
THE EQUIVARIANT BRAUER GROUPSOF PRINCIPAL BUNDLESJUDITH A. PACKER, IAIN RAEBURN, ANDDANA P. WILLIAMSAbstract. If G is a locally compact group acting on a locally compact spaceT , then the equivariant Brauer group BrG(T ) is the collection of Morita equiva-lence classes of dynamical systems (A;G; �) in which A is a continuous-trace C�-algebra with spectrum T and � is an action of G on A inducing the given actionon T = bA. We study the structure of the equivariant Brauer group BrG(T ) of aprincipal G=N -bundle by exhibiting a �ltration of BrG(T ) predicted by a spectralsequence of Grothendieck's in the case of �nite G. The �rst ingredient M (A;�) isthe Mackey obstruction to implementing �jN by a unitary group. The kernel of Mcan be identi�ed with an equivariant cohomology group H2G(T;S), and our maintheorem makes four nontrivial assertions about this group. Our constructions ex-tend to higher dimensional groups HnG(T;S), and we show that there is a long exactsequence involving these groups generalizing the usual Gysin sequence associatedto a principal circle bundle. Our �ltration results give a complete description ofBrG(T ) when G acts trivially or is a direct product. In addition, we consider therelationship between BrG(T ) and BrN (T ) in general; for example, we show that theBrauer group BrRk(T ) of a principal Tk-bundle over Z involves only BrTk(T ) andthe ordinary Brauer group Br(Z).The previous article [2] introduced and studied an equivariant Brauer group BrG(T )associated to an action of a locally compact group G on a locally compact space T .The objects in BrG(T ) are Morita equivalence classes of dynamical systems (A;G;�)in which A is a continuous-trace C�-algebra with spectrum T and � is an action ofG on A inducing the given action on T = bA. It was proved in [2, Theorem 3.6] thatBrG(T ) is a group with respect to the operation [A;�]�[B;�] := [A
C(T )B;�
C(T )�].For discrete G, Kumjian [9] had previously studied BrG(T ), and had shown it to beisomorphic to the equivariant sheaf cohomology group H2(T;G;S) of Grothendieck[7], where S is the sheaf of germs of continuous circle-valued functions.The main result of [2] is a structure theorem for BrG(T ), which was motivated byKumjian's theorem. Grothendieck had proved that there is a spectral sequence withLatest revision: 15 March 1995.1991 Mathematics Subject Classi�cation. Primary 46L05, 46L35.Key words and phrases. Brauer group, continuous trace, Dixmier-Douady class.The third author was partially supported by the National Science Foundation.This research was supported by a collaborative grant from the Australian Department of Industry,Science and Technology. 1



2 PACKER, RAEBURN, AND WILLIAMSEp;q2 = Hp(G;Hq(T;S)) (the group cohomology of G with coe�cients in the sheafcohomology of T ) converging to Hp+q(T;G;S). Although for technical reasons we donot expect to have a similar spectral sequence for locally compact G, Theorem 5.1of [2] provides all the information about BrG(T ) one could hope to get from such aspectral sequence converging to H2(T;G;S) �= BrG(T ).There is another spectral sequence F in [7] which converges to Hp+q(T;G;S). Atleast for �nite G, Grothendieck identi�es F p;q2 in terms of the cohomology of a sheafHq(Gt;T) over T=G, in which the stalk over G�t is the group cohomologyHq(Gt;T) ofthe stabiliser Gt of t. This construction is not obviously available to us, because boththe orbit space T=G and the stabiliser map t 7! Gt are notoriously badly-behaved forgeneral locally compact transformation groups (T;G). Nevertheless, these problemsdo not arise when G is abelian and T is a principal bundle for some quotient G=N ofG: the stabiliser of every point is N , and the orbit space T=G is locally compact andHausdor�. Our present main theorem gives a �ltration for BrG(T ) in this case, interms of cohomology groups of the form Hp(T=G;Hq(N;T)), which gives the sort ofinformation one would expect from a full spectral sequence converging to H2(T;G;S).Quite a bit is already known about dynamical systems (A;G;�) in which bA! bA=Gis a principal bundle: they have various topological and algebraic invariants whichinteract in fascinating and nontrivial ways. One key topological invariant is thegeneralized Dixmier-Douady class studied in [24], which takes values in a cocycle-based cohomology group H2G(T;S). (For lack of a better name, this was called anequivariant cohomology group, though it can be strictly smaller than Grothendieck'swhen they both make sense; crudely speaking, it does not admit classes comingfrom the cohomology of the �bre.) We have observed before that some of the cocyclecalculations in [25, 24] help establish an exact sequence relating this group to ordinarysheaf cohomology, which reduces in the case of a circle bundle and G = R to the usualGysin sequence of the bundle. Similar calculations are involved in the proof of ourmain theorem, so we have included a quick discussion of these groups, and go on toderive the general Gysin sequence.We begin with a detailed statement of our main theorem, which describes theequivariant Brauer group BrG(T ) of a principal G=N -bundle. The �rst ingredientM(A;�) is the Mackey obstruction to implementing �jN by a unitary group. TheDixmier-Douady invariant of [24] identi�es the kernel of M with the equivariantcohomology group H2G(T;S), and the theorem makes four nontrivial assertions aboutthis group. Two of these have e�ectively been dealt with in [23] and [24]. For theremaining two, the arguments work in any dimension. Hence we shall digress in x2to introduce the higher-dimensional equivariant analogues of H2G, and then prove themain theorem in x3, giving the new arguments in full generality. In x4, we completethe proof of the general Gysin sequence.Our last section contains some examples and applications. Our theorem gives acomplete description of BrG(T ) when G acts trivially, and more generally when G is adirect product. It is then tempting to relate BrG(T ) to BrN(T ), where the group acts



THE EQUIVARIANT BRAUER GROUP 3trivially, and BrG=N(T ), which we know from [2] is isomorphic to Br(Z). Our resultis most striking for G = Rk and N = Zk, when the �ltration of the Brauer groupBrRk(T ) of a principal Tk-bundle over Z involves only BrZk(T ) and the ordinaryBrauer group Br(Z) �= H2(Z;S). We close by showing that in the case G = R,N = Z, our general Gysin sequence reduces to the usual one. This is surprisinglytricky, and amounts to proving that the equivariant groups HrR(T;S) of a circle bundleare naturally isomorphic to the usual sheaf cohomology groups Hr(T;S).Notation. We shall use the notation of [2] without comment, and we shall try to beconsistent with it. In particular, we shall try to distinguish between systems (A;�)in the set BrG(T ) and their classes [A;�] in BrG(T ). We shall sometimes use thenotation H2(G;M) or Z2(G;M) to stress that we are considering Moore cohomologygroups as topological groups; Z2 is actually di�erent as a set from Z2 (cocycles equalalmost everywhere have been identi�ed), but H2(G;M) has H2(G;M) as underlyingset [14, Theorem 5]. Many of our results require that the natural map \G ! G=Nhas local sections," which is equivalent to asking that G ! G=N is a locally trivialprincipal N -bundle. This holds in most cases of interest, and is automatic if G isdiscrete, or if N is a Lie group (cf., [24, x1]). For example, if G is an \elementarygroup" | that is, G has the form Rk�Tm�Zn�F for some �nite group F | thenG ! G=N and bG ! bN have local sections for any closed subgroup N . Thereforeour main Theorem 1.2 holds for any elementary G. If G is a locally compact abeliangroup, we denote by G the sheaf of germs of continuous G-valued functions; theunderlying space should be clear by context. This convention also applies to the dualgroup bG yielding a sheaf bG.Acknowledgments. This paper contains many of the results in the unpublishedmanuscript [26], which is available as a technical report from either author. Thethird author was partially supported by the NSF, and the research was supportedby a collaborative grant from the Australian Department of Industry, Science andTechnology. 1. The Main TheoremSuppose G is a second countable compactly generated abelian group, N is a closedsubgroup of G, and p : T ! Z is a (locally trivial) principalG=N -bundle over a secondcountable locally compact space Z. Let H2(N;T) denote the Moore cohomologygroup H2(N;T) with the topology inherited from the Polish topology on Z2(N;T) asin [14]. For (A;�) 2 BrG(T ) we de�ne �(A;�) : T ! H2(N;T) by taking �(A;�)(x)to be the Mackey obstruction to implementing �jN by a unitary representation ina representation �x of A corresponding to x 2 T = bA. Notice that �(A;�) is acontinuous function of T into H2(N;T) by [17, Lemma 3.3]. If �x : A ! B(Hx)is a representative for x 2 T , then �x � ��1s is a representative for s � x 2 T , and



