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ABsTrRACT. If GG is a locally compact group acting on a locally compact space
T, then the equivariant Brauer group Brg(7T) is the collection of Morita equiva-
lence classes of dynamical systems (A, (G, «) in which A is a continuous-trace C*-
algebra with spectrum 7" and « i1s an action of G on A inducing the given action
onT = A. We study the structure of the equivariant Brauer group Brg(7') of a
principal G/N-bundle by exhibiting a filtration of Brg(T) predicted by a spectral
sequence of Grothendieck’s in the case of finite G. The first ingredient M (A, «) is
the Mackey obstruction to implementing «|x by a unitary group. The kernel of M
can be identified with an equivariant cohomology group HZ(T,S), and our main
theorem makes four nontrivial assertions about this group. Our constructions ex-
tend to higher dimensional groups HZ(T,S), and we show that there is a long exact
sequence involving these groups generalizing the usual Gysin sequence associated
to a principal circle bundle. Our filtration results give a complete description of
Brg(T) when GG acts trivially or is a direct product. In addition, we consider the
relationship between Brg(7') and Bry(7T) in general; for example, we show that the
Brauer group Bryx(T) of a principal T*-bundle over Z involves only Brpx(7) and
the ordinary Brauer group Br(7).

The previous article [2] introduced and studied an equivariant Brauer group Brg(7')
associated to an action of a locally compact group G on a locally compact space T
The objects in Brg(T') are Morita equivalence classes of dynamical systems (A, G, «)
in which A is a continuous-trace C*-algebra with spectrum T and « is an action of
G on A inducing the given action on 17" = A. Tt was proved in [2, Theorem 3.6] that
Brg(T') is a group with respect to the operation [A, o]-[B, 3] := [AQ¢ B, a@c () ]
For discrete (G, Kumjian [9] had previously studied Brg(T'), and had shown it to be
isomorphic to the equivariant sheaf cohomology group H?*(T,;S) of Grothendieck

[7], where S is the sheaf of germs of continuous circle-valued functions.

The main result of [2] is a structure theorem for Brg(7'), which was motivated by
Kumjian’s theorem. Grothendieck had proved that there is a spectral sequence with
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EY? = HP(G,HY(T,S)) (the group cohomology of G with coefficients in the sheaf
cohomology of T') converging to H?T4(T,;S). Although for technical reasons we do
not expect to have a similar spectral sequence for locally compact GG, Theorem 5.1
of [2] provides all the information about Brg(7') one could hope to get from such a
spectral sequence converging to H*(T,G;S) = Brg(T).

There is another spectral sequence F' in [7] which converges to HPT(T,G;S). At
least for finite ¢, Grothendieck identifies F}'? in terms of the cohomology of a sheaf
HI(Gy, T) over T/G, in which the stalk over (G- is the group cohomology H? (G, T') of
the stabiliser GGy of t. This construction is not obviously available to us, because both
the orbit space T'/GG and the stabiliser map ¢ — G are notoriously badly-behaved for
general locally compact transformation groups (7', ). Nevertheless, these problems
do not arise when (i is abelian and T'is a principal bundle for some quotient G/N of
G: the stabiliser of every point is NV, and the orbit space T'/G is locally compact and
Hausdorff. Our present main theorem gives a filtration for Brg(7') in this case, in
terms of cohomology groups of the form H?(T /G, H*(N,T)), which gives the sort of
information one would expect from a full spectral sequence converging to H*(T, G; S).

Quite a bit is already known about dynamical systems (A, (¢, «) in which A— A\/G
is a principal bundle: they have various topological and algebraic invariants which
interact in fascinating and nontrivial ways. One key topological invariant is the
generalized Dixmier-Douady class studied in [24], which takes values in a cocycle-
based cohomology group HZ(T,S). (For lack of a better name, this was called an
equivariant cohomology group, though it can be strictly smaller than Grothendieck’s
when they both make sense; crudely speaking, it does not admit classes coming
from the cohomology of the fibre.) We have observed before that some of the cocycle
calculations in [25, 24] help establish an exact sequence relating this group to ordinary
sheaf cohomology, which reduces in the case of a circle bundle and G = R to the usual
Gysin sequence of the bundle. Similar calculations are involved in the proof of our
main theorem, so we have included a quick discussion of these groups, and go on to
derive the general Gysin sequence.

We begin with a detailed statement of our main theorem, which describes the
equivariant Brauer group Brg(T') of a principal G//N-bundle. The first ingredient
M(A, «a) is the Mackey obstruction to implementing |y by a unitary group. The
Dixmier-Douady invariant of [24] identifies the kernel of M with the equivariant
cohomology group HZ(T,S), and the theorem makes four nontrivial assertions about
this group. Two of these have effectively been dealt with in [23] and [24]. For the
remaining two, the arguments work in any dimension. Hence we shall digress in §2
to introduce the higher-dimensional equivariant analogues of HZ, and then prove the
main theorem in §3, giving the new arguments in full generality. In §4, we complete
the proot of the general Gysin sequence.

Our last section contains some examples and applications. Our theorem gives a
complete description of Brg(T') when (i acts trivially, and more generally when G is a
direct product. It is then tempting to relate Brg(T') to Bry(T'), where the group acts
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trivially, and Brg n (1), which we know from [2] is isomorphic to Br(Z). Our result
is most striking for ¢ = R*¥ and N = Z*, when the filtration of the Brauer group
Brgx(T) of a principal T*bundle over Z involves only Bry«(T') and the ordinary
Brauer group Br(Z) & H*(Z,S). We close by showing that in the case G = R,
N = Z, our general Gysin sequence reduces to the usual one. This is surprisingly
tricky, and amounts to proving that the equivariant groups Hy (T, S) of a circle bundle
are naturally isomorphic to the usual sheaf cohomology groups H"(T,S).

Notation. We shall use the notation of [2] without comment, and we shall try to be
consistent with it. In particular, we shall try to distinguish between systems (A, «)
in the set Bry(T) and their classes [A, a] in Brg(7T). We shall sometimes use the
notation H*(G, M) or Z*(G, M) to stress that we are considering Moore cohomology
groups as topological groups; Z? is actually different as a set from Z? (cocycles equal
almost everywhere have been identified), but H*(G, M) has H*(G, M) as underlying
set [14, Theorem 5]. Many of our results require that the natural map “G — G/N
has local sections,” which is equivalent to asking that G — G/N is a locally trivial
principal N-bundle. This holds in most cases of interest, and is automatic if GG is
discrete, or if N is a Lie group (cf., [24, §1]). For example, if (¢ is an “elementary
group” — that is, G has the form R* x T™ x Z" x F for some finite group F' — then
G — G/N and (i — N have local sections for any closed subgroup N. Therefore
our main Theorem 1.2 holds for any elementary G. If G is a locally compact abelian
group, we denote by G the sheaf of germs of continuous (G-valued functions; the
underlying space should be clear by context. This convention also applies to the dual
group G vielding a sheaf G.

Acknowledgments. This paper contains many of the results in the unpublished
manuscript [26], which is available as a technical report from either author. The
third author was partially supported by the NSF. and the research was supported
by a collaborative grant from the Australian Department of Industry, Science and
Technology.

1. THE MAIN THEOREM

Suppose G is a second countable compactly generated abelian group, N is a closed
subgroup of G, and p : T' — Z is a (locally trivial) principal G/N-bundle over a second
countable locally compact space Z. Let H*(N,T) denote the Moore cohomology
group H*(N,T) with the topology inherited from the Polish topology on Z*(N,T) as
in [14]. For (A, ) € Brg(T) we define u(A, ) : T — H*(N, T) by taking u(A, a)(x)
to be the Mackey obstruction to implementing «|y by a unitary representation in
a representation m, of A corresponding to x € T = A. Notice that w(A a) is a
continuous function of T into H*(N,T) by [17, Lemma 3.3]. If 7, : A — B(H,)

is a representative for x € T, then 7, o a;' is a representative for s -z € T, and
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because (¢ is abelian, any multiplier representation U : N — U(H,) which implements
a|y in the representation 7, also implements a|y in 7, o a;!. Because the Mackey
obstruction (i.e., the class in H*(N, T)) is independent of the choice of representative
7, and multiplier representation U, u(A, «) gives a well-defined continuous function
of Z = T/G into H*(N,T), and it similarly follows from [2, 3.1] that this function
depends only on the class of (A,«a) in Brg(T). We write M (for Mackey) for the

resulting homomorphism
M : Brg(T) — C(Z,H*(N,T)).

A class [A, a] is in the kernel of M precisely when a|y is pointwise unitary, and
hence locally unitary by [27, Theorem 2.1]. Thus such a system (A, «) is N-principal
[24, Definition 4.4], and (A x, G)" is a principal N-bundle over Z with respect to the
dual action of N = G//N~ and the quasi-orbit map ¢ : (A x, G)" — A\/G = 7 |21,

Theorem 2.2]. Since Morita equivalent systems have Morita equivalent dual systems?,

the class [¢] depends only on [A, o], and gives a well-defined map S (for Spectrum)
S :ker M — HI(Z,./V).
We defer the proof of the following lemma till the end of the section.

