Moore Cohomology,
Principal Bundles, and
Actions of Groups on c-algebras

TAIN RAEBURN & DANA P. WILLIAMS

Introduction. In recent years both topological and algebraic invariants have
been associated to group actions on C*-algebras. Principal bundles have been
used to describe the topological structure of the spectrum of crossed products
[18, 19], and as a result we now know that crossed products of even the very
nicest non-commutative algebras can be substantially more complicated than
those of commutative algebras [19, 5]. The algebraic approach involves group
cohomological invariants, and exploits the associated machinery to classify group
actions on C*-algebras; this originated in [2], and has been particularly successful
for actions of R and tori ([19; Section 4], [21]). Here we shall look in detail at
the relationship between these topological and algebraic invariants, with a view
to analyzing the structure of the systems studied in [19; Section 2, 3].

Our starting point is a theorem of Rosenberg [21, Theorem 2.5] concerning
the locally unitary actions of [18]. If A has Hausdorff spectrum X, and o :
G — Aut(A) is an action of an abelian group which is locally implemented by
homomorphisms u : G — UM(A), then the spectrum of the crossed product
A%, G is a principal G-bundle over X; the class ¢() of the bundle determines
a up to exterior equivalence, and all such bundles arise [18]. If G is connected,
the range of o will often lie in the subgroup Inn(A) of inner automorphisms,
and then there is a class c(c) in the Moore cohomology group H?(G,C(X,T))
which is trivial when evaluated at points of X, and which vanishes precisely
when a is implemented by a unitary group u [19, Section 0]. Rosenberg showed
how to construct a principal bundle directly from a pointwise trivial class in
H?(G,C(X,T)), and that his construction connects up the invariants c(c) and
¢(e).

We aim to prove a version of Rosenberg’s theorem for actions a : G —
Aut(A) which are locally unitary on a subgroup N. It was shown in [19; Section

2] that, provided X = A is a principal G/N-bundle, there is a commutative
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diamond of principal bundles describing the spectrum of A X, G as a principal
N-bundle over X/G:

(Axa N)"
(A% A" X

\X/G/

When a(N) C Inn(A), we shall associate to o an invariant d(a) lying in a relative
Moore cohomology group A(G,N i C(X ,T)), which vanishes exactly when there
is a homomorphism u : N — UM(A) such that (4,G,a,u) is a twisted system in
the sense of Green. We shall then show how to construct diamonds of principal
bundles directly from appropriate elements of A(G N;C(X ,T)), in such a way
that the element vanishes if and only if the bottom left-hand arrow is a trivial
bundle. Since applying our construction to d(a) gives the diamond describing
(A %o G)", our main result follows immediately:

Theorem. Let (A,G,a) be a separable C*-dynamical system in which G
is abelian and the spectrum X of A is Hausdorff. Suppose N is a closed subgroup
of G such that a|n 1is locally unitary and X — X/G is a locally trivial principal
G/N-bundle. Then (AxqG)" is trivial as an N-bundle over X/G if and only
if o is given on N by a Green twisting map u : N — UM(A) (i.e., u satisfies
a|ny = Ad u and a,s(uy) = up, fors€ G,n € N).

This result has some interesting corollaries. First of all, if (4,G,a,u) is a
twisted system then a theorem of Olesen and Pedersen [12] says that Ax,G

is isomorphic to an induced algebra IndG,;,L (B,9)—indeed, we can take B to be
the restricted crossed product A x% G, and ¥ to be the dual action of N+ =

(G/N)". Thus, in our setting, the triviality of (4 %, G)" as an N-bundle implies
that Ax,G is an induced C*-algebra. If we have a system (4,G,q) as in the
theorem and X — X/G is trivial as a G/N-bundle, then we can apply this
reasoning to the dual system (A %, G,G,&), and deduce that o is the translation
action on an induced algebra. Even if the bundle X — X/G is only locally
trivial, we can still apply this reasoning locally on G-invariant subsets of X,
and the resulting local structure theorem for the systems studied in [19, Section
2] should have some very interesting consequences. In particular, we believe
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that using it we can identify exactly which commutative diamonds of principal
bundles arise from these actions, and we intend to pursue this in the near future.

Although we have so far discussed locally unitary actions and locally triv-
ial principal bundles, it is perhaps more natural to consider pointwise unitary
actions, which are easily described as actions which fix the spectrum and whose
Mackey obstructions vanish. It was shown in [13] that the results of [18] and
[19] remain true for pointwise unitary actions, provided we restrict attention
to continuous-trace algebras and use free and proper actions instead of locally
trivial bundles. We shall therefore be studying systems (A4,G,«) in which A has
continuous trace, a|y is pointwise unitary and G/N acts freely and properly on

A. We do need to assume A has continuous trace to ensure (A x,G)" is Haus-
dorff ([13, Theorem 1.7]; see also [13, Section 2(c)]); however, this is also true
if v is locally unitary and A is Hausdorff, and our arguments will apply also in
this case, giving the theorem stated above.

We begin with a short section about free and proper G-spaces, in which we
set up our terminology—we call them G-bundles, and reserve the word “princi-
pal” for locally trivial ones—and prove a couple of routine lemmas. In Section 3
we discuss Rosenberg’s construction of a G-bundle E,, from a pointwise trivial
element w of H2(G,C(X,T)), presenting it so that it works also for arbitrary
locally compact abelian groups. We prove that w — E,, is an injection of the
pointwise trivial part of H?(G,C(X,T)) into the group of G-bundles over X.
Rosenberg’s theorem asserts that this map is surjective when G is connected,
but this is not the case when G is not connected, and we begin the identification
of the range in Corollary 3.10. The methods of Section 3 are direct, making no
mention of operator algebras, but in Section 4 we connect them up with group
actions on continuous-trace algebras. In particular, using C*-algebraic methods
it is easy to identify the range of the map w — E,,, although this is also done
directly in Section 8.

We introduce our relative cohomology group A and the invariant d(e) in
Section 5. The group A is a Borel version of one which is used by algebraists to
classify crossed extensions (e.g., [4, 20]), and which has also appeared in classi-
fications of discrete group actions on injective von Neumann algebras (e.g., [6,
25]); we discuss this further in Remark 5.4. The invariant d(a) lies in a subgroup
A pr of appropriately pointwise trivial elements, and in Section 6 we show how to
associate to each element (A,u) of Apr(G,N;C(X,T)) a commutative diamond
of bundles, and in particular an N-bundle ¢ : Fiau) — X/G. Our extension of
Rosenberg’s theorem asserts that (A,u) — F(y ,) is an injection of Apr into the
group of N-bundles over X /G, and identifies the range; we defer the proof of the
last part to Section 8 since we do not need it for our applications to C*-algebras.

The results in Section 6 lean heavily on the version of Rosenberg’s construction
given in Section 3.
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‘We prove our main theorem and its corollaries in Section 7. As we mentioned
above, it follows almost immediately from our earlier results, and indeed this is
the point we wish to make. Here we have two natural invariants, the topological
one arising concretely as the spectrum of the crossed product, the algebraic
one directly measuring the obstruction to solving our problem, and it is the
relationship between them which is giving the information we want. Thus while
a direct proof would also be possible, we have preferred to stress the connection
between the two invariants.

Acknowledgments. We wish to thank Colin Sutherland for drawing our
attention to the A-invariant and its uses in classification problems for group
actions. This research has been supported by the Australian Research Council.
The first author has also been supported by the Research Academy of Denmark,
and he thanks Dorte Olesen, Gert Pedersen and their colleagues for their warm
hospitality.

2. Free and proper G-spaces. As we mentioned in the introduction, we
shall refer to free and proper G-spaces as G-bundles, and locally trivial principal
G-bundles as principal G-bundles. In this section we shall make this precise,
show how to multiply G-bundles if G is abelian, and see what happens when we
change the structure group G.

Definition 2.1. Let G be a locally compact group and T a locally compact
(Hausdorff) space. A G-bundle over T is a locally compact space X, together
with a free and proper action of G on X and a continuous G-invariant map
p : X — T which induces a homeomorphism of X/G onto T. Two such G-
bundles p: X — T and ¢q : Y — T are isomorphic if there is a G-equivariant
homeomorphism h of X onto Y such that g o h = p; we denote by HP(T',G) the
set of isomorphism classes of G-bundles over T'. (This notation is motivated by
the connection with sheaf cohomology; see Remark 2.5 below.)

Remark 2.2. A G-bundle p: X — T is trivial if it is isomorphic to T x G,
or, equivalently, if there is a continuous section s : T' — X for p. Similarly, a
G-bundle is locally trivial if p has local sections; we shall call a locally trivial G-
bundle a principal G-bundle. It follows from Palais’s slice theorem [16; Theorem
4.1] that if G is a Lie group, then every G-bundle is a principal G-bundle.

Remark 2.3. Ifp: X - Tandq:Y — T are G-bundles, andifh: X - Y
is a G-equivariant map satisfying g o h = p, then A must be bijective and Lemma
1.12 of [13] implies that h is an isomorphism of G-bundles.
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Lemma 2.4. Suppose that G is a locally compact abelian group, and that
p: X =T and q:Y — T are G-bundles. Then the action of G on the fibre
product

X3Y ={(zy) € XxY :p(z) = q(z)}

defined by s-(z,y) = (s-x,57 1 y) is free and proper. The formula s-[z,y] =
[s-z,y] defines a free and proper action of G on the quotient space

XxY=(X%Y)/G,

and, together with the map r : X xY — T sending [z,y] to p(z), makes X xY
into a G-bundle over T. The binary operation [X][Y] = [X Y] is well-defined
on HP(T,G), and with it HP(T,G) becomes an abelian group.