4 PACKER, RAEBURN, AND WILLIAMSbecause G is abelian, any multiplier representation U : N ! U(Hx) which implements�jN in the representation �x also implements �jN in �x � ��1s . Because the Mackeyobstruction (i.e., the class in H2(N;T)) is independent of the choice of representative�x and multiplier representation U , �(A;�) gives a well-de�ned continuous functionof Z = T=G into H2(N;T), and it similarly follows from [2, 3.1] that this functiondepends only on the class of (A;�) in BrG(T ). We write M (for Mackey) for theresulting homomorphism M : BrG(T )! C�Z;H2(N;T)�:A class [A;�] is in the kernel of M precisely when �jN is pointwise unitary, andhence locally unitary by [27, Theorem 2.1]. Thus such a system (A;�) is N -principal[24, De�nition 4.4], and (Ao� G)^ is a principal bN -bundle over Z with respect to thedual action of bN = G=N? and the quasi-orbit map q : (Ao� G)^ ! bA=G = Z [21,Theorem 2.2]. Since Morita equivalent systems have Morita equivalent dual systems1,the class [q] depends only on [A;�], and gives a well-de�ned map S (for Spectrum)S : kerM ! H1(Z; bN ):We defer the proof of the following lemma till the end of the section.Lemma 1.1. For any transformation group (G;T ) as above, S is a homomorphismof kerM into H1(Z; bN ).Next we de�ne a map P (for Pull-back)P : H2(Z;S)! BrG(T )by P �[A]�:= [p�A; p�id], where we use the Dixmier-Douady Theorem to identifyH2(Z;S) with the Brauer group Br(Z). Thenp�Aop�id G = �C0(T )
C(Z) A�o�
C(Z)id G �= �C0(T )o� G�
C(Z) A:Since the spectrum of C0(T )o� G is known to be bN -homeomorphic to T=G � bN =Z � bN [31], and bA = Z, this implies that (p�Aop�id G)^ �= Z � bN , and we haveS � P = 0. That the converse also holds is part of our main Theorem.Theorem 1.2. Let G be a second countable compactly generated locally compactabelian group such that G ! G=N and bG ! bN = bG=N? have local sections, andlet p : T ! Z be a locally trivial principal G=N-bundle over a Polish space Z. LetM : BrG(T )! C(Z;H2(N;T)), S : kerM ! H1(Z; bN ) and P : H2(Z;S)! BrG(T )1If (X; u) is an (A;�) { (B; �)-imprimitivity bimodule, then bu
(z)(s) = 
(s)z(s) de�nes an actionof bG on Cc(G;X) which extends to an action of bG on the bimodule X ou G implementing theequivalence of A o� G and B o� G.



THE EQUIVARIANT BRAUER GROUP 5be the homomorphisms discussed above. Then imP = kerS, and there are homomor-phisms d02 : H1(Z; bN )! H3(Z;S)d002 : C(Z; bN )! H2(Z;S)such that imS = ker d02 and kerP = imd002.Even though this theorem has substantially stronger hypotheses than the structuretheorem of [2], and in some situations gives substantially more information, it is notas complete as one would like. The spectral sequence for �nite G on which it ismodeled suggests that there should also be homomorphismsd2 : C(Z;H2(N;T))! H2(Z; bN ); andd3 : kerd2 ! H3(Z;S)= imd02such that imM = ker d3. We have so far been unable to �nd such homomorphisms.On the other hand, the homomorphisms d02 and d002 are both easy to de�ne. SinceG! G=N has local sections, there is a short exact sequence of sheaves0 w N wG w G=N w 0;and an associated long exact sequence� � � wHr(Z;N ) w Hr(Z;G) wHr(Z;G=N ) w@G Hr+1(Z;N ) w � � �in sheaf cohomology. Then both d02 and d002 are given by taking cup product with theclass @G([p]) in H2(Z;N ) (recall that C(Z; bN) = H0(Z; bN )).To prove this theorem, we shall want to convert everything to statements in sheafcohomology. We showed in [24] that N -principal systems (A;�) 2 BrG(T ) are char-acterized by a Dixmier-Douady class �(A;�) which lies in an \equivariant sheaf coho-mology group" H2G(T;S) (whose precise de�nition is in the next section). We beginby checking that the map (A;�) 7! �(A;�) induces an isomorphism of kerM ontoH2G(T;S).Lemma 1.3. Suppose that G is a locally compact abelian group, and N is a closedsubgroup such that bG ! bG=N? = bN has local sections. If p : T ! Z is a locallytrivial principal G=N-bundle over a paracompact space Z, then the Dixmier-Douadyinvariant of [24, x6] induces an isomorphism of kerM onto H2G(T;S).Proof. Proposition 4.9 of [24] implies that equivariant line bundles over (T;G) arelocally trivial, so Theorem 6.3 of [24] applies. Corollary 4.5 of [24] identi�es thesystems considered there as the N -principal systems, i.e. as those in kerM , andhence we can deduce from [24, Theorem 6.3] that � induces a bijection of kerM ontoH2G(T;S). To see that �(A
C(T ) B;� 
C(T ) �) = �(A;�)�(B;�), one has to go intothe construction of [24, Lemmas 6.1 and 6.2]. But since we know the classes are



6 PACKER, RAEBURN, AND WILLIAMSindependent of the choices made there [24, Lemma 6.2(4)], we can choose local equiv-alences (Xi; ui) and (Yi; vi) of (A;�) and (B;�) with (C0(T ); � ) relative to the sameG-invariant cover fFig of T , and then �Xi
C(Fi)Yi; ui
C(Fi) vi� are local equivalencesof (A
C(T )B;�
C(T )�) with (C0(T ); � ) (cf. [2, Lemma 3.2]). Now one can computethat the resulting cocycle representing �(A
C(T )B;�
C(T )�) is the product of thoserepresenting �(A;�) and �(B;�). (One just has to keep track of the actions in theargument of [2, Proposition 2.2].)Proof of Lemma 1.1. By [24, Lemma 7.2], the map S is the composition of the ho-momorphisms � : kerM ! H2G(G;S) from Lemma 1.3 and the homomorphismb : H2G(T;S)! H1(Z; bN ) of [24, Lemma 7.1].2. The Equivariant Cohomology GroupsThroughout this section, G will be a locally compact group and T a locally compactG-space with orbit map p : T ! T=G. For the moment, �x an open cover A =fNi gi2A of T=G and let Mi = p�1(Ni) for each i 2 A. (Equivalently, fMi g is anarbitrary cover of T by G-invariant open sets.)For each r � 1, Cr(A;S) will denote the group consisting of pairs (�; �) in which� is an r-cochain in Cr�fMi gi2A;S� and � 2 Cr�1�fMi �G gi2A;S� satis�es�J (x; st) = �J(x; s)�J (s�1 � x; t)(2.1)for each multi-index J = (j0; : : : ; jr�1), x 2 MJ , and s; t 2 G. It will be convenientto let C0G(A;S) be the collection of pairs (�; 1) where � is a standard 0-cochain and1 denotes the function which is identically 1 on T �G.Our coboundary homomorphism �r : CrG(A;S)! Cr+1G (A;S) will be given by�r(�; �) = �@r �; �(�; �)�;where @r is the usual �Cech coboundary operator, and � is de�ned in terms of @r�1 :Cr�1 ! Cr by �(�; �)K(x; s) = �K(x)�1�K(s�1 � x)�@��(�; s)�K(x)��1(2.2)for each (r + 1)-multi-index K. Since it will be crucial in our calculations, we notethat if L is the (r + 2)-multi-index (l0; : : : ; lr+1), and Li is the (r + 1)-multi-indexobtained by deleting li, then(@ �)L(x) = �Lr+1(x)�Lr(x)�1 � � � = r+1Yi=0 �Lr+1�i(x)(�1)i:(2.3)(The formula in (2.3) di�ers slightly from that in [30, x5.33] and [25, 24] | the twode�nitions are intertwined by sending (l0; l1; : : : ; lr; lr+1) to (lr+1; lr; : : : ; l1; l0). Theabove de�nition avoids some powers of �1 in our formulas.) Of course, we know that



THE EQUIVARIANT BRAUER GROUP 7@2 = 0, and a quick calculation using (2.2) and (2.3) shows that ��@ �; �(�; �)�= 1.Thus �2 = 0, and we can de�ne the groups HrG(A;S) in the standard way:HrG(A;S) = ker�rIm�r�1 := ZrG(A;S)BrG(A;S)for all r � 1. (We bothered to de�ne C0G(A;S) so that Im�0 is de�ned in the caser = 1.)As usual, the crunch comes when we consider re�nements of A. Let B = fN 0� g�2Bbe a re�nement of A, with re�ning map � : B ! A such that N 0� � N�(�). Then weobtain a map � : ZrG(A;S)! ZrG(B;S) by setting �(�; �) = ��(�); �(�)� where�(�)K(x) = ��(K)(x) and �(�)J (x; s) = ��(J)(x; s):(If K = (k0; : : : ; kr), then �(K) = ��(k0); : : : ; �(kr)�.) Note that ��BrG(A;S)��BrG(B;S). We claim that the induced map �� on HrG is independent of the choiceof re�ning map �.Let � be another re�ning map, and put (~�; ~�) = ��(�); �(�)��� (�); � (�)��1. Follow-ing [30, x5.33], we de�ne hr : Cr(A;S)! Cr�1(B;S) byhr(�)J(x) = r�1Yi=0 � eJp�1�i(x)(�1)i;where J = (j0; : : : ; jr�1) is a r-multi-index and eJi is the (r + 1)-multi-index��(j0); : : : ; �(ji); � (ji); : : : ; � (jr�1)�. The crucial observation is that h is a homotopyoperator: for any � 2 Cr(A;S), we havehr+1�@(�)�@�hr(�)�= �(�)� (�)�1(2.4)(cf., Equation (10) of [30, x5.33]). Notice that if � is in Zr(A;S), so that @ � � 1,then @�hr(�)�= �(�)� (�)�1. This suggests that we de�ne (�; �) 2 Cr�1G (B;S) by(�; �) = �hr(�); hr�1(�)�1�:Then �(�; �) = �@ �; �(�; �)�= �~�; �(�; �)�. Moreover�(�; �)J(x; s) = �J (x)�1�J(��1 � x)�@��(�; s)�J (x)��1= hr(��1s � �)J (x)�@�hr�1��(�; s)��J(x)��1= hr(��1s � �)J (x)�hr�@��(�; s)��J (x)�1�(�)J (x)� (�)J(x)�1�= �(�)J (x)� (�)J(x)�1;where the third equation holds because of (2.4) and the last equation because hr isa homomorphism and (�; �) is a cocycle. This shows that (~�; ~�) is in BrB(B;S), andhence that �� = � � as claimed.