Lemma 1.1. For any transformation group (G,T) as above, S is a homomorphism

of ker M into H'(Z,N').
Next we define a map P (for Pull-back)
P:H*Z,8) — Brg(T)
by P([A]):= [p"A,p*id], where we use the Dixmier-Douady Theorem to identify
H?*(Z,8) with the Braner group Br(Z). Then
DA Xpia G = (Co(T) Deizy A) Mrgopia G 2 (Co(T) %, G) Gz A

Since the spectrum of Cy(T) %, GG is known to be ]/\\f—homeomorphic to T/G x N =
7 x N [31], and A = Z, this implies that (p*A X,«qa G)" = Z x N, and we have

S o P =0. That the converse also holds is part of our main Theorem.

Theorem 1.2. Let ' be a second countable compactly generated locally compact
abelian group such that G — G/N and G — N = G/N have local sections, and
let p: T — 7 be a locally trivial principal G/N-bundle over a Polish space 7. Let
M : Brg(T) — C(Z,H*(N,T)), S : ker M — HI(Z,./V) and P : H*(Z,8) — Brg(T)

f (X, u) is an (A, o) — (B, 8)-imprimitivity bimodule, then i, (z)(s) = 7(s)z(s) defines an action
of G on C.(G,X) which extends to an action of G on the bimodule X x, G implementing the
equivalence of A x, G and B x5 G.
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be the homomorphisms discussed above. Then im P = ker S, and there are homomor-
phisms

dy: H'(Z,N) — H*(Z,8)
d - C(Z2,N)— H*(Z,S)
such that im S = ker d), and ker P = imdj.

Even though this theorem has substantially stronger hypotheses than the structure
theorem of [2], and in some situations gives substantially more information, it is not
as complete as one would like. The spectral sequence for finite G on which it is
modeled suggests that there should also be homomorphisms

dy: C(Z,H*N,T)) — H*(Z,N), and
ds : kerdy — H?(Z,8)/imd,

such that im M = ker d;. We have so far been unable to find such homomorphisms.
On the other hand, the homomorphisms d), and dj are both easy to define. Since
(G — /N has local sections, there is a short exact sequence of sheaves

and an associated long exact sequence
o H(Z,N)—— H(2,G) —— H' (2,6 JN) =2 I (2, N) —— -

in sheaf cohomology. Then both d, and d are given by taking cup product with the
class dz([p]) in H*(Z,N') (recall that C'(Z, ]/\7) = HO(Z,./V)).

To prove this theorem, we shall want to convert everything to statements in sheaf
cohomology. We showed in [24] that N-principal systems (A, a) € Brg(T) are char-
acterized by a Dixmier-Douady class §( A, «) which lies in an “equivariant sheaf coho-
mology group” HZ(T,S) (whose precise definition is in the next section). We begin

by checking that the map (A, a) — 6(A, «) induces an isomorphism of ker M onto
H(T,S).

Lemma 1.3. Suppose that G is a locally compact abelian group, and N is a closed
subgroup such that G — G/N— = N has local sections. If p : T — Z is a locally

trivial principal G/N-bundle over a paracompact space Z, then the Dizmier-Douady
invariant of [24, §6] induces an isomorphism of ker M onto HZ(T,S).

Proof. Proposition 4.9 of [24] implies that equivariant line bundles over (T, () are
locally trivial, so Theorem 6.3 of [24] applies. Corollary 4.5 of [24] identifies the
systems considered there as the N-principal systems, i.e. as those in ker M, and
hence we can deduce from [24, Theorem 6.3] that ¢ induces a bijection of ker M onto
HE(T,S). To see that §(A @c(ry B, a @c(ry B) = 6(A, @)6(B, 3), one has to go into

the construction of [24, Lemmas 6.1 and 6.2]. But since we know the classes are
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independent of the choices made there [24, Lemma 6.2(4)], we can choose local equiv-
alences (X;,u') and (Y;,v%) of (A, ) and (B, 3) with (Co(T'),7) relative to the same
G-invariant cover {£}} of T', and then (XZ» @cry Y, u' Qc(r) vi> are local equivalences
of (AQc(ry B, a®@c(ry B) with (Co(T'), 7) (cf. [2, Lemma 3.2]). Now one can compute
that the resulting cocycle representing (A @c(r B, @ @¢(ry 3) is the product of those
representing 6(A, ) and 6(B,3). (One just has to keep track of the actions in the
argument of [2, Proposition 2.2].) O

Proof of Lemma 1.1. By [24, Lemma 7.2], the map S is the composition of the ho-
momorphisms § : ker M — HZ(G,S) from Lemma 1.3 and the homomorphism

b: HA(T,S) — HI(Z,./V) of [24, Lemma 7.1]. O

2. THE EQUIVARIANT COHOMOLOGY GROUPS

Throughout this section, G will be a locally compact group and T' a locally compact
G-space with orbit map p : T' — T/G. For the moment, fix an open cover 2 =
{N; }ica of T/G and let M; = p~'(N;) for each i € A. (Equivalently, { M, } is an
arbitrary cover of T' by G-invariant open sets.)

For each r > 1, C"(2,S) will denote the group consisting of pairs (v, A) in which
v is an r-cochain in CT<{ M; }ieA7$> and A € CT_1<{ M; x G}ieA,S> satisfies

(2.1) Mz, st) = Aj(x,8) Ay (s -2, 1)

for each multi-index J = (jo,...,Jr-1), * € My, and s,t € GG. It will be convenient
to let C&(2A, S) be the collection of pairs (v, 1) where v is a standard 0-cochain and
1 denotes the function which is identically 1 on T' x G.

Our coboundary homomorphism A" : C%L(2,S) — CLT (2L, S) will be given by

A (v, ) = (9" v, 6(v, \)),

where @ is the usual Cech coboundary operator, and § is defined in terms of 9"~ ' :

C™=t — C" by
(2.2) 8(v, Nic(w,8) = wic(@) o (s - @) (O(AL, 8) e () 7

for each (r 4+ 1)-multi-index K. Since it will be crucial in our calculations, we note
that if L is the (r + 2)-multi-index (lo,...,l,41), and L; is the (r + 1)-multi-index
obtained by deleting [;, then

r+1

(2.3) (Ov)p(z) = 2 (x)VLr(l')_l R H VLr+1_i(x)(_1)i_

(The formula in (2.3) differs slightly from that in [30, §5.33] and [25, 24] — the two
definitions are intertwined by sending (lo,li,..., 0, Ly1) to (Ly1yley. ooy 11, lo). The
above definition avoids some powers of —1 in our formulas.) Of course, we know that
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9* = 0, and a quick calculation using (2.2) and (2.3) shows that 5(6 1y (4, ))z 1.
Thus A2 = 0, and we can define the groups H/(2(,S) in the standard way:
23,

ker A™ S)
ImA=1"~ Bg(Ql,S)
for all r > 1. (We bothered to define C2(2,S) so that Im A is defined in the case
r=1.)

As usual, the crunch comes when we consider refinements of 2(. Let B = { Nj }s¢p
be a refinement of 2, with refining map ¢ : B — A such that Ny C N,). Then we
obtain a map ¢ : ZL(A,S) — ZL(*B,S) by setting «(v, \) = <L(l/), L()\)) where

V) () = vry(x) and  o(A)s(z,s) = Az, ).

(If K = (ko,..., k), then (K) = <L(k0),...,b(kT)>.) Note that L(Bé(Ql,S))Q
B{(B,S). We claim that the induced map ¢* on H{; is independent of the choice
of refining map ¢.

Let 7 be another refining map, and put (7, 5\) = <L(l/), L()\)) (T(l/), T()\)>_1. Follow-
ing [30, §5.33], we define h, : C"(A,S) — C"~1(B,S) by

HAL(A,S) =

H pll

=0

where J = (jo,...,J,—1) is a r-multi-index and J; is the (r + 1)-multi-index
(L(jo), cen t(J0), T(F0),s - - ,T(jT_1)>. The crucial observation is that A is a homotopy
operator: for any o € C"(2,S), we have

(2.4) hrgq (8(0))6(&(0))2 Wo)r(o)™?

(cf., Equation (10) of [30, §5.33]). Notice that if x is in Z"(,S), so that gx = 1,
then 9(h,(x))= o(r)7(x)~". This suggests that we define (y,0) € C5'(B,S) by

(1, 0) = (he(v) hea (A) 7).

Then A(p,0) = (8,u7 U, o ) (,5 )) Moreover
8, 0)a(w, ) = () s (v @) [o(o (- 9)a(@)]
= ho(v™s - v)a(@) [A (R (A, 8)) ()]
= he (vt ) (@) [ (DONC,9)) ) (@) T (V) s ()7 (Ao () 7]
= i(\a(0)r (N ()™,

where the third equation holds because of (2.4) and the last equation because h, is
a homomorphism and (v, A) is a cocycle. This shows that (7, A) is in B(*8,S), and
hence that «* = 7* as claimed.
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We may now regard { H,(2(,S) }o, where 2 runs over all open covers of T/, as a
system of abelian groups directed by refinement. We define H/,(T,S) to be the direct
limit.