Proof. Most of the details are routine, so we shall omit them. We should
observe, however, that the identity in HP(T',G) is the class [T x G] of the trivial
bundle, and that the inverse of [X] is the class [X°P] of the opposite G-space
X°P. (Recall that X°P equals X as a set, but carries the G-action given by
sxz = s~ 1-x.) To see that X * X°P is trivial, notice that the map z — [z,z] is a
continuous G-invariant map from X to X * X°P, and hence defines a continuous
section from X/G to X x X°P; the claim follows from Remark 2.2. m]

Remark 2.5. As usual, if we denote by G the sheaf of germs of continuous
G valued functions, we can use transition functions to identify the group of
isomorphism classes of locally trivial G-bundles with the sheaf cohomology group
HY(T,G), and hence realize H'(T,G) as a subgroup of HP(T,G) (see Remark
2.7). It is well-known that H'(T,G) can be a proper subgroup of HP(T,G); for
example, let G = [[72, Z,, viewed as a subgroup of X = T = [[;2; T, and
define p: X — T by p({zn}) = {22}. Then G = ker p acts freely and properly
on X, but p cannot have local sections since any open set in 7' contains one of
the form (]"[nN___1 Wi) X ([Tnz=n+1T), and a section defined on this set would, in
particular, give a section for the map zy41 — 2% 1

Proposition 2.6. Suppose that ¢ : G — H is a continuous homomor-
phism between locally compact groups, and that p: X — T is a G-bundle. Then
the action of G on H x X defined by s - (h,z) = (ho(s71),s- z) is free and proper.
Furthermore, the action of H on the quotient p.(X) = (H x X)/G defined by
h - [k,z] = [hk,z] is also free and proper, and the map 7 : p.(X) — T, defined by
7([h,z]) = p(z), induces a homeomorphism of v.(X)/H onto T'; that is, p«(X)
is an H-bundle over T'.
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Proof. The action of G on H x X is free and proper because the action on
X is, and this implies that (H x X)/G is a locally compact Hausdorff space. The
action of H on ¢, (X) is easily seen to be free; to see that it is also proper, fix a
compact set K in ¢.(X), and suppose {h;} is a net in {h € H: hK N K # @}.
Choose k; € H, z; € X such that [k;,z;] € K and [h;k;,z;] € K. Since the
orbit map ¢ : H XX — ¢.(X) is open, we can choose a compact set L such
that ¢(L) = K. Without loss of generality we may suppose (k;,z;) € L, and
then choose s; such that (hik,;cp(si' 1),3,- . wi) € L; by passing to a subnet we can
assume (k;,z;) — (k,z) and (hikip(s;"),8i7;) — (h,n). The projection Ly of L
on X is compact and the action of G on X is proper, so we can pass to another
subnet and assume s; — s in G. Thus

hi = hikip(s; ()bt — heo(s)k ™Y,

and we have proved that the action of H is proper.

It is easy to verify that the map = : [h,z] — p(z) induces a bijection of
©+(X)/H onto T which will be a homeomorphism if 7 is continuous and open.
We prove first that it is continuous: if [h;,z;] — [h,z], the openness of the
quotient map implies there are a subnet [hij ,a:ij] and elements s; € G such that
(hi;o(s;),85 - 24;) — (h,z), and then p(z;,) = p(s; - i) — p(x). To see that
7 is open, suppose N is open in @.(X), and [h,z] € N. Let M; and M, be
neighborhoods of h and z such that M; x My C ¢~}(N) C H x X. Then

{m(lkm]) : k€ My, n€ Mz} ={p(n) : n € My}

is a neighborhood of p(z) contained in 7(NN), so 7 is open and the last assertion
is established. a

Remark 2.7. If there are local sections z; : N; = X for p: X — T, then
X is a principal G-bundle and its isomorphism class is determined by a class
¢(X) in HY(T,G). Since 1;(t) = [e,;(t)] is a continuous section for 7 : p,(X) —
T, ¢«(X) is a principal H-bundle, and it is straightforward to check that its
class c(p«(X)) in H*(T,H) is simply the image of ¢c(X) under the canonical
homomorphism from H(T,G) to H!(T,H) induced by ¢.

3. Moore cohomology and principal bundles. Throughout this section,
G will be a second countable locally compact abelian group and X a second
countable locally compact Hausdorff space on which G acts trivially. Recall
that a Borel cocycle w € Z2(G,C(X,T)) is pointwise trivial, written w €

Z3, (G,C (X ,T)), if composing with each evaluation map ¢, : C(X,T) — T gives
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a trivial cocycle in Z?(G,T). We shall construct from each w € Z31(G,C(X,T))
a G-bundle E,, over X in such a way that

(1) the class [Ey] depends only on the class [w] in H?>(G,C(X,T)), and

(2) if A is a continuous trace C*-algebra with spectrum X, and a : G — Inn(A)
is a pointwise unitary action whose obstruction to being unitary (see [19;
Corollary 0.12]) is [w], then E,, is naturally isomorphic to (4 %, G)".

The main object of this section is to show that the map [w] — [E,] defines an
injective homomorphism of H3,(G,C(X,T)) into HP(X,G) (Proposition 3.8).
When w is locally trivial, our construction reduces to the one given by Rosenberg
in the proof of [21, Theorem 2.5(b)], and we merely want to observe that the
same construction works in the pointwise trivial case and for arbitrary locally
compact abelian groups, not just connected ones.

Let C™(G,T) dencte the space of Borel cochains f : G* — T, and C"(G,T)
the quotient obtained by identifying cochains which agree almost everywhere. As
in [9], C"(G,T) has a natural Polish topology for which the coboundary maps
d:C™ — C™*! are continuous [9, Proposition 20]. As in the first paragraph of
the proof of [21, Theorem 2.1], w determines a continuous map b,, of X into the

quotient B%(G,T) = C*(G,T)/ker 8 = C*(G,T)/G. Now if G is non-discrete,
then C*(G,T) is contractible [21, Lemma 2.3]; if G is also compactly generated,
so G is a Lie group, C*(G,T) is a locally trivial G-bundle and C*(G,T) —
B?(G,T) is therefore a universal G-bundle [21, Proposition 2.4]. The class in
H'(X,6) associated to w in [21, p. 310] is that of the G-bundle over X pulled
back from the universal bundle C*(G,T) along the map b,. This G-bundle can
be concretely realized as

Ey = {(f) € CH(G,T) x X : 8f = by(x)},

where G acts via v+ (f,z) = (vf,x). (Taking 8f instead of 8f will make our for-
mulas slightly simpler.) Since 8 : C ! _, B? is a universal G-bundle, the bundle
E,, is trivial if and only if b, lifts to a continuous map of X into C ! and Rosen-
berg argues that such a lifting exists if and only if [w] = 0 in H?(G,C(X,T))
(see the second paragraph of the proof of [21, Theorem 2.1]).

We shall show that for arbitrary locally compact abelian G, the space E,,
defined above is a free and proper G-space with E, /G = X, and that its G-
isomorphism class still determines [w] € H?(G,C(X,T)). (Notice that C*(G,T)
need be neither contractible nor locally trivial in general).
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Proposition 3.1. Suppose G is a locally compact abelian group, X is a

locally compact Hausdorff space, and b : X — B%(G,T) is a continuous map.
Then
Ey = {(f,2) € C{(G,T) x X : 8f = b(z)}

is a locally compact Hausdorff space in the product topology, the action of G
defined by v- (f,x) = (vf,x) is free and proper, and r(f,x) = z induces a home-
omorphism of Eb/CAvY onto X. In other words, r : Ey — X is a G-bundle.

For the proof we require the following lemma. In the proofs of both the
lemma and the proposition we use proper in the sense of [16, Definition 1.2.2];
when Y is locally compact, this is consistent with standard terminology [16,
Theorem 1.2.9].

Lemma 3.2. If G is a locally compact group acting freely and properly
on a completely regular space Y, and if Y/G is locally compact, then Y is also
locally compact.

Proof. Let y € Y, and let S be a small closed neighborhood of y. Since p :
Y — Y/G is open and Y/G is locally compact, there is a compact neighborhood
M of p(y) such that M C p(S). We shall show that T = SNp~*(M) is a compact
neighborhood of y. It is obviously a neighborhood, so suppose {ya},cp C T
By passing to a subnet, we may suppose p(y,) converges to w € M, say. Choose
z € T with p(z) = w, and let V be a neighborhood of z which is thin relative
to T—in other words, such that {s € G : s-VNT # @} is compact in G (this is
possible because a subset of a small set is small). Let W be a neighborhood of
z. Then p(W) is a neighborhood of w = p(z), and there is an oy € A so that
a > op implies that p(y,) € p(W). Thus we may extract a subnet {yg} of {yo}
such that there are z3 € Y converging to z with p(z3) = p(yg). (For example,
let A’ be the collection of pairs (W,a) such that W is a neighborhood of z and
a € A is such that p(ya) € p(W); give A’ the obvious partial ordering. Then, if
B = (W,a) € A, it suffices to define yg = y, and to pick zg in W Np~!(p(ya))-.)
Therefore there are sg € G such that sg- 23 = yg. But as each yg € T and {25}
is eventually in V, we may pass to another subnet and suppose that sg — sin G,
and yg = sg- 23 — s-2z. Thus {y,} has a convergent subnet, and T is compact,
as claimed. O

Proof of Proposition 3.1. Theorem 3 of [9] implies that the natural
inclusion @ — C!(G,T) induces a continuous bijection of G onto the closed
subgroup ker 8 of C'(G,T), and this bijection is therefore a homeomorphism
by [9, Proposition 5(b)]. It follows that the map (fvf) — v = (vf)f ! is
continuous, so that C*(G,T) is a Cartan G-principal bundle [16, Section 1].
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Further, the orbit space is regular [3, Theorem 5.21], and thus C*(G,T) is a
proper G-space by [16, Proposition 1.2.5]. Because 0 and b are continuous, the
space Ej is a closed G-invariant subset of C* x X, and as such is itself a proper
@-space, which is metrizable because C' and X are. It can be routinely verified
that, because 9 is open, p is also open, and hence the bijection of Ep/ G onto X

induced by p is a homeomorphism. In particular, this shows that Ep/ G is locally
compact, and by Lemma 3.2 this in turn implies that E, is, too. ]

Remark 3.3. When w € Z3,(G,C(X,T)), we’ll write E,, in place of Ej,, .

