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Let (A, G. z) be a (‘*-dynamical system with G abelian and 2 HausdortT. We 

investigate the ideal structure of the crossed product A x G under the hypothesis 

that the stabiliser subgroups for the action OF G on k vary continuously. We discuss 

a new notion of locally trivial G-space for such actions, and, dually. actions z which 

are locally unitarily implemented on the stabiliser groups. Our main result asserts 

that, when 1 is locally unitary in this sense and .4̂  is a locally trivial G-space, 

(A x G)- is a locally trivial G-space. ’ IYXh Academic Pros. Inc 

1. INTRODUCTION 

Let z be a strongly continuous action of a locally compact abelian group 
G on a C*-algebra A. Our object here is to study the topologies on the 
spectrum and primitive ideal space of the crossed product C*-algebra 
A x1 G. When A is commutative, and hence isomorphic to C,(X) for some 
locally compact Hausdorff space X, C,(X) XI, G is the transformation 
group C*-algebra C*(G, X), and a complete description of the primitive 
ideal space Prim(C*(G, X)) has been given in [32]: roughly speaking, it is 
proved that Green’s version of the Mackey machine [lo] also describes the 
topology (see Proposition 4.8). In principle, this machine gives at least a 
set-wise description of Prim( A xQ, G), but there can be substantial com- 
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plications, even for the relatively innocuous looking algebra C,(X, X) of 
continuous functions from X to the compact operators (see, for example, 
C13,221). 

The basic ingredients in the Mackey machine are the isotropy groups G, 
for the action of G on X= Prim(A), a family of Bore1 cocycles 
w, E Z*(G,, T), called the Mackey obstructions, and the induction of ideals 
from A X, G, to A X, G. It was originally hoped that, at least when all 
the Mackey obstructions are cohomologically trivial, this procedure would 
also determine Prim(A ~~ G) as a topological space -this is precisely what 
happens when A is commutative, and it also works when G acts freely on X 
[IO, Theorem 241. A particularly interesting example is the case G = W 
because H’(S, T) = 0 for all subgroups S of R [28 J. However, the situation 
is more subtle even when the isotropy groups are constant and the Mackey 
obstructions vanish. The main results of [22] concern this case: when G is 
compactly generated and A + k/G is a locally trivial G/H-bundle over a 
reasonable space, there is a commutative diagram 

(A % G)- (*I 

where the southeast arrows are principal H-bundles and the southwest 
arrows are principal G/H-bundles [22, Theorem 2.21. The complication is 
that the bundles involved can be non-trivial-indeed, any &bundle can 
arise as the bottom left-hand arrow. When G = R and H = Z, the diagram 
(*) consists of principal U-bundles, and the possible non-triviality of q gave 
counterexamples to the conjecture in [28 J. 

The above result does, however, give a two-step description of (A “lx G) ^ 
a the orbit space for an action of G on a principal bundle (A x, H) over 
A. Our intention here is to extend the results of [22 Sect. 21 to actions 
where the isotropy groups G,V vary, and thus obtain a similar two-step 
description of (A ‘(I, G)*. Our results concern the case where the map 
XI-+ G, is continuous from X to the space Z,; of closed subgroups of G [S]. 
The crossed product A xQ, H in (*) is replaced by a stabiliser algebra 
A X, 9, similar to the subgroup algebra of Fell [4] and the “algtbre de 
stabilisateurs” of Sauvageot [30]. As in [22, Sect. 23, we first prove a 
general version concerning primitive ideal spaces, under minimal 
hypotheses on the action (Theorem 3.10). We then formulate appropriate 
local triviality hypotheses, and prove that when they hold the diagram 
consists of bundles which are locally trivial in the required sense. 
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Our first task, then, is to prove existence and commutativity of the dia- 
mond in maximal generality. We have to construct restriction and induc- 
tion maps on Prim(A M, .9), which reduce to the standard ones in the case 
of constant isotropy, and which have properties like those of the standard 
ones used in the proof of [22, Proposition 2.11. We begin in Section 2 by 
discussing our stabiliser algebra A M, 9, constructing the restriction map 
Res: Prim(A >a, 9) -+ Prim(A), and establishing its main properties 
(Theorem 2.2). In Section 3, we discuss the induction of representations 
and ideals from A xl, 9 to A x1, G. This is done via a left A )(I, G- right 
A )(I, B-rigged bimodule, in a way consistent with the usual induction of 
representations from crossed products by stabilisers; the main result, 
Theorem 3.1, has been phrased entirely in terms of the usual procedure. At 
the end of Section 3, we give the general version of our commutative 
diamond. In fact, our result is a bit stronger that the version in [22], even 
in the case of constant isotropy. 

In Section 4, we discuss our notion of locally trivial space for non-free 
actions: a good motivating example is the case of a constant isotropy group 
H, where it makes perfectly good sense to describe the G-space X as a 
locally trivial G/H-bundle. We begin by looking at an analogue of proper 
actions of locally compact groups, where the isotropy map XH G, is 
assumed continuous, but where the groups G,V are typically not compact. 
The idea comes from [33], where it is shown that C*(G, X) has continuous 
trace if and only if the action is proper in this sense. A G-space X is called 
locally trivial if it is locally (over X/G) G-isomorphic to the quotient of 
(X/G) x G by the relation 

(G..\-,s)-(G.y,/) o G.x=G.j and St ‘EC,. 

It turns out that a proper G-space is locally trivial exactly when X -+ X/G 
has local sections, so this does seem to be consistent extension of the usual 
notion, and we give a variety of examples as evidence that it is useful and 
interesting. 

Ordinary locally trivial principal G-bundles can be dually realized in 
C*-algebra theory as locally unitary actions of d [20]; in Section 5 we give 
a definition of “locally unitary on the stabilisers” which we intend to be 
dual to our more general locally trivial spaces. In Section 6, we show that if 
a is locally unitary on the stabilisers and A -+ a/G is locally trivial, then the 
diamond of Theorem 3.10 consists entirely of locally trivial spaces. We go 
on to discuss examples and special cases; in particular, we analyse in some 
detail what happens for actions of [w. As in [22], we actually obtain new 
information about transformation group C*-algebras: if Y is a locally 
trivial F&space, then C*([w, Y) is a continuous trace algebra whose 
Dixmier-Douady class 6( C*(Iw, Y)) vanishes if and only if Y is globally 
trivial. 
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2. THE STABILISER ALGEBRA 

Throughout this paper (A, G, 2) will be a C*-dynamical system with 
Prim(A) Hausdorff. In later sections we will usually want to require G to 
be abelian; however, in this section, unless stated otherwise, G can be any 
locally compact group. For convenience, we will put X = Prim(A) and view 
A as the collection of continuous sections vanishing at inhnity, f,(r), of a 
C*-bundle r over X. If FcX, then I, will denote the ideal in A given by 

{a E A: a(x) = 0 for all .Y E F}. 

When F= (.v}, we will write I, in place of I,,). 
Recall that the action of G on A induces an action of G on X, defined by 

x,.x-= {r,(u):uEX}, 

which makes (G, X) a topological transformation group [6, Lemma 1.31. 
We will always assume that the stabiliser groups, 

G,= j.s~G:.s~.r=.u}, 

vary continuously; in other words, the map rr: X -+ ,?I defined by a(x) = G, 
is continuous, where ,?I is the compact Hausdorff space of closed subgroups 
of G [S]. As in [33, p. 443, choose a Haar measure E., on each HE Z so 
that for each ,f~ C,(G), the map 

is continuous (see also [6, p. 9073 ). For convenience, we will write I., 
instead of i.,<, and A, will denote the modular function on G,. 

As a consequence of the continuity of cr, 

9’= {(.s,.Y)EGxX:.SEG,} 

is locally compact Hausdorff. Let p: :f + X be the projection on the 
second factor. Then we may form the associated pull-back C*-algebra 
p*(A)= C,(3)@,.,,, A ([23]), and by [23, Proposition 1.33 we have 

p*(A 12 T,(P*<), (2.1) 

where p*t is the usual bundle pull-back. We now collect some technical 
observations which will be useful in the sequel. 