The group HL(T,S) is an interesting special case: it classifies certain equivariant
line bundles over T. To explain, we need to recall some ideas from [24, §4]. An
equivariant line bundle over a transformation group (T, () is a Hermitian line bundle
7 : L — T with a unitary action u of G satisfying W<u5(€)>: s-m (). The equivariant
line bundle L is locally trivial over T /G if each point of T has a G-invariant neigh-
borhood £ such that L is trivial over F' as a line bundle. An equivariant line bundle
can fail to be locally trival over T/G: see Example 4.12 in [24]. (Note that the trivi-
alization is not required to be equivariant. On the other hand, when we say that two
equivariant line bundles over (T, (¢) are isomorphic we mean there is a GG-equivariant
isomorphism between them.)

Proposition 2.1. The set H;(T,S) is in one-to-one correspondence with the iso-
morphism classes of equivariant line bundles over (T, G) which are locally trivial over

T/G.

Proof. 1t is well-known that the isomorphism classes of Hermitian line bundles over
T are in one-to-one correspondence with the elements of the Cech group H'(T,S):
the extra structure is exactly what is needed to keep track of the group action. If
7 L — T alocally trivial equivariant line bundle over (7', (), then there are an open
cover { N; } of T/GG, Hermitian line bundle isomorphisms

¢ ! (p_l(Ni)>—> p H(N;) x C,
and continuous functions v;; : p~(V;;) — T such that
(2.5) 67! (z,w) = ¢7 ! (2, wri())
for all z € p™'(N;;) and w € C. If 7, denotes the unitary action on the trivial bundle
given by 7,(z,w) = (s-z,w), then 7,0 ¢, 0utod; " is an isomorphism of p~*(N;) x C,
and so there are continuous functions A; : p~!(N;) x G — T satisfying
(2.6) us_1 (qbi_l(:zj,w)): qbi_l (5_1 s w(@, 3))

A straightforward calculation using (2.5) and (2.6) shows that (v, A) € ZL({ N; }, S).
Routine arguments show that the class of (v, \) in HL(T,S) depends only on the

(-isomorphism class [L] of L.
On the other hand, if (v, \) € ZL(2,S) for some open cover A = { N; } of T/, we

can form a Hermitian line bundle

L[P_I(Ni) x C/~

where ~ identifies (¢, x,w) with (j, x,wl/ij(x», and the formula

us ([, 8,0])= [i,5 - 2, whi(z,s7")]
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gives a well-defined unitary action of G on L. Another routine argument shows that
cohomologous cocycles give GG-isomorphic bundles, and the result follows. O

Remark 2.2. If (T, ) is such that equivariant line bundles are automatically locally
trivial over T/G (cf., Definition 4.5 in [24]), then HL(T,S) parameterizes the G-
isomorphism classes of all equivariant line bundles over (7, (). We showed in [24
Proposition 4.8 and Lemma 4.9] that this is the case if G is compact and abelian, or

if p: T — T/G is a principal G/N-bundle for some quotient G/N of G.

3. THE PROOF OF THEOREM 1.2

Suppose first that [A, o] € Brg(T) belongs to ker M, so that (A, «) is N-principal,
and that [A, a] € ker S, so that the N-bundle q: (A X, G)" — Z is trivial. Theorem
7.2 of [23] implies that « is given on N by a Green twisting map, and the stabilisation
trick (as in, for example, [8] or [4]) that (A,«) is Morita equivalent to a system
(B, Inf 3) inflated from some (B, #) € Brg/n(T'). Because the pull-back construction
gives an isomorphism of Br(T') onto Brg/n(T') [2, §6.2], (B, 8) ~ (p*C, p*id) for some
C € Br(T), and we then have P([C]) = [A,a]. Since we have already seen that
im P C ker S, this proves that im P = ker 5.

That im S = ker d}, is precisely the content of [25, Theorem 3.1]: for [¢] € H'(Z, ./V)
the cup product [¢] U dg([p]) € H*(Z,S) coincides with the pairing ([p], [¢])¢ used in
[25] (cf. [25, Definition 1.1]). (If we use Lemma 1.3 to identify ker M with HZ(T,S),
then S is carried into the homomorphism b : HZ(T,S) — HI(Z,./V); in the next
section we shall give a direct proof of the statement im b = ker (U ds([p])) based on
the proof of Proposition 3.3 in [25].)

It remains to show that ker P = imdj. In view of Lemma 1.3, and the usual
identification of Br(Z) with H*(Z,S), it is enough to prove that

(2. N) = 1%z, X)W g2z 82 m(T,8)

is exact, where p* is defined on cocycles u € Z*(Z,S) by p*(u) := (ppop,1). We shall
prove that

(3.1) (2, ) 2 (7, 82 (1, 8)

is exact for all » > 1. Recall that if s;; : N;; — G are continuous functions such
that s;; N are transition functions for p : T — 7 defined relative to a cover {N;},
then Jg([p]) is the class of the cocycle {n;r} defined by s;nijp = sis. If {7y} €
7747, N) is defined relative to the same cover, then [y] U dc([p)) is the class of the
cocycle ¢ € Z"™ 1 ({N;},S) defined by

(3.2) or(2) = Mgty (2) <nlr—1lrlr+1(2)> for z € Ny and |L| =r + 2.

As in [25, Lemma 1.2], one can show that [y] U dc([p])= da([])U[p], so we could
equally well define a representative for [y] U 8(;([}7]) by pushing {~;} € Z"7Y(Z, ./V)
forward to Z"(Z, Q//I/) and pairing with { s;; V }.

r])
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To prove the exactness of (3.1), we first have to show that p* o (U 8(;([}7])) = 0.
Since the cup product is natural, we have

P (MU aa(lp)=r" (1)U (da(lp)))= " ([¥])U da (p°[p]).

Now the bundle p*(p) : p*T — T is trivial (¢ — (¢,1) is a global section), and hence if
1t represents [y]U g ([p]), then [p*x] = 0 in H?(T,S). But we need to show p* = 9
for some cochain n € C"~1(T,8) which is defined on a G-invariant cover {p~*(N;)},
and which extends to an element (1,0) of CL (T, S) satisfying A(n, o) = (p*u, 1).
Thus we shall need to look more closely at the above reasoning.

For our present purposes, we use a representative for 9z ([])U[p] rather than [y] U
8g<[p]>. So we assume vy : Ny — N has the form v = &1 |n for some &7 0 Nj — G,
let 7; = (9€)y, and observe that {r;} is a (r — 1)-cocycle with values in N~ which
represents 6@([7]) Thus, if {#;;} are transition functions for p : T' — Z, our cocycle
@ is given by

px(2) = Tg ey (2) (B (7))
If h; : p7'(N;) — N; x G/N are local trivializations such that (z,sN) = h; o
hj_l (Z, Sti]‘(Z)), then a cochain trivializing p*({#;;}) = {t:;; o p} is given by the corre-
sponding G-equivariant projections w; : p~*(N;) — G/N: since

B (p(e), wie))= o = b (p(a), wi(x))= 7 (p(x), wi(2)t; (p(2)) ),

1

we have t;; o p = w; w;. It is now routine to check that

UJ(J?) = Tjo-gr—1 <p($)> <wjr—1 (l‘)>_1
defines a cochain in C"'({p~'(N;)},S) with gn = p*(p). Further, if we define
or:p Y (Nr) x G — T by
ar(z,s) = &r(p(x))(s)7",

then (n,0) € CL'({N:},S), and another calculation shows A(n, o) = (p*u, 1). Thus
p* o (U 8(;([}7]))([7]): [p*pe, 1] vanishes in HL(T,S), and we have shown that p* o
(W aa([r]))= 0.

Now suppose that [u] € H"(Z,S) and p*([,u])z 0 in HL(T,S): we have to find
v € Z72(Z, N) such that [4] Ude([p])= [p]. Saying p*([u])= 0 means (after possibly
refining the cover {N;}) that there are 5y : p™*(N;) — T and o7 : p"*(N;) x G — T
such that

(3.3) or(x,st) = or(x,s)or(s7" -z, )
(3.4) px (p(x)= (0K (2)
(3.5 L= (s~ ) (Dol ,9))a(e)

We define v; : N — N by 71(2)(n) = or(z,n)~! for any = € p~'(2); (3.3) implies
that o is well-defined with values in N, and (3.5) that {7} is a cocycle. We have
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to show there are maps 6; : Ny — T such that

7k0"'kr—2(')(nkr—2kr—1kr(')> : (a G)K = UK-

We use the local trivializations kg : p~'(Ny) — N x G/N to define sections ¢, : Ny —
T by cx(2) = hi' (2, N), so that ¢;(z) = s;;(2)c;(2). By (3.4) applied to = = ¢, (2),

(3.6) pr(2) = (9n)x (e, (2))

For each multi-index .J = (jo, ... ,jr,—1), define ¢ :=n; (er_1 (Z)) Then by expanding
the right-hand side of (3.6) using (2.3), we compute that

