groupoid. Such extensions may be characterized as
principal T-bundles over R satisfying certain conditions and, consequently, they
are called T-groupoids. A T-groupoid comes from a 2-cocycle a e H2(R, J)
precisely when it is trivial as a bundle over R [7]. The collection of isomorphism
classes of T-groupoids over R becomes a group under the usual operations used
to define groupoid extensions [18,7] and we denote this group by Tw(/?) because
T-groupoids are sometimes also called twists. Given a T-groupoid G over R and a
Haar system {A"}tteA- on R, one constructs a C*-algebra C*(R;G, A) which is a
quotient of C*(G, A), where A is a Haar system on G induced by A; if G comes
from a 2-cocycle a, then C*(R ; G, A) = C*(R, a, A). In [12], we proved that
C*(R ; G, A) is a continuous-trace C*-algebra precisely when the action of R on X
is proper. In this case, then, there is a naturally defined map 8: Tw(/?)—»
H (X/R, if) that sends a T-groupoid G over R to the Dixmier-Douady class of
C*(R; G, A). Our objective in this paper is to illuminate the properties of this
map. Our main result requires the hypothesis that the natural map p: X —>X/R
admits local sections in the sense that given u e X/R, there are a neighbourhood
U of u in X/R and a continuous map co: U-^X such that p°u)(v) = v, for all
v e U. This hypothesis is satisfied in many situations of interest.

The following theorem, which is the main result of this paper, was proved by
Kumjian in [6] under the hypothesis that p: X->X/R is a local homeomorphism.
Our result is more general than his and our proofs are different at certain critical
stages. They utilize heavily the notion of the imprimitivity groupoid of a proper
groupoid action. (See §3 for the development of this notion.)

THEOREM 1.1. Suppose that the relation R on X acts properly and admits a Haar
system. Suppose, too, that the quotient map p: X-+X/R admits local sections.
Then there results an exact sequence

H\R,

The first group is the first groupoid cohomology group of R with values in T
and the second is the first Cech cohomology group with values in the sheaf if. We
think of elements in the latter as defining circle bundles over X/R. Cocycles for R
with values in T give rise naturally to circle bundles on X/R. The map 17 comes
from mapping a cocycle to the corresponding bundle. The two occurrences of p*
are simply the natural pull-back maps on Cech cohomology that p induces. The
map 8 has already been discussed and its properties will be amplified later.
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Finally, the map e arises from viewing elements in H\X, tf) as circle bundles on
X. Given such a bundle, A, one views it as a proper X x T space. The image of A
under e is simply the imprimitivity groupoid of this action restricted to R.
Imprimitivity groupoids play a crucial role in analysing the second occurrence of
p*, too.

As an immediate corollary of our main theorem and the usual identification of
Hn+\Y ; Z) with Hn(Y, &), it is interesting to note that if the cohomology of X is
trivial, then, at least in dimensions one and two, the groupoid cohomology of R
coincides with the ordinary integral cohomology of X/R (in dimensions two and
three). More precisely:

COROLLARY 1.2. Suppose that, in addition to the hypotheses in Theorem 1.1,
H\X, <f) = 0 = H2(X, &). Then H\R,J) is isomorphic to H\XIR,$f), and
Tw(/?) is isomorphic to H2(X/R, &>).

The next section is devoted to some topological preliminaries. In § 3, we
consider T-groupoids and T-groupoid equivalences in the sense of [9]. It is here
that we formally define imprimitivity groupoids, although the notion is implicit in
[9] and [20]. In § 4, we attend to the first two terms in the sequence. In § 5, we
show that the kernel of 5 coincides with the range of e. Finally, in § 6, we show
that the sequence is exact at H2(X/R, Sf).

Acknowledgments. The authors were partially supported by the National
Science Foundation and by the Australian Research Council. We wish to thank
Iain Raeburn and his colleagues at the University of Newcastle for their warm
hospitality and friendship during our stay there.

We also would like to thank both the referee and Jean Renault for calling our
attention to Renault's paper [19] which has points of contact with our paper. Very
roughly speaking, Renault builds Morita equivalence into the group of twists,
Tw(/?), and identifies the Dixmier-Douady invariant of the C*-algebra associated
with an element in his Tw(/?) with its image, under a naturally defined
homomorphism, in H2(X/R, tf).

2. Topological preliminaries

We will always assume that our groupoids are locally compact, Hausdorff, and
have open range and source maps, r and s. The hypothesis on r and s is
automatically satisfied if the groupoid in question admits a Haar system [18,
Proposition 1.2.4], and these are the only sorts of groupoids we will be interested
in here.

If G is a groupoid, and if A <= G(0), then we will write GA = s~\A) and
GA = r~\A). Also, if C, D c G, then we write

Fibred products of this sort appear throughout this note; most particularly when
considering groupoid actions.

For the definition of these, let G be a groupoid and let A' be a topological space
together with a continuous open map or from X onto G(0). Form X * G =
{(x, y): <J(X) = r(y)}. To say that G acts (continuously) on the right of X means
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that there is a continuous map from X * G to X, with the image of (x, y) denoted
x • y, such that the following hold:

(1) a(x-y)=s(y),
(2) x • (aj8) = (x • a) • (3, for all (a, 0) E G(2), and
(3) x • a(x) = x for all x e X.
We think of a as being a 'generalized source' map for the action. Likewise a

(continuous) left action of G on X is determined by a continuous open surjection
p: X-*G(0), and a continuous map from G*X to X satisfying the appropriate
analogues of (1), (2) and (3). In a similar fashion, we think of p as a 'generalized
range' map. When we speak of left or right actions in the sequel, the maps cr and
p will be implicitly understood and will be referred to without additional
comment. Most of our definitions will be made in terms of right actions, but the
left-handed versions can be formulated with no difficulty.

Of special importance will be the actions of G on its unit space G(0). Here p
and a are the identity maps and r(y) • y = s(y) and 7 • s(y) = r(y).

As with group actions, if G acts on X (on the right, say), and if x e X, the orbit
of x is simply {x • y: ye G°"(jc)}. The orbits partition X and we write X/G for the
quotient space with the quotient topology.

LEMMA 2.1. If X is a right G-space, then the natural map p: X-+X/G is open.

Proof. Suppose that V is open in X. To show that p(V) is open it suffices
to show that V • G is open in X. Thus it suffices to show that any net xn —> x • y
with x e V and y e G has a subnet which is eventually in V • G. But
a(xn)^> a(x - y) = s(y). Since s is open, we may pass to a subnet and assume
that there are y,,—»y in G with s(yn) = a(xn). Then xny~] is eventually in
V O^y*1-** G V), and *„ =*„ • y^y* is eventually in V • G.

Consider a (right) action of G on X and let W: A' * G -» X x X be defined by
the formula W(x, y) = (x, x • y). Then we call the action free if ^V is one-to-one.
Alternatively, the action is free precisely when the equation x • y = x implies that
y = cr(x). The action is called proper provided that W is a proper map. The
following lemma will be used at a number of points in the sequel. It is proved in
[11] under the assumption that G is a principal groupoid acting on G(0). However,
the proof presented there works in the generality in which we are interested and
so will not be repeated.

LEMMA 2.2. The following conditions on a free (right) action are equivalent:
(1) the action is proper; that is, W is a proper map;
(2) W is a closed map;
(3) W is a homeomorphism onto a closed subset of X X X;
(4) given a compact subset K^X, the set G(K) = {y e G: K • y n K ^ 0} is

compact;
(5) for all compact sets K^X, G(K) is relatively compact in G.

A key consequence of Lemma 2.2 is

COROLLARY 2.3. / / G acts freely and properly on a locally compact Hausdorff
space X, then the quotient space, X/G, is locally compact and Hausdorff.
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REMARK 2.4. Taken together, Lemmas 2.1 and 2.2 and Corollary 2.3 will be
used repeatedly throughout this paper. A special application of them deserves to
be singled out. Normally one thinks of a principal T-bundle S over a space A' as a
locally trivial fibre bundle with fibre T determined by transition functions taking
values in T. These bundles are classified up to isomorphism by H\X, $f), where
S3 is the sheaf of continuous T-valued functions. However, thanks to [5] and the
results just presented, to show that a locally compact space S is a principal
T-bundle over a locally compact space X determined by a surjection r: S—>X, it
suffices to check that r is continuous and open, and that S carries a free T-action
such that r(£) = T{-q) if and only if / • £ = TJ for some (necessarily unique) t in T.
(Note that actions of compact groups are automatically proper.) The assumptions
on T allow us to identify X with S/T and r with the quotient map.