LEMMA 2.1. Suppose [hut #E C,(Y) and thut ac f,(t). Then 
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(i) rV(1, .Y) = &f. .r) a(.~) de/innes un clemmf q/ f,(p*<) and such 
detnenrs spun u dense .suh.~poc~~ of I‘, ( p*<) with respect 10 thr inductiw litnit 
ropolog~, 

(ii) r(f, x) = q+t(!. .r) a,(u)(.r) def@.s nn elcmenf oj’/‘,(p*<), and 

III) (ICE f,(p*<). then h(x) = lc,t c( s, .s) (1;. ,(.s) &fines un tdemcwt q/’ 
I- ( - 1.“’ , ; 

Proqf: The proof of (i ) is standard and is essentially contained in [ 23. 
Proposition 1.31. Parts (ii) and (iii) follow from straightforward 
approximation arguments. 1 

Notice that if (s, X) E 9. then a, induces an automorphism $5. .x) of the 
libre A 1. We construct our stabiliser algebra following the lines of [30: 4; 
33, Sect. 21. If,/; RE /‘,(p*<), then delinc 

,j’* g(/. .K) = ) fir. x) a(r. .K)[‘q(Z’ ‘I, s,] di.,(c). 
* t;, 

I’*(/. .K) = .I,(1 ‘1 r(r. .v,[ 1’(! ‘, x,*1. 

ll/‘ll,=sup [ III’(I..Y’lI di.,(rl . 
IF Y i -(I. 1 

Using Lemma 2.1 and [33, Lemma 2.51, it follows that j‘s R andJ* belong 
to f,( p*t). Furthermore, it is straightforward to check that f‘, (p*<) has an 
approximate identity for the II II,-norm; in fact, since o.,(K)) ,F ,, is 
bounded for any compact set Kc_ G, it will suffice to produce an 
approximate identity in /‘,(p*t) for the inductive limit topology. For this. 
notice that if N is a neighborhood of c in G. and K is compact in A’. then 
there is a self-adjoint 4 E CC+ (9) with (SE G: &s. X) # 0 for some .Y) E N, 
and such that 

.i,, fj( s, .K ) rli. ,( s) = I 

for all .YE K (cf. Lemma 3.3 in the next section). Thus, if (u; i is a bounded 
approximate identity for f,,(t). the collection of 

@,.v.*., ,(.s. .u) = d(s. .y) u;(.y). 

indexed by decreasing N and increasing K and 7, is a bounded approximate 
identity for r, (p*<). (By Lemma 2.1. it suffices to check that @,fi,K;.Y, *./ 
converges to ,/ for f’(.s, .u) = I//(X. s) a(.~), and one can do this by applying 
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the usual compactness arguments. as in [23. Lemma 2.41.) The stahili.ver 
ulgehru. A x1, .Y. is detined to bc the enveloping C*-algebra of the 1) .I(,- 
norm completion of f,(p*<), L/(./P, .A). (Alternatively. it is evident that b 
is a locally compact groupoid [24] with unit space X and both range and 
source maps equal to p, and Haar system {i, ) , E I. Then A M, ./P is the 
groupoid crossed-product of A by ./P as defined in [ 251.) 

To state our main result on Prim( A xl, .Y’) WC shall need some further 
notation. which will be used throughout the paper. For a closed subset F of 
X, we set A,. = A’I, 2 I ‘,,(: I,..), so that Prim( A, ) can be naturally identified 
with F. Let .Y, = ((s, .v) E .?‘: .\- E F:. Then exactly the same procedure as we 
have just followed starting with I‘, (< I,..) gives us a (‘+-algebra Ab M, YP. 

The restriction map n,: f,(p*<) + I’,(P*(<~~)) is II.Il,-decreasing. and 
so extends to the completion L’(.b, A); composing a representation of 
L’(.“P,.. A,) with rrfi gives a representation of L/(.9. A). and n, is therefore 
decreasing for the C*-norm too. Since rr, maps onto f,( p*(< I))). the 
extension. also denoted rr,, maps A xl? .4 onto .4, x1, .Y,. When F= ix) 
consists of a single point. WC write A, for .4,:/,. the fibre of < over .x, and 71, 
for the canonical surjcction of A x, ./P onto rl, x1, G,. 

When G is abelian, the stabiliser algebra A x1, ./p and all the analogously 
defined algebras .4, ~~ .e carry a canonical duul uction of 6. This is 
detined on l,(p*<) by 

T,(K)(.Y,.\.)=%(S)K(S,.Y): 

each i, is ,I. iI,-isometric, and hence extends to an automorphism of 
L/(./p. A) and A M= .Y. It is routine to check that i then gives a strongly 
continuous action of 6 on A x1,9. 

THEOREM 2.2. Lel (A. G, 2) he u C‘*-~vomicul system wirh G uheliun. 
X = Prim(A) HausdorJj; unti continuous stahilker mup .Y -+ G,. For .v E X, 
let C, denote the quotient mup of‘ .4 onto A,. Then every primitiw ideul of 
A M, .9 bus the jbrrn ker( (n x ci) x ,) ,/or some .x E X und some irreducible 
representation x x C’ qf A, ~1% G,. und 

Res(ker(nx I;) n,)=ker(n ,:,)=I, (2.2) 

dejinr.\ u cwntinous open surjection Res ,/ram Prim( A XI, .‘P) to Prim( A ). 
which is incariunt under the dual uction of‘ 6. If A is t.vpe I. Res induces u 
homeomorphi.rm of Prim( A x, .9)/d onto 2. 

The proof of this theorem will occupy the rest of the section. For the 
moment, we do not assume that G is abelian. We shall construct the 
restriction mup Res by defining a homomorphism R of A into the multiplier 
algebra . {[‘/(A x1, .Y). taking the induced map R* on ideals, and showing 
that it has the required properties. 
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For aE A =1‘,)(c) and RE l-‘(p*O we define 

(R(a)K)(f,s)=a(.r)K(l,.u). (2.3) 

Since we then have IIR(u) g:II, < llall I,KII,, and L’(.Y, A) has a )I. II,-bounded 
approximate identity, we can extend (2.3) to R in the enveloping 
C*-algebra Axa,.%‘. We can then verify that (2.3) gives a *-homomorphism 
R of A into . N(A )(I~ Y). (The right multiplication is delined by 
(gR(a))(~,s)=g(r. s)Y,(u)(.T).) In the same manner we can define a 
natural *-homomorphism V of Co(X) into the center of N(A xl, .‘P), and 
the two maps arc related by R(&) = V(d) R(u) for 4~ C,,(X). and aE A. 

LEMMA 2.3. For .r E X, let J, denote the idt>al (.fif‘(s) = 0 i in C’,(X). 
Thm rhe kernc4 of x, : A ~1~ d + A , xx G, coincidcJ.s lc.ith 

Proof: It is clear that K = V( J, ). (A X, M) is contained in ker( n,). We 
shall prove the converse by showing that, if T is a representation of A xl, .Y’ 
with K= ker(r), then r factors through 71,. So suppose that r is such a 
representation. By a standard approximation argument, we can see that K 
contains any sections in r,(p*<) which vanish on p ‘(s). Thus if 
j; RE~,(P*<) satisfy ~,(j)=n,(g) we have j’-g~ K and hence 
s(,f) = r(g). Since K, : r, (p*<) + c’, (G,, A ,) is surjective, this means we 
can define a representation i of C,(G,. A,) by i(n,(.j‘)) = r(f). Further, for 
any ~EC,(X) with &.u)= 1 WC have 

Il~(~,(.f))II = IlW’)ll = llddf‘)l 6 114/‘ll 

d sup 1909 i II.~. d dk0). 
,‘B .k *c;, 

By [33, Lemma 2.51, the right-hand side is a continuous function of J for 
any #E C,(X), so by letting the support of 6 shrink to a small 
neighborhood of .Y we obtain 

Thus 5 is bounded in the L/-norm on C,(G,, A ,), and therefore extends to 
a representation of A, ~~ G, satisfying r = f” z,. Since K = ker(r), this 
implies Kz ker(n,). 1 

Now let p be an irreducible representation of A >a, 9; we also use the 
same letter for the canonical extension of p to .K(A X, .9). Observe that V 
is non-degenerate in the sense that if {e,} is an approximate identity for 
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Co(X), then V(P,) converges to I strictly, and that the range of V is 
contained in the center of ./{(A xX a). Thus j) / V is a non-trivial 
homomorphism with values in Cl. and hence is given by evaluation at 
some point .Y of X. It follows from the lemma and the Cohen factorization 
theorem that every element of ker(n,) has the form V(qS)f‘for some ~$EJ,, 
so ker(p)? ker(n,) and p has the form (nx E)’ rc, as claimed. 

To see that (2.2) gives a well-defined continuous map Res on ideals, we 
consider the map R*: .#(A x1, :pP) -+ J(A) defined by 

R*(J)= (rie/l: R(cr).(Ax,.~‘)cJ), 

which is continuous by [lo, Proposition 93. With the notation of the 
previous paragraph, we have 

R*(ker(p))= {uEA: (nx U)- n,(R(a),/‘)=Ofor/eA x1,.4) 

= {UE A: n(a(.u))(( 71 x L:) n,)(J) = 0 for/‘E A xl, .Yp) 

= ker(n c,); 

note that because Prim(A) is Hausdorff, ker(n _ cl.) = I, is primitive. In 
particular, our restriction map Res is well defined and continuous, with 
values in Prim(il). It is clearly surjective. and when G is abelian, a routine 
computation shows that 

(nx U) I[, i, ‘=(nx&,, U)‘Tr,. 

so it is G-invariant as well. 
Next we shall prove that Res is open. Our proof of this will depend on 

the construction of a unified induction process from ideals of A to ideals of 
A xl, ,+‘; this will be done using a left A xl, .b- right A-rigged bimodule, so 
that it is automatically continuous. We begin with some general results on 
inducing ideals via bimodules, which will also be required in the next 
section. 