Vo (€1 (2)) T (D0 (2),
Vgt (S5, (2)en (2)) 7 (0 0)rc(2),

1 (2) = Mgty (Ck, (2)
= Nhgeor—y (Chr (%)
which by (3.5)

= <80(',8)>k0mkr_1 <ckr(2)>|5 Sk _qkp (2 (8¢)Ix( )

Again expanding the right-hand side using (2.3), we obtain

1ic(2) = [Ongety s (€, (2)s 58110 (2) ™) gty (€8, (2), 85, (2)71) 7 o

gty (Ch, (2), Skr_lkr(z)_l)(_l)r] (D 0)K(2).
Thus if J = (jov s 7j7°—1) and ¢J(Z) = 0o jrs (cjr—1 (Z)v Sir_2jr_1 (Z)_l)_lv then

= Okgoky_s (ckr(z), Skr_lkr(Z)_1>Uko~~kr_2 (Ckr_1 (2)y Sky k1 (Z)_1> .
gty (€, (2), 80 o (2)™) T (90K (2)(0 6)ic(2)
= Ohgers (€, (2)s 85y b, (2) 0 i,y (2)71) -
gt (€1, (2)s 58,k (2)7) 7 000k (2)
= Ohgkrs (O, (2)5 (88, ot ()08, o,y (2)) 1) -
g (€5, (2)s 58,k (2)7) 7 000k (2)
= Oty (Chy (2): 10, o1 (2)) T D(0)ic(2),

which, by our definition of v; above, is

= Yoz (2) (M, b1, (2)) D) R (2).

It follows that #; = ;¢ have the required property.
This completes the proof of exactness of (3.1), and hence also of Theorem 1.2.
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4. THE GENERAL GYSIN SEQUENCE

Theorem 4.1. Let GG be a locally compact abelian group, and N a closed subgroup
such that G — G/N and G — G/N~ have local sections. Then for any principal
G/N bundle p: T — Z, there is an exacl sequence

e H(2,8) L (T, S) Y (7, A 222

HZ,8)——
The sequence starts with H'(Z,S), and then we claim pf is one-to-one.

We begin by defining the homomorphisms in the sequence. For p € Z"({N;},S),
the class pé([,u]) is represented by the pair (x o p,1) = (p*(p),1) in ZL({N;},S);
we have added the subscript G to stress that this is not just the usual pull-back
homomorphism p* : H"(Z) — H"(T). If (v,\) € ZL({N;},S), then the cocycle
identity (2.1) for Ay : p~'(Ny) x G — T implies that, for n € N, A\;(-,n) is constant
on G-orbits and multiplicative in n; b([l/, A]) is by definition the class of the cocycle

vy Nj— N such that
v (p(a))(n) = As(z,n) forn € N, x € p~'(Ny).

The homomorphism U 8g<[p]> is the operation of cup product with the fixed class

8(;([}7]), and was described in the previous section, where we also showed exactness
at H'(Z,S) provided r > 2 (see the discussion following (3.1)).
Since it is clear that bo pf, = 0, to show exactness at Hj(T,S) for r > 1, we need

to see that if (v, A) € ZL(T,S) and b([l/, )\D: 0in H (7, Z/\\f), then there exists
€ Z"(Z,8) such that (v, A) is equivalent to (p*(p), 1) in Z5. Saying b([(l/, )\)D: 0
means that we can refine the cover and find &, : Ny — N such that (0&)y =~y in all
J with |J| = r; by the argument of [3, 10.7.11], we may also suppose there are maps

&Ny — (i such that & = §I|N (In case r =1, b([l/, )\D: 0 means vy = 1 and we
can take &5 = 1.) For each J, we define (5 : p~*(Ny) x G/N — T by

Cr(a,sN) = (0€)a(p(2))(s) " As(a, s);
the right-hand side is well-defined on p~*(N;) x G//N because

(8§)J<p(:1;)>: ’7J<p(:1?)>: As(x,-) on N.

Note that since (6§)J takes values in 7 and Ay(x,8) is a cocycle in s, (; is also a
cocycle: i.e.,

Ci(x,stN) = Cp(2,sN)Cs(s™h -z, tN).

As usual, we let w; : p7'(N;) — G/N be the G-equivariant projections on the fibres,
and define

ns:p ' (Nj) — T by ns(z)= CJ<$,wjr_1($)> for |J| =,
op:p (N X G =T by oy(e,s) = &(p(x))(s)™" for [I] =r—1.
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Since oy is a homomorphism in the second variable, the pair (,0) is a cochain
belonging to C&™' ({N;},S). We claim there is a cocycle € Z"({N;},S) such that
(v, A) = A(n, o)(pop,1).

We first prove that v=!(97n) is constant on G-orbits, and hence has the form o p for

some cocycle u € ZT<{NZ'},S>. Suppose |K| =r +1 and x € p~!(Ng). Then

(a 77)]((1;) = CkO"'kr—l <$, Wk, _, (J?))Cko...kr_l <$, wkr(l')> -1 <a C(, SN))K(J?) |5N:wkr (z)
Now since (v, \) € Zf,

(0¢(sN))ic(x) = 9(0 )i (p(2)) ()T (DA 8) e (@)

=1 vg(x)vg(s™t - 2)7h
For any cocycle C, (. 1)C(a.9)™ = (1 -2, 11g)", 50

(M) (@) = Grgro s (w01, (2)7" - 10p,_, ()0, (@)™ Y ) (o, ()™ - )

= Z/K(J?)MK <p($)>_1,

where pg : Ny — T is defined by

pxc (p(2)) = vic(wr, (2)7 - @) Crgent g (i, 2y (2) 7 2w, (@) T Hwg, ().
Note that since each w;(x) is G-equivariant, the right-hand side of this last equation
is constant on G-orbits, so u is well defined on N it is a cocycle because v and gn
are.
We have chosen g so that v = (9n)(p o p), and to verify (v, \) = A(n,o)(po p, 1),
we also have to check the second coordinates agree:

na(e)ns(s™e) oo (- s))ala)™
= ((wwj_ (2))Cr (70 s g (2) MO E)a (p(x)) (5)
= Ci(2,sN)(DE)s (p(2))(5) = As(z, 9).

This justifies our claim, and we have proved exactness at H..

Next we consider exactness at HT_I(Z,Z/\?) for r > 1. We present the main con-
struction in a separate lemma, which will apply also to certain nonabelian groups G.
A special case was also a key ingredient in [25, Proposition 3.3].

Lemma 4.2. Suppose N is a closed central subgroup of a locally compact (possibly
nonabelian) group G, p: T — Z is a principal G /N-bundle, and {N;} is an open cover
of Z for which there are continuous G|N-equivariant maps w; : p~*(N;) — G/N,
and s;; : N;; — G satisfying wi(:zj)sij<p(:1;)>N = wj(x). Define nyjp : Nijp — N
by sijSik = SikNijk. Suppose that for each multi-index J with |J| = r, there is a
continuous function Ay : Ny x G — T satisfying

(a) Aj(z,st) = Aj(z,s)As(s7" - a,t)
(b) (@A(.n))xk=1 forn€N,|K|=r+L1
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We define vk : Nk x G/N — T by xk(-,s) = (8)\(-,5)>K, and v5 1 Nj — N by
v (p(a))(n) = As(z,n).
L. If p € C"({N;},S) satisfies
(41) (a ILL)L(Z) = Vo-lra (Z) <nlr—1lrlr+1 (Z)>7
and we define vi : p~(Ny) — T by

VK(x) = X]((l’, wkr(x)> )\kO"'kr—l <wkr—1 (x)_l * Ly Sky_1ky <p($)>>_1,uK <p($)>7

then v is a cocycle such that (v,\) € ZL({N;},S).
2. Conversely, if {vik} is a cocycle such that (v,\) € Z,, then

nx (ple))=
XK <$, wkr(x)> _1)‘k0"'kr—1 <wkr—1 (x)_l * Ly Sk, _1ky <p($)>>l/[(($)
defines a cochain p such that (4.1) holds.