8 PACKER, RAEBURN, AND WILLIAMSWe may now regard fHrG(A;S) gA, where A runs over all open covers of T=G, as asystem of abelian groups directed by re�nement. We de�ne HrG(T;S) to be the directlimit.The group H1G(T;S) is an interesting special case: it classi�es certain equivariantline bundles over T . To explain, we need to recall some ideas from [24, x4]. Anequivariant line bundle over a transformation group (T;G) is a Hermitian line bundle� : L! T with a unitary action u of G satisfying ��us(`)�= s ��(`). The equivariantline bundle L is locally trivial over T=G if each point of T has a G-invariant neigh-borhood F such that L is trivial over F as a line bundle. An equivariant line bundlecan fail to be locally trival over T=G: see Example 4.12 in [24]. (Note that the trivi-alization is not required to be equivariant. On the other hand, when we say that twoequivariant line bundles over (T;G) are isomorphic we mean there is a G-equivariantisomorphism between them.)Proposition 2.1. The set H1G(T;S) is in one-to-one correspondence with the iso-morphism classes of equivariant line bundles over (T;G) which are locally trivial overT=G.Proof. It is well-known that the isomorphism classes of Hermitian line bundles overT are in one-to-one correspondence with the elements of the �Cech group H1(T;S):the extra structure is exactly what is needed to keep track of the group action. If� : L! T a locally trivial equivariant line bundle over (T;G), then there are an opencover fNi g of T=G, Hermitian line bundle isomorphisms�i : ��1�p�1(Ni)�! p�1(Ni)� C ;and continuous functions �ij : p�1(Nij)! T such that��1i (x; !) = ��1j �x; !�ij(x)�(2.5)for all x 2 p�1(Nij) and ! 2 C . If �s denotes the unitary action on the trivial bundlegiven by �s(x; !) = (s �x; !), then �s ��i �u�1s ���1i is an isomorphism of p�1(Ni)�C ,and so there are continuous functions �i : p�1(Ni)�G! T satisfyingu�1s ���1i (x; !)�= ��1i �s�1 � x; !�i(x; s)�:(2.6)A straightforward calculation using (2.5) and (2.6) shows that (�; �) 2 Z1G(fNi g;S).Routine arguments show that the class of (�; �) in H1G(T;S) depends only on theG-isomorphism class [L] of L.On the other hand, if (�; �) 2 Z1G(A;S) for some open cover A = fNi g of T=G, wecan form a Hermitian line bundleai p�1(Ni)� C =�where � identi�es (i; x; !) with �j; x; !�ij(x)�, and the formulaus�[i; s; !]�= �i; s � x; !�i(x; s�1)�



THE EQUIVARIANT BRAUER GROUP 9gives a well-de�ned unitary action of G on L. Another routine argument shows thatcohomologous cocycles give G-isomorphic bundles, and the result follows.Remark 2.2. If (T;G) is such that equivariant line bundles are automatically locallytrivial over T=G (cf., De�nition 4.5 in [24]), then H1G(T;S) parameterizes the G-isomorphism classes of all equivariant line bundles over (T;G). We showed in [24,Proposition 4.8 and Lemma 4.9] that this is the case if G is compact and abelian, orif p : T ! T=G is a principal G=N -bundle for some quotient G=N of G.3. The Proof of Theorem 1.2Suppose �rst that [A;�] 2 BrG(T ) belongs to kerM , so that (A;�) is N -principal,and that [A;�] 2 kerS, so that the bN -bundle q : (Ao� G)^ ! Z is trivial. Theorem7.2 of [23] implies that � is given on N by a Green twisting map, and the stabilisationtrick (as in, for example, [8] or [4]) that (A;�) is Morita equivalent to a system(B; Inf �) in
ated from some (B;�) 2 BrG=N(T ). Because the pull-back constructiongives an isomorphism of Br(T ) onto BrG=N(T ) [2, x6.2], (B;�) � (p�C; p�id) for someC 2 Br(T ), and we then have P ([C]) = [A;�]. Since we have already seen thatimP � kerS, this proves that imP = kerS.That imS = kerd02 is precisely the content of [25, Theorem 3.1]: for [q] 2 H1(Z; bN ),the cup product [q][ @G([p]) 2 H3(Z;S) coincides with the pairing h[p]; [q]iG used in[25] (cf. [25, De�nition 1.1]). (If we use Lemma 1.3 to identify kerM with H2G(T;S),then S is carried into the homomorphism b : H2G(T;S) ! H1(Z; bN ); in the nextsection we shall give a direct proof of the statement imb = ker � [ @G([p])� based onthe proof of Proposition 3.3 in [25].)It remains to show that kerP = imd002. In view of Lemma 1.3, and the usualidenti�cation of Br(Z) with H2(Z;S), it is enough to prove thatC(Z; bN) = H0(Z; bN ) w[@G([p])H2(Z;S) wp� H3G(T;S)is exact, where p� is de�ned on cocycles � 2 Z2(Z;S) by p�(�) := (� � p; 1). We shallprove that Hr�1(Z; bN ) w[@G([p])Hr+1(Z;S) wp� Hr+1G (T;S)(3.1)is exact for all r � 1. Recall that if sij : Nij ! G are continuous functions suchthat sijN are transition functions for p : T ! Z de�ned relative to a cover fNig,then @G([p]) is the class of the cocycle fnijkg de�ned by siknijk = sijsjk. If f
g 2Zr�1(Z; bN ) is de�ned relative to the same cover, then [
][ @G�[p]� is the class of thecocycle � 2 Zr+1(fNig;S) de�ned by�L(z) = �l0���lr�1(z)�nlr�1lrlr+1(z)� for z 2 NL and jLj = r + 2.(3.2)As in [25, Lemma 1.2], one can show that [
] [ @G�[p]�= @ bG�[
]�[[p], so we couldequally well de�ne a representative for [
] [ @G�[p]� by pushing f 
J g 2 Zr�1(Z; bN )forward to Zr(Z;[G=N ) and pairing with f sijN g.



10 PACKER, RAEBURN, AND WILLIAMSTo prove the exactness of (3.1), we �rst have to show that p� � � [ @G([p])� = 0.Since the cup product is natural, we havep��[
] [ @G�[p]��= p��[
]�[ p��@G�[p]��= p��[
]�[ @G�p�[p]�:Now the bundle p�(p) : p�T ! T is trivial (t 7! (t; t) is a global section), and hence if� represents [
][@G�[p]�, then [p��] = 0 in Hp(T;S). But we need to show p�� = @ �for some cochain � 2 Cr�1(T;S) which is de�ned on a G-invariant cover fp�1(Ni)g,and which extends to an element (�; �) of Cr�1G (T;S) satisfying �(�; �) = (p��; 1).Thus we shall need to look more closely at the above reasoning.For our present purposes, we use a representative for @ bG�[
]�[[p] rather than [
][@G�[p]�. So we assume 
I : NI ! bN has the form 
I = �I jN for some �I : NI ! bG,let �J = (@ �)J , and observe that f�Jg is a (r � 1)-cocycle with values in N? whichrepresents @ bG�[
]�. Thus, if ftijg are transition functions for p : T ! Z, our cocycle� is given by �K(z) = �k0 : : :kr�1 (z)�tkr�1kr (z)�:If hi : p�1(Ni) ! Ni � G=N are local trivializations such that (z; sN) = hi �h�1j �z; stij(z)�, then a cochain trivializing p�(ftijg) = ftij � pg is given by the corre-sponding G-equivariant projections wi : p�1(Ni)! G=N : sinceh�1j �p(x); wj(x)�= x = h�1i �p(x); wi(x)�= h�1j �p(x); wi(x)tij�p(x)��;we have tij � p = w�1i wj. It is now routine to check that�J(x) = �j0���jr�1�p(x)��wjr�1(x)��1de�nes a cochain in Cr�1(fp�1(Ni)g;S) with @ � = p�(�). Further, if we de�ne�I : p�1(NI)�G! T by �I(x; s) = �I�p(x)�(s)�1;then (�; �) 2 Cr�1G (fNig;S), and another calculation shows �(�; �) = (p��; 1). Thusp� � �[ @G�[p]���[
]�= [p��; 1] vanishes in HrG(T;S), and we have shown that p� ��[ @G�[p]��= 0.Now suppose that [�] 2 Hr(Z;S) and p��[�]�= 0 in HrG(T;S): we have to �nd
 2 Zr�2(Z; bN ) such that [
][@G�[p]�= [�]. Saying p��[�]�= 0 means (after possiblyre�ning the cover fNig) that there are �J : p�1(NJ )! T and �I : p�1(NI)�G! Tsuch that �I(x; st) = �I(x; s)�I(s�1 � x; t)(3.3) �K�p(x)�= (@ �)K(x)(3.4) 1 = �J (x)�J(s�1 � x)�1�@ �(� ; s)�J(x)�1:(3.5)We de�ne 
I : NI ! bN by 
I(z)(n) = �I(x; n)�1 for any x 2 p�1(z); (3.3) impliesthat �I is well-de�ned with values in bN , and (3.5) that f 
I g is a cocycle. We have