Suppose that Y is a A-rigged space [26, Delinition 2.11. Let .n‘( Y) 
denote the imprimitivity algebra associated to Y so that Y is a .K( Y)- 
A-imprimitivity bimodule. Hence there is a lattice preserving 
homeomorphism h of l(A) onto .f(.>Y( Y)) [27, Theorem 3.11. By [IO, 
Lemma 161, .X(X(Y)) is isomorphic to the algebra y(Y) of A-linear, 
adjointable operators on Y. If in addition, Y is a left D-module in such a 
way that d* acts as the adjoint of dE D. then there is a *-homomorphism S 
of D into ..W(.X( Y)), and hence a continuous intersection preserving map 
S* of .f(.X‘( Y)) into Y(D). We will call such a Y a left D- right A-rigged 
bimodule and write 3, for the continuous intersection preserving map 
S*~/I of J(A) into .f(D). 
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LEMMA 2.4. Let Y he un E-A-imprimititlity himodule and let 
h: .f( A) + .f( E) be Rkffel’s lu(ticc presercing homeomorphism. Then ,fbr 
J E .$( A ) we have 

h(J)= (Ed E: (e..\-,),),EJ~oru11.Y, >*E Y). 

Proof: Suppose that CJE h(J) and that .Y, JE Y. The submodule 
corresponding to h(J) is by definition Y,, and equals h(J). Y by [27, 
Lemma 3.11, so e . x E Y, and (P s. J’) 4 E .I by [27, Theorem 3.11. 

Conversely, suppose that (e ..r, ,r),., EJ for all s. J’E Y. Then we have 

(- -3 c.,~)~:.~~=z.(e.s, J*),~E Y.J 

for all s, J’, z E Y. Thus, 

(2, e ..K)~ (y, w)~. = ((z, e..u)..,v, n’),<~h(J) 

for all .r, ,r, :. w  E Y, which implies 

(:,e..r),J‘~h(J) 

for all z, x E Y and f E E. Lettingfrun through an approximate identity, we 
see this can happen if and only if 

e(s,=).=((=,e.s),)*Eh(J) 

for all s, z E X, and hence if and only if qf‘~ h(J) for all .f~ E. Thus, 
eEh(J). 1 

COROLLARY 2.5. Let Y be u left D- right A-rigged himodule und 
.f,.: (A ) + .g( D) the map defined above. Then for K E .P( A) we have 

3,.(K)= {do D: (d..v, y),., E K jbrullx, ]*E Y}. 

Proof: By definition, 

eEX( Y)) ~,.(K)=S*I:~(K)= (d~D:S(d)e~h(K)forall 

Thus, by the lemma (with E= .X( Y)), 

~~(K)=I~~D:(S(~)~.-,I.),,EK foral1eE.X 

= {dE D: (d..u, 13) ,, E K for all x, JE Y}, 

since E. Y spans Y. 1 

‘(Y), =, ?‘E Y} 

Let Y, be T,(p*{) (without the *-algebraic structure). Using Lemma 2.1, 
we see that 

(.L dA w=-[~ ds, xKf(s- ‘,-~~b A .a di.,W 
I% 
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delines an A-valued sesqui-linear form on Y,. Similarly, if UE A and go Y,,, 
then 

defines a right A-action on Y,, which satisfies 

LEMMA 2.6. With the uhoce dclfini~ions, Y,, is a right A-rig@ spucc’. 

Proofi It is clear that 

<.I; i!>: = (R3,f)..r. 

so it will suffice to show that (Y,), Yo),4 is dense in A, and that 
C.1; .f > .1 3 0. However, 

where ( . . . >.4, is the A,-valued inner-product defined on the left 
C,(C,, A,)- right A,-rigged bimodule C,(G,, A,) defined in [ 10, Sect. 21, 
and ,f,, R, are the obvious restrictions of 1‘ and R in C, (G,, A .). Thus for 
each .Y E X, 

cc .f>, (.u) 2 0 and ( yo. Y,,), (.Y) it (0). 

Therefore, (J f)A 3 0, and since ( Y,, Y0),4 is an ideal in A. ( Yo, Y,,),, is 
dense. 1 

Furthermore, there is a left action of f’((p*t) on Y, defined by con- 
volution: 

.f‘.r: =.f * g. 

Again, .f.g(r, x) =I; * g,(r), and since every irreducible representation of 
A ~ xl, G, lifts to A >a, 2, we have 

Since this action is clearly A-linear and adjointable, we obtain a 
*-homomorphism 

W: A xl, ;/p --) cYd( Y), 
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where Y is the completion of Y,, (cf. [26, Sect. 31). In other words, Y is a 
left A >a, y- right A-rigged bimodule. We shall be interested in the 
inducing map 3 y defined by Y. 

LEMMA 2.1. Let .r E X und .suppo.w that G, is umenuhle. Then wilh the 
uhoce nororion, 3 ,,( I, ) = ker( n ‘. ). 

Proc$ We lirst observe that iffo r,(p*[) and n,(J‘) = 0, then 

(.1‘.,*.--), (x)=0, for all ~1, z E Y,. 

It therefore follows from Corollary 2.5 and Lemma 2.3 that 
ker(rr,) E 3 Jfr). To prove the converse, we relate Y to the A ,-rigged 
bimodule V, used for inducing from A ‘; to A ‘: >a, G, [ 10, p. 2003. Define 
r,: Y,,+ C,(G,, A,) by r,(y)(s)=)*(s, s); then it is easy to check that for 
/‘E f‘,(p*(), .v, ZE Y, we have 

(2.4) 

The map r\- is continuous from ( Y,,, 11 .I) ,,) to ( V,, II.11 a,), and has dense 
range, so it extends to continuous map of Y onto V,. The module actions 
are continuous, and we can therefore extend (2.4) to f‘o A xl, 9 and 
J, c E Y. In particular, this shows that for .f~ 3 Jlr), rr ,(.j’) belongs to the 
ideal Ind,G:~(O) in A, X, G, induced in the usual way from the zero ideal of 
A,. Since G, is amenable, Ind{O} = {0} [IO, Proposition 133, and we have 
proved that -~,.(I,)E ker(n,). 1 

PROPOSITION 2.8. Suppose thu! (A, G, r) is a C*-dynamical system with 
Prim(A) Hausdorffand such that I H G, is continuous. If for each .Y E X, G, 
is amenable, then Res is u continuous open mop of Prim(A )(I, 9) onto 
Prim(A). 

ProoJ At this point, we have only to prove that Res: Prim(A xl, 9) 
+ X is open. Let K be an idea1 in A xl, ./p, so that 

Cf = { PE Prim(A )(I~ 9): P P K} 

is a typical basic open set in A x1, .P, and suppose we have a convergent 
net x, -+ x such that x, 4 Res c’ for all i. If x E Res I!:, then we can find a 
primitive idea1 ME Res ‘(x) such that ME c. Now M 2 ker(n,), and then 
we must have ker(n,) ZJ K. By Lemma 2.7, this implies 3,(1,) ZJ K. Since 
3 y is continuous and X, + X, we eventually have ker(x,c,) = 3 ,(I,,) $ K. 
But then there is a primitive ideal P w&h P $ K and with Pz ker(n,,) -in 
other words, PE c’, and Res P = x,. This is a contradiction, so we must have 
x 4 Res fl and Res fi is open. 1 



396 RAERURN AND WILLIAMS 

Since when G is abelian, Res is G-invariant, it follows from the above 
proposition that Res defines a continuous open surjection of 
Prim(A ~~ :9)/G onto Prim(A ). If in addition, A is type I, ,4 )( 2 X and 
A,M, G, is stably isomorphic to a twisted group algebra C*(G,, 0,) via 
an isomorphism which preserves the dual actions of 6 [IO, Theorem 181. It 
follows from [ 10, Proposition 341 that d acts transitively on 
Prim(C*(C’,, cl),)), and hence also on Prim(A, )(I~ G,). Thus Res induces a 
bijection of the orbit space Prim(A Mu Y),iG onto a, which is a 
homeomorphism because Res is both continuous and open. This completes 
the proof of Theorem 2.2. 1 

Renturk 2.9. It is not clear if amenability of the G, is required for 
Proposition 2.8 (although Lemma 2.7 is false without assuming 
amenability, as can be seen from the case A = C and G any non-amenable 
group). At this writing, we know of no counterexamples. 