(4.2)

Proof. We begin by observing that, because Aj(x,sn) = Aj(x,s)A;(x,n), and
(8 A(-,n))K = 1, yx is indeed well-defined on N x G/N rather than Ng x G;
further, each xx satisfies the cocycle identity

(4.3) i (2, 8tN) = xx(z,sN)xx(s™' - z,tN).
Next, we set pr(x) = xx (2, w0y, (2)), and compute 9 p using (4.3)

(a p)L(l') = Xlg-+ly <$, wlr(x)>XIO"'lr <$, Wi,y ($)>_1 8<X(', S)>L(x)|5:wlr+1 (z)

(1.4) ot () - (), ()
We now define
Orc (p(2)) = Mt b, (W, (€) 7 2y 50,y (2)
and compute
(90)(p(x))
= Mgty (w01, (2) 7 2y s, (2)) Mgty (w0, (@)™ 2y sy, ()7
cNgeety_y (w01, (2) "+ 2 50,040 (2) [(DAC, 8) igewa, (w0r, ()7 :1;)|5:51Tlr+1(x)]
= Mgty (w01, (2) 7 2y 81,0, (2) 7
Ayt (01,2 ()71 51, 31, ()80, (0)) X, (w01, (2), 50,04 () 71
(4.5) = Ngoat o (i, ()™ om0, (2)) (0 p) ().
It follows immediately that (9v);, = 1. Also, using (4.3),
Z/K(:I;)I/K(t_l . :1;)_1 = X]((l’,wkr(l')))(]((t_l szt wkr(:zj)>_1
= vi(x,t) = (8 )\(.7t)>]((51?)7
so that (v, A) € ZL({N;},S). This gives (1).
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To establish (2), we notice that, since v is a cocycle, the calculations (4.4) and (4.5)
immediately give (4.1), and the problem is to show that the right-hand side of (4.2)
is constant on orbits. But

XK(t_l cxywp (0T $)>_11/]((t_1 - )
= xx (17w 7w () THOAC )i (2) T v ()
= xx (7w 7w (1) T ke (2, 1) ek (@)
= XIx’<$awkr($)> Vls(l' )

)
by (4.3). Multiplying this by the expression 91{( ), which is obviously constant
on orbits, gives (2), and the lemma is proved. O

Since the right-hand side of (4.1) represents [v] U 9 ([p]), part (2) of the Lemma
immediately implies that (U 8(;([}7]))06 = 0; that is, im(b) C ker( U 9¢). To see the
reverse containment, we need to verify that if v € Z"~(Z, ]/\\f) satisfies [v]Ude ([p])= 0,
then there exists (v, A) € ZL(T,S) such that v represents b(v, \). Because the map
G — G/N_ = N has local sections, we can by refining the cover {N;} suppose there
are functions 75 : Ny — ( such that 77 = 4s|n, and define Ay : p~'(Ny) x G — T by

(4.6) A, s) =3 (p(x))(s).

Then A satisfies condition (a) in the Lemma, because each 4;(z) is a homomor-
phism, and condition (b) because {ys} is a cocycle. Since the cocycle on the right
of (4.1) represents [v] U 8g<[p]>, the hypothesis on v means we can find a cochain
o satisfying (4.1). Thus the Lemma gives us a cocycle v € Z"({N;},S) such that
(v, A) € ZL({N;},S), and (4.6) then says that {~;} represents b([l/, A]) This proves
the exactness at H"~'(Z, ./V)

Proof of Theorem 4.1. We have now proved everything except the last comment in
the theorem. If [u] € H'(Z,8S) is in the kernel of pf,, there exist 2 and (v,1) €
C°(2A,S) such that Ay, 1) = (p*(,u),l). But 6(rv,1) = 1 says precisely that each
vi; : p~1(N;) — T is constant on orbits, hence has the form 7; 0 p for some 7, : N; — T.
Now 9(p*7) = p*(p) implies that [¢] = 0 in H'(Z,S). This completes the proof of
the theorem. O

5. EXAMPLES AND APPLICATIONS

5.1. Direct product groups. When the extension 0 - N — G — G/N — 0 splits,
( is isomorphic to the direct product of N and () := G/N, and the coboundary map
Jg is zero. Thus dg([p]) = 0 for any @-bundle p: T' — 7, and the Gysin sequence of
Theorem 4.1 gives a short exact sequence

0—— H*(Z,8)—L— HA(T, 8)—— H'(Z,N') ——0.
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This sequence is also split: if {~,;} € Zl({Ni},ﬁ), then A;;(x, (n,q)) :=v;(p(x))(n)
defines a cocycle (1,A) € ZZ({p~'(N:)},S) satisfying b([1, A]) = [7i;]. Thus we can

deduce from Lemma 1.3 that
ker M = H*(Z,8) & H'(Z,N).

If N is discrete, then the canonical map of Z'(N, T) onto H'(N, T) has a splitting
6 [12, p. 82], which induces a splitting 6. for the natural map of H*(N,C(Z,T))
into C(Z,H*(N,T)) (see the proof of [18, Theorem 1.1]). Since there is a natu-
ral homomorphism & of H*(N,C(Z,T)) into Bry(Z) (as in [2]), we obtain a split-
ting £ 0 0, for M : Bry(Z) — C(Z,H?*(N,T)) such that each £ o 8.(f) is re-
alized by a system (CO(Z,IC),ﬂf>. We can use this to define a splitting ¢ for
M : Brg(Z) — C(Z,H*(N,T)): realize Co(T,K) as Co(T) @c(z) Co(Z,K), and take
o(f) to be [Co(T,K), af] where oz{mq) = (id @c(z) B) o (1, @c(z) id). We conclude

from this and the previous paragraph that, for any ()-bundle p: T'— 7,
(5.1) Bryyo(T) = HX(Z,8) & H' (Z,N') & C(Z,H*(N,T)).

This generalizes Corollary 2.6 of [18], at least for compactly generated N and Q).

To extend this analysis to nondiscrete N, we need a splitting of Z*> — HZ?. Our
approach to this problem uses structure theory, so we first consider some special cases.
The following description of H?*((,T) is essentially known (for example, in [13, §10]
much of it is stated without proof).

For d > 2, let LT,(R) denote the set of strictly lower triangular real matrices; as
an additive group, LT,(R) = RU-D/2 For A € LTy(R) define wg : RxR — T
by wa(z,y) := exp (27i - 2'Ay). Then A — wy is a continuous homomorphism of
RU=D/2 2> [T)(R) into y(R?, T), the group of bicharacters on R? with the compact-
open topology. Since x(R% T) embeds continuously in Z*(R% T) (convergence in
the compact-open topology certainly implies convergence in measure), we have a
continuous map A — [wy] of RU1/2 into H?(RY T), which is bijective by, for
example, [29, Theorem 10.38]. We know from [15, Theorem 7] that H*(R% T) is
Polish, so by the Open Mapping Theorem A +— [w4] is an isomorphism of topological
groups. Similar arguments and the results of [1] show that A — [WA‘Zdde] induces

a topological isomorphism of T44=1/2 onto H*(Z%, T), for d > 2. In both cases, w4
gives an explicit parametrisation of H? by bicharacters, which is continuous in the
compact-open topology. (Note that w, is unchanged on Z? x Z% if we add an integer
to any entry in A, so the parametrisation is continuous on Td(d_l)/z.)

Lemma 5.1. Suppose Gy, Gy, are second countable locally compact abelian groups
such that there are continuous homomorphisms ¢; : H*(G;, T) — x(G;, T) which split
the canonical map (i.e., which satisfy [qﬁz([w])] = [w]). Then there is a continuous

homomorphism ¢ : H*(Gy x G, T) — (G x G, T) such that [qﬁ([w])] = [w].
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Proof. We define a continuous homomorphism ¢ : Hom(Gy, @2) — x(G1 x G2, T) by

() ((s1,52), (tr,12)) 7= (s1)(t2).
Let Res; denote the restriction map of HQ(G1 X Gy, T) into HQ(GZ',T). Then there

o~

is an isomorphism d : ker(Res; x Resy) — Hom(G4,Gz): this result goes back to
Mackey, but is an easy special case of the discussion in [19, Appendix 2], which also
makes it clear that 4 splits d. We know that H?*(G x G, T) is Polish [15, Theorem 7],
and ker(Res; x Ressy) is a closed subgroup because Res; is continuous [14, Proposition
27]. Since # is continuous for the compact-open topology on Hom(Gf, @2) and the
Polish topology on Z*(Gy x G, T), it is a continuous isomorphism of Hom(G, @2)
onto the Polish group ker(Res; x Resy). Thus the Open Mapping Theorem implies
that the inverse d is continuous. We now define ¢ by

(5.2) ¢([w]) ==
[qbl ( Resq([w])
where Inf; : H?*(

) X ¢2<Resz([w])>] [¢ o d([w] Inf; o Res; ([w]) ™" Infy 0 Resz([w])_lﬂ \
G;,T) — H*(Gy x G, T) are the inflation maps. O

Corollary 5.2. For any elementary locally compact abelian group G there is a ho-
momorphism ¢ of H*(G,T) into x(G,T) which is continuous for the compact-open
topology on the group x of bicharacters, and satisfies [qﬁ([w])] = [w].