Proposition 3.4. Let w € Z3;(G,C(X,T)). Then [w] = 0 in
H?(G,C(X,T)) if and only if E,, is a trivial G-bundle.

Proof. If [w] = 0, then there is a Borel map p : G — C(X,T) such that
dp = w. We define ¥ : X — C*(X,T) by ¥(z)(s) = p(s)(z); note that ¥(z)
is Borel because it is the composition of p with the continuous map e, defined
by f +— f(z). The continuity of p(s) implies that ¢(z,) — ¥ (z) pointwise, and
it follow easily that v is continuous from X to C! (G,T)—or, strictly speaking,
that the composition 9 : X SA CY(G,T) — C}(G,T) is continuous. We clearly
have (¥ (x)) = by (), so that z — ((z),x) is a continuous section for E,, and
E,, is trivial.

Reversing this argument is a bit harder: if E,, is trivial, then there is a
continuous map ¢ : X — C'(G,T) such that (¢ (z)) = bw(z), but it is not
immediately clear how to use 1 to define a Borel function p: G — C(X,T). In
fact, we do not in general know how to construct elements of C™ (G,C(X ,T))
from functions in C(X,C"(G,T)), and we can only handle the case n = 1 here
because we know that (1) can be extended to a function w which is a cocycle on

all of G x G the argument we use comes from Rosenberg’s proof of [21; Theorem
2.1]. We need two Lemmas.

Lemma 3.5. Let A be an abelian Polish G-module, and let u € Z%(G,A)
and f € CY(G,A) satisfy Of = u almost everywhere in G x G. Then there is a

unique element f; of C1(G,A) such that f; = f almost everywhere and 8f1 = p
everywhere on G x G.

Proof. Since the natural inclusion induces an isomorphism of H2 = Z2/B?
onto H? = Z*/B? [9; Theorem 5], and we are given [u] = 0 in H?, we know that
there exists a Borel map g : G — A such.that dg = p everywhere. Then we have
d(f~'g) = 0 in Z2, so that

(F79)(st) = (f1g)(s)s- (F19) (1)
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for almost all pairs (s,t) in G x G. By [9; Theorem 3], there is a continuous
cocycle v € Z'(G,A) such that f~'g = v almost everywhere. Then f; = y71g
equals f almost everywhere, and satisfies 0f; = 0g = p everywhere.

Suppose that f; is another such element of C1(G,A). Then 8f1 = 0f; =
p implies that f; = vf, for some v € Z'(G,A), and f; = vf» = f almost
everywhere implies that v = 1 almost everywhere; thus y =1 and fi = fo. 0O

Lemma 3.6.  Suppose that w € Z%.(G,C(X,T)), and that we have a
sequence (fn,Zn) tn E, which converges to (f,z). Let gn, g be elements of
CY(G,T) which represent fn, f in C*(G,T) and which satisfy Ogn = (€2, )« (W)
and 89 = (ez)«(w) everywhere. Then gn(8) converges to g(s) for all s € G.

Proof. Suppose there exists s € G such that g, (s) does not converge to g(s).
By passing to a subsequence, we may suppose that

(3.1) lgn(8) —g(8)| > ¢ for all n,

which ensures that no subsequence of {g,(s)} can converge to g(s). We know
that f, — f in C*(G,T), and hence by [9; Proposition 6] there is a subsequence
{ fnj} converging almost everywhere to f. Since g,;, = f,; almost everywhere,
there is a Borel null-set L such that

(3.2) gn, (t) — g(t) forallt € G\ L.

Since w takes values in C(X,T), gn;(st)gn;(s) " gn;(t)™1 = w(s,t)(za;) con-
verges to w(s,t)(z) = g(st)g(s)~1g(t)~!, which, in view of (3.1) and (3.2), im-
plies that {gn,(st)} cannot converge to g(st) for our fixed s and any t € G\ L.

Therefore, t € G\ L implies that st € L, and we have G = LUs~!- L, which is
impossible since L has Haar measure zero. [m}

End of the proof of Proposition 3.4. As before, if E,, is trivial, then
there is a continuous map 3 : X — C*(G, T) such that 0oy = by,. By Lemma
3.5, for each £ € X there is a unique element ¥ (z) of C1(X,T) such that ¥ (z)
represents (), and such that 8(v(z)) = w(-,-)(z) everywhere. Lemma 3.6

implies that if z, — z, then ¥(z,) — ¥(z) pointwise. Thus we can define
p:G — C(X,T) by p(s)(z) = ¥(x)(s). Then formally we have

[0n(5,)](z) = 8(%(x)) (s,t) = w(s,t)(2),

but we still have to show that p is Borel.
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Since the Borel structure on C(X,T) is generated by the (compact-open)
topology, it will be enough to prove that for each g € C(X,T), K compact in
X, and € > 0, the set

E=p"'({f €C(X,T):|f(z)—g(z)| < € for all z € K})
={s€G:|Y(z)(s)—g(z)| <eforall z € K}

is Borel in G. Let {z,} be a countable dense set in K. Since for each fixed z,
the function (z) is Borel,

En={s€G:|¢p(zn)(s) — g(zn)| < €}

is Borel, and hence so is (-, En. But both ¢(-)(s) and g are continuous, so
E =(,2,En, and E is Borel too. O

Remark 3.7. We have actually shown that every global section o of E,,

has the form
o(z) = (o(-)(2),z)
for some p € C'(G,C(X,T)) such that 85 = w.

Proposition 3.8. The map w — E,, constructed in Proposition 3.1 in-
duces an injective homomorphism of Hi(G,C(X,T)) into HP(X,G).

Proof. If b and ¢ are continuous maps of X into B%(G,T), then it can be
routinely verified that the map ((f,z),(g9,2)) — (fg,x) induces a continuous bi-
jection of Ey* E, = (Ep % E.)/G onto Ep,, and by Remark 2.3 this must be an
isomorphism of G-bundles. Thus, in particular, [Ey,] = [Ey][E,] in HP(X,G).
If [w] = [r] in H*(G,C(X,T)), then [wF] = 0, and hence by Proposition 3.4,
[Ew] = [Ewr][E;]. Therefore the map [w] — [E,)] is a well-defined homomor-
phism, which is injective by Proposition 3.4. O

We shall now start the process of identifying the range of the homomorphism
w +— E,. We shall show that, if 9, : G — T denotes evaluation at s € G, then
the T-bundle (v)«(E) (see Proposition 2.6) is trivial for all s € G. In fact,

this property characterizes the G-bundles of the form E,,, and we shall later give
two proofs of this: the first, in Section 4, uses operator algebras, whereas the
second, which is a special case of the argument in Section 8, is direct but harder.

Proposition 3.9. Suppose that ¢ : H — G is a continuous homo-
morphism of locally compact abelian groups. Then the induced homomorphism
¢* : H?*(G,C(X,T) — H?(H,C(X,T)) carries H3;(G,C(X,T)) into
H2.(H,C(X,T)), and the bundle Ey (4 is naturally isomorphic to ¢x(Ey).
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Proof. The induced homomorphism ¢* is defined by
¢ (w)(hk) = w(p(h)p(k))

for w € Z%(G,C(X,T)), so if p : G — T satisfies 0p = (e5)«(w), then
A(pop) = (e5)«(¢*(w)), and *(w) is pointwise trivial if w is. We define a
map ® : H x E,, — Eue(y) by ®(7,f,%) = (v(g0¢),z), where g is the unique
function in C1(G,T) representing f € C*(G,T) and satisfying 8g = (e5).(w)
(see Lemma 3.5): since « is a homomorphism,

d(v(gop)) =8(gow) =dgo(px )
= (ez)s(w) 0 (9 X @) = (€z)s(W o X @) = (€2)« (9" (w)),

so ® does take values in E,.(y). To see that ® is continuous, we suppose that
(Yn,fnrzn) — (7,f,z). Lemma 3.6 implies that g, — g pointwise on G, and
hence v(gn 0 ) — (g o p) pointwise on H. By [9; Proposition 6], this implies
that v(gno9) = v(go ) in ct (H,T), and hence (’y(gn ogo),:z:n) — ('y(gocp),a:)
in Eq,- (w)+

The space ¢«(Ey) is by definition the orbit space for the action of G on
H x E,, given by

x: (v.f2) = (V@) 1) xfox) = (v(XoP)xFz);

if g is the unique lifting of f to C1(G,T), then xg is the unique lifting of xf,
and hence @ is constant on G-orbits. We now have a continuous H -equivariant
map &' of ¢.(Ey) = (H x E,)/G into E 4« (w), which clearly respects the bundle
projections onto X, and is therefore a bundle isomorphism by Remark 2.3. 0O

Corollary 8.10. For s € G, define ¢ : G — T by Ys(v) = v(s). If
w € Z37(G,C(X,T)), then (15)«(Ew) is a trivial T-bundle for all s € G.