3. INDUCING REPRESENTATIONS FROM THE STABII.ISER ALGEBRA 

We will retain our notation as well as our assumptions from the previous 
section. In particular. given s E G and .Y E X, there is a *-isomorphism of A, 
onto A,, ,~ defined, given UE r,(c), by U(X)++ a,(a)(s .x). Writing r(s, S.-Y) 
for this isomorphism, we have 

r,(u)(x) = r(s, x)[u(s ’ .x,1. 

If G is abelian, so that G, = G, I ,, then, for each f‘~ r,( p*<), we can 
define 

P,(f)(r, .u) = r(s, X,[f‘(L s --I .x)1. 

Using Lemma 2.1 (i), it follows that (A X, .Y, G, p) is a C*-dynamical 
system. 

Let E, and IC, be the natural projections of A and A x, 9 onto A, and 
A, x1, G,, respectively. Our object in this section is to prove: 

THEOREM 3.1. Let A be a sepurable C*-ulgebru with Hausdorff primitive 
ideal space X and a an action of u second countable locally compact ubelian 
group G on A with continuously varying stabiliser groups. Then every 
irreducible representation of A xx 9 has the form (n x iJ)o II, for some 
x E X and 7c x I/ E (A ‘i )(I, G,) ^. Moreover, the map 

ker((nx CQon,)~ker(Ind~,((ncE,)x U)) 
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d&es a homeomorphism o/‘ the quasi-orbit space 2( Prim( A x, 9)). G, 8) 

onto the primitive ideal space oj’ A )(I~ G, w/k-k i.r cyuivariant .for the &a[ 
actions of f5. 

Our strategy for proving this theorem will be as follows. We know the 
result is true when the stabiliser map is c’onstont [22, Proposition 2. I]; the 
inverse in this case is Green’s restriction map [ 10; Proposition 93. In 
general, the stabiliser map is continuous on a Hausdorff space and constant 
on orbits, hence constant on orbit closures. We will construct continuous 
induction and restriction maps between A >a, ;/p and A >a, G, which arc 
consistent with the usual ones on the quotients of A corresponding to orbit 
closures, and then deduce the desired properties from known facts about 
these quotients. 

We begin by recalling what is known when the stabilisers are constant. 
Throughout this section we shall assume that (A, G, 2) satisfies the 
hypotheses of the theorem. 

LEMMA 3.2. Suppose that the stahilisers qf points in X ure all eyuui to a 
fixed closed subgroup H in G. Then induction gives a continuous map Ind of 
Prim( A x3 H) onto Prim(A >a, G) which defines a homeomorphism of the 
quasi-orbit spuce d( Prim(A M% H)) onto Prim(A X, G); the inverse ix given 
h?* restriction, and NV have 

Rcs(Ind(M))= n .s.M 
5 c c; 

for all ME Prim( A x, H). 

Proof: This follows by applying Theorem 24 of [IO] to the essentially 
free system (G, A x2 H, s”), as in the second paragraph of the proof of 
[22, Proposition 2.11. As remarked there, practically all that is needed to 
make this work is Effros-Hahn regularity of (G, A ‘cr, H, T"). which is 
automatic since G is amenable [8]. 1 

We now want to define a continuous map Ind from .$(A xx 9’) to 
.f(A Mu G). As in the previous section we will do this by first constructing 
a left A xl, G- right A M, p-rigged bimodule Y. As usual, we start with 
dense subspaces of the algebras and modules in question, and pass to com- 
pletions later. 

Let B,, = T,(p*r) E A XI, 9. View G x r as a bundle over G x X and let 
Y, = f, (G x [). The module action of B, on Y,, and the &-valued inner 
product will be given by 

/-h(.s,~)=~~~ j‘(st ‘,x)z(st-‘,x)[h(t,s-‘..~)]d%,(t) (3.1) 
*I 

(~.K)~(I,x)=~~~(S,X)[S(.S ‘,.S ‘.x)*R(S ‘t,.S-‘~.yr)lds. (3.2) 
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Since it is not immediately clear that these formulas define continuous 
sections, we shall outline a proof that j’. h belongs to r, (G x c), and merely 
observe that similar arguments show that (.L R)~ E &. 

Suppose that f‘~ Y,, and h E B,. Both sections have compact support, and 
hence if f, and h , uniformly approximate f and h then .f, . h, will uniformly 
approximate J‘. h. Because the formula is bilinear, we may therefore 
suppose that j’= 40 u, h = Ic/ 0 x c for some d E C,(G), II/ E C, (9) and 
(I, c~ f,(r). Then 

f.b(.s, x) = [ f#~(.sf - ‘, .Y) Il/(t, s ’ .x) u(x) x(.sf- ‘, s)[c(s- ’ .s)] h,(f). 
‘G, 

The function .Z, defined by 

(s, I, .r)++c++(st ‘, .u) l+b(f, s- ’ .x), 

is continuous and compactly supported on G x 9, and hence uniformly 
approximable by a finite tensor in C,.(G) @ C,.(9). Thus we can replace E 
by an elementary tensor < @ 9 E C,.(G) 0 C,(S), and then we have 

~~=~(sJu(.Y) i q(f, .+, ,(c)(x)&,(f) 
*CT, 

= i(s) 4s) x., 
0 

q(r, x) cx, I(C)(X) h,(f) 
C-i, > 

By Lemma 2.1, the last integral defines an element d in I‘,(<), and the 
formula 

J‘.h(s, .Y) = i(s) u(x) a,(d)(x) 

defines a continuous function from G to I-,(<)- -in other words, a con- 
tinuous section of G x 5 as required. 

It is now straightforward to verify that the formula for j’. h does define a 
module action of B, on Y,, and that 

CL g.h),= (It g),* b. 

We still need to check the positivity of the inner products, and that the 
range of the inner products spans a dense subspace of A x1, ;/p. For the first 
of these, it will be enough to prove that 

in A., xX G, for every J‘E Y. and x E X. Let P’= G X, let ( ., ),.. denote the 
C, (G , , A K)-valued inner product on C,.( G, A P) constructed in [ 10, p. 2003, 
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and define rF: Y, -+ C,.(G, AF) by rJf)(s) = nF(./‘(.s)). Then it is easy to 
verify that 

which is positive in A,.-x G, by [ 10, p. 2023. Since 7~, factors through rr,.. 
this proves that n,((./;.f)R) is positive in A, wa, G,, and hence that 
(.L f )H itself is positive. 

The density will follow in the standard way from the existence of a 
suitable approximate identity: 

LEMMA 3.3. There is an upproximate identity for A x1, .y conshting of 
elements of‘ the form (A f ) B bcith .f~ Y,,. 

ProojI By virtue of the remarks following Lemma 2.1, it will suflice to 
produce, for each relatively compact neighborhood U of e in G and each 
compact set Cs A’, a non-negative function FE C,(3) such that 

vanishes for r outside Il. and satisfies 

for XE C. Once we have constructed F, then if {a.,} is an approximate 
identity for I’,,(r) and we define/Is, .r) = #cL..c.,(s, X) a;:‘(.~), it follows that 
~I,~.,~..;, = CL f>s = d,~~.C,U; will be an approximate identity for the 
inductive limit topology, and hence for A x, 9 as well. 

To construct F, we choose a symmetric neighborhood V of e with V2 E V 
and gE C,(G) such that g > 0, supp(g) G V, and g # 0. If in addition, 
$ E C,.(X) is such that Ic/ 3 1 on U. C, then 

F(s, .K)= $(.r)“’ g(s) ii1 I, g(r ‘) g(r-‘1) dr di,(t)) 
-- 1.2 

, 

has the required properties. This proves the lemma. u 

We have now proved: 

PROPOSITION 3.4. Let Y denote the completion of Y, in the (semi-) norm 
defined h-v the inner producr (3.2). Then with the module ucrion given by 
(3. I ). and the inner product (3.2), Y is a righr A ~~ *y-rigged space. 
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The next step is to define a left action of A x1, G on Y. For .f~ C,.(G, A ) 
and g E Y,, we define 

.f.g(t, x) = jG.f(S, x) r.t(.s, s)[g(s ‘f, s ’ ..u)] cls. (3.3) 

This is the usual formula for multiplication in C, (G, A ), so it certainly 
defines an element of Yo, and gives a module action of C,(G, A) on Y,,. 

PROFTISITION 3.5. ( I ) The ,formulu (3.3) defines a left uction of A x1, G 
as udjointahle A >a, 9-lineur operators on the rigged space Y. 

(2) Suppose that F is a closed G-invariant subset of X on n*hich UN 

stuhilisers ure equal to H (i.e., G, = H ,for ull .Y E F), und let Y’ he the 
(complete) left A r x1, G- right A,; Mu H-rigged space constructed in [ IO, 
Sect. 23. Let pp und Ed denote the natural surjections of A xl, G und 
A xl, .ip onto AI,xl, G und Al.->al H. Then the restriction of sections .from 
9 to p ‘(F) extends to a surjection r,.. c$ Y onto Y” such that 

(a) r,..(f’.h) = r!jf 1 .n,{h). ,for,fE Y and h E A XI, 3; 

(b) nl.J(.L R)~)= (rJ./‘L r141:)).lba,,,. .f;)r.f; K E Y; 

(c) r~~f‘.g)=P,.~f’).r,~g), forfe A ~~ G undge Y. 