Proof. We may suppose (i = R¥ x Z™ x T" x F, with F finite. Since we have verified
the hypotheses of the Lemma for R* and Z™, H*(T",T) = 0 [11, Proposition 2.1],
and H?*(F,T)is finite, the Lemma applies. O

Now suppose p : T' — Z is a principal ()-bundle, and N is an elementary locally
compact abelian group. Given f € C(T,H?* N, T)), the Corollary gives a lifting
g : T — x(N,T) which is continuous for the compact-open topology on y(N,T) C
C(N x N, T). If we give everything the compact-open topology, C(T,C(N x N,T))
is naturally topologically isomorphic to C(N x N,C(T,T)). Thus the lifting gives
a continuous map of N x N into C(7T,T) which is multiplicative in either variable,
and hence is a cocycle in Z*(N,C(T,T)). Thus we can extend the above analysis for
discrete N to obtain:

Theorem 5.3. Suppose that N and () are second countable locally compact abelian
groups, and that N is elementary. Then for any principal Q-bundle p : T — Z, we
have

Bryyo(T) = H*(Z,8) & H'(Z,N) & C(Z, H*(N,T)).
Remark 5.4. An amusing consequence of this Theorem and the corresponding result
for trivial @) is that the map (A, a) — (CO(T) Qo) A, ([d@a) x (1@ id)) induces
an isomorphism of Bry(Z) onto Bry«g (7). This is nonobvious, but is known to be
true for arbitrary N and @); it is the content of Proposition 7 of [10].
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5.2. Restriction and inflation. Associated to any normal subgroup N of G is a
natural restriction map Res : Brg(T) — Bry(T) such that Res([A,a]) = [A, a|n];
if N acts trivially on T', there is also an inflation map Inf : Brg/n(T) — Brg(T)
such that Inf([A,a]) = [A,Infa], where Infa is the composition of o : G/N —
Aut A with the quotient map of G onto G/N. We trivially have ResoInf = 0, and
anyone familiar with group cohomology will immediately wonder if one can describe
ker(Res)/im(Inf). First we shall apply our main theorem to this problem, next we
shall give an alternative answer in terms of a group-cohomological invariant, and then
we shall compare the two answers using the theory of [23].

Corollary 5.5. Suppose G, N and p : T' — 7 satisfy the hypotheses of Theorem 1.2.
If (A,a) € Brg(T) and Res([A,a]) = 0 in Bry(T), then [A,a] € ker M. The
class S([A,a]) in HI(Z,./V) vanishes if and only if there is a system of the form
(Co(T,K), B) € Brgn(T) such that [A,a] = Inf[Co(T,K), 3].

Proof. Since M(A,«) = M(A,aly), it is clear that M([A,«a]) = 0. Next, suppose
that (CO(T, K), ﬂ) € Brg/n(T'), and let 7 denote the quotient map of G onto G'//N, so
that Inf (CO(T, K), ﬂ) = (CO(T, K), ﬂor). Then by a theorem of Olesen and Pedersen
[16],

Co(T, K) X por G = Ind$_ (Co(T,K) x5 G/N, B).

Since G//N acts freely and properly on T = Co(T,K)", Co(T,K) x G/N is a
continuous-trace algebra with spectrum 7 = T/(G/N) [6], and the induced algebra
has spectrum G- homeomorphlc to G/N= x Z = N x Z because N~ = (G/N)" acts
trivially on (Co(T,K) x G/N)" (e.g., [22, Proposition 3.1]). (Alternatively, we could
use the isomorphism of Brgn (1) with Br(Z) to write [Co(T,K), 8] = [p* B, p*id] for
some B € Bt(/), and then compute

p*B X prid G = <CO(T) ®O(Z) B) NT@c(z)id G = (CO(T) X G) ®O(Z) B)

Conversely, if S([A,a]) = 0, then our main theorem says there exists B € Br(7)
such that [A,a] = P([B]) = [p*B, p*id]. However, [A, a|y] = Res([A, a]) = 0 implies
6(A) = 0, so that p*B must be stably Co(T')-isomorphic to Co(T, K). Since the action
p*id of G on p* B is inflated from G/ N so is the corresponding action on Co(T,K). O

Remark 5.6. Because pulling-back induces an isomorphism of Br(Z) onto Brg/n (1),
we can alternatively say that S([A, a]) = 0 if and only if there exists B € Br(Z) such
that p*(6(B)) =0 and [A, o] = [p* B, p*id].

Proposition 5.7. Suppose G, N and p : T — Z satisfy the hypotheses of Theo-
rem 1 2. If (A, a) € Brg(T) and Res([A,a]) = 0 in Bry(T'), then there is a class

in H' (G/N Hom(N, C(T, T))) which vanishes if and only if there is a system
of the form (Co (T,K), ) € Brgn(T) such that [A, o] = Inf[Co(T,K), B].
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Proof. 1t follows from [2, Lemma 3.1] that Res(A,«) is trivial if and only if A is
stably Co(T')-isomorphic to Co(T,K) and the action a|y @id of N on A ® K is outer
conjugate over T' to the trivial action; equivalently, a|y ®id = Ad u for some strictly
continuous homomorphism v : N — UM(A @ K). So we may as well suppose that
(A, a|y) = (CO(T,IC),Adu>. In the notation of [23, §5], comparing a,(u,) with wu,
gives a cocycle (A, p) € Z(G, N;C(T,T)) which is trivial in the “relative cohomology
group” A(G, N;C(T,T))if and only if we can adjust u by scalars to obtain a Green
twisting map for @ on N [23, Proposition 5.4]. Since u is already a homomorphism,
the 2-cocycle g in Z*(N,C(T,T))is identically 1, and the first component A belongs to
Z1 (G/N, Hom(N, C(T, T))) (see formulas (5.7), (5.8) and (5.9) in [23]). An arbitrary
cocycle (A, p) € Z(G,N; M) is trivial if and only if there is a Borel map p: N — M
such that p = dp and A(s,n) = s-p(n)p(n)~'. If p = 1, p has to be a homomorphism,
and hence our (A,1) is trivial if and only if there is a (Borel, hence continuous)
homomorphism p : N — C'(T, T) such that A(s,n) = s-p(n)p(n)~!, i.e., if and only if
the cocycle X in Z* (G/N, Hom(N, C(T, T))) is a coboundary. Thus A — (A, 1) embeds
H! (G/N, Hom(N, C(T, T))) in A(G,N;C(T,T)), and we can define dy(«) := [A].

If « is inflated from an action of GG/N, then we can take u = 1 in the construction
of the previous paragraph; since the class [\, y] is independent of the choice of wu, it
follows that [A, 1] = 0 and d;(«) = 0. Conversely, if di(«) = 0, then « is implemented
by a Green twisting map over N. From the stabilization trick (the version of [8] or
[4]) we deduce that (CO(T, K), oz) is Morita equivalent to a system in which the action
of G is inflated from an action of G/N. Since every stable algebra which is Morita
equivalent over T' to Co(T,K) is Co(T)-isomorphic to Co(T,K) (cf., the end of the
proof of [25, Lemma 2.3]) we can deduce that (CO(T,IC),a> ~ (CO(T,IC),Infﬂ> for
some action 3 of G/N on Cyo(T,K). Finally, because this equivalence respects the
actions of Cy(T'),  must induce the given action of G/N on T', so that (CO(T, K), ﬂ) €
%tg/N(T). O

The theory of [23] connects these two viewpoints. Associated to each cocycle

(M p) € Z(G,N;C(T,T)) is a commutative diamond

/\
\/

of principal bundles, in which the southeast arrows are N-bundles and the southwest
arrows are (/N-bundles [23, Proposition 6.3]. If [A, i] is the obstruction to realizing
a: G — Aut A by a Green twist on N [23, §5] and the cocycle p € Z*(N,C(T,T)) is
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pointwise trivial, then the system (A, o) is N-principal and F, , is ]/\\f—isomorphic to
(A x4 G)" [23, Proposition 7.1]. When Res([A, a]) = 0, p is trivial, so [, = PO
is trivial. From Theorem 7.3 of [23] we deduce that (A, 1) — F{, ;) induces a bijection
between [\] € H* (G/N, Hom(N, C(T,T))) and the (classes of) N-bundles F over Z
such that p*F is trivial.

It is interesting to note that, even though the group-theoretic invariant d;(«) is os-
tensibly more tractable than the topological invariant S(A, &), our topological theory
currently yields more information. Thus, for example, it seems hard to see directly
what the range of d; is, whereas we have an explicit criterion [¢] U d¢([p]) = 0 for the
realizability of an N-bundle ¢: F' — Z as S(A, «a).

Fxample 5.8 (Showing that dy is not in general surjective). First note that since
p*[p] =0, p: T — Z is realisable as F{, 1) for some A € Z! (G/N, Hom(N, C(T,T))).
Thus we just need to see that p : T'— Z is not necessarily realisable as S(A, «) for
some N-principal system (A,«) € ker M C Brg(T). For a concrete example, we
take G = R, N = Z, and p : S*"*!' — P,(C) to be the canonical circle bundle over
complex projective space P,(C) for n > 2. The image of [¢] U dr([p]) € H*(Z,S)
in HY(Z,7Z) is dr([q]) U Or([p]), which is the product of dr([g]) and Ix([p]) in the
cohomology ring H*(Z,Z). Since H*(P,(C),Z) is a truncated polynomial ring
with generator dr([p]) (e.g., [28, Theorem 5.8.5]), we certainly have dg([p])* # 0
in HY(P,(C),Z) = Z. Thus the class [p] is not realisable as S([A,a]), and the
corresponding [\] € H! (G/N, Hom(N, C(T, T))) is not realisable as dy(«).

5.3. The case G = R¥, N = Z*. We shall show that the natural map of 3 ,(T,S)
into H'(T,S) is injective (Proposition 5.10 below). This will lead to the following
striking improvement of Corollary 5.5.

Corollary 5.9. Suppose p : T — 7 is a principal T*-bundle. If (A, o) € Bryx(T)
satisfies Res([A, a]) = 0 in Bry«(T'), then there is a system of the form (CO(T, K), ﬂ) €
Brpx(T) such that [A, o] = Inf[Co(T, K), 5].