Proof. The map 1, is @5, where p, : Z — G is defined by ¢4(n) = s®. Thus
the proposition implies that (¢s)«(Ew) = Eys(w). But H %(z,C(X,T)) =0, s0
E s (w) must be trivial by Proposition 3.4. O

Remark 3.11. The class of G-bundles E over X satisfying

(3.3) (Ys)x(B) =X xT forall se G
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has occurred before in work of Smith [22, 23]. He calls a G-bundle p : E — X
characteristic if there is a function f : G x E — T, which is Borel on G and
continuous on F, and which satisfies

(34) f(sa')' : 6) = 7(3)f(3,§)

fors€ G, £ € E, and v € G. It is easy to check that, given such an f and s € G,
the map ¢ : (¢5)«(E) — X x T defined by

(3.5) ¢ ([2,€]) = ((6),£(5,€),2)

is a bundle isomorphism, and hence his characteristic bundles satisfy our crite-
rion (3.3). On the other hand, it follows from Theorem 4.4 (or from Section 8)
that (3.3) implies E & E,, for some w € Z3,(G,C(X,T)), and then we can set
f(s,(9,2)) = g1(s), where g; is the unique representative of g € CY(G,T) such
that g1 = (€z)«(w) everywhere. (Lemma 3.6 implies that f(s,:) is continuous
on E, for each fixed s, and the argument used to prove Proposition 3.4 shows
that s — f(s,-) is Borel as a map from G to C(E,T).) Therefore a bundle
satisfies criterion (3.3) if and only if it is characteristic. It is mildly interesting
to note that, if for each s € G we can find f(s,-) satisfying (3.4), then (3.5) de-
fines a trivialization of (¢s)«(F), and FE is characteristic; thus the measurability
requirement on f appears to be unnecessary.

Smith was interested in those principal G-bundles over X which could arise
as the spectrum of commutative twisted crossed products A X, G [22]. (Here we
use the C*-algebraic twisted crossed products of [15], rather than those based on
L'(G,A) which Smith was using, but his results would apply to these ones too.)
For such a crossed product to be commutative, A must be commutative, say A =
Co(X), G must be abelian and act trivially on X, and u € Z2 (G,C(X ,T)) must
be symmetric; since Kleppner has shown that for G abelian a cocycle in Z2(G,T)
is symmetric if and only if it is trivial in H?(G,T) [7], and since symmetry of an
element of Z2 (G’ ,C(X,T)) is a pointwise property, u is symmetric if and only if it
is pointwise trivial in our sense. Hence Smith was studying the spectrum of the
twisted crossed products Co(X)Xid,w G for w € Z2,(G,C(X,T)). He showed

that it was always a principal G-bundle over X, and that the G-bundles which
arose this way were precisely the characteristic ones.

Smith’s results are of course compatible with ours. Indeed, by Theorem 3.7
of [15], there is an action 8 of G on Co(X,K) by inner automorphisms such that
¢(B) = [w] and

Co(X) Xidw G = Co(X,K) %5G.
Since w is pointwise trivial, B is pointwise unitary, and the spectrum
(Co(X,K)xgG)" will be a G-bundle which is isomorphic to E, by Proposi-
tion 4.1. Thus characterizing the bundles of the form (Co(X) »i4,w G)" amounts
to identifying the range of the map w — [E,]. 0O
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4. Pointwise unitary actions. Suppose now that o : G — Aut(A4) is a
pointwise unitary action on a continuous-trace algebra consisting of inner
automorphisms. We want to show that the map [w] — [E,] carries c(a) €
HZr(G,C(X,T)), the algebraic obstruction to lifting o : G — Inn(A) to a ho-
momorphism u : G — UM(A) [19; Theorem 0.11], into the class ((a) of the
G-bundle Res : (A%, G)" — X defined by restriction of irreducible representa-
tions to A C M(A %, G) [13; Theorem 1.7]. We shall then use this to complete
our identification of the image of the homomorphism [w] — [E,], and discuss
the relationship of our results to Rosenberg’s.

Proposition 4.1. Suppose A is a separable continuous-trace C*-algebra
with spectrum X, a : G — Inn A is a pointwise unitary action of an abelian group
as inner automorphisms, and u : G — UM(A) is a Borel map implementing a,
so that c(a) € H2(G,C(X,T)) is represented by the cocycle w € Z%(G,C(X,T))

satisfying usuy = w(s,t)us. Then the map h : (f,) — wx fr(u) is a G-
equivariant homeomorphism of E,, onto (A %o G))" such that

Ey t > (AxaG)"

\ Res

X

Proof. We view A as the algebra I'o(E) of sections of a C*-bundle E over
X, so that A can be naturally identified with the set of evaluation maps ¢ : a —
a(z). Next we observe that h(f,r) is a well-defined representation of A X, G: if
(f,x) € E,, then s — f(s)us(z) is almost everywhere a Borel homomorphism,
and hence is equal almost everywhere to a continuous homomorphism U : G —
UM(A;) such that (;,U) is a covariant representation of (A4,G,a), which we
shall denote by (e, fu(a:)) By [18, Proposition 2.1], every elemenr* of Res™*(x)
then has the form

v+ (es X fu(z)) = €5 X (vfu(x)) = h(vf,x) = h(v- (f,z)),

80 h is G-equivariant and surjective and two such elements h(f;,x) agree if and
only if f; = f; almost everywhere, i.e., if and only if f; = f; in C*(G,T). Since
the diagram trivially commutes and h is a bijection, it will automatically be a
homeomorphism if it is continuous ([13, Theorem 1.7] and Remark 2.3). Suppose
(fnszn) — (f,z) in Ey. Then z, — z, and by passing to a subsequence we may
assume f, — f almost everywhere in G [9, Proposition 6]. To establish that
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n = h(fn,Trn) converges to m = h(f,z), we have to show that for each ¢ > 0,
unit vector n € H(w) and z € C.(G,A) C Ax,G, there exists N such that if
n > N, we can find a unit vector £ € H(w,) satisfying

|(Ta(2)€ | €) = (n(2)n | m)| <e.

Since the problem is local in X, we may as well suppose that A is the C*-algebra
defined by a Hilbert bundle H over X. Then H(m,) = H,,, H(w) = Hg, and
each unit vector in H, has the form n(z) for some n € I'(H): by localizing and
normalizing, we may suppose ||n(z,)|| = 1 for all n. For any a € A, the function
y — (a(y)n(y) | n(y)) is continuous, and each z(s)u, is in A, so

Fn(8) (2(8) (€ )us(@n)n(@n) | N(2n)) — F(8)(2(8)(2)us(x)n(x) | n(x))
for almost all s € G. Further, we have
|fn(3)(z(s)(xn)us(xn)"?(xn) | n(xn))l < lz(s)ll,

and the dominated convergence theorem implies

(Tn(2)(@n) | n(zn)) = / (2(5)@n) fu (8)ts (@n)n(@n) | n(en)) ds

= [C@@ () | 1) ds
= (n(e)n(@) | n(z).

Thus 7, — 7 in (A X4 G))", h is continuous, and the result follows. |

Lemma 4.2. Suppose ¢ : G — H is a continuous homomorphism between
two locally compact abelian groups, A is a separable continuous-trace algebra and
o : H — Aut A is pointwise unitary. Then the map

9: (v, xU) 7 xy{Uop)

induces a G-equivariant homeomorphism h of . (A %o H))") onto (A Xao, G))"
such that

u (A %o H)) > (AXaop G)"
m Res
A

commutes.
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Proof. It follows easily from [18, Proposition 2.1] that ¥ is a well-defined
map of (A X H))" onto ((A Xaoe G))N. To see that 9 is continuous, first observe
that it is the composition

dual action

G x (AXH) —22 1 @ x (A aop G —220 (4 a0 GY,

where ¢ sends 7 x U to m x (U o ¢). The homomorphism ¢ induces a homomor-
phism id x ¢ : AXgop G — M(A Xy H), and it in turn induces a continuous map
(id x ¢)* from the space Z(A x H) of closed ideals to Z(A xG) [1, Proposition 9]:
if rxU € (Axy H))", then

(id x )* (ker(m xU)) ={z € AxG: (id x ¢)(2)- (Ax H) € kerr x U}
={2€ AxG:7xU(id x ¢(z)) =0}
= ker(m x (U0 p)).

Since both m x U, m x (U o) are irreducible, and A Xqo, G, A xq H are type
I (they have Hausdorff spectrum by [13, Proposition 1.5]), this implies that
@:wxU — 7 x (Uoy) is continuous. It follows that ¥ is continuous.

It is easy to check that ¥ is constant on H-cosets, and hence induces a
continuous map h of (G x (Axq H)")/H onto (AXgopG))". We trivially have
that Resoh = p and h is G-equivariant. Since both actions of G are free and

proper ([13, Theorem 1.7] and our Proposition 3.1), it follows from Remark 2.3
that h is a homeomorphism. O

Corollary 4.3. Suppose G is a locally compact abelian group, A is a
continuous-trace C*-algebra and a : G — Aut A is pointwise unitary. For s € G,
we define g5 : Z — G by ps(n) = s™. Then as is inner if and only if the
T-bundle ¢ (A %a G)") is trivial.