THE EQUIVARIANT BRAUER GROUP 11to show there are maps �J : NJ ! T such that
k0���kr�2(�)�nkr�2kr�1kr (�)� � (@ �)K = �K :We use the local trivializations hk : p�1(Nk)! Nk�G=N to de�ne sections ck : Nk !T by ck(z) = h�1k (z;N), so that ci(z) = sij(z)cj(z). By (3.4) applied to x = ckr (z),�K(z) = (@ �)K�ckr(z)�(3.6)For each multi-indexJ = (j0; : : : ; jr�1), de�ne �J := �J�cjr�1(z)�. Then by expandingthe right-hand side of (3.6) using (2.3), we compute that�K(z) = �k0���kr�1�ckr(z)��k0���kr�1�ckr�1(z)��1(@ �)K(z);= �k0���kr�1�ckr(z)��k0���kr�1�skr�1kr (z)ckr(z)��1(@ �)K(z);which by (3.5)= �@ �(�; s)�k0���kr�1�ckr (z)�js=skr�1kr (z)�1 � (@ �)K(z):Again expanding the right-hand side using (2.3), we obtain�K(z) = ��k0���kr�2�ckr (z); skr�1kr (z)�1��k0���kr�3kr�1�ckr (z); skr�1kr(z)�1��1 � � �� �k1���kr�1�ckr(z); skr�1kr (z)�1�(�1)r�(@ �)K(z):Thus if J = (j0; : : : ; jr�1) and  J(z) := �j0���jr�2(cjr�1(z); sjr�2jr�1(z)�1)�1, then= �k0���kr�2�ckr (z); skr�1kr(z)�1��k0���kr�2�ckr�1(z); skr�2kr�1(z)�1� �� �k0���kr�2�ckr(z); skr�2kr (z)�1��1(@  )K(z)(@ �)K(z)= �k0���kr�2�ckr (z); skr�1kr(z)�1skr�2kr�1(z)�1� �� �k0���kr�2�ckr(z); skr�2kr (z)�1��1 @( �)K(z)= �k0���kr�2�ckr (z); �skr�2kr (z)nkr�2kr�1kr (z)��1� �� �k0���kr�2�ckr(z); skr�2kr (z)�1��1 @( �)K(z)= �k0���kr�2�ckr (z); nkr�2kr�1kr(z)��1 @( �)K(z);which, by our de�nition of 
I above, is= 
k0���kr�2(z)�nkr�2kr�1kr(z)� @( �)K(z):It follows that �J =  J�J have the required property.This completes the proof of exactness of (3.1), and hence also of Theorem 1.2.



12 PACKER, RAEBURN, AND WILLIAMS4. The General Gysin SequenceTheorem 4.1. Let G be a locally compact abelian group, and N a closed subgroupsuch that G ! G=N and bG ! bG=N? have local sections. Then for any principalG=N bundle p : T ! Z, there is an exact sequence� � � wHr(Z;S) wp�G HrG(T;S) wb Hr�1(Z; bN ) w[@G([p])Hr+1(Z;S) wp�G � � �The sequence starts with H1(Z;S), and then we claim p�G is one-to-one.We begin by de�ning the homomorphisms in the sequence. For � 2 Zr(fNig;S);the class p�G�[�]� is represented by the pair (� � p; 1) = (p�(�); 1) in ZrG(fNig;S);we have added the subscript G to stress that this is not just the usual pull-backhomomorphism p� : Hr(Z) ! Hr(T ). If (�; �) 2 ZrG(fNig;S), then the cocycleidentity (2.1) for �J : p�1(NJ)�G ! T implies that, for n 2 N , �J (�; n) is constanton G-orbits and multiplicative in n; b�[�; �]� is by de�nition the class of the cocycle
J : NJ ! bN such that
J�p(x)�(n) = �J (x; n) for n 2 N , x 2 p�1(NJ ).The homomorphism [ @G�[p]� is the operation of cup product with the �xed class@G�[p]�, and was described in the previous section, where we also showed exactnessat Hr(Z;S) provided r � 2 (see the discussion following (3.1)).Since it is clear that b � p�G = 0, to show exactness at HrG(T;S) for r � 1, we needto see that if (�; �) 2 ZrG(T;S) and b�[�; �]�= 0 in Hr�1(Z; bN), then there exists� 2 Zr(Z;S) such that (�; �) is equivalent to (p�(�); 1) in ZrG. Saying b�[(�; �)]�= 0means that we can re�ne the cover and �nd �I : NI ! bN such that (@ �)J = 
J in allJ with jJ j = r; by the argument of [3, 10.7.11], we may also suppose there are maps~�I : NI ! bG such that �I = ~�I jN . (In case r = 1, b�[�; �]�= 0 means 
J � 1 and wecan take ~�I � 1.) For each J , we de�ne �J : p�1(NJ )�G=N ! T by�J (x; sN) = (@ ~�)J�p(x)�(s)�1�J (x; s);the right-hand side is well-de�ned on p�1(NJ) �G=N because(@ ~�)J�p(x)�= 
J�p(x)�= �J (x; �) on N:Note that since (@ ~�)J takes values in bG and �J (x; s) is a cocycle in s, �J is also acocycle: i.e., �J (x; stN) = �J (x; sN)�J(s�1 � x; tN):As usual, we let wi : p�1(Ni)! G=N be the G-equivariant projections on the �bres,and de�ne �J : p�1(NJ)! T by �J(x) = �J�x;wjr�1(x)� for jJ j = r;�I : p�1(NI)�G! T by �I(x; s) = ~�I�p(x)�(s)�1 for jIj = r � 1:



THE EQUIVARIANT BRAUER GROUP 13Since �I is a homomorphism in the second variable, the pair (�; �) is a cochainbelonging to Cr�1G �fNig;S�. We claim there is a cocycle � 2 Zr�fNig;S� such that(�; �) = 4(�; �)(� � p; 1):We �rst prove that ��1(@ �) is constant on G-orbits, and hence has the form � � p forsome cocycle � 2 Zr�fNig;S�. Suppose jKj = r + 1 and x 2 p�1(NK). Then(@ �)K(x) = �k0���kr�1�x;wkr�1(x)��k0���kr�1�x;wkr(x)��1�@ �(�; sN)�K(x)jsN=wkr (x)Now since (�; �) 2 ZrG,�@ �(�; sN)�K(x) = @(@ ~�)K�p(x)�(s)�1�@ �(�; s)�K(x)= 1 � �K(x)�K(s�1 � x)�1:For any cocycle �, �(x; t)�(x; g)�1 = �(t�1 � x; t�1g)�1, so(@ �)K(x) = �k0���kr�1�wkr�1(x)�1 � x;wkr�1(x)�1wkr(x)�1��K(x)�K(wkr (x)�1 � x)= �K(x)�K�p(x)��1;where �K : NK ! T is de�ned by�K�p(x)�= �K(wkr (x)�1 � x)�k0���kr�1�wkr�1(x)�1 � x;wkr�1(x)�1wkr (x)�:Note that since each wi(x) is G-equivariant, the right-hand side of this last equationis constant on G-orbits, so � is well de�ned on NK; it is a cocycle because � and @ �are.We have chosen � so that � = (@ �)(� � p), and to verify (�; �) =4(�; �)(� � p; 1),we also have to check the second coordinates agree:�J (x)�J(s�1x)�1�@ �(�; s)�J(x)�1= �J�x;wjr�1(x)��J�s�1 � x; s�1 � wjr�1(x)��1(@ ~�)J�p(x)�(s)= �J (x; sN)(@ ~�)J�p(x)�(s) = �J (x; s):This justi�es our claim, and we have proved exactness at HrG.Next we consider exactness at Hr�1(Z; bN ) for r � 1. We present the main con-struction in a separate lemma, which will apply also to certain nonabelian groups G.A special case was also a key ingredient in [25, Proposition 3.3].Lemma 4.2. Suppose N is a closed central subgroup of a locally compact (possiblynonabelian) group G, p : T ! Z is a principal G=N-bundle, and fNig is an open coverof Z for which there are continuous G=N-equivariant maps wi : p�1(Ni) ! G=N ,and sij : Nij ! G satisfying wi(x)sij�p(x)�N = wj(x). De�ne nijk : Nijk ! Nby sijsjk = siknijk. Suppose that for each multi-index J with jJ j = r, there is acontinuous function �J : NJ �G! T satisfying(a) �J (x; st) = �J (x; s)�J(s�1 � x; t)(b) �@ �(�; n)�K = 1 for n 2 N , jKj = r + 1.



14 PACKER, RAEBURN, AND WILLIAMSWe de�ne �K : NK � G=N ! T by �K(�; s) = �@ �(�; s)�K , and 
J : NJ ! bN by
J�p(x)�(n) = �J (x; n).1. If � 2 Cr(fNjg;S) satis�es(@ �)L(z) = 
l0���lr�1(z)�nlr�1lrlr+1(z)�;(4.1) and we de�ne �K : p�1(NJ )! T by�K(x) = �K�x;wkr(x)��k0���kr�1�wkr�1(x)�1 � x; skr�1kr�p(x)���1�K�p(x)�;then � is a cocycle such that (�; �) 2 ZrG(fNig;S).2. Conversely, if f�Kg is a cocycle such that (�; �) 2 ZrG, then�K�p(x)�=�K�x;wkr(x)��1�k0���kr�1�wkr�1(x)�1 � x; skr�1kr�p(x)���K(x)(4.2) de�nes a cochain � such that (4.1) holds.Proof. We begin by observing that, because �J (�; sn) = �J (x; s)�J (�; n), and�@ �(�; n)�K = 1, �K is indeed well-de�ned on NK � G=N rather than NK � G;further, each �K satis�es the cocycle identity�K(x; stN) = �K(x; sN)�K(s�1 � x; tN):(4.3)Next, we set �K(x) = �K�x;wkr(x)�, and compute @ � using (4.3)(@ �)L(x) = �l0���lr�x;wlr(x)��l0���lr�x;wlr+1(x)��1 @��(�; s)�L(x)js=wlr+1 (x)= �l0���lr(wlr(x)�1 � x;wlr(x)�1wlr+1(x))�1(4.4)We now de�ne �K�p(x)�= �k0 ���kr�1�wkr�1(x)�1 � x; skr�1kr (x)�and compute(@ �)L�p(x)�= �l0���lr�1�wlr�1(x)�1 � x; slr�1lr(x)��l0 ���lr�1�wlr�1(x)�1 � x; slr�1lr+1(x)��1� �l0���lr�1�wlr(x)�1 � x; slrlr+1(x)���@ �(�; s)�l0���lr(wlr(x)�1 � x)js=slrlr+1 (x)�= �l0���lr�1�wlr�1(x)�1 � x; slr�1lr+1(x)��1�l0���lr�1�wlr�1(x)�1 � x; slr�1lr(x)slrlr+1(x)��l0���lr�wlr(x); slrlr+1(x)��1= �l0���lr�1�wlr�1(x)�1 � x; nlr�1lrlr+1(x)�(@ �)L(x):(4.5)It follows immediately that (@ �)L = 1. Also, using (4.3),�K(x)�K(t�1 � x)�1 = �K�x;wkr(x)��K�t�1 � x; t�1 � wkr (x)��1= �K(x; t) = �@ �(�; t)�K(x);so that (�; �) 2 ZrG(fNig;S). This gives (1).