Recall that a transversal is a subset F <= G(0) which meets each equivalence class
in G(0)/G exactly once. We shall be exclusively interested in closed transversals
obtained from continuous cross-sections w for p: G(0)—»G(0)/G; if w is a
continuous cross-section, then F = w(G(0)/G) is a closed transversal.

Notice that if F is a closed transversal, then s\C/: is an open map from GF to F.
On the other hand, r\Cr, which is a surjection of GF onto G(0) since F is a
transversal, need not be open in general [9, Example 2.2]. Our first task is to find
general conditions which will ensure that p = r\C/. is open for each transversal F as
above. Our next result is a generalization of [9, Theorem 2.2A].

THEOREM 2.5. Suppose that G is a locally compact groupoid with open range
and source maps r and s. Also assume that there is a continuous cross-section w for
p: G(0)-+G(0)/G and let F be the associated transversal. Then the following
statements are equivalent:

(1) the map <£: GF* G F - » G, defined by <E>(-y, /3) = y/3, is an open surjection;
(2) the map p = r\C/:. GF—*G(l)) is an open surjection;
(3) the map n: G —• G(0) X G(0), defined by n(y) = (r(y), s(y)), is an open map

onto its range.
(Note that in (3) we are not requiring n(G) to be open in G(0) X G(0)!)

Proof. We will show that (3)<£>(2)O(l). We start with (3)4>(2). Let V be
open in G. It will suffice to show that

is open in G(0). Suppose that u = r(y) with y E V 0 GF. It will be sufficient to
show that if un —> u is any net in G(0), then it has a subnet which is eventually in
r(V H GF). But p(un)-*p(u) in G{0)/G, so, using our cross-section w, we see that
there are vn, v G F such that vn ~~un, v ~ u, and vn —»v. Thus, (un, vn) —> (u, v) in
the range of n. Since we are assuming that n is open, we can pass to a subnet,
relabel, and assume that there are yn e G with y n ^ y such that r(yn) = un and
s(yn)

 = vn Notice that each yn e GF by construction and {yn} is eventually in V as
V is open and y e V. Therefore un is eventually in r(V D GF).

Next we consider (2)^>(1). It is useful to realize <£ as the composition of the
homeomorphism (a, jS) •-> (a, a(3) of GF * GF onto

GFXrG = {(y, ) 3 ) e G f x G: r(y) = r(/3)}

with the projection pr2 on the second factor. Therefore, it will suffice to show
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that the projection is open. But if W and V are open in G, then we claim that

pr2(W x V n GFxrG) = r~\p(W n GF)) n V. (2.1)

To see this, suppose that (3 belongs to the left-hand side. Then there is an
a <=WDGF with r(a) = r(j3). Thus )3 e r\p(W D GF)) D V. On the other hand,
if /3 belongs to the right-hand side, then /3 E V and r(/3) e p(W D G/r). Let
a e W n G f satisfy r(a) = r((3). Then (a, j3) e W X V n GFxrG. This establishes
(2.1); consequently, pr2 is open when p is.

Next we show that (1) 4> (2). Consider the commutative diagram

GF*GF -^> G

GF —^ G<0)

Since pr] is continuous and surjective, and since r is always assumed to be open, p
is open whenever $ is.

Now assume (2). Notice that if y, j3 e GF satisfy p(y) = p(/3), then s(y) ~
r(y) = r(/3) ~ (̂>S). Since F is a transversal, s(y) = s(p). Therefore /S"1? e Gf.
Since the natural map from Gf onto GF/GF is open by Lemma 2.1, it follows that,
if p is open, then p induces a homeomorphism of GF/GF onto G*°\ Since
inversion is a homeomorphism on G, we also have s\c

F inducing a homeomorph-
ism of G^\GF onto G(0). We shall write i// for the homeomorphism of
GF/GF

FXGF
F\GF onto G(0) X G(0). If A is the natural map from GF*GF onto

GF/GFx GF\GF, then we have a commutative diagram

*GF*GF - > G

1* I"
GF/GF

FX GF
F\GF - p G(0) x G(0)

Since <X> is surjective, TT(V) = (//(A^^V))). Thus as i// is a homeomorphism, it
will suffice to show that A is an open map onto its range. In fact, if
\(yn, j8n)—> A(y, j3), then passing to subnets and relabelling, we may assume that
there are y'm fi'n e GF such that y^—» y and f3'npv-* jS. However, since F is a
transversal, a e G f implies that r(a) = s(a). Thus (yny'n, P'npn)—>(y, ft) in
GF*GF. Thus A is open onto its range and

COROLLARY 2.6. Suppose that G is a second countable locally compact groupoid
with abelian stability groups and for which there is a continuous cross-section for
the orbit map p: G(0)-> G(0)/C/. / / both G and the stability groupoid have Haar
systems A and a, and if any of the equivalent conditions in Theorem 2.5 are
satisfied, then C*(G, A) has continuous trace with trivial Dixmier-Douady class.

Proof. We have G equivalent to GF by assumption [9, Example 2.7]. Thus
C*(G, A) is (strongly) Morita equivalent to the abelian C*-algebra C*(G£, cr) by
[9, Theorem 2.8]. Now the result follows from, for example, [17, Proposition 3.1
and Theorem 3.5].
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3. J-groupoids

In this section we will collect some facts about T-groupoids which we will use in
the sequel. One of the main results is Theorem 3.2, below. While it is a special
case of Corollaire 5.4 of [20], we provide a proof for two reasons. First, it is but a
simple variant of Theorem 2.8 of [9]. Corollaire 5.4 of [20] appears at the end of a
daunting level of technical development, while Theorem 3.2 lies near the surface.
We believe it is useful to see this. Second, and more important, the proof of
Corollaire 5.4 presented in [20] cites results of [9] concerning what we call below
the imprimitivity groupoid of a principal C-space. Only the algebraic properties
of the imprimitivity groupoid are developed in [9], but the topological properties
are used in [20] and they are used in this paper. We develop them in detail in
Theorem 3.5. We begin at a slightly greater level of generality than we need, but
the excess will require no additional effort.

Let G be a second countable locally compact groupoid with unit space X.
Suppose that T acts on G (on the left), making G a principal T-bundle over G/T.
Suppose further that the quotient space G/T, with the quotient topology, has the
structure of a locally compact groupoid such that the bundle map /: G—»G/T is a
groupoid homomorphism. Finally, suppose that the T-action is related to the
groupoid structure on G through the equations r(t • y) = r{y), s{t • y) = s(y), and
(t • y)(t' • y') = (tt1) • (yy') for all t, t' e T and (y, y') G G * G. Under these
circumstances we call G a T-groupoid over G/T. (See [7, 12].) The assumptions
on the T-action imply that the unit space of G/T may be identified with X = G(0).
So for each u e X and each y e j~\u), there is a unique t e T such that y = t • u.
The map /: X x T.—> G defined by i(u, t) — t- u, then, is a homeomorphic
homomorphic embedding of the trivial group bundle X x T into G; in fact the
range is contained in S = {y: r(y) = s(y)}, and we have an exact sequence

x—^XT-UC-L

Conversely, an exact sequence

x—^XT-XG^C,,

where /] is a homeomorphism onto its range, which is assumed to be contained in
S, and y'i is a continuous open surjection, enables one to view G as a T-groupoid
over Gi'. simply define t • y to be i](r(y), t)y for each y e G and t e T. Thus, we
may think of T-groupoids either in terms of the action of T on G, or in terms of
extensions of A'x T by G^ Both perspectives will prove useful. Here we will
focus on the case when the range of / is all of S, so that G/T is a principal
groupoid, which we view as the relation R <= X X X consisting of
My),s(y)): yeG}.

Given a T-groupoid G with Haar system A on G/T, one obtains a Haar system
A on G defined by the formula

where dt is (normalized) Lebesgue measure on T and y denotes ;(y). Let
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CC(G/T;C, A) = {/eCc.(G): f(t • y) = tf(y)}. Then CC(G/T;G, A) becomes a
*-algebra through the formulas

and

As Renault shows in [18], this algebra may be completed to obtain a C*-algebra,
which we denote C*(G/T; G, A) and call the T-groupoid C*-algebra determined
by G. It is a very special case of what Renault called a restrained crossed product.
Define pG: CC(G, A)^Q_(G/T; G, A) by pG(f)(y) = If(t • y)ldt. Then since
representations of CC(G, A) and CC(G/T; G, A) can be disintegrated [20], it is
easy to see that pG extends to a C*-homomorphism from C*(G, A) onto
C*(G/T; G, A). In [12, Theorems 4.2 and 4.3], we showed that if S = / ( * x T), so
that G/T can be identified with R, then C*(R ; G, A) has continuous trace if and
only if R is a proper principal groupoid.