Proof: The usual boring calculations show that 

(.f%O.t,.,= (R~f*~b,,., 

for g, h E Y, and 1’~ C,(G, A), that 

for f‘E C,.(G, A), gE Y,, and he B,,, and that the three properties (a), (b), 
and (c) hold, at least for continuous sections of compact support. To 
establish (1) it remains only to check that the left action satisfies 

Let f‘~ C,.(G, A), g E Y,, SE X, and F = z. Write H for the constant 
stabiliser of points in F. We know that AFT, G acts as adjointable 
operators on YP, so, using (b) and (c), we have 
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Since every irreducible representation of A x1, .B factors through some n,, 
and hence through some nF, this implies (3.4) and (1) is proved. 

Equations (a) and (b) show that rf is norm-decreasing on Y,,, hence 
extends to the completion, and that rr then vanishes on the submodule 
Y krr(nr b corresponding to the ideal ker(nF) = IFxl, G in A xa, G. Let i, 
denote the induced homomorphism of Y/Yker,Ry, into Y’: by part (a), FF is 
an isometry of AFxa, G-rigged spaces. Every elementary tensor d@ x in 
C,(G) 0 I’<(< ) F) is in the range of r,.., so ?F has dense range and is 
therefore surjective. We can now extend (a), (b), and (c) to the completions 
by continuity. 1 

DEFINITION 3.6. Let Ind: .P( A wa, 9) + .f(A x1, G) denote the con- 
tinuous map Cc, defined by the left A xl, G- right A xX y-rigged bimodule 
Y. Similarly, if F is a closed G-invariant subset of X with constant stabiliser 
II. then we denote by Ind,. the continuous map from .f(A,-x, H) to 
.P(A,x, G) defined by the bimodule Y’. 

PROPOSITION 3.7. (I ) If‘ ker(n x U) is a primitive ideal in A, xl, H, 
then 

Ind(nF(ker(n x U))) = ker(lndz\((n ,c,) x U)). 

(2) If F is u closed G-incuriattl .suhs~~ oj’X \r*ith constanr srubiliser H, 
then the d&yam 

Ind 
./(A x1 B) - .f(A x,G) 

n: 
I 

I P: 
Ind,. 

.$(A,-xl, H)- .J(A,:M: G) 

Proof: By Corollary 2.5 we have 

Ind(nT(ker(n x Cr))) 

= {J‘E A xa, G: ( 7t x U) ‘. 7z ,( (,/‘. 2, .I’) B) = 0 for all J’, 2 E Y,,) . 

Inducing representations from A X~ G, to A x3 G is done using C,(G, A), 
viewed as a C,(G,, A)-rigged space with inner product given by 

(2. Y),, X) c;, (.s) = j-. r,(-(l ’ )* y( r ‘s)) dr. 
I 

It is easy to check that 
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and hence 

Ind(nF(ker(nx U)))= ff‘~A>a,G:(n C,)X ~((,1‘._,!.),,,,,~)=0 

for all .r, z E Y0 ) 

The last ideal is the kernel of IndEJ (n I:,) x I;), and ( I ) is proved. 
For an ideal Jg AFT, H, Corollary 2.5 implies 

p3lnd,W) = { <EAx,G: (~~(“)..r,?.),~,.,,,~Jforall~~,~~ Y”) 

=((*EAx,G: (~~(~~)~~,.(.~),~~~~~)),.~~~,,,~Jforall.r,~~~ Y) 

= (~EAxl,G:~,.~(~.s,?,)I1)EJforall.u.?,E Y) 

Another application of Corollary 2.5 shows that the latter is 
W,(n!(J)). I 

We shall now build a homomorphism R’ of A ~~ ./p into .#(A )(I~ G), 
and define our restriction map RES from .$(A >a, G) to .f(A >a, .+‘) to be 
R’* [ 10, Proposition 9 3. For j’~ 1; (p*<) !Z A X,:/P and g E C’, (G, A ) we 
define 

(R’(.f)g)(.W=j .f(L.U)3((1, x)[g(t ‘S)(X)] di.,(r) 
c;, 

(gR’(./‘))(s)(.u) = 1 g(.st- ’ )(x) r(st ‘, .r)[j‘(t, s ’ ..u,] d;.,(t). 
‘6. 

The usual arguments involving approximations off‘and g by finite tensors 
show that R’(f) g and RR’(J) belong to C’, (G. A), and a quick calculation 
shows that 

MR’(J‘) R) = (hR’(./‘)) g 

for h, ggC‘,(G, A) andf‘Ef,(P*<). 

(3.5) 

PROPOSITION 3.8. (1 ) For each J’E f,(p*[), R’(f) e.utendy to a mul- 
tiplier of‘ A xl, G, and R’ extends to a homomorphism qf A x, ./P into 
.k’( A >a, G). 

(2) Suppose thut F is u closed G-incariunt set ic*ith constant stahiliser 
group H, and that R>.- denotes the usual embedding oj’ A, xt H in 
.M(A,-X, G), so thut R;T is the usual restriction map RESI.-: .P(AF>a, G) 
-+ .f(AFx, H) [ 10, p. 2091. Then we har:e a commutatil;e diugram 

RES 
.f(A M, G) - .fl( A x3 9) 

PF T 
T I XT 

I RES, I 
.f(A,-xl, G)- .9(APq H) 
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Prouj: We have seen that the pair of maps R’ has the correct algebraic 
property (3.5) and we just need to check continuity to ensure that R’ 
extends to a multiplier. However, a simple calculation shows that with F as 
in part (2). 

R~~~,.(~))P,.~K) = PJR’U’) K). 

This enables us to exploit the known properties of R;.: 

II R’(l‘) gll ds,<,=sup Il~~;::;(R’(J’)~)ll.q~x,(; \Fk 

(3.6) 

6 sup IIRk(~dl‘))p~(~)il vc .Y 

<sup ll%dl’)Il ‘lKx,c;, IIuc;,(g)ll 4,X,(, \c k 

d 11.1’ I 4 x, fl II KI ., xl, c;’ 

A similar calculation works on the other side. Hence R’(f) extends to a 
multiplier of norm less than or equal to Il.fI~, and we obtain a 
homomorphism R’ as claimed. Now Eq. (3.6) implies that R;. 7~,:= p,: I R’. 
The homomorphism pF is surjective, and it is straightforward to verify that 
the image under R;.. of an approximate identity in A,. Mu H converges to 
the identity of =#(A,. xz G) in the strict topology. The next lemma 
completes the proof. 1 

LEMMA 3.9. Suppose thut T: C- *K(D) and S: D + .P/( E) ore 
homomorphisms, and that there is an uppro.uimutc> ientit?, d, ji)r D such thar 
S(d,) concergcs 10 the identitj9 OJ‘ ./d(E) in the .rtricl toppolog~*. Then S 
extend.~ uniquely. 10 u strictly continuous homomorphism yf‘ . f/( D) into 
.K(E), and (S T)* = T* S*. 

Proc$ That S extends uniquely is well known (cf. [I 14, Lemma 1.11). 
Then, given an ideal .I in E, 

T* S*(J)= I~~C:S(T(~)d)e~Jforalld~Dand(‘~E). 

But the hypothesis implies that elements of the form S(d)e are dense in E, 
so the above is equal to (S, T)* (.I). 1 

Proof‘ of‘ Theorem 3.1. WC have already seen that every irreducible 
representation of A xr .Y factors through some rt,, and it is easy to check 
that Ind is C;‘-equivariant. By part (1) of Propositon 3.7, it will be enough 
for us to show that the map Ind of Definition 3.6 induces a 
homeomorphism of 2( Prim(A x1, .Y)) onto Prim( A >a, G). In fact, we 
claim it suftices to show that 

(1) If K E Prim( A >a, G), then Ind( RES( K)) = K: 
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(2) If JE Prim(A x3 Y), then Ind(J) is a primitive ideal in A >a, G, 
and 

RES( Ind(J)) = 0 /I,(J). 
\ c c; 

We now prove the claim, and then prove (1) and (2). It follows from (1) 
and (2) that Ind is constant on quasi-orbits, and hence induces a map h 
from 1(Prim(A xl, 9)) into Prim(A M, G); this map is continuous since 
Ind is. By the Gootman-Rosenberg theorem [8] the system (G. A, a) is 
Effros- Hahn regular; by Proposition 3.7, this means every primitive ideal 
of A xl, G is induced from a primitive ideal of the form ker((n c,) x I/), 
and Ind is surjective. As it stands, RES is a continuous map of 
Prim(A xa, G) into .f(A xl, tip), but the map sending a quasi-orbit in 
1(A >a, Y) to its kern4 is a homeomorphism onto its range in .f(A >a, 9’) 
[ 10, Lemma. p. 2211, and (2) shows that RES maps primitive ideals to 
kernels of quasi-orbits, so RES defines a continuous map k of 
Prim(A x1, .‘P) into Q( Prim(A K, .Y)). Now ( 1) says that h k is the idcn- 
tity, (2) says that k “h is the identity, and we have proved the claim. 