Proof. The automorphism «, is inner if and only if the action a0 ¢, of Z
is unitary, which happens if and only if (4 Xqop Z))" is a trivial T-bundle [18,
Proposition 2.5]. Therefore the result follows from the proposition. O

Theorem 4.4. Let G be a second countable locally compact abelian group
acting trivially on a second countable locally compact space X, and for s € G

define ¢, : G — T by Ys(y) = v(8). Then the map w — E,, of Proposition 3.1
induces an isomorphism of H3;(G,C(X,T)) onto

{[E] € HP(X,G) : (¢s)«(E) is trivial for all s € G}.
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Proof. After the results of Section 3, it only remains to show the surjectivity.
So suppose E is a G-bundle over X such that (1,).(E) is a trivial T-bundle for
all s € G. By [13, Proposition 1.13] there is a pointwise unitary action o of G
on A = Co(X,K) such that (4 xq@))" is G-isomorphic to E. By Lemma 4.2,
we have

(¥)2(E) = (@)4(E) & (AXaop, Z))",

and because this is trivial, a; = a0 ¢4(1) is inner (Corollary 4.3). Thusa: G —
Inn A, and is implemented by a Borel map u : G — UM(A). If usus = w(8,t)uqt,
then w € Z? (G ,C(X ,T)) is pointwise trivial because « is pointwise unitary, and
Proposition 4.1 implies E,, = ((Axq G))" & E, as required. m}

As we mentioned in the introduction, our results have been motivated by a
theorem of Rosenberg concerning connected groups [21; Theorem 2.5], and this
can be deduced from our Proposition 4.1 using duality.

Theorem 4.5 (Rosenberg). Let G be a second countable connected locally
compact abelian group, and X a second countable locally compact space. Suppose
that H?(X;Z) is countable, and that G acts trivially on X. Then the map w —

E,, induces an isomorphism of H3r(G,C(X,T)) onto H'(X,G).

Proof. Since G is connected, it is compactly generated, G is a Lie group, and
all G-bundles are locally trivial [16; Theorem 4.1]; hence H(X,G) = HP(X,§).
Thus we only have to prove that every principal G-bundle E has the form E,.
But if E is a G-bundle, the dual action of G on A = Co(E) x§ is locally unitary
[19; Proposition 3.1], and (@) C Inn(A) because G is connected and Inn(A) is
open in Autg,(x)(4) [19; Theorem 0.8]. If w € Z?(G,C(X,T)) represents c(c),
then w is pointwise trivial because o is pointwise unitary, and E,, & (A %, G)"
by Proposition 4.1. Since (4 %, G)" = E by [18; Proposition 3.1], this proves
the result. O

This proof of Rosenberg’s theorem does use some fairly heavy tools from
operator algebras, and therefore seems to be substantially more complicated
than the original. However, Rosenberg agrees with us that the argument in [21]
may be inadequate as it stands, and the alternative direct proof of Theorem
4.5 which he has shown us also relies on some sophisticated machinery. The
potential problem in [21] occurs at the end of the proof of part (b), where it
is asserted that a continuous function f : X — B%(G,T) gives an element of
Z? (G,C(X,T)) (see the comments concerning Lemma 3.5 above); for this to be
true one will certainly need some hypotheses on G, since we give an example
below (Example 4.7) where @ is non-discrete, so C*(G,T) is still contractible,
but w — [E,] is not surjective.

Putting our theorem together with Rosenberg’s gives an amusing topological
corollary:
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Corollary 4.6. If G is connected and E is a G-bundle with H*(E/G,Z)
countable, then (Vs)«(E) is a trivial T-bundle for all s € G.

Of course, the above proof of this purely topological fact must be unneces-
sarily convoluted, and at least for compact X a simple direct argument can be

given. For if F has transition functions A;; : Ny; — G and X is compact, we may
suppose the cover is finite and the ranges of the A;; all lie in a compact subset
K of G. Then 9; — 1, uniformly on K as t — s, and there is a neighborhood
N of s such that t € N implies that |X;;(z)(t) — Aij(z)(s)| < V2 for all 4, j and
x € N;;j. Then applying the principal branch of log to Ay (- )(£)Ai;(-)(s)~! gives
a cocycle with values in R, which has the form 8p since H'(X,R) = 0, and we
have d(expp) {¥s 0 Aij} = {¥¢0Ai;}. Since G is connected and (1)« (E) is the
trivial bundle, this proves that (1,)«(FE) is trivial for all s.

In the event that X is paracompact, but not necessarily compact, the referee
has suggested the following argument. Since G is connected and abelian, general

structure theory implies that G = K x R™ where K is discrete and torsion-free
[3; Theorems 24.25 and 24.30]. Since R™ is contractable, in order to show that

("pa)* : ﬁl(X’g) - .EII(X,S) = E[z(X;Z)

is trivial, it is enough to show that (yx). : HY(X;K) — H(X,S) is trivial.

Since K is torsion-free, we can, with suitable hypotheses on X and K, apply the
universal coefficient theorem [24; Theorem 5.5.10] to conclude that

(4.1) HY(X;K)= H'(X;Z)®K,

and then (%)« corresponds to pairing with k. Thus the image ends up in the
image of H1(X;Z)® T in H'(X;T), which in turn maps to H'(X,S). But a
straightforward calculation with cocycles shows that the map from H(X;T) to
H'(X,S) is zero on H(X;Z)®T. Since (4.1) is valid whenever either K is
finitely generated or the homology of X is finitely generated, the above gives
a topological proof of Corollary 4.6 in these cases. Note that X having finitely

generated homology actually implies that H2(X;Z) is finitely generated [24; The-
orem 5.5.3]—hence countable.

Example 4.7. Let G = R x Z. The map (r,s) — (r,exp(2mis)) of R? onto
R x T induces (via the long exact sequence of sheaf cohomology) an isomorphism
of H(X,G) onto H?(X,Z), and the evaluation map 3,1 : (r,z) — z induces an
isomorphism of H!(X,G) onto H!(X,S). Thus there are no non-trivial locally
trivial G-bundles E such that (1)« (E) is trivial for all s € G. This is consistent
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with our theorem, since H2(G,C(X,T)) = 0 for any space X. To see this, we
recall from [19, Theorem 4.1] that

H?(R,C(X,T)) = H*(R,C(X,T)) = 0 = H?(Z,C(X,T)).

We can therefore deduce from the Lyndon-Hochschild-Serre spectral sequence
for Moore cohomology that

H*(RxZ,C(X,T) = H (R,H'(Z,C(X,T)));

indeed, a specific isomorphism is given by sending ¢ € Z'(R,H!(Z,C(X,T)))
to the cocycle p, € Z2(G,C(X,T)) given by

Ko ((s,n),(t,m)) = (P(t)(n)
(see, for example, [14, Appendix 2]). Now
H'(R,H(Z,C(X,T))) = Hom(R,C(X,T)) = C(X,R),

and this isomorphism is functorial in X, so we have a commutative diagram

H?*(RxZ,C(X,T)) > C(X,R)
(Ez)‘- l lEa:
H2(R x Z,T) > R

In particular, (€;)«(s) = 0 for all z if and only if the corresponding function van-
ishes identically, and therefore the pointwise trivial part of H%(R x Z,C(X,T))
is 0, as claimed. O

5. The A-invariant. We are interested in the Moore groups H(G, - ) because
they contain the obstruction to implementing an automorphism group a : G —
Inn(A) by a unitary group u : G — UM(A). When this happens, of course, the
system is easy to analyze; for example, the crossed product A X, G is isomorphic
to A®max C*(G). Even if o does not consist of inner automorphisms we can
try to implement |y whenever N is a normal subgroup of G such that a(N) C
Inn(A). However, in order to obtain useful information about A %, G, we have
to know also that the resulting homomorphism v : N — UM(A) is compatible
with the action of all of Gj; specifically, we require that

(5.1) 0s(Up) = Ugpg—1 for n € N, and s € G.
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We shall call a strictly continuous homomorphism u : N — UM(A) satisfying
a|y = Adu and (5.1) a Green twisting map for a on N, for reasons we shall
shortly explain.

When o has a Green twisting map v on N, we can form the restricted
crossed product A XG N G, which is the quotient of A X, G whose representations
are given by covariant pairs (7,U) satisfying 7(u,) = Uy, for all n € N. These
crossed products were introduced and used by Green in his version of the Mackey
machine for crossed products [1] (see also [11]). They behave very much like
ordinary crossed products by G/N, and it is often possible to obtain information
about Ax,G from AxY yG. Indeed, Olesen and Pedersen [12; Theorem 2.4]
showed that when G is abelian we can recover A %, G as the induced C*-algebra

Ind§¢ (Ax y G,4&) consisting of those functions f € Cp(G,A X, y G) satisfying

(@) f(vx) = a; (f(7)) for x € N+, and
(b) YN+ — ||#(v)|| vanishes at infinity on G/N+.

We would like, then, a group cohomological invariant which measures the
obstruction to implementing an action o : G — Aut(A) with a(N) C Inn(A) by
a Green twisting map u : N — UM(A). For this section, we shall not assume
that G is abelian or that A is continuous-trace, but we do still require G to be
second countable and A to be separable.