In this paper we must deal extensively with questions of (strong) Morita
equivalence between T-groupoid C*-algebras and we will have need for the
following variation on the main theme of [9]. Suppose that G and H are
T-groupoids over G/T and ///¥, respectively, and suppose that Z is a left G- and
right //-space that implements an equivalence between G and H as groupoids in
the sense of [9]. (We will follow the notation in [9]). The actions of G and H
induce two actions of T on Z. The one coming from G is given by the formula
r 'c z - idpiz)' 0 " z, where p: Z-+ G(l)) is the map used to define the G-action
on Z, and iG is the embedding of G(0) x T into G described above. The T-action
coming from H is given by a similar formula: z -Ht = x • ^H{^{Z), t).

DEFINITION 3.1. If G and H are T-groupoids and if Z is a (G, //)-equivalence in
the sense of [9], then we call Z a (G, H)-l-equivalence in the case where the
T-actions on Z induced by the G and H actions coincide; that is, when
t 'c z = z •« t for all z e Z and / E T.

If Z is a (G, //)-T-equivalence, we will drop the subscripts on the T-actions.
Our goal is to prove

THEOREM 3.2. Suppose that G and H are second countable, locally compact
I-groupoids and that Z is a (G, H)-l-equivalence. Let

Cj(Z) = {(l>e CC(Z): ${t • z) = t<f>(z) for all z G Z and t G T}.

Given any Haar systems A on G/T and (3 on till, CJ
C(Z) can be completed

naturally to become a C*(GII; G, A)-C*(//II; H, ^-equivalence bimodule. In
particular, C*(G/T ; G, A) and C*(///T ; H, /3) flre (strongly) Morita equivalent.

Proof. All that is necessary, really, is to make some minor addenda to the
proof of Theorem 2.8 in [9]. To that end, let A be the pre-C*-algebra CC(G, A)
where A is the Haar system of G determined by A obtained by crossing A with
Lebesgue measure on T as described above. Likewise, let B = Cc(H,fi). Let
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Ai = Cc(G/J;G, A) and 5 , = CC(H/J; H, /3) and let pG: A^A^ and pH: B->
B, be the *-homomorphisms determined by 'integrating over T' described above.
These maps are projections. Likewise, let pz: CC(Z)-^C](Z) be defined by the
formula pz(f)(z) = JV <f>(t • z)1dt. Then pz is a projection from CC(Z) onto C](Z)
that is continuous with respect to the inductive limit topology. Recall from p. 11
of [9] that CC(Z) is given the structure of an A - B-bimodule via the equations

f'4>(z)=\ f(y)4>(y-l-z)d\^\y) (3.1)
Jc

and

<t>-g(z) = f Hz-vMi-^dp^Kv). (3.2)

Observe that if / e Ax and 4> G C].(Z), then / • </> lies in Cj.(Z) and (3.1) yields

f-4>(z)=\ f(y)4>(y-l'z)dX^\y). (3.3)

The point is that the action passes to the quotient, A is replaced by A, and y by y.
Likewise, for g e B , and <£ e C](Z), <j> • g lies in Cj(Z) and (3.2) yields

[ Z)O7). (3.4)

Furthermore, the equations

Pz(f •<!>)= f-Pz(<t>) (3-5)

and

(3.6)

are satisfied for all / G V4,, g £ 5 , , and <£ G Ct.(Z). Recall, too, that there are A-
and B-valued inner products defined on CC(Z) given by the following formulas
(the formula on p. 12 of [9] for A(<f>, ijj) contains a misprint; the correct formula is
(3.8)):

1 -z •y\)dXp{l\y) (3.7)

and

=1
JH

v) dpa(z){ri), (3.8)

where </), i// G C C (Z) and the z in (3.7) is chosen so that a(z) - r(ri), while the z in
(3.8) is chosen so that p(z) = s(y). It is shown on p. 11 of [9] that the assumption
that Z is a (G, //)-equivalence guarantees that these equations are independent of
the choice of z and define continuous functions with compact support. The
equations (3.7) and (3.8) and our assumption that Z is a (G, //)-T-equivalence
make it clear that if </> and i// are in CJ

C(Z), then (̂<£, \p) and (4), i//)fi are actually
in Ax and Bu respectively. Moreover, since the integrals in each of (3.7) and (3.8)
are left unchanged when the variable over which the integration is performed is
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multiplied by t e T, it is clear that we may rewrite (3.7) and (3.8) and define
A](<f>, if/) and (<£, ifj)Bi, for (f>, if/ G Cj(Z), via the equations

= \\ -z-n) d\pM(j) (3.9)

and

[ W^^ir,). (3.10)

The following equations, valid for (f>, i// G Ct.(Z), are now immediate:

^,<Pz(0), Pz(<A)> = PcC4<*, <A» (3.H)

and

, = PH((4>, 4>)B)- (3-12)

The next set of equations may now be verified directly or may be proved as
simple consequences of the corresponding equations on p. 12 of [9] using
equations (3.5), (3.6) (3.11), and (3.12):

f-A](4>, *l>) = Al(f-4>, *), whe re / e ^ , , 0, <A e C]{Z),

(<t>, «A)s, = (<!>, «A • g)fi,, where g G B, , <f>, if/ e Cj.(Z),

(/*/.) • 4> = / • ( / . • <̂ ), where/,/, e 4 ^ Cj(Z),

^•(g*gi) = (^ -^ ) ' ^ i . where g, g, eBu <f> e CJ
C(Z),

Al(<f>, <//>* = A^,(f>), (<t>,^)l = ^,<f>)Bi, a n d

, , , ( < / > , </,) • f = <A • <<A, ^ > f i l , f o r ^ , ^ f 6 j

To illustrate the latter approach, observe that

/ • AJL4>, *l>) = Pc(f)PcU4>, «A» = Pc(f • A

= PcUf • <f>, «A» = A.iPzif • 0

The positivity of the two inner products follows from (3.11) and (3.12) and the
facts that pG and pH extend to be C*-homomorphisms. Likewise, the density of
the inner products follows from the corresponding facts about the A- and
5-valued inner products on CC(Z) and the continuity of the maps pG and pH in
the inductive limit topology. Indeed, for example, as shown in [9], given g E 5 ,
there is a net {ga} in CC{H, $) converging to g in the inductive limit topology such
that each ga has the form £„ (#°, $")B. Since {pH{ga)} also converges to g, the
desired conclusion follows from (3.12). Finally, the boundedness of the inner
products is seen to be a consequence of (3.11) and (3.12). For example, for/ G A^
and (f>, if/ e C](Z), we have

4>)B) ^MWA PH((4>, 4>)B)

,Pz{<t>))B,= \\f\\AM><t>)By

We have verified all the conditions necessary to show that Cj(Z) may be
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completed to form a C*(G/T;G, A)-C*(///T; H, /3)-equivalence bimodule (see
[22, Proposition 4.2]). This completes the proof.

REMARK 3.3. Since A} and Bx may be viewed as subalgebras of A and B,
respectively, all the proof of Theorem 3.2 amounts to is showing that pz extends
to a bounded linear operator on the completion of CC(Z) (with respect to the A-
or B-valued inner product) in the sense of Rieffel [21] and is a self-adjoint
projection there, mapping onto the closure of Cj(Z).

Suppose that H is a locally compact groupoid and that Z is a locally compact,
principal right //-space. Give Z*Z = {(z\, Zi): cr(z\) = cr(z2)} the diagonal action
of H (that is, (zu z2) • V = (*i -y,z2-v)> f o r ((*i> z2), l) e (Z * Z) * H) and let
G = (Z * Z)/ / / be the quotient space. In [9] it is shown how to give G the
structure of a groupoid with unit space Z/H. Only the algebraic operations are
checked there, but here we need to know that C is a locally compact groupoid,
and that G is a T-groupoid if H is a T-groupoid. Therefore we will sketch the
details for the sake of completeness. In the sequel, G will be called the
imprimitivity groupoid determined by the principal //-space Z.

Certainly Z*Z is a locally compact space, since it is closed in Z X Z.
Furthermore, G is the image of Z * Z by a continuous open surjection (Lemma
2.1). Therefore G is a locally compact space. Inversion is evidently a homeo-
morphism: [zu z2]'1 = [z2, Z\\ To show that multiplication is continuous, we may
make systematic application of Lemma 2.1 and the following observation. Let
/ : X—»Z and g: Y-*Z be continuous maps (with X, Y, and Z, for the moment,
arbitrary). Let X * Y = {(x, y) e X X Y: f(x) = g(y)} have the relative topology.
Consider the commutative diagram:

X

V
X*Y

We proved on p. 7 of [9] that if / is open, then so is nY. We shall call this the
open-factor lemma.