THE EQUIVARIANT BRAUER GROUP 15To establish (2), we notice that, since � is a cocycle, the calculations (4.4) and (4.5)immediately give (4.1), and the problem is to show that the right-hand side of (4.2)is constant on orbits. But�K�t�1 � x;wkr(t�1 � x)��1�K(t�1 � x)= �K�t�1 � x; t�1 � wkr (x)��1�@ �(�; t)�K(x)�1�K(x)= �K�t�1 � x; t�1 � wkr (x)��1�K(x; t)�1�K(x)= �K�x;wkr(x)��1�K(x);by (4.3). Multiplying this by the expression �K�p(x)�, which is obviously constanton orbits, gives (2), and the lemma is proved.Since the right-hand side of (4.1) represents [
] [ @G�[p]�, part (2) of the Lemmaimmediately implies that �[ @G�[p]���b = 0; that is, im(b) � ker( [ @G). To see thereverse containment, we need to verify that if 
 2 Zr�1(Z; bN) satis�es [
][@G�[p]�= 0,then there exists (�; �) 2 ZrG(T;S) such that 
 represents b(�; �). Because the mapbG! bG=N? = bN has local sections, we can by re�ning the cover fNig suppose thereare functions ~
J : NJ ! bG such that 
J = ~
J jN , and de�ne �J : p�1(NJ)�G! Tby�J (x; s) = ~
J�p(x)�(s):(4.6)Then �J satis�es condition (a) in the Lemma, because each ~
J(z) is a homomor-phism, and condition (b) because f
Jg is a cocycle. Since the cocycle on the rightof (4.1) represents [
] [ @G�[p]�, the hypothesis on 
 means we can �nd a cochain� satisfying (4.1). Thus the Lemma gives us a cocycle � 2 Zr(fNig;S) such that(�; �) 2 ZrG(fNig;S), and (4.6) then says that f
Jg represents b�[�; �]�. This provesthe exactness at Hr�1(Z; bN ).Proof of Theorem 4.1. We have now proved everything except the last comment inthe theorem. If [�] 2 H1(Z;S) is in the kernel of p�G, there exist A and (�; 1) 2C0(A;S) such that �(�; 1) = �p�(�); 1). But �(�; 1) = 1 says precisely that each�i : p�1(Ni)! T is constant on orbits, hence has the form �i �p for some �i : Ni ! T.Now @(p�� ) = p�(�) implies that [�] = 0 in H1(Z;S). This completes the proof ofthe theorem. 5. Examples and Applications5.1. Direct product groups. When the extension 0! N ! G! G=N ! 0 splits,G is isomorphic to the direct product of N and Q := G=N , and the coboundary map@G is zero. Thus @G([p]) = 0 for any Q-bundle p : T ! Z, and the Gysin sequence ofTheorem 4.1 gives a short exact sequence0 wH2(Z;S) wp� H2G(T;S) wb H1(Z; bN ) w 0:



16 PACKER, RAEBURN, AND WILLIAMSThis sequence is also split: if f
ijg 2 Z1(fNig; bN ), then �ij(x; (n; q)) := 
ij(p(x))(n)de�nes a cocycle (1; �) 2 Z2G(fp�1(Ni)g;S) satisfying b([1; �]) = [
ij]. Thus we candeduce from Lemma 1.3 thatkerM �= H2(Z;S)�H1(Z; bN ):If N is discrete, then the canonical map of Z1(N;T) onto H1(N;T) has a splitting� [12, p. 82], which induces a splitting �� for the natural map of H2(N;C(Z;T))into C(Z;H2(N;T)) (see the proof of [18, Theorem 1.1]). Since there is a natu-ral homomorphism � of H2(N;C(Z;T)) into BrN (Z) (as in [2]), we obtain a split-ting � � �� for M : BrN (Z) ! C(Z;H2(N;T)) such that each � � ��(f) is re-alized by a system �C0(Z;K); �f�. We can use this to de�ne a splitting � forM : BrG(Z)! C(Z;H2(N;T)): realize C0(T;K) as C0(T )
C(Z) C0(Z;K), and take�(f) to be [C0(T;K); �f ] where �f(n;q) := (id 
C(Z) �fn) � (�q 
C(Z) id). We concludefrom this and the previous paragraph that, for any Q-bundle p : T ! Z,BrN�Q(T ) �= H2(Z;S)�H1(Z; bN )� C(Z;H2(N;T)):(5.1)This generalizes Corollary 2.6 of [18], at least for compactly generated N and Q.To extend this analysis to nondiscrete N , we need a splitting of Z2 ! H2. Ourapproach to this problem uses structure theory, so we �rst consider some special cases.The following description of H2(G;T) is essentially known (for example, in [13, x10]much of it is stated without proof).For d � 2, let LTd(R) denote the set of strictly lower triangular real matrices; asan additive group, LTd(R) �= Rd(d�1)=2. For A 2 LTd(R) de�ne !A : R � R ! Tby !A(x; y) := exp (2�i � xtAy). Then A 7! !A is a continuous homomorphism ofRd(d�1)=2 �= LTd(R) into �(Rd;T), the group of bicharacters on Rd with the compact-open topology. Since �(Rd;T) embeds continuously in Z2(Rd;T) (convergence inthe compact-open topology certainly implies convergence in measure), we have acontinuous map A 7! [!A] of Rd(d�1)=2 into H2(Rd;T), which is bijective by, forexample, [29, Theorem 10.38]. We know from [15, Theorem 7] that H2(Rd;T) isPolish, so by the Open Mapping Theorem A 7! [!A] is an isomorphism of topologicalgroups. Similar arguments and the results of [1] show that A 7! [!A��Zd�Zd] inducesa topological isomorphism of Td(d�1)=2 onto H2(Zd;T), for d � 2. In both cases, !Agives an explicit parametrisation of H2 by bicharacters, which is continuous in thecompact-open topology. (Note that !A is unchanged on Zd�Zd if we add an integerto any entry in A, so the parametrisation is continuous on Td(d�1)=2.)Lemma 5.1. Suppose G1, G2; are second countable locally compact abelian groupssuch that there are continuous homomorphisms �i :H2(Gi;T)! �(Gi;T) which splitthe canonical map (i.e., which satisfy ��i([!])� = [!]). Then there is a continuoushomomorphism � :H2(G1 �G2;T)! �(G1 �G2;T) such that ��([!])� = [!].



THE EQUIVARIANT BRAUER GROUP 17Proof. We de�ne a continuous homomorphism  : Hom(G1; bG2)! �(G1 �G2;T) by (
)�(s1; s2); (t1; t2)� := 
(s1)(t2):Let Resi denote the restriction map of H2(G1 � G2;T) into H2(Gi;T). Then thereis an isomorphism d : ker(Res1�Res2) ! Hom(G1; bG2): this result goes back toMackey, but is an easy special case of the discussion in [19, Appendix 2], which alsomakes it clear that 
 splits d. We know that H2(G1�G2;T) is Polish [15, Theorem 7],and ker(Res1�Res2) is a closed subgroup because Resi is continuous [14, Proposition27]. Since  is continuous for the compact-open topology on Hom(G1; bG2) and thePolish topology on Z2(G1 � G2;T), it is a continuous isomorphism of Hom(G1; bG2)onto the Polish group ker(Res1�Res2). Thus the Open Mapping Theorem impliesthat the inverse d is continuous. We now de�ne � by(5.2) �([!]) :=��1�Res1([!])�� �2�Res2([!])��� � d�[!] Inf1 �Res1([!])�1 Inf2 �Res2([!])�1��;where Infi : H2(Gi;T)! H2(G1 �G2;T) are the in
ation maps.Corollary 5.2. For any elementary locally compact abelian group G there is a ho-momorphism � of H2(G;T) into �(G;T) which is continuous for the compact-opentopology on the group � of bicharacters, and satis�es ��([!])� = [!].Proof. We may suppose G = Rk�Zm�Tn�F , with F �nite. Since we have veri�edthe hypotheses of the Lemma for Rk and Zm, H2(Tn;T) = 0 [11, Proposition 2.1],and H2(F;T) is �nite, the Lemma applies.Now suppose p : T ! Z is a principal Q-bundle, and N is an elementary locallycompact abelian group. Given f 2 C(T;H2(N;T)), the Corollary gives a liftingg : T ! �(N;T) which is continuous for the compact-open topology on �(N;T) �C(N � N;T). If we give everything the compact-open topology, C(T;C(N �N;T))is naturally topologically isomorphic to C(N � N;C(T;T)). Thus the lifting givesa continuous map of N � N into C(T;T) which is multiplicative in either variable,and hence is a cocycle in Z2(N;C(T;T)). Thus we can extend the above analysis fordiscrete N to obtain:Theorem 5.3. Suppose that N and Q are second countable locally compact abeliangroups, and that N is elementary. Then for any principal Q-bundle p : T ! Z, wehave BrN�Q(T ) �= H2(Z;S)�H1(Z; bN )� C(Z;H2(N;T)):Remark 5.4. An amusing consequence of this Theorem and the corresponding resultfor trivial Q is that the map (A;�) 7! �C0(T )
C(Z) A; (id 
 �) � (� 
 id)� inducesan isomorphism of BrN (Z) onto BrN�Q(T ). This is nonobvious, but is known to betrue for arbitrary N and Q; it is the content of Proposition 7 of [10].