WC have already observed that Ind is surjective. so every 
KE Prim(A xl, G) has the form Ind(x:(J)) for some SEX and 
J E Prim( A, x, G, ). Let F denote the G-invariant set G. x, and H = G, the 
common stabiliser. The map n, factors through n,., so n:(J) = n:(L) for 
some primitive ideal f of AI-x, G,, and by Proposition 3.7 we have 

K=Ind(n~(J))=Ind(lt~(L.))=p~(Ind,.(L)). 

By Proposition 3.8, therefore, 

RES(K) = RES(pT(Ind,(L))) = nr(RES,.(Ind,.(L))). 

Thus, by Proposition 3.7(2). 

Ind(RES(K))= Ind(n~(RES,(Ind~(L)))=p,*(Ind,-(RES,(Ind,(L)))). 

Now RES,- and Ind,- are the usual restriction and induction maps for 
AFT, G, so Ind,.(RESF) is the identity by Lemma 3.2, and (I ) follows. 

Finally, suppose that JE Prim(A ~~ 9). Then, as above, J= x;(L) for 
some XEX, F=G.x, and LE Prim(A,-xa, G,). Then 

RES( Ind(J)) = RES(Ind(nr( L))) 

= RES(p:(Ind,(L))) 

= n:(RESF(Ind,.(L))) 
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by Lemma 3.2. But n,,. intertwines 1” and /I, so it follows that 

RWIndW)= n /1,(x,*(L))= n B.,(J). 3EG‘ (6 c; 
This completes the proof of Theorem 3.1. 1 

We can now combine our two main results to give a version of [22, 
Proposition 2.11 describing the primitive ideal space of A x1 G when the 
stabilisers vary continuously. In fact our result is slightly stronger than [22, 
Proposition 2.11 even when the stabilisers are constant: we have also 
established openness of the restriction map. 

THEOREM 3. IO. Let (A, G, a) be u separable C*-dynamical system with G 
ahelian, Prim(A) Hausdorff, and with continuously varying stahilisers. Then 
n*e haw a commutatit‘e diagram of continuous open surjections 

Prim( A xl, 9) 
Ind 
J 

Kcs 
\ 

Prim( A x1, G) Prim(A) 

Y 
\ J 

P 

9( Prim( A), G) 

where Ind is the inducing map of Theorem 3.1, Res is the restriction map qf 
Theorem 2.2, q assigns to each primitive ideal P the quasi-orbit q(P) on 
which it lives (cJ [ 10, p. 221 I), und p is the canonical map qf Prim(A) onto 
the quasi-orbit space 9( Prim( A), G) for the action of G. 

Proof: The properties of Res and Ind are established in the cited 
theorems. That p is a continuous open surjection follows from the lemma 
on page 221 of [lo], and the same properties of q have been established by 
Gootman and Lazar [7, Theorem 2.41. So it remains only to show that the 
diagram commutes. If rrx UE(A,M,G,)-, so that J=ker((nx U);n,) is a 
typical element of Prim(A xX 8), then Res J= I, by Theorem 2.2, and 
p(Res J) is the quasi-orbit (G . .Y)- of X. The argument in the second 
paragraph of [22, Proposition 2.11 can be used essentially verbatim 
(replacing H by G,) to show that 

ker(Ind~I((noc,) x U)(,)= n a,(ker(nos,)). 
t(r 

Thus qoInd(J) is also the quasi-orbit (G .x)- (see the definition of q on 
p. 221 of [lo]). m 
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4. LOCALLY TRIVIAL G-SPACES 

Let (G, X) be a locally compact Hausdorff transformation group with 
continuous stabiliser map 6: X -+ 2‘, defined by a(.~) = G, (here, G need 
not be abelian). Define an equivalence relation on Xx G by 

t-r, .\‘ 1 - (I.3 f 1. ifandonlyif .u=y and st ‘EG,. 

Then the continuity of (T implies that the quotient topological space 
Xx G/- is locally compact Hausdorff, and that the quotient map is open 
[ 33, Lemma 2.31. 

DEFINITION 4. I. Let (G, X) be as above. We say the G-action is proper 
relative to the stabilisers, or just a-proper, if the map (x, S)H (x, S.-Y) of 
XxG/- into Xx X is proper. 

As a good motivating example, consider the case where the action has 
constant stabihser H, so that a(.~) = H for all X. Then Xx G/- is naturally 
homeomorphic to Xx G/H, and X is a n-proper G-space if and only if X is 
a proper G/H-space in the usual sense. It is reasonably easy to show that G 
acts a-properly on X if and only if, given any compact subset K of X, the 
image in Xx G! - of 

{ (x, s) E X x G: .r E K and s . .Y E K) (4.1) 

is relatively compact. Any set K for which the image of (4.1) is relatively 
compact is called G-wandering. This terminology does not agree with that 
of Definition 2.4 of [33], and is in fact logically distinct, as we shall show 
by example in an appendix. Unfortunately, the argument in the first 
paragraph of the proof of [33, Lemma 4.31 requires the above definition of 
G-wandering. Fortunately, the above definition sufkes for all the results in 
[33, 171, so that they remain true if we use this definition in place of [33, 
Definition 2.41. 

Our definition has been motivated by recent characterizations of proper- 
ness for second countable pairs (G, X) involving the transformation group 
C*-algebras C*(G, X). When G acts freely, our definition reduces to the 
usual one, and Green [9, Theorems 14 and 171 has shown that the action 
is proper if and only if C*(G, X) has continuous trace. In the general case 
of a continuous stabiliser map (2: X + Z,, [33, Theorem 5.11 asserts that 
the action is a-proper if and only if C*(G, X) has continuous trace. Thus 
we feel confident that we have made an appropriate and useful 
generalization of the usual notion. We shall now discuss the analogous 
version of local triviality when G is abehan. 
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DEFINITION 4.2. Suppose that (G, X) is a locally compact abelian trans- 
formation group with continuous stabiliser map cr:X+ z‘,. We shall say 
that X is a locally a-trivial space if X/G is Hausdorff and if every x E X has 
a G-invariant neighborhood U which is G-homeomorphic to U/G x G/- , , 
where 

(G..K,.s)-, (G.J, 1) ifandonlyif G..u=G.y and st ‘EG,, 

and G acts on U/G x G/- , by translation in the second factor. 

Extending Definition 4.2 to the case when G is non-abelian is com- 
plicated by the fact that the stabilisers vary along orbits. Since our 
definition of a locally a-trivial space implies that there are local sections for 
the orbit map p: X + X/G, Definition 4.2 can be modified by requiring the 
existence of a continuous section q: U,I’G + U and defining 

(G.x,s)-, (G..v, 1) if and only if G .Y = G J’ and sr - ’ E G,,,; , ). 

However, as the applications we have in mind here involve only abelian 
groups, we have chosen to restrict ourselves to that case for ease of 
exposition, even though some of our results----such as the next 
proposition-- go through for non-abelian groups. 

A free and proper action of G on X is locally trivial exactly when the 
orbit map X + X/G has local cross-sections, and we shall now show that cr- 
properness and local a-triviality are related in the same way. Again, for 
motivation we note that, in the case of a constant stabiliser group H, the 
following proposition implies that X is locally a-trivial if and only if it is 
locally trivial as a G/H-space. 

PROPOSITION 4.3. Let X he a local!,~ compuct Hausdorf G-space with 
continuous stahiliser map 6: X + 2‘,;. 

(1) If X is locally a-rrivial, then the G-action is a-proper. 

(2) If the G-action is a-proper, then the orbit space X/G is HausdorjJ 

(3) !f the G-uction is a-proper and the orhir mup X + X/G bus local 
sections, then X is local!,~ a-trivial. 

Proof: To prove (l), let K be a compact set in X. Also suppose that 
{(x,, .r,)} is a net in Xx G with .Y,, s, ..T, E K for all i. Since it will sufftce to 
find a convergent subnet, we may assume that x, + x and s, .x, -+ J. 
Moreover, we can even assume that Kc_ U, where U is the G-invariant 
neighborhood of x specified in Detinition 4.2. In particular, we can reduce 
to the cast where X = X/G x G/- , . Notice that the natural map of X/G x G 
onto X will be open by [33, Lemma 2.31. Thus we may write K as the 
image of C, x C, E X/G x G with C, compact. We put x, = [G ..T,, f,] and 
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s,.x,=[G.x,,s,r,] for G.,Y,EC, and ~,EC*. But [G.x,,r,]+[G.x,r] 
while s, ..Y, converges to some [G ..Y, s]. Using the openness of the natural 
map again, we can assume that 1, -+ t and that there are c, E G, so that 
L’,s,~, converges to s. However, all this means that 

converges to (.Y, sf ’ ) in Xx G. T his implies [x,. s,] converges in the 
quotient. 