To prove that multiplication is continuous, first observe that the unit space of G
may be identified with Z/H and the range map is r([z,, z2]) = [z\]. We claim that r
is continuous and open. Indeed, consider the commutative diagram

z*z -^- z
-,\ JP

Z*Z/H = G - ^ Z/H

where nx is the projection onto the first factor and p and p denote the quotient
maps for the H actions. Since Z * Z is the fibred product over the continuous,
open map a, n] is open by the open-factor lemma. It is clearly continuous. On the
other hand, p and p are continuous and open by Lemma 2.1. Hence r is open by a
straightforward diagram chase. Of course the source map s: G-+Z/H, given by
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S([Z\, Z2]) = U2], is also continuous and open, since it is the composition of r with
inversion.

Consider, now, the commutative diagram

~p

G*G — » G = (Z*Z)/H

where p is the quotient map, m (zi, Z2, Z3) = {z\, Z3), m is multiplication, and
Pi(zi, Z2, Z3) = ([Z], Z2], [Z2, Z3]). Since p and m are continuous, to show that m is
continuous, it suffices to prove that the range of px is all of G * G and that p j is
open. To verify the first statement, observe that ([zu Z2], [z2, Z3]) e G*G if and
only if [z2] = [z^]- This occurs exactly when there is an 17 e H such that z2 = z2 ' V-
B u t [z2-r},z2\ = [z2,Z3-v~]] a n d t h e n ([zu z2), [z2, z3]) = p i ( z i , z2, z3 • i ? " 1 ) .
Thus, p] is surjective.

To show that p ̂  is open, we use the fact that the quotient map from Z * Z to G
is open (Lemma 2.1). Also notice that if za^>z and if [za,

 w
a)—>[z> w)> t n e n wa

must converge to w! This follows from the fact that the H action is free and
proper. We can write any convergent net in G *G in the form
([zuZ2],[z2,Z3])-*([z\,Z2],[z2>Z3])- As usual, we want to show that this net
has a subnet which lifts to Z*aZ*lTZ. Replacing z° by zf • r)a,

 w ^ may assume
that zf—>Zi and that zf-^^2- The observation above shows that we must also
have z" —* Z3, and px is open onto its range, G *G. This completes that proof that
G is a locally compact groupoid.

Next observe that G acts on the left of Z as follows. First,

G*Z = {([z1,z2],z3): [*2] = p(*3)( = fe])}.

Therefore given ([z\, Z2], Z3), there is an 17 e H such that Z2 • 17 = Z3. This 17 is
unique, since H acts freely, and so, if we define [z\, Z2] • Z3 = Z\ • rj, then [zi, Z2] • Z3
is well defined. A moment's reflection reveals that this yields a bona fide free left
G-action on Z.

LEMMA 3.4. The action of G on Z is continuous and proper.

Proof. Let $ : Z * / / ^ Z X Z be defined by $(*, 77) = (z, z • TJ). Recall that O
is one-to-one and proper since Z is a free and proper //-space. In fact, O is a
homeomorphism onto a closed set: Z*PZ (Lemma 2.2). It follows that the map
8: Z*PZ-+ H, defined by 8(z, z • 17) = 17, is continuous since it is the composi-
tion of <t>~' followed by projection onto the second factor. The continuity of the
G action now follows from considering the commutative diagram

Z^Z*^ > Z*H

\

G*Z

The right vertical map is continuous by assumption and we have just shown that
/ X 5 is continuous. Since p is open by Lemma 2.1, so is p X i, and the continuity
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of the G-action, the lower horizontal map, follows. Since the G-action is free, to
show that it is proper, we only need to show that the map W: G*Z-+ Z X Z,
given by W(y, z) = {z, y • z), is closed. So suppose {ya} and {zQ} are nets such that
the latter converges to z and {ya • za) converges to w. We want to show that {ya}
converges to y with w = y • z- But by definition of G and the action, we may write
each ya as [xa, za] with [xa, za] • za = xa. By hypothesis, {za} converges to z and
{xa} converges to w. Therefore {[xa, zQ]} = {ya} converges to y:=[w, z] and
w-yz-

One checks easily, now, that Z is a (G, //)-equivalence. If H is also a
T-groupoid, then G also has the structure of a T-groupoid and Z becomes a
(G, //)-T-equivalence. Indeed, Z has the T-action coming from H: z • t =
z • i(o-(z), t), where iH: //(0) X T-» / / is the embedding giving the T-action on H.
On the other hand, the map ic: Z/H xT-*G defined by the equation
*G([Z]> 0 = iz ' l> z]IS easily seen to be well defined, by virtue of the fact that H is
a T-groupoid, and gives G the structure of a T-groupoid. The fact that Z, then, is
a (G, //)-T-equivalence is manifest. We have all but proved the following
theorem.

THEOREM 3.5. Suppose that H is a locally compact groupoid acting freely and
properly on the right of a locally compact space Z.

(1) The imprimitivity groupoid G = (Z* Z)/H is a locally compact groupoid
acting freely and properly on the left of Z, and Z is a (G, H)-equivalence.

(2) //, furthermore, H has the structure of a 1-groupoid, then the action of H on
Z gives Z and G J-actions in such a way as to convert G into a J-groupoid and Z
into a (G, H)-l-equivalence.

(3) //, in addition, H/T is a proper principal groupoid, then G/T is also a
proper principal groupoid and G is a J-groupoid over the relation Rc in
ZIH X Z/H given by {(rc(y), sc(y)): y e G}.

Proof. We have proved (1) and (2) above. In view of the above, to prove (3), it
will suffice to prove that j G , defined by jc([z\, z2]) = ([z\], [z2]), is continuous,
open, has closed range, and kernel ic(Z/H x T) [11, Lemma 2.1]. By assumption,
JH(V)

 = (rw(1?)> SH(V)) defines a continuous, open map of H onto a closed subset
RH of H(0) X //(0). It follows immediately that jG has kernel iG(Z/H X T), and it is
clearly continuous. Now suppose that jc([z", z°])—»([zi]> fe])- That is, a(z") =
viz"), [z\]-*[zi], and [z"]—•fel- We may as well assume that z°-*Z\ and that
there are r\a e H such that z\ • y\a-^z2. Notice that (<r(z°), a(z2' Va)) £ RH> and
that ((T(z^),a(z^r}a))-^(a(z1),a(z2)). It follows that (*&), <r(z2)) e RH.
Moreover, since jH is open, we can pass to a subnet, relabel, and assume
that there are /3a->/3 in H so that rQ3a) = a(z") and rQ3a) = cr(zf • i?a). We
then have z2 • yapa-*z2 • j3, and o-(̂ 1) = 5(j3) = cr(z2- j3). In particular,
ic([Z],z2' P]) = ([Z\], [z2])\ this shows that jG has closed range. But
jc([z\,z2- VaPa])=Jc([zu z2]), so we have also shown that a convergent net
in the range of jG has a subnet which lifts. This implies that jG is open. This
completes the proof of (3).

REMARK 3.6. Of course if G is a locally compact groupoid acting freely and
properly on the left of a locally compact space Z, then there is an imprimitivity
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groupoid H = G\Z * Z and the conclusions of Theorem 3.5 hold with appropriate
modifications.

REMARK 3.7. In the examples we know, a Haar system on H will induce a Haar
system on G, in fact, lots of them. However, we do not know the full story at this
time. Fortunately, that will be of no concern to us here because, first of all, one of
the rather attractive features of Theorem 3.2 is that it is independent of the choice
of Haar system, and secondly, in our applications here, Haar systems on the
imprimitivity groupoids will appear automatically.

4. Topological results

In this section, we attend to the exactness of the sequence in Theorem 1.1 at
the first three points. The arguments are essentially those of Kumjian [6], but we
want to take a slightly different perspective to that presented in [6], and we want
to provide details for the reader's convenience and for the sake of completeness.

Exactness at H](R, T). As mentioned in the introduction, we want to identify
elements in H](X/R, tf) with (isomorphism classes of) circle bundles over X/R,
and similarly for H\X, £f). To define a map TJ: H\R,T)^ H\X/R, £f), we
begin with a cocycle c E Z](R,J) and use it to define an action of R on
X x T: (X x T) * R = {((x, t), (x, y)): (x, y) e R} and (x, t) • (x, y) = (y, c(x, y)t).
It is straightforward to verify that this action is free and proper. Thus the quotient
space Sc:= (X XT)//? is locally compact and Hausdorff. Moreover, the quotient
map q: X X T-»5C is open by Lemma 2.1. We write [x, t] for q(x, t). The action
of T on X x T determined by translation in the second variable commutes with
the action of R and therefore gives rise to a free, continuous action of T on
Sc: s • [x, t] = [x, st]. Furthermore, it is clear that set-theoretically T\5C is X/R and
that the quotient map is r: r([x, t]) = [x]. To show that Sc is actually a T-bundle
we need only show that T is continuous and open. However, this is obvious for the
following commutative diagram:

Sc -j+ XIR

Indeed, the vertical arrows are the quotient maps determined by /^-actions and so
are continuous and open surjections by Lemma 2.1. The map n} is projection onto
the first factor and is therefore a continuous and open surjection as well. Thus r is
also continuous and open.