18 PACKER, RAEBURN, AND WILLIAMS5.2. Restriction and in
ation. Associated to any normal subgroup N of G is anatural restriction map Res : BrG(T ) ! BrN (T ) such that Res([A;�]) = [A;�jN ];if N acts trivially on T , there is also an in
ation map Inf : BrG=N (T ) ! BrG(T )such that Inf([A;�]) = [A; Inf �], where Inf � is the composition of � : G=N !AutA with the quotient map of G onto G=N . We trivially have Res � Inf = 0, andanyone familiar with group cohomology will immediately wonder if one can describeker(Res)= im(Inf). First we shall apply our main theorem to this problem, next weshall give an alternative answer in terms of a group-cohomological invariant, and thenwe shall compare the two answers using the theory of [23].Corollary 5.5. Suppose G, N and p : T ! Z satisfy the hypotheses of Theorem 1.2.If (A;�) 2 BrG(T ) and Res([A;�]) = 0 in BrN(T ), then [A;�] 2 kerM . Theclass S([A;�]) in H1(Z; bN ) vanishes if and only if there is a system of the form�C0(T;K); �� 2 BrG=N (T ) such that [A;�] = Inf[C0(T;K); �].Proof. Since M(A;�) = M(A;�jN ), it is clear that M([A;�]) = 0. Next, supposethat �C0(T;K); �� 2 BrG=N (T ), and let � denote the quotient map of G onto G=N , sothat Inf �C0(T;K); �� = �C0(T;K); ����. Then by a theorem of Olesen and Pedersen[16], C0(T;K)o��� G �= Ind bGN?�C0(T;K)o� G=N; b��:Since G=N acts freely and properly on T = C0(T;K)^, C0(T;K) o G=N is acontinuous-trace algebra with spectrum Z = T=(G=N) [6], and the induced algebrahas spectrum bG-homeomorphic to bG=N? � Z = bN � Z because N? = (G=N)^ actstrivially on (C0(T;K)oG=N)^ (e.g., [22, Proposition 3.1]). (Alternatively, we coulduse the isomorphism of BrG=N (T ) with Br(Z) to write [C0(T;K); �] = [p�B; p�id] forsome B 2 Br(Z), and then computep�B op�id G �= �C0(T )
C(Z) B�o�
C(Z)id G �= (C0(T )oG) 
C(Z) B:)Conversely, if S([A;�]) = 0, then our main theorem says there exists B 2 Br(Z)such that [A;�] = P ([B]) = [p�B; p�id]. However, [A;�jN ] = Res([A;�]) = 0 implies�(A) = 0, so that p�B must be stably C0(T )-isomorphic to C0(T;K). Since the actionp�id of G on p�B is in
ated fromG=N , so is the corresponding action on C0(T;K).Remark 5.6. Because pulling-back induces an isomorphism of Br(Z) onto BrG=N (T ),we can alternatively say that S([A;�]) = 0 if and only if there exists B 2 Br(Z) suchthat p�(�(B)) = 0 and [A;�] = [p�B; p�id].Proposition 5.7. Suppose G, N and p : T ! Z satisfy the hypotheses of Theo-rem 1.2. If (A;�) 2 BrG(T ) and Res([A;�]) = 0 in BrN(T ), then there is a classd1(�) in H1�G=N;Hom(N;C(T;T))� which vanishes if and only if there is a systemof the form �C0(T;K); �� 2 BrG=N (T ) such that [A;�] = Inf[C0(T;K); �].



THE EQUIVARIANT BRAUER GROUP 19Proof. It follows from [2, Lemma 3.1] that Res(A;�) is trivial if and only if A isstably C0(T )-isomorphic to C0(T;K) and the action �jN 
 id of N on A
K is outerconjugate over T to the trivial action; equivalently, �jN 
 id = Adu for some strictlycontinuous homomorphism u : N ! UM(A 
 K). So we may as well suppose that(A;�jN) = �C0(T;K);Adu�. In the notation of [23, x5], comparing �s(un) with ungives a cocycle (�; �) 2 Z(G;N ;C(T;T)) which is trivial in the \relative cohomologygroup" �(G;N ;C(T;T)) if and only if we can adjust u by scalars to obtain a Greentwisting map for � on N [23, Proposition 5.4]. Since u is already a homomorphism,the 2-cocycle � in Z2(N;C(T;T)) is identically 1, and the �rst component � belongs toZ1�G=N;Hom(N;C(T;T))� (see formulas (5.7), (5.8) and (5.9) in [23]). An arbitrarycocycle (�; �) 2 Z(G;N ;M) is trivial if and only if there is a Borel map � : N !Msuch that � = @� and �(s; n) = s ��(n)�(n)�1. If � = 1, � has to be a homomorphism,and hence our (�; 1) is trivial if and only if there is a (Borel, hence continuous)homomorphism � : N ! C(T;T) such that �(s; n) = s � �(n)�(n)�1, i.e., if and only ifthe cocycle � in Z1�G=N;Hom(N;C(T;T))� is a coboundary. Thus � 7! (�; 1) embedsH1�G=N;Hom(N;C(T;T))� in �(G;N ;C(T;T)), and we can de�ne d1(�) := [�].If � is in
ated from an action of G=N , then we can take u = 1 in the constructionof the previous paragraph; since the class [�; �] is independent of the choice of u, itfollows that [�; 1] = 0 and d1(�) = 0. Conversely, if d1(�) = 0, then � is implementedby a Green twisting map over N . From the stabilization trick (the version of [8] or[4]) we deduce that �C0(T;K); �� is Morita equivalent to a system in which the actionof G is in
ated from an action of G=N . Since every stable algebra which is Moritaequivalent over T to C0(T;K) is C0(T )-isomorphic to C0(T;K) (cf., the end of theproof of [25, Lemma 2.3]) we can deduce that �C0(T;K); �� � �C0(T;K); Inf �� forsome action � of G=N on C0(T;K). Finally, because this equivalence respects theactions of C0(T ), � must induce the given action of G=N on T , so that �C0(T;K); �� 2BrG=N (T ).The theory of [23] connects these two viewpoints. Associated to each cocycle(�; �) 2 Z(G;N ;C(T;T)) is a commutative diamondE�F(�;�) TZ���� [[[][[[] ����of principal bundles, in which the southeast arrows are bN -bundles and the southwestarrows are G=N -bundles [23, Proposition 6.3]. If [�; �] is the obstruction to realizing� : G! AutA by a Green twist on N [23, x5] and the cocycle � 2 Z2(N;C(T;T)) is



20 PACKER, RAEBURN, AND WILLIAMSpointwise trivial, then the system (A;�) is N -principal and F(�;�) is bN -isomorphic to(Ao� G)^ [23, Proposition 7.1]. When Res([A;�]) = 0, � is trivial, so E� �= p�F(�;�)is trivial. From Theorem 7.3 of [23] we deduce that (�; 1) 7! F(�;1) induces a bijectionbetween [�] 2 H1�G=N;Hom(N;C(T;T))� and the (classes of) bN -bundles F over Zsuch that p�F is trivial.It is interesting to note that, even though the group-theoretic invariant d1(�) is os-tensibly more tractable than the topological invariant S(A;�), our topological theorycurrently yields more information. Thus, for example, it seems hard to see directlywhat the range of d1 is, whereas we have an explicit criterion [q][ @G([p]) = 0 for therealizability of an bN -bundle q : F ! Z as S(A;�).Example 5.8 (Showing that d1 is not in general surjective). First note that sincep�[p] = 0, p : T ! Z is realisable as F(�;1) for some � 2 Z1�G=N;Hom(N;C(T;T))�.Thus we just need to see that p : T ! Z is not necessarily realisable as S(A;�) forsome N -principal system (A;�) 2 kerM � BrG(T ). For a concrete example, wetake G = R, N = Z, and p : S2n+1 ! Pn(C ) to be the canonical circle bundle overcomplex projective space Pn(C ) for n � 2. The image of [q] [ @R([p]) 2 H3(Z;S)in H4(Z;Z) is @R([q]) [ @R([p]), which is the product of @R([q]) and @R([p]) in thecohomology ring H�(Z;Z). Since H�(Pn(C );Z) is a truncated polynomial ringwith generator @R([p]) (e.g., [28, Theorem 5.8.5]), we certainly have @R([p])2 6= 0in H4(Pn(C );Z) �= Z. Thus the class [p] is not realisable as S([A;�]), and thecorresponding [�] 2 H1�G=N;Hom(N;C(T;T))� is not realisable as d1(�).5.3. The case G = Rk, N = Zk. We shall show that the natural map of HrRk(T;S)into Hr(T;S) is injective (Proposition 5.10 below). This will lead to the followingstriking improvement of Corollary 5.5.Corollary 5.9. Suppose p : T ! Z is a principal Tk-bundle. If (A;�) 2 BrRk(T )satis�es Res([A;�]) = 0 in BrZk(T ), then there is a system of the form �C0(T;K); �� 2BrTk(T ) such that [A;�] = Inf[C0(T;K); �].Proof. Since we certainly haveM([A;�]) = 0, Corollary 5.5 says it is enough to provethat S([A;�]) = 0, and since S([A;�]) = b(�(A;�)), it is enough to prove �(A;�) = 0.But [A;�jZk] = 0 also implies �(A) = 0, and becauseBrRk(T;S) H2Rk(T;S)Br(T ) H2(T;S)w�uF y uw�commutes, Proposition 5.10 forces �(A;�) = 0.