We proceed exactly as in the case where a(G) C Inn(A). Since @ : N —
Inn(A) is continuous for the quotient topology on Inn(A4) = UM(A)/UZM(A)
[19; Corollary 0.2], we can find a Borel map u : N — UM(A) such that o, =
Ad uy, for all n € N. As usual, there is a Borel map p: N x N = UZM(A) such
that

(5.2) U Un = (M) Urnn for m,n € N,

and [p] € H?(N,UM(A)) is the obstruction c¢(a) to implementing oy by a
unitary group. For s € G, n € N, and a € A we have

Ad 5(ug-1ns)(a) = as (Ad Ug-1ng (as_l(a)))
= O (ae"lns (as'l (a)))

= Ad up(a),

and therefore as(ug-1,,) and u, differ by an element of UZM(A). Thus there
is a Borel map A : G x N — UZM(A) such that

(5.3) s(Ug-105) = A(8,1) - Up fors€ G,n € N.
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(We have chosen this rather than the more obvious comparison of a,(u,) with
Ugne—1 t0 make (5.8) below more palatable.) We can, and shall, always assume
that the pair (A,u) has been normalized so that

(5.4) u(n.e) = 1= p(e,n)
(5.5) Aemn) =1 = A(s,e)

for all n € N and s € G. (This is done by insisting that ue = 1.)

Lemma 5.1. Suppose that (A,G,q) is a separable dynamical system and
that N is a closed normal subgroup of G such that o(N) C Inn(A). Choose a
Borel map u : N — UM(A) such that a|y = Adu and ue = 1. Define A\, u by
(56.2) and (5.3), respectively. Then for m, n, p € N and s, t € G we have, in
addition to Equations (5.4) and (5.5),

(5.6) p(m,n)p(mn,p) = p(m,np)u(n,p),

(5.7) A(m,n) = p(m,m~ nm)u(n,m)"?,

(5.8) A(st,n) = A(8,n)as (A(t,87 ns)), and

(5.9) A(s,mn) = a, (u(s‘lms,s'lns))_lu(m,n)/\(s,m))\(s,n).

Proof. Item (5.6) is just the usual cocycle identity for u, and to establish
(5.7), expand Equation (5.3) using (5.2) and a, = Ad u,. The identities (5.8)
and (5.9) follow from similar calculations. i

Remark 5.2. Condition (5.8) says that the function
X: G — CY(N,UZM(A))

defined by A(s)(n) = A(s,n) is a 1-cocycle for the action of G on C* (N, UZM(A))
given by (s-¢)(n) = as(p(s™'ns)). There is also a natural action of G on
Z2(N,UZM(A)) given by s-pu(m,n) = a,(u(s~ ms,s"1ns)), and then Condi-
tion (5.9) says that 8(A(s)) = p~2(s-p). We observe that X is a Borel cocycle
if we pass to the quotient C*(N,UZM(A)) of C*(N,UZM(A)). (This follows
from the first part of the proof of [10; Theorem 1].)

The pairs (A,u) will form the cocycles in our relative cohomology group A.
To identify the appropriate equivalence relation, we suppose that we had chosen
a different Borel map v’ : N — UM(A) satisfying a|y = Adw’. Then there is a
Borel function p : N — UZM(A) such that v’ = p-u. As usual the 2-cocycles
are related by u' = (8p)p, and the X’s by

X(s,1) = ty (p(s™ns)) p(n) " A(s,n).
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If we let Ap denote the pair (A, 1), where
(5.10) p1(myn) = dp(m,n) = p(m)p(n)p(mn)~*, and
(5.11) A1(s,n) = o, (p(s™1ns))p(n) 1,

then we have (N ,u') = Ap(A,u). We are now ready for the formal definition of
our A-invariant.

Definition 5.3. Let G be a second countable locally compact group, N a
closed normal subgroup, and M an abelian Polish G/N-module. For consistency,
denote the action of s € G on m € M by as(m). Let Z(G,N;M) denote the
group of pairs (A,u), where y : NxN — M and A : Gx N — M are Borel
maps satisfying Conditions (5.4)-(5.9), and the group operation is pointwise
multiplication. Let B(G,N;M) denote the subgroup of all pairs of the form
Ap (see Conditions (5.10), (5.11)) for some Borel map p : N — M, and let
A(G,N;M) be the quotient Z(G,N;M)/B(G,N;M).

Proposition 5.4. Let (A,G,a) be a separable dynamical system, and sup-
pose that N is a closed normal subgroup of G such that a(N) C Inn(A). Define
(An) € Z(G,N;UZM(A)) in terms of a Borel lifting u for a|n by Equations
(5.2) and (5.3). Then the class d(e) = [M\p] of (A\p) in A(G,N;UZM(A)) is
independent of any of the choices made, and vanishes if and only if there is a
Green twisting map for a on N.

Proof. We have already proved everything except the last statement. But
one direction is obvious—if u is a Green twisting map, then x4 and A are identi-
cally 1. Conversely, if (\,u) are defined using u: N — UM(A) and (A,n) = Ap,

then v, = p(n)~lu, defines a Borel homomorphism v : N — UM(A), which is
automatically continuous and satisfies

o, = Ad u, = Ad v, and
as(vn) = (p(n))—las(un) = a, (p(n))_lz\(s,sns‘l)um,-x
= p(sns-l)_lusns—l = Ugpg-1: O

Remark 5.4. We have referred to the group A(G,N;M) as a relative Moore
cohomology group, and of course we should explain why we have done this. For
discrete G, it has been shown by several authors that the group A fits into an
eight term exact sequence

0 — HY(G/N,M) =5 HY(G,M) BS HY(N,M) — H?*(G/N,M) —

2 H2(G,M) — A(G,N;M) — H3(G/N,M) 2 H3(G,M)
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(e.g., [4], [6], [8], [20]); indeed, in Loday’s proof of this, he defined the relative
cohomology to be that of the quotient complex {C*(G,M)/C*(G/N,M)}, so
that there is almost by definition a long exact sequence, and then identified H3
with A [8]. Huebschmann [4] and Ratcliffe [20] defined A(G,N;M) to consist of
the G-crossed extensions of N by M; roughly speaking, these are the ordinary
group extensions with a compatible action of G. Although we shall not pursue
them here, there will be similar results relating our Borel version of A to Moore
cohomology and to Polish crossed extensions—in fact, we originally formulated
our arguments in terms of Polish extensions, and one still appears in Section 8.

The relevance of A to group actions on operator algebras was pointed out
to us by Colin Sutherland, who has been heavily involved in the classification
of discrete group actions on injective von Neumann algebras (e.g., [6], [25]). If
a : G — Aut(M) is such an action, two ingredients in the classification are the
subgroup N = a~*(Inn(M)) and the obstruction d(a|y) to implementing a on
N by a homomorphism u : N — U(M) satisfying Equation (5.1). Our Borel
version will not be so useful for actions of locally compact groups, since Inn(M)
is in general not a closed subgroup of Aut(M); however, for continuous-trace
C*-algebras we do often have Inn(A) closed in Aut(A) [19; Theorem 0.8], and
hence our invariant should be particularly relevant in this case.

6. The A-invariant and diamonds of bundles. We say that an element (A, )
of Z(G,N;C(X,T)) is pointwise trivial if p belongs to Z2,(N,C(X,T)), and we
write (A\,u) € Zpr(G,N;C(X,T)). Suppose that G is abelian. Our goal here is
to construct from each pointwise trivial (A,u) a commutative diamond

E

Foau

/ \ .
\X/G /

in which the southeast arrows are N-bundles and the southwest arrows are
G/N-bundles, such that Fy ,) — X/G is trivial if and only if [A,u] = 0 in
A(G,N;C(X,T)). The idea is to take E = E,,, use A to define an action of G on
E which commutes with the action of N, and define Finu = E/G. We begin
with two straightforward results on diamonds of bundles.
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Lemma 6.1. Suppose that H and Q are locally compact groups, that
p: X — T is a Q-bundle, and that r : E — X is an H-bundle. Suppose
there is a free and proper action of Q@ on E which commutes with the action
of H and for which r is equivariant. Then the formula h-(Q-§) = Q- (h-§)
defines a free and proper action of H on E/Q. Further, the map por : E —» T
induces a continuous open surjection q : E/Q — T, which in turn induces a
homeomorphism of (E/Q)/H onto T'; in other words, ¢ : E/Q — T is an H-
bundle.

Proof. The action of H on E/Q is well-defined because the actions on E
commute, and it is free because r is equivariant, Q acts freely on X, and H acts
freely on E. To see that the action is proper on E/Q, consider nets @ - & — Q- €
and hi - Q- & — Q- n; it will suffice to show that {hx} has a convergent subnet.
By passing to a subnet, we may suppose that & — ¢ in E, and that there are
sk € Q such that hy - sg & — n in E. However, this implies that r(&) — r(£)
and that r(hg - sk -€k) = 8k -7(€x) — r(n), so the properness of the Q-action
allows us to assume, by passing to yet another subnet, that {sx} converges to
some s € Q. Now we have s - & — s-£ and hy - (g - &) — 7, which since N
acts properly on E implies that {hx} has a convergent subnet. Thus, H acts
properly on E/Q. The map por is open and constant on @-orbits, and hence in-
duces a continuous open map ¢ : E/Q — T which is easily seen to be surjective.
This map is constant on H-orbits since r is, and induces a bijection of (E/Q)/H
onto T = (E/H)/Q, which is a homeomorphism because ¢ is open and continu-
ous. m]

Lemma 6.2. Suppose we have a commutative diamond
tn which i and p are Q-bundles; r and q are H-bundles; and i and r are H- and
Q-equivariant, respectively. Then the map f(€) = (i(£),r(£)) is an isomorphism
of the H-bundle E onto the pull back p*(Y), and carries the action of Q into

that given by q- (y,x) = (y,q- ).

Proof. This follows from Remark 2.3. 0O
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We now return to the main construction. For the rest of this section, G
will be a second countable locally compact abelian group, N a closed subgroup,

and X, T second countable locally compact spaces such that p : X — T is a
G/N-bundle.