Suppose that c1 and c are cohomologous cocycles with c](x,y) =
b{x)b(y)c(x,y) for a continuous map b: X-+T, and define <£: A ' x T ^ A ' x T
by $>(x, t) = (x, b(x)t). Then $ is a homeomorphism that intertwines the two R
actions determined by c and cx and is equivariant with respect to the T-action on
X X T. It follows that $ implements a bundle isomorphism between 5"c and SC].
Thus 17 may be viewed as a map from H\R, T) to H\XIR, &>). Moreover, what
we have just seen shows that if c is a coboundary, then Sc is the trivial bundle.
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But if Sc is trivial, then there is a bundle isomorphism 4>: SC^X/R XT which
determines a continuous T-valued map h on X through the composition

X h - > (X, 1) h ^ [X, 1] h ^ ([*], h(X)) | _ > h(X).

If v is equivalent to x, modulo R, then we have

which shows that c is the coboundary determined by h. Thus, if we show that 17 is
a homomorphism, then it will be injective.

To this end, consider the bundles Sc and Sd determined by two cocycles c and d.
Their product Sc • Sd is formed by first forming the fibred product Sc*Sd =
{([x, t], [y, s]) e Sc X Sd: [x] = [y]} and taking the quotient by the diagonal action
of T: s • ([x, tx], [y, t2]) = ([x, s"1/,], [y, st2])- Elements in this quotient will be
denoted [[x, t], [y, s]]. Note that for r G T we have [[x, tr], [y, s]] = [[x, t], [y, sr]]
and that there is a natural T-action given by r • [[x, t], [y, s]] = [[x, ri], [y, s]]. One
checks without difficulty that Sc • Sd with this T-action is a T-bundle over X/R.
Define a map from X x T to Sc • Sd by sending (x, t) to [[x, t], [x, 1]] and observe
that this map passes to the quotient Scd. Indeed, (x, t) and (y, s) are identified in
this quotient if and only if (x, y) e R and s = c(x, y)d(x, y)t. In this event, we have

[[y, c(x, y)d(x, y)t], [y, 1]] = [[x, d(x, y)t), [y, 1]]

It is not hard to see, now, that this map implements a bundle isomorphism
between Scd and Sc • Sd. This shows that our sequence is exact at H\R, T).

Exactness at H](X/R, Sf). If one views elements of H\X/R, &>) and H\X, &>)
as (isomorphism classes of) bundles, then the map p* is the usual pull-back: if
T: S^X/R is a T-bundle, thenp*(S) = {(x, £): T(^) =p(x)} and the bundle map,
T*, is projection onto the first factor. If S is in the range of 17, then we may
assume that S = Sc for a suitable cocycle c. The map a: A'—»p*(Sc) defined by
a(x) = (x, [x, 1]) is a continuous section for T*, and so p*(Sc) is trivial and
Im(rj)gker(p*).

For the reverse inclusion, suppose that 5 G H](X/R, Sf) is such that p*(S) is
trivial. There is, then, a continuous section a: X-+p*(S) (that is, T*cr(x) = x).
Using the definition of r*, we see that there must be a continuous map cr: X—*S
such that df(x) = (x, v(x)) in p*(S). This means, in particular, that T((T(X)) = [x].
So, if (x, y) G R, then T((T(X)) = T(cr(y)). By virtue of the freeness of the T-action
on S, there is a unique c(x,y) el such that a(y) = c(x,y)(r(x). The continuity of
c follows from the properness of the T-action. Moreover, the fact that c(x, y) is
uniquely determined by ((T(X), <r(y)), when (x, y) e R, and the fact that 5 is a
T-bundle lead immediately to the cocycle equation c(x, z) = c(x, y)c(y, z) for all
(x, y), (y, z) e R- To see that S is isomorphic to Sc, simply observe that the map
<£>: X xJ^-S defined by <E>(x, t) = ta(x) is a continuous T-bundle map with the
property that 3>(jt, t) = i{y, s) if and only if [x] = [y] and t - c(x, y)s; that is, if
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and only if [x, t] = [y, s] in Sc. Thus $ passes to a bijection between Sc and S,
which, clearly, is T-equivariant. It is an easy matter to check that <t» is a
homeomorphism and we conclude, therefore, that S and Sc are isomorphic. This
shows that ker(/?*) c Im(i7) and completes the proof of exactness at H\X/R, £f).

Exactness at H\X, Sf). To show exactness at H\X, 5^), we need first to
comment on how the map e: H\X, 51)—»Tw(/?) is defined. Given a bundle
T: S—* X, we may view S as a right //-space over H = T viewed as a T-groupoid.
Evidently, S with this action of H is a free and proper //-space. By Theorem 3.5,
the imprimitivity groupoid S *S/H has the structure of a T-groupoid, GT, and 5 is
a (GT, //)-T-equivalence. One checks easily that the underlying relation of GT,
that is, the base of GT as a T-bundle, is all of X X X. We let GT be the restriction
(as a T-bundle) of GT to R, and we define s(S), or e(r), to be GT.

To see that e is a homomorphism, recall how the product of two T-bundles and
the product of two T-groupoids are defined. Suppose that for / = 1, 2, T,: S,: —»X is
a T-bundle over X. Then Sx • S2 = 5\ *T S2, the quotient of the fibred product
V S 2 = {(£,,&): ^i(^i) = ^2(^2)} by the diagonal T-action, /•(£, ,£>) =
(r • £,, t~x • £2). The bundle map Ti • r2: 5 1 - 5 2 ^ ^ is given by the formula
T\ " T2([£i> ^2]) = Ti(£i)- Likewise for T-groupoids ;",-: G,—> /? (/' = 1, 2), Gj • G2 is
simply the product bundle endowed with the obvious groupoid product: [a, , a^]
and [j3i, /32] are composable if and only if a^ and /3j are (which implies a2 and j32

are as well) in which case [au cx2]W), /32] = [a\Pi, a2fi2\- A moment's reflection
reveals that this product is well defined and that with inversion defined by
[a,, a2]~] = [aj\ a2

 ]], Gj • G2 becomes a T-groupoid over R. Moreover, with
respect to this product and the process of inversion, which assigns to a T-groupoid
G the conjugate T-action t • y = 7 • y, the collection of T-groupoids over R form a
group with identity RxJ (with the obvious groupoid structure). This group is,
essentially, what we are calling Tw(#) and which was defined earlier in terms of
extensions. Strictly speaking, we should by identifying isomorphic T-groupoids,
but the lapse in precision should cause no harm.

So, let S] and S2 be two T-bundles over X. The map which sends

to

is a homeomorphism which is equivariant with respect to all the various T- and
X X T-actions and gives rise to the commutative diagram

(VS2)x(S,*S2) * (5,x5,)*(52x52)

! I
TvT2 = ((5, • S2) x (5, • £) ) / / / —> ((5, x 5,)/// • (52 x S2)/H) = Gr, • GT2

It follows easily that the lower horizontal map is an isomorphism and so, after
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restricting to R, we see that GTl. T2 is isomorphic to GTl • GT2. This completes the
proof that e is a homomorphism.

To identify the kernel of e, first recall from Theorem 3.5 that given a T-bundle
T: S^>X, the groupoid GT acts freely and properly on S by the formula
[s\> si]" S2 = S\- Restricting GT to R gives an action of GT on 5, which is free
and proper too. Suppose, now, that GT is trivial as a T-groupoid, meaning
that e(5) = 0 and that GT is isomorphic to R X T. Then there is an injective
groupoid homomorphism a: R—>Gr which is a cross section for the bundle map
;: GT—>R. It follows that the action of R on S defined by the formula
(x, y) • s = a(x, y) • s, r(s) = y, is free and proper and, moreover, it commutes
with the T-action on S because GT is a T-groupoid and a is a section. It follows,
then, that R\S becomes a T-bundle over X/R. Form the pull-back

p*(R\S) = {(x, [s]) eXx R\S: p(x) = p(z(s))}

and define (f>: p*(R\S)-*S by <f>(x, [s]) = a(x, r(s)) • s. This is easily checked to
be a well-defined bundle isomorphism from p*(R\S) onto S. Thus, ker(e) cr
lm(p*).