Proof. Since we certainly have M([A, a]) = 0, Corollary 5.5 says it is enough to prove
that S([A, a]) = 0, and since S([A, a]) = b(6( A, «)), it is enough to prove 6( A, a) = 0.
But [A, alzx] = 0 also implies 6(A) = 0, and because

Brgi(T,8) —— H2,(T,S)

|

HY(T,S)

F

Br(T)

)

commutes, Proposition 5.10 forces 6( A, a) = 0. O
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Proposition 5.10. Suppose that p : T — Z is a principal T*-bundle. If r > 0 and
(LX) € Zﬂ@;l ({ N; },S) and { N; } is locally finite, then for each multi-index J with
|J| = r there is a continuous function oy : p~(Ny) x R — T such that

oi(x,0+ ¢) = ay(x,0)05(e7*™ -2, 0)
and
(60(-,0))1((:1;) = Ag(x,0) for|K|=r+1,z¢€ p_l(NK), 9 € R”.

In other words, [1,A\] =0 in H@'l({ N; },S), and the natural map of HH@'I(T,S) into
H™Y(T,S) is injective.

Proof. The cocycle identity for Ag implies that A (x,0) = 1 for all &, and since the
map f;: p~1(2) x R¥ x [0,1] — T given by fi(x,0) = Ag(z,t0) is a homotopy joining
Ak = fi to Ag(-,0) = fo, it follows that for each z € Ng there is a continuous
function o : p71(2) x R¥* — R such that a%(z,0) = 0 and

A (2,0) = exp(2miag(x,0)) for x € p~'(z), 0 € R;

further, since the kernel of exp(27i-) : R — T is discrete, any other lifting 5 defined
on a connected set of the form p™'(z) x B, and satisfying 3(x,0) = 0, must agree
with o throughout that neighborhood. The same argument applied to the function

ag(@, 0+ ¢) — aj(x,0) — O‘%’(e_%w ‘T, 9)
shows that aj is a cocycle in §. Thus the function ag : p_l(NK) Y« R* — R defined
by
O{]{(:ﬁ, 0) = O{];gw)(t'ﬁ, 0)

29

is a cocyclein A, and we claim that it is also continuous. For if z € N, we can use the
local triviality of p over N to extend i to a function R defined on p~t(M) x R*
for some neighborhood M of z, and then Ag exp(—27i R} ) is a continuous function on
p (M) xR* which is identically 1 on p~!(z) xR¥. If B is any compact neighborhood of
0 in R*, we can use a standard compactness argument to find a smaller neighborhood

N of z such that
| Ak (x,0) exp(—ZﬂRﬁ(m,@))—H <2 for (z,0) € p”"(N) x B,

and then take logs to find a continuous function § : p~'(N) x B — R such that
B(z,0) = 0 and A\x = exp(27if3) throughout p~'(N) x B. The uniqueness of the
lifting on each fibre p~'(z) x B implies that ax = 3 throughout p~'(N) x B, and
hence af itself must be continuous there. But z was an arbitrary point of p~'( N ) and
B an arbitrary neighborhood of 0, and hence ay is continuous on all of p~! (N ) x R*.

Since (1, ) is in Z41", we know that (8 A(-,@))L =1 for all L with |L| =742, and

]Rk 9
hence

exp(Zﬂ'i(a a(-,0)>L>: 8<exp<2ﬂ'i0z(-,0)>>L = (8 A(-,@))L = 1;



22 PACKER, RAEBURN, AND WILLIAMS

thus (8 al-, (9)),;(:1;) is a continuous Z-valued function of (z,0) satisfying
(8 Oé(',O))L(l') = 0, and is therefore identically 0. Since the sheaf R of R-valued
functions is fine, H"(T,R) = 0, and ak(-,0) is equivalent to a coboundary, and in
fact can be realized as a coboundary relative to the same cover { p™*(N;) }: if {p; }
is a partition of unity subordinate to { N; }, just take

6J(x70) = Z pi<p(x)>0éu($,(9),

where ¢.J denotes the r + I-multi-index (7, jo,...,Jr—1). (Since p; vanishes on dN;,
extending each summand to be 0 on Ny \ N;; gives a continuous function on Nj.) It
is easy to verify that we then have 9 3(-,0) = «, and (7 is a cocycle in § since each
ag 1s. Thus if we write

O'J(xv(g) = eXp(QFiﬂJ(l',@)),
then we have (1,0) € Cﬁék<{ N; },8) and A(1,0) = (1, ), as required. O

Example 5.11. In view of Corollary 5.9, one might guess that (CO(T,IC) X g G)A is

homeomorphic to Z x N whenever a|y is unitary. This is not true: there is something
special about the case G = R*¥, N = Z*. For an example, take G = Z,» := Z/n*Z,
and N the subgroup isomorphic to Z,, so that G/N = N 2 Z, also. For p and g we
take the n-fold covering z — 2" : T — T. Since H*(T,Z) = 0, the class [¢] U dz([p])
trivially vanishes, so there is a system (A, a) € Brz ,(T) with (A x, Zp2)" 2 T as
principal Z,-bundles. Because p*[¢] = p*[p] = 0, we know that Res : (A x, Z,)" — A
is trivial, and « is unitary on N = Z, by [20, Proposition 2.5]. Notice that 6(A) also
trivially vanishes, so we may take A = Co(T, K).

5.4. The case G =R, N = Z: the usual Gysin sequence. To recover the usual
Gysin sequence, we need to identify the equivariant groups Hg(T,S) with H"(T,S).
There is a natural homomorphism taking [v, A] to [v], and we have already seen that
it is injective. To prove it is surjective, we have to know that every class in H"(7,S)
can be realised by a cocycle defined on T-invariant covers. This is not true for higher-
dimensional torus bundles (consider the trivial bundle over a point), but for classes
which can be realised this way our argument works.

Proposition 5.12. Suppose thatp : T — Z is a principal T-bundle. Then every class
in H'(T,S) can be realized by a cocycle defined on a cover of the form {p~(N;) },
for some open cover { N; } of T/R.

Lemma 5.13. Suppose that p: T — 7 is a locally trivial fibre bundle with a paracom-
pact base space 7 and compact fibre F. If z € Z is fivred and { \x } € Z"({ M; },S)
is a cocycle such that [Ai|arp=1(z)) is trivial in H (p_l(z),8>, then there is a neigh-
borhood N of z such that [Axc|yrenp=1(n)] is trivial in H™ (p~*(N), S).
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Proof. By refining { M; }, we may assume it is locally finite, and that there are ug :
My N p~(z) — T such that 9 = Al,-1(.). We choose a neighborhood M of z such
that p=' (M) meets only finitely many M; and p~'(M) is homeomorphic to M x F,
and extend { i } to a cochain on p~'(M) = M x I by taking it to be constant on
M-slices. Then A(9p)~" is a cocycle on p~! (M) which is identically 1 on p~*(2). Since
there are only finitely many functions involved, we can find a smaller neighborhood

N of z such that
‘)\K(:z;)(aﬂ)j}l(x) — 1‘ < |exp<7ri/(r + 1))—1| for x € My ﬂp_l(N).

Now log<)\(8 ,u)_1> is a cocycle with values in the fine sheaf R of R-valued functions,
and hence equal to g v for some cochain v € CT_1<{ M;np~'(N) },R). But then

Ak lp=10v) = (O p)k exp(dv)k = d(pexpr)k

is a coboundary, and the result follows. O

Proof of Proposition 5.12. We apply [5, Theorem 11.4.17.1], which asserts that if H?
is the sheaf generated by the presheaf U — H? (p_l(U),S>, then there is a spectral
sequence with Fy? = H"(Z,H?) which converges to H"T4(T,S). By definition, the
stalks of the sheaf H? are

Hi(z) = h_m){ H1? (p_l(U),S) : U is an open neighborhood of z }.

Since p~'(z) is homeomorphic to T, and HY(T,S) = HYT,Z) = 0 for ¢ >
1, Lemma 5.13 implies that if U is a neighborhood of z, then every element of
H1 (p_l(U),S> vanishes in H? (p_l(N),S> for some smaller neighborhood N of z
— or, equivalently, that the direct limit H?(z) is trivial. Thus for ¢ > 1, all sections
of the sheaf H? are trivial, Ey? = H"(Z,H?) = 0, and the statement that { £"?}
converges to H'*? just says that E7° = E}° = H"(Z,H°) is isomorphic to H"(T,S).
But by definition H°(U) = H0<p_1(U),S>: C(p_l(U),T), and hence H"(Z,H") is
the subgroup of H™(T,S) consisting of cocycles which are realizable on covers of the

form {p~"(N;) }. O

Proposition 5.14. Suppose p : T — Z is a principal T*-bundle and ¢ is a class
in H"(T,S) with a representative defined with respect to a cover by T -invariant
sets. Then there is a cover {p~'(N;)} of T for which there exists a cocycle vy :
p Y (Nk) — T with ¢ = [v], and functions Ay : p~'(Nj) x R¥ — T such that (v,\) is

Suppose that vi : p~'(Ng) — T is a cocycle representing the class ¢. We want to
show that { vk } is equivalent to a cocycle of a standard form, and for this we will
need some notation.