THE EQUIVARIANT BRAUER GROUP 21Proposition 5.10. Suppose that p : T ! Z is a principal Tk-bundle. If r � 0 and(1; �) 2 Zr+1Rk �fNi g;S� and fNi g is locally �nite, then for each multi-index J withjJ j = r there is a continuous function �J : p�1(NJ)�Rk ! T such that�J(x; �+ �) = �J(x; �)�J(e�2�i� � x; �)and �@ �(�; �)�K(x) = �K(x; �) for jKj = r + 1, x 2 p�1(NK), � 2 Rk.In other words, [1; �] = 0 in Hr+1Rk �fNi g;S�, and the natural map of Hr+1Rk (T;S) intoHr+1(T;S) is injective.Proof. The cocycle identity for �K implies that �K(x; 0) = 1 for all x, and since themap ft : p�1(z)�Rk� [0; 1]! T given by ft(x; �) = �K(x; t�) is a homotopy joining�K = f1 to �K(�; 0) = f0, it follows that for each z 2 NK there is a continuousfunction �zK : p�1(z)�Rk ! R such that �zK(x; 0) = 0 and�K(x; �) = exp�2�i�zK(x; �)� for x 2 p�1(z), � 2 R;further, since the kernel of exp(2�i�) : R! T is discrete, any other lifting � de�nedon a connected set of the form p�1(z) � B, and satisfying �(x; 0) = 0, must agreewith �z throughout that neighborhood. The same argument applied to the function�zK(x; � + �)� �zK(x; �)� �zK(e�2�i� � x; �)shows that �zK is a cocycle in �. Thus the function �K : p�1(NK) �Rk ! R de�nedby �K(x; �) = �p(x)K (x; �)is a cocycle in �, and we claim that it is also continuous. For if z 2 NK, we can use thelocal triviality of p over NK to extend �zK to a function RzK de�ned on p�1(M)�Rkfor some neighborhood M of z, and then �K exp(�2�iRzK) is a continuous function onp�1(M)�Rk which is identically 1 on p�1(z)�Rk. IfB is any compact neighborhood of0 in Rk, we can use a standard compactness argument to �nd a smaller neighborhoodN of z such thatj�K(x; �) exp��2�iRzK(x; �)��1j < 2 for (x; �) 2 p�1(N) �B,and then take logs to �nd a continuous function � : p�1(N) � B ! R such that�(x; 0) = 0 and �K = exp(2�i�) throughout p�1(N) � B. The uniqueness of thelifting on each �bre p�1(z) � B implies that �K = � throughout p�1(N) � B, andhence �K itself must be continuous there. But z was an arbitrary point of p�1(NK) andB an arbitrary neighborhood of 0, and hence �K is continuous on all of p�1(NK)�Rk.Since (1; �) is in Zr+1Rk , we know that �@ �(�; �)�L = 1 for all L with jLj = r+2, andhence exp�2�i�@ �(�; �)�L�= @�exp�2�i�(�; �)��L = �@ �(�; �)�L = 1;



22 PACKER, RAEBURN, AND WILLIAMSthus �@ �(�; �)�L(x) is a continuous Z-valued function of (x; �) satisfying�@ �(�; 0)�L(x) = 0, and is therefore identically 0. Since the sheaf R of R-valuedfunctions is �ne, Hr+1(T;R) = 0, and �K(�; �) is equivalent to a coboundary, and infact can be realized as a coboundary relative to the same cover f p�1(Ni) g: if f �i gis a partition of unity subordinate to fNi g, just take�J(x; �) =Xi �i�p(x)��iJ(x; �);where iJ denotes the r + 1-multi-index (i; j0; : : : ; jr�1). (Since �i vanishes on @Ni,extending each summand to be 0 on NJ nNiJ gives a continuous function on NJ .) Itis easy to verify that we then have @ �(�; �) = �, and �J is a cocycle in � since each�K is. Thus if we write �J(x; �) = exp�2�i�J(x; �)�;then we have (1; �) 2 CrRk�fNi g;S) and �(1; �) = (1; �), as required.Example 5.11. In view of Corollary 5.9, one might guess that �C0(T;K)o� G�^ ishomeomorphic to Z� bN whenever �jN is unitary. This is not true: there is somethingspecial about the case G = Rk, N = Zk. For an example, take G = Zn2 := Z=n2Z,and N the subgroup isomorphic to Zn, so that G=N �= bN �= Zn also. For p and q wetake the n-fold covering z 7! zn : T! T. Since H4(T;Z) = 0, the class [q] [ @G([p])trivially vanishes, so there is a system (A;�) 2 BrZn2(T) with (Ao�Zn2)^ �= T asprincipalZn-bundles. Because p�[q] = p�[p] = 0, we know that Res : (Ao�Zn)^ ! bAis trivial, and � is unitary on N =Zn by [20, Proposition 2.5]. Notice that �(A) alsotrivially vanishes, so we may take A = C0(T;K).5.4. The case G = R, N =Z: the usual Gysin sequence. To recover the usualGysin sequence, we need to identify the equivariant groups HrR(T;S) with Hr(T;S).There is a natural homomorphism taking [�; �] to [�], and we have already seen thatit is injective. To prove it is surjective, we have to know that every class in Hr(T;S)can be realised by a cocycle de�ned on T-invariant covers. This is not true for higher-dimensional torus bundles (consider the trivial bundle over a point), but for classeswhich can be realised this way our argument works.Proposition 5.12. Suppose that p : T ! Z is a principalT-bundle. Then every classin Hr(T;S) can be realized by a cocycle de�ned on a cover of the form f p�1(Ni) g,for some open cover fNi g of T=R.Lemma 5.13. Suppose that p : T ! Z is a locally trivial �bre bundle with a paracom-pact base space Z and compact �bre F . If z 2 Z is �xed and f�K g 2 Zr(fMj g;S)is a cocycle such that [�KjMK\p�1(z)] is trivial in Hr�p�1(z);S�, then there is a neigh-borhood N of z such that [�KjMK\p�1(N)] is trivial in Hr�p�1(N);S�.



THE EQUIVARIANT BRAUER GROUP 23Proof. By re�ning fMi g, we may assume it is locally �nite, and that there are �K :MK \ p�1(z) ! T such that @ � = �jp�1(z). We choose a neighborhood M of z suchthat p�1(M) meets only �nitely many Mj and p�1(M) is homeomorphic to M � F ,and extend f�K g to a cochain on p�1(M) = M � F by taking it to be constant onM -slices. Then �(@ �)�1 is a cocycle on p�1(M) which is identically 1 on p�1(z). Sincethere are only �nitely many functions involved, we can �nd a smaller neighborhoodN of z such that���K(x)(@ �)�1K (x)� 1�� < j exp��i=(r + 1)��1j for x 2MK \ p�1(N).Now log��(@ �)�1� is a cocycle with values in the �ne sheaf R of R-valued functions,and hence equal to @ � for some cochain � 2 Cr�1�fMi \ p�1(N) g;R�. But then�K jp�1(N) = (@ �)K exp(@ �)K = @(� exp �)Kis a coboundary, and the result follows.Proof of Proposition 5.12. We apply [5, Theorem II.4.17.1], which asserts that if Hqis the sheaf generated by the presheaf U 7! Hq�p�1(U);S�, then there is a spectralsequence with Er;q2 = Hr(Z;Hq) which converges to Hr+q(T;S). By de�nition, thestalks of the sheaf Hq areHq(z) = lim�!fHq�p�1(U);S) : U is an open neighborhood of z g:Since p�1(z) is homeomorphic to T, and Hq(T;S) �= Hq+1(T;Z) = 0 for q �1, Lemma 5.13 implies that if U is a neighborhood of z, then every element ofHq�p�1(U);S� vanishes in Hq�p�1(N);S� for some smaller neighborhood N of z| or, equivalently, that the direct limit Hq(z) is trivial. Thus for q � 1, all sectionsof the sheaf Hq are trivial, Er;q2 = Hr(Z;Hq) = 0, and the statement that fEr;q gconverges to Hr+q just says that Er;01 = Er;02 = Hr(Z;H0) is isomorphic to Hr(T;S).But by de�nition H0(U) = H0�p�1(U);S�= C�p�1(U);T), and hence Hr(Z;H0) isthe subgroup of Hr(T;S) consisting of cocycles which are realizable on covers of theform f p�1(Ni) g.Proposition 5.14. Suppose p : T ! Z is a principal Tk-bundle and c is a classin Hr(T;S) with a representative de�ned with respect to a cover by Tk-invariantsets. Then there is a cover f p�1(Ni) g of T for which there exists a cocycle �K :p�1(NK)! T with c = [�], and functions �J : p�1(NJ )� Rk ! T such that (�; �) isin ZrRk�fNi g;S�.Suppose that �K : p�1(NK)! T is a cocycle representing the class c. We want toshow that f �K g is equivalent to a cocycle of a standard form, and for this we willneed some notation.We recall that there is an isomorphismdeg : [Tk;T] = C(Tk;T)= exp�2�iC(Tk;R)�!Zk;