Statement (2) is [ 33, Proposition 2.173. 
For (3), it will suffice to show that if ‘I: X-+X/G has a global (con- 

tinuous) section c: X/G + X, then X is G-homeomorphic to X/G x G/- , . 
Define ji X/G x G/- , +Xandg:X+X/GxG/-, by 

j([G~.r,.s])=.s~c(G~x) 

and 

g(x) = [G .x, s], where .u=.s.c(G.~). 

It is easy to see that bothfand g are well-defined G-equivariant maps, and 
that .f is continuous. Furthermore, both .fz g and g ::J are the identity map; 
hence, it will suffice to show that g is continuous. 

Suppose that x, converges to .r in X. It will suffice to show that every 
subnet of (g(x,)} has a subnet which converges to g(x). Put 
.Y, = s, . c( G ,u,) and x = s . c( G .Y ). Since c is continuous, the a-properness 
implies that {[I,, s,]) (h as a subnet which) converges to some [.r, r] in 
XxG/-. Since the quotient map of Xx G onto Xx G/- is open [33, 
Lemma 2.31, we can assume that there are 1, E G,, such that s,fi converges 
to r. Therefore, .Y, = s, . c( G . .u,) = s, f, . c( G .r,) converges to r . L’( G -u). In 
particular, g(.u) = [G . .r, r]. 1 

We believe this proposition provides convincing evidence that we have 
the correct notion of local triviality to go with our definition of a-proper- 
ness. However, there is one slight problem. For free actions, locally trivial 
G-spaces can be recovered from the local trivializations using transition 
functions, and this allows us to use the machinery of sheaf cohomology. In 
our more general setting, these transition functions need not exist, and we 
are forced to impose an extra condition on the stabiliser map c to make 
sheaf-theoretic techniques available. (We give examples following 
Proposition 4.5 to show that the extra hypothesis is not redundant.) We 
shall distinguish between the two situations by reserving the word “bundle” 
for the case where transition functions exist. 

DEFINITION 4.4. Let Z be a locally compact Hausdorff space, G a 
locally compact abelian group, and g: Z + E, a continuous map. 
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(1) We say that ~7 is locally liftable if every continuous section 
c:Z-tZxG/-, is given locally by a continuous map s: Z + G (i.e., 
C(2) = [z, s(z)] for z E Z). 

(2) We say a locally compact G-space X is a locally a-trivial 
G-bundle over Z, if Z= X/G, if c is locally liftable, and if X is a locally 
a-trivial G-space as in Definition 4.2 (when o is viewed as a map on X 
which is constant on orbits). 

PROPOSITION 4.5. Let G be a locally compact ahelian group and 
u: Z + .?I,; a locally liftable map from a paracompacl space Z. Lel 05 denote 
the sheaf of germs of continuous G-oulued functions on Z, and ‘$3 the suhsheaf 
bchose sections ocer U are continuous functions s: U -+ G such that s(t) E a( 1) 
for t E U. Then the set of isomorphism classes of local!,. a-trioial G-bundles 
ocer Z is in one-to-one correspondence with the cohomology group 
H’(Z, 6pg). 

Proqf. Suppose p: X -+ Z is a locally a-trivial G-bundle, and let 

h,: U,xG:‘- +p--‘(U,) 

be equivariant homeomorphisms. Then for each pair i, j, the map 
‘Hh, ‘( ‘. h,( [z, e]) is a section of U,, x G/-, and hence is given locally by a 
continuous map s into G. By the argument of [2, 10.7.113, we can refine 
the cover { U,) and assume there are continuous maps s,,: U,, + G such that 

h,([l=,.~,,(=)1l)=h,([=, 11,. for : E C’,,. I E G. (4.2) 

By comparing (h, ’ ./ h,) 0 (h; ’ 11~) and h; ’ -h, on triple overlaps, we find 
that 

s,,(z) s+(z) .s,/&) ’ E G, = a(z), for = E Ciyk, (4.3) 

so that the s,, define a I-cocycle { iY,, s,,} with values in the quotient sheaf 
VJ/‘& (We shall refer to the s,, as rrunsirion functions for the bundle.) 

Although Eq. (4.2) does not determine the functions s,, completely, the 
corresponding section of S/‘B is uniquely determined, and of course 
refining the cover will not affect the class of {U,, s,,} in H’(Z, B/$3). 
Suppose we had picked different trivializations g, over U,. By the liftability 
of 0 we can refine the cover to ensure there are continuous maps k,: U, -+ G 
satisfying 

h,(C=, k,(=)~l)=g,([;. [I)> for -‘EC’,, LEG. 

The corresponding transition functions s,, and r,, are then related by 

k,(z) ‘s,,(z) k,(z) r,,(z) -’ E Cr. for =E U,, 

so that the cocycles {I/,, s,,}, (U,, r,,} are cohomologous. Similar 
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arguments show that the class of {U,, s,, j depends only on the 
isomorphism class of the G-space X-+ 2. 

Conversely, if we are given a I-cocycle with values in Cf>j+& we can by 
refining the cover assume that it is given by continuous s,,: U,, + G satisfy- 
ing (4.3), and by the usual method construct a bundle with transition 
functions s,,. As usual, cohomologous cocycles give isomorphic bundles, 
and the result follows. 1 

Of course, in the freely acting case, the locally trivial spaces are 
automatically bundles, but in general they need not be. To see this, it suf- 
fices to consider the case where H is a subgroup of G and (T: Z + 2‘, is 
defined by a(z) = H for all 2. Then Z x G/- = Z x G/H, and sections are 
just functions from Z to G/H, which always lift locally if and only if 
G + G/H has local cross sections. Although it is automatic for Lie groups 
[ 193, there are pairs (G, H) for which this is not the case. For example, let 
G = fl,,_ , if and H = n,:= , { 1, - 1 ). Our next example shows, however, 
that even for actions of I&!, there can be a difference between our locally 
trivial spaces and bundles when the stabilisers vary. 

EXAMPLE 4.6. Choose a complex line bundle p: L --, Y, and give it a 
Hermitian structure. Then we can define an action of R on L by 

i 

p2nrr~ I.1 . - 
-9 if (~1 #O, r.,= 

v -9 if 1~1 =O. 
Then we have 

u(z) = Gz = 
IZI I, if I:( #O, 

R if 12) =O, 

(4.4) 

(4.5) 

so the stabilisers vary continuously. The argument of [33, Example 5.43 
(which is the special case where Y is a point) shows that the action is 
o-proper, and it is easy to verify that the continuous map 
q: L + Yx [0, ,xX) defined by q(z) = (p(z), 1~1) induces a homeomorphism 
of the orbit space L/R onto Y x [0, c;c ). The local triviality of L as a line 
bundle implies that there are local cross sections of q, so that L is a locally 
a-trivial space for the map c: Y x [0, S) + ,?I defined by a(y, r) = rH 
(r # 0). and a(y, 0) = R. In general, L is not globally a-trivial-in fact, it is 
easy to see that it is globally a-trivial exactly when it is trivial as a line 
bundle. We claim that L is not a locally a-trivial bundle; the map u is not 
locally liftable. 

To see this, it is enough to consider the case where Y is a point, so that 
L=C. We define c: [0, cc)+ [0, xj)xlR/* by 

i 
[r. l/r]. 

c(r) = [O, 01, 

for r # 0, 
for r=O. 
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Away from 0, c is continuous because rH l/r is; thus, to prove that c is 
continuous on [0, x), it will be enough to show that c(r,,) + c(O) whenever 
rn L 0. For each n we can choose an integer m, such that 
1 l/r,, - r,m,,J < rn. Then since o(r,,) = r,,Z, we have 

and c is continuous. If .s: (0, E) + R is a continuous function such that 
c(r) = [r. s(r)], then we have l/r-s(r) E rZ for all r # 0. Then the function 
r H l/r” - s(r)/r is continuous on (0, c) and integer valued, so it must be 
constant, say equal to N. But this implies that s(r) = - rN + l/r for r # 0, 
which cannot possibly extend to be continuous at 0. Thus the section ( 
does not have a local lifting near 0, and u is not locally liftable. 

EXAMPLE 4.7. To show that a proper space need not be locally trivial 
let R act on @* by the formula (4.4). As in Example 4.6, this action is 
a-proper for the stabiliser map (T given by (4.5). To see that @* is not 
locally trival, let p: S’ + S* denote the Hopf fibration. Let 1 .I denote the 
usual norm in 43’. Then, identifying the unit sphere in C* with S” and the 
unit ball in R3 with S*, we can define 9: C’ -+ W’ by 

q(-I= 
i 

Ii1 P(i/l=l h if z#O, 

0, if 2 = 0. 