We recall that there is an isomorphism

deg : [T*, T] = C(T*, T)/ exp(27iC(T* R))— Z*,
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which is uniquely characterized by insisting that, if m = (my,...,ms) € Z* and w™
denotes the function (wy,...,wg) = [];w, then deg(w™) = m. If ( € T* and
f:T* — T, then the function o¢(f) given by w +— f(w() has the same degree as f:
choose a path (; joining ( = (3 to o = 1, and then o¢, is a homotopy joining o¢(f)
to f. As in §2, we let h; : p7Y(N;) — N; x T* be local trivializations, so that the
transition functions ¢;; : N;; — T satisfy

hjohi'(z,w) = (Z, wtij(z)>.

Then the above observations about deg imply that, if z € N;; and f € C(p_l(z), T),
we have

deg(w — fo h;l(z,w)): deg(w — fo h;l(z,w)>,
and hence we have a well-defined family of homomorphisms

deg, : [p7'(2),T] = Z* for z € Z.

(If £ =1, we have just defined an orientation on the circle bundle p: T' — Z.)

We now define my : N — Z* by mg(z) = deg, (1/K|p—1(z)>; note that {mg } is
in Z"({ N; },Z*) because { v } is a cocycle and deg is a homomorphism. The local
trivializations h; define T*-equivariant maps w; : p~*(N;) — T* by h; (p(:z;),wi(x»,
and we can now give our standard form for { vg }.

Lemma 5.15. We can refine the cover { p~'(N;) } to ensure there is a cochain y in
CT<{ N; },S) such that v is equivalent to the cocycle in ZT<{p_1(N¢) },8) given by

wi, (2)" D e (p()) - for @ € p~H(Nk).
Proof. It z € Nk, the cocycle defined by
(vkw, ") (2) = vic(2)wy, (x) 7P

has degree 0 on the fibre p~'(z), and hence equals exp(27i3x) for some continuous
function Bk : p~'(2) — R. We can extend each Br to p~'(Ng), and then
vrwy, " exp(—27ifk) is identically 1 on p~'(z). Reasoning as in the proof of
Lemma 5.13, we can find a neighborhood N of z and a continuous function
a:p~'(N) — R satisfying

Z/le;mf\’ = exp(27ria) throughout p_l(N)-

We can now refine the cover { p~!(V;) }, using the argument of [3, 10.7.11], to ensure
that there are continuous functions ay : p~'(Ng) — R such that

y[x’(:z:)wkr(x)_mf"(p(x)) = exp(27riozK(:z;)) for z € p~'(Ng).
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If |L| =r+2, then

exp(Zﬂ'i(a Oé)L(l')> = wkr(x)_mko'”kr(p(x))wkrﬂ(:zj)mko~~kr_1kr+1(p(x)) ‘
W,y () TR0 ke ke 00D
— [wkr(x)—lwkr+1(x)]mko...kr(p(ﬂb’))wkr+1(x)(am)L(p(x))
= 1y () b0tr P
since { m } is a cocycle and w; 'w; = #;;0p. Since this last formula depends only on

p(z), we can average the left-hand side over T*-orbits without changing the right-hand
side. Thus we set

o= o [ [ axtc a1

observe that the coboundary operator pulls through the combination of exponential
and integral, and deduce that

(5.3) (0 /L)L<p($)>: exp(Zﬂ'i(a Oé)L(J})>: 6<exp(27rioz)>,;(:1;).

To prove the lemma, it is enough to show that {exp(2riar) } differs from { px }
by a coboundary. If we set

si(x) = agk( / / e x)dby . ..do,

then exp(2risg) = (exp(Zﬂ'iozKD,uI} , and (5.3) says that exp(Zﬂ(as)L>: 1; thus
(0 ), is constant on connected components. On the other hand,

(95)e(x) = (9 a)p(w) ‘/0 /0 (9 a)L (e - z)db; ...db,

vanishes at some point of each fibre, and because the fibres are connected, we deduce
that (9s)r is identically 0. Thus { sk } is a cocycle in Z"(T,R), and is therefore
equivalent to a coboundary. Thus {exp(2risg)} is a coboundary, {exp(2riagk) }
differs from { px } by a coboundary, and the lemma is proved. O

Proof of Proposition 5.14. We replace { vk } by the equivalent cocycle {w] ™ }.
Although {my } may be non-trivial as a cocycle in Z"(Z,ZF), it is equivalent in
Z"(Z,R¥) to a coboundary, and, by refining, we may suppose mx = (97)x for some
cochain n € C"7'({ N; },R¥). We now have
1/1((6_2”9 cx) = exp(—Zﬂ'i(@ . mB< x )))wkr )),uB ( (x ))
= exp(—Zﬂ'i(@ . mB< T )))1/1\
= exp(—Zﬂ'i(@ (0n)K (p(:z;))))yK( ).
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If we define A\j(x,8) = exp(—Zﬂ'i(@ . nJ<p(:1;)>>>, then the above says precisely that
AN 0)=v-(0-v)', and since Aj is clearly a homomorphism in §, we have found

A such that (v, A) is in Z5,(T,S). O

Remark 5.16. Since Hp,(T,S) need not map onto H"(T,S), it is instructive to note
where it was crucial to take G = R¥. If we had required \; well-defined on p~*(N;) x
T* rather than p~'(N;) x R¥, we would need exp(27if - 5;) to depend only on
exp(27i0) € T*, and hence 5; would have to take values in Z* rather than R*. So it
is because {my } need not be a coboundary in Z"(T,Z*) that we may not be able
to construct the family { \; }. If the cocycle { my } is trivializable in Z"(T,Z*/qZ*)
for some ¢ € Z*, then \;(-,0) will be well-defined for § € T* = R*/¢Z*, and (v, \)
will belong to Zp.(T,Z), where the action of T* on T is defined in terms of the given
action by zxx = 27 - x.

Theorem 5.17. If p: T — Z is a principal T-bundle, then the map [v,A] — [v] is
an isomorphism of Hy(T,S) onto H'(T,S) for all r > 1.

Proof. If p: T'— Z is a circle bundle, Propositions 5.12 and 5.14 imply that [y, \] —
[v] maps Hy(T,S) onto H"(T,S), and Proposition 5.10 implies that this map is an
injection. (To apply Proposition 5.10, one needs to observe that if v, = 9(¢x ), then
(v, A) ~ (1,5\) where 5\1((:1;,5) = Mg (x,8)or ()i (s~ - 2).) Thus the theorem is
proved. O

For higher-dimensional torus bundles, Propositions 5.14 and 5.10 immediately give

Corollary 5.18. Suppose that p : T' — Z is a principal T*-bundle. Then the map
[, A] = [v] is an isomorphism of Hg (T, S) onto the subgroup of H'(T,S) consisting
of classes which are realizable by cocycles defined on covers by invariant sets.

Corollary 5.19 (The Gysin sequence for a circle bundle). Suppose that p : T — Z
is a principal T-bundle over a locally compact paracompact space 7. Then there is an
exacl sequence

e H(2,2) (1, 2) 2 Y (2, 2) P 2y

where 6([}7]) denotes the class of the bundle in H*(Z, 7).

Proof. Theorem 4.1, Theorem 5.17, and the natural isomorphism 9 = gg of H"(-,S)
onto H"t'(-,Z) give us a diagram

P b

HL(T,S) —— p(z,8) 220

- — H"(Z,S)

HT+1(Z,S) S e

2] a 2]

T N r42 I
H(Z,2) — e 0 (2,2)
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in which the vertical arrows are isomorphisms, and the top row is exact. Thus all
we have to prove is that the diagram commutes. Since pi(p) = (p*u,1) and the
isomorphism of Theorem 5.17 takes [, A] to [v], the commutativity of the first square
follows from the naturality of 9. That of the third square follows from the realization
of the cup product in Cech cohomology in terms of cocycles (3.2). It therefore remains
to identify the homomorphism 6 with p;.

The map pr, often known as “integration over the fibres of p,” can be realized on
H™(T,8) = H™Y(T,Z) as follows. We fix an orientation for the bundle p : T — Z
— that is, a family of homomorphisms deg, : [p_l(z),T] — Z (see the discussion
preceding Lemma 5.15). If we realize a class in H"t(T,Z) via a cocyclev € Z"(T,S),
then pi([v]) is the class of the cocycle

m(z) = deg. (v |p-1(2))
in H'(Z,Z). On the other hand, if we extend v to an element (v, A) of Zg(T,S), then
a cocycle ( € Z"(Z,7) representing the image of b(v,\) € H"~'(Z, ./V) =HYZ,S)
in H"(Z,7) is obtained by writing v;(z) = exp <2pi’yJ(z)> for some 75 : Ny — R, and
taking

¢x(z) = (09)x(2) € Z = N.

If we examine our construction of A compatible with v (see the proof of Proposi-
tion 5.14), we find 4, has a natural extension 45 : Ny — R satisfying (9%)x = mx,
and hence we do have b(v, \) = pi(v), as required. O
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