24 PACKER, RAEBURN, AND WILLIAMSwhich is uniquely characterized by insisting that, if m = (m1; : : : ;mk) 2 Zk and wmdenotes the function (w1; : : : ; wk) 7! Qiwmii , then deg(wm) = m. If � 2 Tk andf : Tk ! T, then the function ��(f) given by w 7! f(w�) has the same degree as f :choose a path �t joining � = �1 to �0 = 1, and then ��t is a homotopy joining ��(f)to f . As in x2, we let hi : p�1(Ni) ! Ni � Tk be local trivializations, so that thetransition functions tij : Nij ! T satisfyhj � h�1i (z;w) = �z;wtij(z)�:Then the above observations about deg imply that, if z 2 Nij and f 2 C�p�1(z);T),we have deg�w 7! f � h�1i (z;w)�= deg�w 7! f � h�1j (z;w)�;and hence we have a well-de�ned family of homomorphismsdegz : �p�1(z);T�!Zk for z 2 Z.(If k = 1, we have just de�ned an orientation on the circle bundle p : T !Z.)We now de�ne mK : NK ! Zk by mK(z) = degz��K jp�1(z)�; note that fmK g isin Zr�fNi g;Zk� because f �K g is a cocycle and deg is a homomorphism. The localtrivializations hi de�ne Tk-equivariant maps wi : p�1(Ni) ! Tk by hi�p(x); wi(x)�,and we can now give our standard form for f �K g.Lemma 5.15. We can re�ne the cover f p�1(Ni) g to ensure there is a cochain � inCr�fNi g;S� such that � is equivalent to the cocycle in Zr�f p�1(Ni) g;S) given bywkr(x)mK(p(x))�K�p(x)� for x 2 p�1(NK).Proof. If z 2 NK, the cocycle de�ned by(�Kw�mKkr )(x) = �K(x)wkr(x)�mK(p(x))has degree 0 on the �bre p�1(z), and hence equals exp(2�i�K) for some continuousfunction �K : p�1(z) ! R. We can extend each �K to p�1(NK), and then�Kw�mKkr exp(�2�i�K) is identically 1 on p�1(z). Reasoning as in the proof ofLemma 5.13, we can �nd a neighborhood N of z and a continuous function� : p�1(N)! R satisfying�Kw�mKkr = exp(2�i�) throughout p�1(N).We can now re�ne the cover f p�1(Ni) g, using the argument of [3, 10.7.11], to ensurethat there are continuous functions �K : p�1(NK)! R such that�K(x)wkr(x)�mK(p(x)) = exp�2�i�K(x)� for x 2 p�1(NK).



THE EQUIVARIANT BRAUER GROUP 25If jLj = r + 2, thenexp�2�i(@ �)L(x)� = wkr(x)�mk0 :::kr (p(x))wkr+1(x)mk0 :::kr�1kr+1 (p(x)) �� wkr+1(x)�mk0 :::kr�2krkr+1 (p(x)) : : := �wkr (x)�1wkr+1(x)�mk0 :::kr (p(x))wkr+1(x)(@m)L(p(x))= tkrkr+1�p(x)�mk0 :::kr (p(x));since fmK g is a cocycle and w�1i wj = tij �p. Since this last formula depends only onp(x), we can average the left-hand side overTk-orbits without changing the right-handside. Thus we set�K�p(x)�= exp �2�i�Z 10 � � � Z 10 �K(e2�i� � x) d�1 : : : d�k�� ;observe that the coboundary operator pulls through the combination of exponentialand integral, and deduce that(@ �)L�p(x)�= exp�2�i(@ �)L(x)�= @�exp(2�i�)�L(x):(5.3)To prove the lemma, it is enough to show that f exp(2�i�K) g di�ers from f�K gby a coboundary. If we setsK(x) = �K(x)� Z 10 � � � Z 10 �K(e2�i� � x) d�1 : : : d�k;then exp(2�isK) = �exp(2�i�K)���1K , and (5.3) says that exp�2�i(@ s)L�= 1; thus(@ s)L is constant on connected components. On the other hand,(@ s)L(x) = (@ �)L(x)� Z 10 � � � Z 10 (@ �)L(e2pi� � x) d�1 : : : d�kvanishes at some point of each �bre, and because the �bres are connected, we deducethat (@ s)L is identically 0. Thus f sK g is a cocycle in Zr(T;R), and is thereforeequivalent to a coboundary. Thus f exp(2�isK) g is a coboundary, f exp(2�i�K) gdi�ers from f�K g by a coboundary, and the lemma is proved.Proof of Proposition 5.14. We replace f �K g by the equivalent cocycle fwmKkr �K g.Although fmK g may be non-trivial as a cocycle in Zr(Z;Zk), it is equivalent inZr(Z;Rk) to a coboundary, and, by re�ning, we may suppose mK = (@ �)K for somecochain � 2 Cr�1�fNi g;Rk�. We now have�K(e�2�i� � x) = exp��2�i�� �mK�p(x)���wkr(x)mK(p(x))�K�p(x)�= exp��2�i�� �mK�p(x)����K(x)= exp��2�i�� � (@ �)K�p(x)����K(x):



26 PACKER, RAEBURN, AND WILLIAMSIf we de�ne �J (x; �) = exp��2�i�� � �J�p(x)���, then the above says precisely that@ �(�; �) = � � (� � �)�1, and since �J is clearly a homomorphism in �, we have found� such that (�; �) is in ZrRk(T;S).Remark 5.16. Since HrTk(T;S) need not map onto Hr(T;S), it is instructive to notewhere it was crucial to take G = Rk. If we had required �J well-de�ned on p�1(NJ )�Tk rather than p�1(NJ ) � Rk, we would need exp(2�i� � �J ) to depend only onexp(2�i�) 2 Tk, and hence �J would have to take values in Zk rather than Rk. So itis because fmK g need not be a coboundary in Zr(T;Zk) that we may not be ableto construct the family f�J g. If the cocycle fmK g is trivializable in Zr(T;Zk=qZk)for some q 2 Zk, then �J (�; �) will be well-de�ned for � 2 Tk = Rk=qZk, and (�; �)will belong to ZrTk(T;Z), where the action of Tk on T is de�ned in terms of the givenaction by z ? x = zq � x.Theorem 5.17. If p : T ! Z is a principal T-bundle, then the map [�; �] 7! [�] isan isomorphism of HrR(T;S) onto Hr(T;S) for all r � 1.Proof. If p : T ! Z is a circle bundle, Propositions 5.12 and 5.14 imply that [�; �] 7![�] maps HrR(T;S) onto Hr(T;S), and Proposition 5.10 implies that this map is aninjection. (To apply Proposition 5.10, one needs to observe that if �L = @(�K), then(�; �) � (1; ~�) where ~�K(x; s) = �K(x; s)�K(x)�K(s�1 � x).) Thus the theorem isproved.For higher-dimensional torus bundles, Propositions 5.14 and 5.10 immediately giveCorollary 5.18. Suppose that p : T ! Z is a principal Tk-bundle. Then the map[�; �] 7! [�] is an isomorphism of HrRk(T;S) onto the subgroup of Hr(T;S) consistingof classes which are realizable by cocycles de�ned on covers by invariant sets.Corollary 5.19 (The Gysin sequence for a circle bundle). Suppose that p : T ! Zis a principal T-bundle over a locally compact paracompact space Z. Then there is anexact sequence� � � wHr(Z;Z) wp� Hr(T;Z) wp! Hr�1(Z;Z) w[@([p]) Hr+1(Z;Z) w � � � :where @�[p]� denotes the class of the bundle in H2(Z;Z).Proof. Theorem 4.1, Theorem 5.17, and the natural isomorphism @ = @R of Hr(�;S)onto Hr+1(�;Z) give us a diagram� � � Hr(Z;S) HrR(T;S) Hr�1(Z;S) Hr+1(Z;S) � � �� � � Hr+1(Z;Z) Hr+1(T;Z) Hr(Z;Z) Hr+2(Z;Z) � � �w wp�Ru @ wbu w[@R ([p])u @ wu @w wp� wp! w[@([p]) w



THE EQUIVARIANT BRAUER GROUP 27in which the vertical arrows are isomorphisms, and the top row is exact. Thus allwe have to prove is that the diagram commutes. Since p�R(�) = (p��; 1) and theisomorphism of Theorem 5.17 takes [�; �] to [�], the commutativity of the �rst squarefollows from the naturality of @. That of the third square follows from the realizationof the cup product in �Cech cohomology in terms of cocycles (3.2). It therefore remainsto identify the homomorphism b with p!.The map p!, often known as \integration over the �bres of p," can be realized onHr(T;S) �= Hr+1(T;Z) as follows. We �x an orientation for the bundle p : T ! Z| that is, a family of homomorphisms degz : �p�1(z);T� ! Z (see the discussionpreceding Lemma 5.15). If we realize a class in Hr+1(T;Z) via a cocycle � 2 Zr(T;S),then p!�[�]� is the class of the cocyclemK(z) = degz(�K jp�1(z))in Hr(Z;Z). On the other hand, if we extend � to an element (�; �) of ZrR(T;S), thena cocycle � 2 Zr(Z;Z) representing the image of b(�; �) 2 Hr�1(Z; bN ) = Hr�1(Z;S)in Hr(Z;Z) is obtained by writing 
J (z) = exp�2pi~
J (z)� for some ~
J : NJ ! R, andtaking �K(z) = (@ ~
)K(z) 2Z= N:If we examine our construction of � compatible with � (see the proof of Proposi-tion 5.14), we �nd 
J has a natural extension ~
J : NJ ! R satisfying (@ ~
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