As for the reverse inclusion, let S be a T-bundle over X/R and let S = p*(S)
with r*(x, s) = x. We want to show that GT. is trivial as a T-groupoid; that is, that
there is a homomorphism a: R-+GT. that is a cross section for;: GT»—> R. But
this is easy. Given (x, y) e R, choose SGS such that r(s)= p(x) = p(y), and
define a(x, y) = [(x, s),(y, s)] in Gr* = 5 x 5/T. By definition of the T-action,
[(x, 5), (_y, 5)] is independent of the choice of s satisfying z(s) = p(x), and so cr is a
well-defined map from R into GT and is a cross section for;'. An easy computation
shows that a is a homomorphism. The continuity is an easy consequence of the
fact that 5 X. S\K is a T2-bundle over R and, therefore, that the quotient map is
open.

5. The Dixmier-Douady class of a restricted 1-groupoid C*-algebra
In this section we prove the exactness of the sequence in Theorem 1.1 at

Tw(fl). Recall that R is a principal groupoid acting properly on its unit space X.
We are assuming that R has a Haar system, and we fix one, A, for the rest of this
paper. If G is a T-groupoid over R, then C*(R ; G, A) is a continuous-trace
C*-algebra with spectrum X/R [12, Theorem 4.2 and Proposition 3.3]. K G ' is
equivalent to G, that is, if [G] = [C] in Tw(rt), then C*(R ; G, A) is (strongly)
Morita equivalent to C*(R ; G', A), so we obtain a well-defined map 5: Tw(.R)—•
H2{X/R, y ) by defining 6([G]) to be the Dixmier-Douady class 5(C*(R ; G, A)).
(There is no loss of generality in fixing A. If A' is another Haar system, then G is a
(G, G)-T-equivalence and C*(R ; G, A') and C*(R ; G, A) are (strongly) Morita
equivalent by Theorem 3.2.)

The next step is to investigate 8(C*(R ; G, A)) in view of our assumption that
the quotient map p: X-*X/R has local sections. As we intend to calculate
8(C*(R ; G, A)) using the approach in [17], we must use the fact that C*(R ; G, A)
is locally Morita equivalent to C0(X/R). Then 8(C*(R; G, A)) will be the
obstruction to C*(R ; G, A) being globally Morita equivalent to C0(X/R). Our
local Morita equivalences will result from the following.

LEMMA 5.1. Suppose that G is a J-groupoid over a principal proper groupoid R
with Haar system A. If the natural map p: X-+X/R has a continuous section w,
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then p = r Cf is open. In particular, C*(G, A) is (strongly) Morita equivalent to
CQ(X/R X Z), and C*(R ; G, A) is (strongly) Morita equivalent to C0(X/R).

Proof. As in the proof of Corollary 2.6, G will be equivalent to GF
F, where Fis

the transversal co(XIR), provided p is open. This will follow from Theorem 2.5
once we show that jtc = (r,s): G—*XxX is an open map onto its range.
However, this is immediate since nG = nR °j, where j is the bundle map from G
onto R and KR is a homeomorphism onto its range [11, Lemma 2.1(ii)]. But GF

F is
a T-bundle (Corollary 5.4) which is trivial since «>-»« is a section. Thus GF

F is
homeomorphic to F x T = XIR XT. The desired result now follows from
Theorem 3.2.

REMARK 5.2. Recall that the bimodule implementing the equivalence between
A = C*(R ; G, A) and B = CQ(X/R) is the completion of Cj(GF) with respect to
the operations given in Equations (3.3), (3.4), (3.9), and (3.10). In this case these
simplify to

/ • cf>(y) = I f(a)H^y) d\r'"Xd), (5.1)

4>-g(y) = 4>(y)g(p(s(y))), (5.2)

A(4>> <A>(y) = <f>(yv)Hv)> where ry e GF and r(rj) = s(y), (5.3)

) d\"(u)(y). (5.4)

Recall that if S is a subset of X, then [5] denotes the saturation of S:
[S)=p-\p(S)).

LEMMA 5.3. Suppose that F and E are closed transversals arising from local
sections in a J-groupoid G with open range and source maps r and s. Let q = r C£.
Then q: GF

E-^> F is a principal 1-bundle.

Proof. Since GF
E is clearly a T-space, we merely have to see that q identifies

GF
EI1 with F. First notice that [F] = G(0) = [E] implies q is surjective. Further-

more, p = r\GE is open (Lemma 5.1) from GE onto X and GE = p~\F). Thus q is
open. Finally, if y, p e GE and r(y) = r(/3), then s(y)~~s((3), and since £ is a
transversal, s(y) = s((Z). Thus y = t • /3 for some t e T. The assertion follows.

COROLLARY 5.4. Suppose that G is a J-groupoid with open range and source
maps r and s. Also suppose that F and E are closed transversals corresponding to
continuous sections co and a. Then each point in X/G has a closed neighbourhood
C so that if F' = CJ(C) and E' = cr(C), then there is a continuous map $: F' —> GF

E<
such that r(cf)(u)) = u and s((f)(u)) = a(p(u)).

REMARK 5.5. Maps such as (f> are essentially admissible sections in the sense of
Mackenzie [8, Definition II.5.7].

Proof. By Lemma 5.3 and [5], q: GE—>F is locally trivial. Choose C so that
there is a continuous section <£: F' = OJ(C)-^GE. By definition, r((f>(u)) = u for
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all u E F'\ thus r(<f>(F')) = F'. On the other hand, s{<t>(u)) e E' = a(C) <= E and
a(p(u)) ~ u. Since £ is a transversal, s(<f)(u)) = a(p(u)) and <f>(F') <= G^-.

At this point, we need to fix some (considerable) notation. By assumption there
is a collection {C,}/6/ of closed neighbourhoods in X/R = X/G whose interiors
cover X/R, and for which there exist continuous sections w,: Ct—*X. Let
Fj = o)i(Ci) and Ftj = w,(C,y). Note that in general, /y,- 7̂  Fjh although Ftj and /), are
both transversals for T = [/y,] = [/J,]. The next argument shows that we can refine
our covers to ensure that the right sort of maps are defined on all overlaps. The
argument follows that of [3, Lemma 10.7.11].

LEMMA 5.6. Suppose that G is a T-groupoid over R and that R is a proper
principal groupoid with Haar system A and local sections for p: X-+X/R. Then
there are closed neighbourhoods {C,},e/ in X/R whose interiors cover X/R such
that

(1) there are continuous sections a>,: C,-^X, and

(2) there are continuous maps <£,-,: Fjj—*GF
F\ such that r((f),j(u)) = u and

s(<t>u(u)) = Uj(p{u)) for all u e Ftj.

Here we use the notation developed above: Ft = w(-(Q) and Ftj = w,(C,y).

REMARK 5.7. Notice that if y e GFj. then y<t>ij(s(y)) e GF... Thus, essentially, 4>
determines what Mackenzie [8] would call a local right translation, mapping GF.
to GF... These are related to the notion of 'glissement a droite' of Albert and
Dazord in [1] and to the notion of 'bisection' in [2].

Proof. We can certainly find a collection {TA}A6/4 of closed neighbourhoods,
whose interiors VK cover X/R, with the property that there are continuous
sections a>A: Tx-^>X. Since our assumptions imply that X/R is Hausdorff and
therefore paracompact, we can assume_that {VA}A(E/4 is locally finite; hence there is
an open cover {UA}XsA satisfying MA = Ux g yA.

Now fix A E A and JC E UK. By local finiteness, there is a neighbourhood Z of x
such that

is finite. We claim that for each /3 E A, there is a closed neighbourhood Zp of x
such that Zp<=:Z and such that there is a continuous function t/>: co^Zp C\ Mp)—>
G^ff^nj^j satisfying (2). If x & Mp, then we can simply choose Zp such
that Zp fi Mp = 0 . If x E Mp, then we can apply Corollary 5.4 to the restriction of
G to TyC\ Tp. The point is that Zpx = f~)peA- Zp is a closed neighbourhood of x
with the property that there is a function from o)y(Zy_xDMp) to G";} |^SA*|}

satisfying (2) for all j3 E A.
The desired cover is obtained by letting I = {(y,x) eA xX/R: x e Uy}. For

each i E /, we let C, = Wt.
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Next define h;/. GF.-*GF.. by /i,y(y) = y<frij{s{y)). Each htj implements a
T-bundle equivalence:

h,
GF -!U GF

There are several things to check here. The first is that GF> —> [/y,-] is really a
T-bundle; this follows from Theorem 2.5 applied to the restriction of G to [/y,].
Since /i,y is certainly continuous and takes values in GF. (Remark 5.7), and the
diagram commutes, the rest follows from [13, Lemma 1.12].