Proposition 6.3. Let (\p) € Zpr(G,N;C(X,T)), and let E, be the
N-bundle of Proposition 3.1. The formula

(61) 3’(fr77) = (/\(8,~)(8‘$)f,8°$)

defines an action of G on E,, which is free and proper, and commutes with the
action of N on E,. If we set ¢(G-(f,z)) = p(z) and F»,) = E,/G, then
q:Fou —Tisan N-bundle.

Proof. We first observe that since G is abelian, Equation (5.9) implies that

0(A(s,)(s-x)f)(m,n)
= A(s,m)(s - ) f(m)A(s,n)(s - z) f(n)A(s,mn)(s - ) f (mn)

= Q4 (N(m’n)) (s-z)u(myn)(s- x)af(m,n)
= p(m,n)(z)u(m,n)(s - )u(m,n)(z)

= bu(s-2)(m/m),

so s:(f,z) does belong to E,. Similarly, Equation (5.8) implies that
s-(t-(f,z)) = st-(f,z), and Equation (6.1) does define an action of G on E,,.

To see that this action is jointly continuous, recall that C*(N,C(X,T)),
topologized as in [9], is a Polish G-module for the G-action given pointwise on
C(X,T). It follows from Remark 5.2 and [9; Theorem 3] that X is continuous
from G to C! (N,C(X,T)). Therefore if sy — s in G and zx — z in X, then we
need to show that fy — f in C*(N,T), where

Fi(n) = Alsk)(n)(@k) = A(sk,m)(@k)-

Replacing {fx} by a subsequence and relabeling, it will suffice to show that
{fx} has a subsequence converging almost everywhere on N. But by again

replacing {fx} by a subsequence and relabeling, we can assume that X(sk) —
X(s) almost everywhere on N, say on N \ S [9; Proposition 6]. Of course, then
A(sk)(n)(zx) = A(s)(n)(x) for eachn € N\ S, since C(X,T) carries the topology
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of uniform convergence on compacta. It now follows that the action is jointly
continuous.
Since p is pointwise trivial, it is symmetric, and condition (5.7) of Lemma

5.1 implies that A(n) = 1 for all n € N. Thus, our G-action has constant isotropy
N. Since the action of G on “the second factor” of E,, is already proper, we have

now established that E, is a G/N-bundle. Because the actions of G and N
commute, the result follows from Lemma 6.1. O

Proposition 6.4. Suppose that (\,p) € Zpr(G,N;C(X,T)). Then the
N-bundle q : F(\u) — T of Proposition 6.3 is trivial if and only if [A\,u] =0 in
A(G,N;C(X,T)).

Proof. If (A\,u) = Ap, then as in the proof of Proposition 3.4, h(z) =
(p(-)(z)~1,z) is a continuous section of E,. Further, we have from Equation
(5.11) that

s h(s™!-z) = (A(s, ) (@)p(-)(s7" &),8- (s )
= ([M(s,)p()7H(2)2)
= (o(-)(@)2)
= h(),

and we can therefore define a section k of F() ,) = E,/G by k(G-z) = G- h(z).
Conversely, suppose that F(, ,) = E,/G is trivial. It follows from Lemma

6.2 that E, = p*(F(y ) is trivial and has a continuous section b : X — E,. By
Remark 3.7, h has the form

h(z) = (p(-)(z)™},z)

for some Borel map p: N — C(X,T) with 9p = p. The equivariance of h implies
that

(p(-)(s-2),5-7) = h(s-z) = 5-h(z) = (A(s," )(s-2)p(-)(2),8 - z),
which reduces to (5.11) since G is abelian, and we have (A\,u) = Ap. |

Theorem 6.5. Let G be a second countable locally compact abelian group,
N a closed subgroup, and X a second countable locally compact G-space such that
the orbit map p: X — X/G is a G/N-bundle. Then the map (A,u) — F() ) of

Proposition 6.3 induces a well-defined isomorphism of A(G,N ;C(X ,T)) onto

{[F] € HP(X/G,N) : ()« (0" (F)) is a trivial T-bundle for all n € N}.
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Proof of all but surjectivity. It follows from the definition of F{y , as E, /G
and Lemma 6.2 that p*(F(,)) & E,, and Corollary 3.10 implies that [F(y ,)]

lies in the given subgroup of HP(X/G,N). If we can show that
Fouw *Fovuy = Fouws

then the argument of Proposition 3.8, using Proposition 6.4 in place of Proposi-
tion 3.4, will show that [A,u] — [F(y )] is a well-defined monomorphism.

Suppose, therefore, that (A,x) and (X,u') are in Zpr(G,N;C(X,T)). We
start by defining a G action on the N-bundle E, * E, by the formula s-[£,7] =
[s-&,5-7] (this is well-defined because the G- and N-actions commute). Notice
that if s-[£,7] = [£,7], then there exists y¥ € N such that (s-£,s-1) = (v€,79m).
Because the bundle projection r : E, — X is G-equivariant and N—invariant,
we see that such an s must be in N. Thus, E, xE, is a free G/N-space. It is
also proper. To see this, suppose that [§x,mk] — [£,1] while sk - [€x,mk] — [€'7']-
Without loss of generality, we may assume that (£,mx) — (£,n7) and that there are
vk € N s0 that (sg - - €,k - Tk - M) — (€,7'). Then we also have r(£) — 7(€)
and sg-r(€k) = (8K Yk &) — r(&’). It follows that {six} has a convergent
subsequence, and hence that E, x E,s is a G/N-bundle.

Now Lemma 6.2 implies that E, x E,1/G is a N-bundle over X/G. Define
Y Eux By — Foyu) % Fovun by

¢((fa$)a(g>w)) = (G : (f,.’L'),G : (g,x)).

Since 1 is continuous, constant on G-orbits, N-equivariant, and induces the iden-
tity on X/G, ¢ implements an isomorphism of E, * E,,/ /G onto F(y . * Fia ury.
On the other hand, we have already observed that the map ((f,z),(9,z)) — (fg,)
induces an isomorphism ¢ of E, x E,/ onto E,, (see the proof of Proposition
3.8), and since ¢ is G-equivariant, it implements an isomorphism of
E,*E, /G and F\y . This completes the proof that ¥ is an injective ho-
momorphism. 0

7. Actions which are proper modulo N. Let (A,G,a) be a separable dy-
namical system in which A is a continuous-trace algebra with spectrum X, G is
abelian, o is pointwise unitary on a closed subgroup N of G, and p: X — X/G
is a G/N-bundle; we shall sum this up by saying that « is proper modulo N. We
now want to show that if in addition a(N) C Inn(A), then the construction of
the previous section connects up the algebraic and topological invariants associ-
ated with . From this we shall deduce our structure theorems for actions which
are proper modulo N.
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Proposition 7.1. Suppose that (A,G,q) is a dynamical system such that
a is proper modulo N, a(N) C Inn(A), and A = X. If q(a) is the class of
¢: (A% G) — X/G in HP(X/G,N) ([18; Corollary 2.1]), d(a) is the class
in Apr (G,N ;C(X ,T)) corresponding to (A,G,a), and U is the isomorphism
defined in Theorem 6.5, then ¥ (d(a)) = q(c).

Proof. Recall that we obtain a representative (\,u) for d(a) by choosing a
Borel map u : N — UM(A) satisfying a,(a) = upau,) for alln € N and a € A,
and using Equations (5.2) and (5.3) to determine (\,u). We resume the notation
of Proposition 3.8. As in that Proposition, each (f,z) € E, determines a unitary
representation fu(z) of N which is defined by n — f(n)un(z). Furthermore,
(ex, fu(a:)) is an irreducible covariant representation of A X, N, and there is an
N-bundle isomorphism h : E,, — (A%, N)" defined by (f,z) — (ez>fu(z)). For
the moment, fix s € G and x € X. We have

h(s: (£2) = (€sarfas(u)(s- @),

where fo,(u)(s-z) stands for the representation which coincides almost ev-
erywhere with n — f(n)oa,s(us)(s-z). Recall that s-e; is defined by a +—
o (a;l(a)). By assumption, s-&, is unitarily equivalent to €,.,: let V be a
unitary which implements the equivalence, so that

Va(s-z)V* = o (a)(x)

for a € A. Now one computes that V implements an equivalence between the
representations L = (g5.5,fas(u)(s-z)) and M = (s-&5,fu(z)). That is,

h(s-(f,z)) = [s- €, fu(z)].

It follows from the proof of [19; Proposition 2.2] that h is G-equivariant from
E,, to (Axo N)" and induces the identity on X/G. Thus the proposition follows
from Remark 2.3 and [19; Proposition 2.2]. m|

Theorem 7.2. Suppose that (A,G,a) is a dynamical system such that

is proper modulo N and A= X. Then (A%, G)" is a trivial N-bundle over
X/G if and only if there is a Green twisting map for o over N.

Proof. By [13; Proposition 2.1] and Lemma 6.2, (4%, N)" is isomorphic
to the pull-back of (A x4 G)" over the orbit map p : X — X/G. Therefore,
if (Ax,G)" is a trivial bundle, then so is (4 Xy N)”. It then follows from [13;
Corollary 1.11] that a(N) € Inn(A). Thus Proposition 7.1 applies and the result
follows from Proposition 6.4 and Proposition 5.4. On the other hand, if there is a
Green twisting map for o over N, then by definition a(N) C Inn(A). Therefore
the converse also follows from Propositions 7.1, 6.4, and 5.4. m
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Corollary 7.3. Let (A,G,a) be a dynamical system such that o is proper
modulo N and A = X. Then (A%, G)" is trivial as an N-bundle over X/G if
and only if there is a continuous-trace C*-algebra B with spectrum X/G and a
pointwise unitary action B of N* on B such that (Ax, G,G‘,d) 18 covariantly
isomorphic to (Indgl (B,B),G7).