Define 0tJ: CC(GFII)-+CC(GFI) by 0,y(/)(y) = f{hl}{y)) =f(y<t>iMy))Y Now if
Fijk = Wi{Cijk), y e GF.jk> and [u] = p(s(y)) e Cijk) then

On the other hand, Oik(f)(y) = f(ycf)ik(a)i([u]))). By Lemma 5.1,
C*(/?|f/r]; G [Fi], A) is (strongly) Morita equivalent to C0(Cj). Thus C*(R ; G, A) is
locally Morita equivalent to C0(X/R) (cf. [17, § 3]). Using the notation in the
discussion following [17, Lemma 3.4], we let £, be the C*(7?|[/r]; G\[Fi], A)-C0(C,)-
imprimitivity bimodule which is the completion fo Cj(GF) with respect to the
operations (5.1)—(5.4). Then Xf'* may be identified with the completion of those
functions in Cj(GF) which vanish off {y e GF;. s{y) G p~\Cj)}. Thus If1' is the
completion of CJ

C(GF^ with respect to the operations (5.1)—(5.4). The point is that
the dy respect the operations (5.1)—(5.4), and so define imprimitivity bimodule
isomorphisms &</. £fi'-*£fil. Thus it follows from [17, discussion following
Lemma 3.4 and Lemma 6.2], that there is a 2-cocycle v = {viJk} in H2({C,), -9°)
defined by

eij°Ojk = vijkeik (5.5)

such that 8(C*(R ; G, A)) = [v]. On the other hand,

satisfies r(y) = w,([w]) = s(y). Consequently (here, we identify X x T with a
subset of G),

y = M[u]),vijk([u])). (5.6)

If [ C ] e Tw(/?) as well, then, since we can take refinements at will, we may
assume that for the same cover {C,}, we have sections w] and produce the
corresponding data F\, <j>\j, h-p Q\i} and v'ijk. But then it is immediate that we
obtain sections w" for G*G' on {C,} by defining o>,"(c) to be the class
[cu,(c), (o'i(c)]. The corresponding data F", ty, h"jy d"j, and v-- are now easily
computed in terms of the previous data. In fact,

In other words, 8: Tw(R)^>H2(X/R, tf) is a homomorphism.
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Exactness at Tw(/?). Now suppose that 8(C*(R ; G, A)) = 0. Then, passing to a
refinement of {C,},e/ if need be, we have v~0. That is, there are functions
IXjf. Cjj—>J such that

Then replacing </>,-, by /x(> • <f>ij} we can assume that vijk = 1. In particular, (5.6)
implies that

hjk ° htj = hik for all triples /, j , k e I.

Then we define

where (i, y) ~ (/, h,j(y)) if r(y) £ [/y. (Note that if r(y) e [FtJ] and s(y) e /••, then
actually s(y) e /V, as s(y) ~ r(y) ~ u with « G /? \Cjj).)

Observe that A is a T-space: t • [i, y] = [i, t • y]. (This is well defined because
the hjj are T-bundle maps; the action is continuous as we may assume that s(y) is
in the interior of Fh and hence that there is a neighbourhood of y in G which is
contained in GF..) Define K\ A-+X by n{[i, y]) = r(y). (This map is clearly well
defined and it is continuous and open for the same reasons as described above.)
With this structure A is a T-bundle over X.

Recall that e(A) = Gn = Gn\R, where Gn is A* A/T. Alternatively,

Gn = (A*A\R)/T.

It will be convenient to define maps /*,-,•: GFi'—> GFji by the formula

Note that we still have hjk°hij = hik. We define T to be the quotient of the disjoint
union LI, GFi * GFt where [/, y, j3] ~ [/, htj{y), /T,y(/3)]. The point is that we claim
that F is homeomorphic to A* A^. To see, this, suppose ([/, y], [j, /3]) E A*A|/?.
Then r(y)~r( /3) and s(j3) e Fn. Therefore h^p) is defined. Thus if [i,y] =
[k, y') and [j, /3] = [/, /3'], then y , j3e [FIJkl] and y' = /it t(y) and j3' = h0). But

Thus there is a well-defined map i// from A* A|# to F given by i//([/, y], [j, (!]) =
[^y,^,.^-1)]. (Since r(y)~r(j3) and ^ ( j S " 1 ) ) = r(^(5(/3))) = J()3), we have
.s(y) = r(hji(p l)), so (y, /iy,(/3 !)) sG^* C^.) Since the interiors of the C, cover
X/R, ip is clearly continuous, open, and surjective. To see that it is injective as
well, suppose that «//([<> y], [j, P]) = H[k, Til [/, Pi])- Jhen [/, y, MJ3"1)] =
[^ yi^M-^r1)]- Therefore y,=hik(y) and hlk(P^) = hik{hji(p-')) = hjk{p-x)\
thus /3T1 = hkl(hjk{p x)) = hjt(p ] ) . In other words, [/, y] = [A:, yx] and [/, j3] =
[/, j3ij. This proves the claim.

Note that T is a T-space in a natural way: r • [/, y, jS] = [/, t • y, 1 • j3], and that i//
is equivariant with respect to this action: ty(t • [[/, y], [/, )3]*]) =
^{[hCy],[}>t-p]*) = {i,t-yJ'hji{p-')} = t-ilf{[i>yl[j>PY). Thus we can
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identify e(A) with F/T. Furthermore, if (y, j3) £ GFi*GFl, then s(y) = u =
Therefore

Thus the formula [/, y, j3] *-* yj8 defines a map 0 from F to G. Again since the
interiors of the C, cover X/R and since G is a T-groupoid, we can apply Theorem
2.5 to conclude that 0 is an open surjection. Then it is straightforward to check
that 0 factors through F/T and so defines a homeomorphism of e(A) with G. We
have shown that ker 5 ̂  Im e.

Now suppose that q: A-*X is a circle bundle. Let H = X/R XT be the
trivial group bundle groupoid. We view A as a right //-space: let A * H =
{(A, ([*], 0): [<7(A)] = [*]}, and define A • ([*], t) = t • A. Then A is a free and
proper //-space and we let G be the imprimitivity groupoid as described in § 3.
(Here a = p°q.) That is, G = A * A///, where

(A * A) * H = {((A,, A2), ([x], 0 ) : fo(A,)] = fo(A2)] = [*]},

and

Then // and G are equivalent groupoids (Theorem 3.5) and 8(C*(G, A)) = 0 by
[9, Theorem 2.8]. However, the identity map on A x A induces a topological
groupoid isomorphism between G and e(A), and since C*(R ; e(A), A) is a
quotient of C*(G, A), we have 8(C*(R ; e(A), A)) = 0 as well. This completes the
proof of exactness at Tw(/?).

6. Exactness at H2(X/R, Sf)

To show that Im(5)cker(/7*), we need to consider [v] =p*([v]), where
v = {vijk} is a cocycle determined by the local Morita equivalences of C*(R ; G, A)
for some T-groupoid over R as in equation (5.6) corresponding to sections to,, a
cover {C,-}/E/, and data Fh ^{j, etc., as before. Then v={vijk} is defined on the
cover {/),-},• s / = {/^(C'lOhe/ by the formula Vijk(x) = vijk(p(x)). Notice that we can
take refinements {Da}a£A of {/),} at will—with each Da not necessarily saturated—
and we still have vabc determined by

(iOa(p{x)), Vabc{x)) = (j>ab(^a(p(x)))<f>bc((Ob(p(x)))<f>ac((Oa(p(x))y\ (6.1)

(We are abusing notation here. Formally, one must choose a refining map
£: A —• / so that Da c Daa), and then vabc is the restriction of vf(fl)f(fc)f(c) to Dabc.
There are (possibly) many such maps £, but it is a standard part of the theory that
the cohomology class of v is independent of the choice of refining map.)

Next observe that as G\[Fi] is a T-groupoid, and applying Theorem 2.5, it
follows that r\Gf!: GF.—>[/v] is open. Thus r\Gp is a T-bundle and must be locally
trivial [5]. Since the interiors of the [Ft] cover X, each u eXhas a neighbourhood
D contained in some [/v] over which T\CF is the trivial bundle. Then there is a map
a: D-*GFi such that r(a(y))=y and s(a(y)) = (Oj(p(y)). (Recall that /• is a
transversal for [/••] and s(a(y)) e Ft and is equivalent to r(a(y)) =y.)
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It follows that there are a refinement {Da}aeA of {D,-}/e/ and continuous maps
aa\ Da—»G such that r{aa{u)) = u and s(aa(u)) = coa(p(u)). If we define (3ah =
aa(x)~]ab(x), then

and

s(Pab(x))

Therefore there are continuous functions /j.ah: Z)aZ)—»T such that

4>ab(Ua(p(x))) = V-ab(x)Pab(x)- (6-2)

Plugging (6.2) into (6.1) yields

(Here we have used the fact that pab(x)phc(x)pac{x)~i - o)a(p(x)), a unit.) Thus,
v cobounds and p*([v]) = 0 as desired.

To complete the proof of Theorem 1.1 we now only need to show that if
5 6 H\XIR, Sf) satisfies p*(8) = 0, then there is a T-groupoid G over R such
that 8(C*(R ; G, A)) = 8.

Fix a locally finite open cover 91 = {Ua}a<EA of X/R and an alternating (see [16,
Lemma 3.4]) cocycle v = {v^} e Z2(2l, Sf) which satisfies [v] = 5. By assumption,
the cocycle v in Z2(p"1(?l), Zf) defined by vahc(x) = vabc(p(x)) defines the trivial
class in H2(X, $P). Therefore there is a locally finite refinement 23 = {K}/e/ of
p~\yi) such that (an image of) v is actually trivial in Z2(93, $f). To be precise, we
assume that there is a refining map £: I—* A, which we fix, so that V, ^p~\Uc(i))
for all / G /, and so that there are continuous functions /x,y: Ky—»T such that

liij(x)fiJk(x)fiik(x) = vmamk)(p(x)) (6.3)

for all x e Vijk.
Next we form the groupoid version of the Raeburn-Taylor algebra with

Dixmier-Douady invariant 8. To do this, let Z = ]\asA Ua> and define ip: Z-»
X/R by i/̂ (fl, u) = u. Let /?(i^) be the induced relation in Zx Z. The Raeburn-
Taylor groupoid F is the extension of ^(i/f) determined by the continuous
2-cocycle a E H2(R(il/), T) defined by

a(((a, u), (b, u)), ((b, u), (c, u))) = vahc(u).

Thus r = R(ip) X T with multiplication defined by

((a, u), {b, u), s) • ((b, u), (c, u), t) = ((a, u), (c, u), stvahc(u)). (6.4)

The point is that T is a T-groupoid (even a twist in Kumjian's sense) over R(IJJ)

and 8 = S(C*(/?(i/f) ;F, c)), where c is the Haar system given by the usual
collection counting measures (see [14,6]).

We now define a family of maps which Kumjian calls a F-cocycle on X. We
define 0,y: V ^ F b y

The crucial properties that the di} enjoy are as follows:
(1) (fyM, 6jk(x)) E F(2) for all x E Vijk> and
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(2) eIJ(x)djk(x) = eik(x).
Property (1) is clear by construction, while Property (2) follows from (6.3) and

(6.4).
Now set W= UislVi, and put Yo = F * W = {(y, i, x): s(y) = d^x)}. To see

that y0 is non-empty, notice that /*,,-,• is identically 1 since v is alternating (consider
the equation V((i)ai)£U)(P(x)) = 1), and therefore

P(x)), (at), P(x)), tiH(x)) <= r(0).

Let R(6) be the collection of triples (i,x,j) with x e V^. Then R{6) has a
natural groupoid structure coming from viewing R(6) as the equivalence relation
in W X W induced by <f>: W —> X where <f>(i, x) = x. We claim that Yo is a free and
proper #(0)-space. To see this, define a: YQ-^ W (= 7?(0)(O)) by a(y, i, x) = (/, x).
To show that a is open it suffices to show that any net {(/, xQ): xQ E VJ}
converging to (/, x) with x eVj has a subnet which lifts to Yo. (Here, the fact that
W is a disjoint union of open sets allows us to consider a fixed / e /.) But 0/,(jta)
converges to 9u(x) in F(0), and s: F —»F(0) is open. Thus, passing to a subnet and
relabelling, we may find ya e F with s(ya) = 6u(xa). Thus, (ya, i, xa) e Yo. We
define

(y, /, x) • (/, x, j) = (yOfjix), x, j).

(Notice that (y, 0,y(x)) e T(2) as 5(7) = 6u(x), and (6>/;(JC), 0,y(x)) e P2) by con-
struction.) The fact that this action is free and proper is straightforward to verify.

Therefore Y(6) = Y0/R(6) is a locally compact Hausdorff space. We will write
[y, i, x] for the class of (y, i, x) in Y(6). The map a: Y(6)—>X given by
°"([y> '> XY) ~ x is clearly well defined, continuous, and open. Similarly, p: y(0)—>
A'//? given by p([y, /, x]) = r(y) is well defined and continuous. To see that p is
open, it will suffice to show that any convergent net r(ya)-^>r(y) has a subnet
which lifts to Y(6). Since r is open, we may assume that ya—•y. Thus
s(ya)-*s(y). Let s(y) = (£(i),u), and we may assume that s(ya) = (g(i),ua).
Since p is open, we can assume that there are xQ e Vj converging to x e Vt with
p(xa) = ua. Thus, {(ya, i, xa)} is the required net.

We make Y(6) into a left-F-space, with respect to p, in the obvious way: if
s(a) = r(y) = p([y,i,x]), then a-[y,i,x] = [ay,i,x]. Using the fact that the
natural map (y, /, JC)•—> [y, /, A] is open, it is not difficult to show that the action is
continuous. It is clearly free, and properness is a consequence of the following
observation. Suppose that [yx,ix,xx]^>[y,i,x] and [aAyA) /A,xA]-»[y', i,x].
Since the natural map is open, we can pass to a subnet and relabel and assume
that /A is eventually equal to / and that there are yA with [yA, /, JCA] = [yA, i,xA]
with the property that (yA, /, x A )^ (y, /, x) as well as (axy'A,i,xA)-+(y',i,x).
(Recall that 6u(xx) is a unit.) Thus aA must converge to y'y"1 as desired.

LEMMA 6.1. The map a induces a homeomorphism ofT\Y(6) onto X.

Proof. Let [y, /, x] denote the F-orbit of [y, /, x]. Since a is constant on
[y, /, x], the map [y, /, x) >-+x is well defined. Continuity and openness follow from
the continuity and openness of a and the natural map of Y(9) onto F\y(#). If
x £ X, say x e Vh then there is a y £ F with s(y) = 0,,(x). Then (y, /, x) E YQ and
[y,i,x]>-*x. This proves surjectivity. Finally, suppose that [y, /,x) and [y',j,x]
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are in Y(0). Then x e Vit and [y, i, x] = [y9ij(x),j,x]. But s(y') = 9u{x) =
s(yOjj(x)). Thus y'(y9ij(x))~'1 e F. Thus [y, /, x] = [y',y, x], and this proves
injectivity.

Now we let G be the imprimitivity groupoid for the left action of F on
Y(9) (see Theorem 3.5 and Remark 3.6). Recall that G is the quotient of
Y(9)*Y(9) = {(yuy2): p(y^) = p(yi)} by the diagonal F-action. Using Lemma
6.1, we identify G(0) = F\Y(0) with X via the map sending xeV^X to
[[0,,(x), *, x], [9u(x), i, x]\ Then sc([yu y2)] = cr(;y2) and rc([yi,y2]) = o-( ,̂)-

It now follows from Theorem 3.5 that G is a T-groupoid over an equivalence
relation Rc=Jc(G) in X X X. Observe that if [(y,i,x),(y',j,x')]eG, then
r(y) = r(y') while s(y) = 9ii(x) and s(y') = 9jj{x'). This implies that (s(y), s(y'))
belongs to R^), or more simply, p(x) = if/(s(y)) = tf/(s(y'))= p(x'). In sum,
if b W z l e G , then /G([yi, y2]) = (^([yi,^]) . ^ ( [ ^ I , ^ ] ) ) belongs to R. To
show that j is surjective, suppose that p(x)=p(y) (so that (x, y) s /?). Then
x E Vj and yel^- for appropriate i,jel. Then p(x) e Ui(oaj) and

Let y, = ((f (i), p(x)), (^(/), p(x)), 1) and
f ) - Then ([yu i,x], [y2,j,y]) e 7(0)* Y(6) and

surjectivity follows.
We have shown that [G] e Tw(/?), and that G is equivalent to F in such a way

that the (F, G)-equivalence Y(9) preserves the T-actions. It follows from
Theorem 3.2 that C*(/?(i/0 ; F, c) is strongly Morita equivalent to C*(R ; G, A).
This implies that 6([G]) = 5, which completes the proof of exactness at
H2(X/R, Sf), and completes the proof of Theorem 1.1.
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