Proof. Since Indfu (B,B) has spectrum (G/N1)x B = N x (X/G) (e.g.,
[19; Proposition 3.2]), one direction is easy. Conversely, if (A %o G)" is trivial,
the theorem implies that there is a Green twisting map u : N — UM(A) for .
By [12; Theorem 2.4], there is then an isomorphism

AxoG = Ind$. (AE yGid|ys)

which carries the dual action of G into the canonical action 7 of G by transla-
tion on the induced algebra. Thus it only remains to verify that Axg v G is a
continuous-trace algebra with spectrum X/G, and that & is pointwise unitary
on N-t.

The twisted covariant system (A4,G,N,a,u) is essentially free in the sense
of Green [1], and hence it follows from Theorem 24 of [1] that Ax} yG has

spectrum X/G; it has continuous trace because it is a quotient of A %, G, which
has continuous trace by [19; Corollary 2.5(2)]. It also follows from [1; Theorem
24] that every irreducible representation of A X} y G is equivalent to one of the
form Ind$ (r), where  is an irreducible representation of A & A xo v N. The

covariant representation of (A4,G,a) corresponding to Ind(7) can be identified
with (#,)), acting on the Hilbert space H consisting of those Borel functions
f + G — H, which satisfy

f(sn) =m(n)"'(f(s)) fors€ G,ne€ N and /G/N If(8)||I?d(sN) < o,

according to the formulas

#(a)f(t) = m(a; (@) (F(#), and A (f)(t) = f(s7't).
(It is easy to check directly that this covariant representation preserves the
twist—i.e., that #ou = A|y—and hence gives a representation of Ax} xG.)
The dual action of 6., fixes the copy i4(A) of A in M(A %, G), and multiplies
the generators ig(s) for s € G by v(s). Thus we may define U : Nt — H by

Uy(f)(8) = v(s)f(s), and verify easily that for v € N,a € A, and s € G, we
have

7 x Ay (i4(a))) = 7 (ia(a)) = Uy (ia(a))U; = Uy x A(ia(a))Uy, and
7 X M@y (i6(8))) = 7(8)As = Uy AUy = Uyt x A(ig(8)) Uy

The action &|y. is therefore pointwise unitary, and the Corollary is proved. O
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Corollary 7.4. Let (A,G,a) be a dynamical system such that o is proper
modulo N and A = X. Suppose thatp: X — X /G 1s trivial as a G/N-bundle.
Then there is a pointwise unitary action 3 of N on a continuous-trace algebra B
with spectrum X /G such that (A® K(L*(G)),G,a® Adp) is covariantly isomor-
phic to (Ind$(B,9),G,7). (So that essentially the only ezamples with A trivial
are the ones studied in [19; Section 3(a)].)

Proof. We apply the previous corollary to the dual system (A X, G,G‘,&):
we know from [13; Proposition 2.1] that G/N+ = N acts freely and properly on
(A4 G)", so the only point to check is that & is pointwise unitary on N+1. But
[19; Proposition 2.1] implies in particular that every irreducible representation of

A %o G has the form Ind$ (z x U) for some m x U € (A %o N)", and the argument
in the proof of the previous corollary carries over verbatim. We can therefore
deduce that

(A%aG) %4 G,G &) = (Ind§ (B,9),G,T),

and the result follows from the Takai duality theorem [17; Theorem 7.9.3]. O

8. Surjectivity. In this section we merely want to fill in the remaining bit
of the proof of Theorem 6.5—namely, we need to show that the map ¥ defined
in Theorem 6.5 is surjective. Precisely, we must show that, given a G/N-bundle

p: X — X/G and a N-bundle ¢ : F — X/G, such that the pull-back E = p*(F)
has the property that (,)«(E) is a trivial T-bundle for each n € N, then
there are invariants (A,u) representing a class in Apr (G,N;C(X,T)) with F( ,,)

isomorphic to F as N-bundles. Equivalently, we will show that E is isomorphic
to E,, both as a N- and as a G/N-bundle.
First observe that T x N x E becomes a N-bundle when given the action

v (tan’é) = (Tn)tvnﬁ' ' é)

The quotient B is a T-bundle over N x X with the bundle map given by
k([tn,€]) = (n,r(£)). Define continuous maps k : B - X and 6 : B » N
by the formulas

s([t,n,€]) =r(€), and §([tn,¢]) =n.
Finally, notice that the spaces
B, =h'({(n,z): z € X})

are easily seen to be isomorphic to (1,)«(EF). Since the latter space is a trivial
T-bundle over X, there will be continuous sections. The next lemma will be
useful for describing these sections. We shall need the extra generality later.
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Lemma 8.1. Let B =E % B = {(¢,b) € Ex B :r(¢) = k(b)}. For each
(&,b) € B', define 9(&,b) to be the unique value in T such that

[0(€,b)76(b)a6] =b.
Then 9 : B' — T is continuous.

Proof. Suppose that {(£k,bx)} converges to (£,b): it suffices to show that
every subsequence of {J(&x,bx)} has a convergent subsequence. Thus we may

as well assume that there are 7, € N such that ’yk-(ﬂ(fk,{k),&(bk),{k) —
(9(€,b),6(b),€). Now as & — ¢ and - & — €, we may also assume that
Y — 1. Since §(bx) — 6(b), it follows from

Vi (6(bx)) 9 (Exsbr) — 9(€,b)
that 9(€k,bx) — F(&,b) as well. m]

Definition 8.2. Let C denote the collection of continuous functions c :
X — B which satisfy

(1) &(c(z)) = x, for all z € X; and
(2) there exists no € N so that §(c(z)) = n for all z € X.

We give C the relative topology as a subspace of C(X, B) with the compact-open
topology.

Lemma 8.3. Suppose that f : E — T is continuous and there exists
ng € N such that

(8.1) fr-&) =1(ng)f(€)  forallye N and¢ € E.

(1) The function cs : X — B defined by

ef (r(€)) = [(F(©)ns,€)]

belongs to C, and every element of C has this form for some continuous
f : E — T satisfying Fquation (8.1).

(2) A sequence {cg,} converges to cy in C if and only if ny, — ny and
frx — f uniformly on compacta in E.

(3) Givenn € N, there is a cy € C with ng = 6(cs) = n.
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Proof. Tt is easy to verify that c; € C. To see that every ¢ € C has this
form we just apply Lemma 8.1 to the subset {({,c(r(¢)))} of B’, and define
f by f(€) = 9(&,e(r(€))). Part (3) follows immediately from part (1) and the
observation that each B, is a trivial T-bundle. Now suppose cf, — ¢y in C, and
&, — & is an arbitrary convergent sequence in E. Then

Fr(€k) = 9 (Erscs, (r(€r))) = F(E,cs (r(6))) = £ (),

and hence fy — f uniformly on compacta. Since we trivially have that the
constant value ng, of §ocy, converges to ny, this gives one implication of part
(2). Since any compact set in X has a compact pre-image in E, the converse
implication is straightforward. O

In view of this lemma we can define a group structure on C' by the rules
cfcg = cfq and cf'l = cf, where

cig(r(€) = [f(f)g(f),nfng,é], and
ey (r(€) = [F©).n7".€],

and these operations are continuous for the topology of C(X,B). Since C is
clearly a closed subspace of the Polish space C(X,B), we have shown that C is
an abelian Polish group.

Now it is evident from Lemma 8.3 that §|¢ is a continuous surjection of
C onto N with kernel i(C(X,T)), where i : C(X,T) — C is the continuous
injection defined by

2(¢) (’I‘(f)) = [‘p(T(E))alaﬁ] .

It is a consequence of [9; Proposition 5] that

(8.1) 1—C0X,T) S-S5 N—1

is an exact sequence of Polish groups.
Since C is Polish, we can choose a Borel cross section o for §. Define
g: NxE—-Tby

a(n)(r(8)) = [9(n,€),n,€].

In the notation of Lemma 8.1, g(n,£) = 9(§,0(n)(r(€))). Therefore, we can

conclude that g is Borel, that g is continuous in the second variable, and that g
satisfies

g(nyy- &) =v(n)g(n,§)
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for eachn € N, £ € E, and v € N. Now we can define u: N x N — C(X,T)
and A: Gx N — C(X,T) by

(8.3) u(n,m)(r(€)) = g(n,€)g(m,€)g(nm,€)
(8:4) A(s,n) (r(6)) = g(n,€)g(n,s™* - £).

It is a routine matter to verify that (),u) satisfy conditions (5.6)—(5.9). Further-
more, p is symmetric, and hence is pointwise trivial [7], so that (\,x) represents
a class in Apr(G,N;C(X,T)). Finally, we can define © : E — E, by

©(e) = (9(-,e),r(e)).-

Since the action of G on E,, is defined in terms of the A given by Equation (8.4),
one can verify that © is G-invariant as well as N-invariant; since

FE © — E,
\ /»
X
commutes, © will be the required isomorphism provided it is continuous (Remark
2.3). However, since g is continuous in its second variable, & — £ implies that

g(-,&) — g(-,€) pointwise, and hence in C*(N,T). This completes the proof
that ¥ is surjective. |

Remark 8.4. The Polish group C carries a natural action of G, given by
s-c(x) = s-(c(s7!-z)), and the extension (8.2) is then a G-crossed extension of
N by C(X,T). Thus although we have deliberately chosen to work in terms of
cocycles, a Polish version of the theory of crossed extensions is lurking close by.
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