Then q is continuous and open, and therefore induces a homeomorphism 
of C’/R onto R’. If there was a local section s near 0, then for sufficiently 
small 6 >O we would have a continuous map s: 6s’ -+ 6S3 such that 
y(s(dx)) = 6.x for all .Y E S’, which in turn would give a continuous section 
.VH (l/6) s(k) for the Hopf fibration. Since no such section exists, we 
deduce from Proposition 4.3 that @’ is not a locally a-trivial W-space. 

PROPOSITION 4.8. Suppose (G, X) is a second countable locally compact 
ahelian transformation group rrhich is proper relative to the continuous 
stahiliser map c: X + z‘,. Then, Mlith respect to the dual action of 6, the 
spectrum of the trunsformation group C*-algebra C*(G, X) has stahiliser 
map 6: X+G;, and C*( G, X)- is a (glohall.v) b-trivial G-space over X/G. 

Proofi To see this, we recall from [32, Theorem 5.33 that the map 

(x, ~)++hd:j,(s, xi’ I(;,) 

induces a homeomorphism of Xx Gi- , onto Prim( C*(G, X)) = 
C*(G, X)^, where 

-- 
(x, y)-, (,; 1)~ G.x=G.j and i’x ‘EG:=G,~. 
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It follows from [34] that C*(G, X)^ is Hausdorff. Because G acts 
a-properly, the orbits are all closed, X/G is Hausdorff (Proposition 4.5), 
and we can identify Xx 6/-, with (X/G) x cl-. If x E 6 and 5 denotes the 
dual action of 6 on C*(G, X), then by [22, Lemma 2.31 we have 

This implies both that the stabiliser of Ind(c, x y) is G:, and that the above 
homeomorphism is 6equivariant. Notice that the continuity of x++G; 
follows from the continuity of *VI-+ G, and that of the map HH H’ from 
2‘, + .?I(; [34]. [ 

Some particularly well-known and interesting subsets of 2‘,, are the 
Grassmanian manifolds Gr(n, k) of k-dimensional subspaces. We shall now 
study locally a-trivial KY-bundles where (z takes values in a component of 
the Grassmanian. Our main result says that, in this case, the only a-proper 
R”-actions are the trivial ones on Z x R”: -. This is, of course, well known 
for free actions, but the general result is a little surprising in view of the 
highly non-trivial topology of Gr(n, k). We shall, however, give some 
examples to show that even these trivial actions can arise in interesting 
ways, and we show how they can be modified to give locally trivial actions 
of larger groups which are not globally trivial. The basic idea here is that 
locally we can adjust such actions to ensure the stabilisers are constant. 
More formally, we make a definition: 

DEFINITION 4.9. A continuous map U: Z + 2‘, is locally constant if for 
each z0 E Z there are a neighborhood U of z0 and a map c: U + Aut(G), 
continuous in the compact open topology on G, such that c(z)(a(z,,))= 
a(2) for ;E U. 

PROPOSITION 4.10. ( 1 ) Suppose (T: Z + z‘,; is locally constant, and rhar 
each map G -+ G/G, has local cross sections. Then c is IocaIly l~~tahle. 

(2) Suppose CJ is local[v constcmt, and that each quotient G,lG, is a Lie 
group. Then er:erJ a-proper space is locally a-tricial. 

Remurk. Both hypotheses on G/G, are automatically satisfied if G is a 
Lie group. 

ProoJ (1) Given zOg Z, we choose U and c as in Definition 4.9, and 
define a homcomorphism h of G’ x G/G;, onto p ‘(V) = U x G/- by 

h(i, tG,,,) = [z, C(Z)(~)]. 

Thus any continuous section s of p ‘(U) is given by a continuous function 
of U into G/G,,, which by shrinking Cl we can lift to a map r of U into G. 
Then the map z H c(z)(r(z)) provides the required lifting. 
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(2) Let X be a a-proper G-space with X/G = Z. We are only 
interested in local properties, so without loss of generality there is a point 
x0 E X and a continuous map c: X/G -+ Aut(G) such that c(.T)(G,,,) = G, for 
all x. We now define a new action of G on X by s : .Y = (.(-K)(S). s; this is an 
action because c(.Y) is a homomorphism and c is constant on cosets, and 
continuous because it is a composition of continuous maps: 

(s, s) H (3, c(x), x) H (c(x)(s), .K) H (.(x)(s) ‘X. 

We have G’ x = G . .Y because c(x) is onto, so the orbit spaces for the two 
actions coincide; furthermore, 

so induces a free action of G/G,,, on X. We claim it is also proper. 
The map h: Xx G--+ Xx G defined by h(.u, s)= (x, c(.u))’ (s)) is a 

homeomorphism which carries { (-Y, s): .r E K, s . .r E K} into { (.u, r): .Y E K, 
I ‘.r E K}. If we define an equivalence relation z on Xx G by (x, r) z (x. I) 
if and only if rt ’ E G,,,, then we have 

(x,.s)- (x, t)oh(.u, S)~h(.K, I), 

and h therefore induces a homeomorphism of Xx G/- onto Xx G/z = 
Xx G/G,,. Now if K is compact in X, then {(.r, s): -YE K, .s ‘SE K) has 
relatively compact image in Xx Gi -, and its image {(-r, r): .Y E X, r x E KJ 
under h has relatively compact image in Xx G! z. Thus the action 2 of G 
on X induces a proper free action of G/G,,. Since G/G,,, is a Lie group, 
Palais’ slice theorem [ 191 implies that there is a local cross section for this 
action. But XIG is the same for either action, so there are local cross sec- 
tions for the original action too. 1 

LEMMA 4.1 I. Suppo.se g: Z --t & is (I continuous mup which tukes culuc~s 

in one component Gr(n, k) of thr Grassmwian. Then (T i.s locally constant. 

ProqJ For :,EZ the natural map p: GL,,(R) + Gr(,t, k) defined by 
p(T) = T(a(z,)) is a smooth surjection and therefore has local cross 
sections. Composing with one of these gives the required lifting of (T into 
GL,,( [w) = Aut(R”). 1 

EXAMPLE 4.12. If Z= RP= RP’ and 0: Z + RP= Gr(2, I ) is the iden- 
tity, then u is not globally constant; that is, we cannot take lJ =Z in 
Definition 4.9. To see this, let y denote the natural map from S’ to RP, let 
R: S’ + SOI be the isomorphism which sends ~““’ to rotation through 
0, define p(T) to be the line through T( I, 0), and let k: GL,([W) 4 SO,( [w) 
bc the continuous map which sends the invertible matrix with Iwasawa 
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decomposition KAN to K (see [I I, p. 2701). Then we have a commutative 
diagram 

--!fL SO2(IR) 2 GL2(W) 
k 

P 
I 

z=aBpLE!+ RP’J RP ,‘I - RP. 

Since y does not have a global section, there can be no global lifting of (T 
with values in SO,(R). However, a global lift f: 2 + GL,(R) for 0 would 
give such a lifting k -,,fi Z+ SO,(R). which justifies the claim. 

PROPOSITIONS; 4.13. If o: Z -+ Gr(n, k) is conrinuous and Z is pmacom- 
pact, then ewry a-proper W-space with orbit space Z is isomorphic to 
zx WI-. 

Proof: By Lemma 4.1 I and Proposition 4.10, every a-proper IX”-space 
X is a locally a-trivial bundle. According to Proposition 4.5, the 
isomorphism class of X is determined by the class in H’(Z, @/‘$I) of the 
cocycle defined by the transition functions of X. Here, 8 is the line sheaf of 
germs of KY-valued functions, so that HP(Z, (ci) = 0 for all pb 1, and the 
long exact sequence of sheaf cohomology implies that H’(Z, 6/v) 2 
H*(Z, q). We shall prove that H*(Z, ‘B) =O; this suffices by 
Proposition 4.5. 

Suppose {U,, irlk} is a 2-cocycle with values in $3, so that in particular 
i.+(;)Ec(z) for all ;E Ci,,,. Viewed as a cocycle with values in t.3, it is 
trivial, so by refining the cover we can find p,,: U,, -+ R” such that 

j-,,k(i) = P,(i) - P,k(-?) + P,k(zh for =E L:,,k. (4.6) 

If P(z) denotes the orthogonal projection of R” onto a(z), then 
P: Z + Aut(R”) is continuous, and hence so is the map P x p,,: Z+ R” 
which sends z to P(z)(p,,(z)) for each i,j. But each P(z) is also linear, so 
(4.6) implies 

i,,,(z) = P(z)(j&k(z)) = P x p,,(z) - P x P,~(--) + P x p,A:). 

Each Px p,, is a section of q, so this shows that (&j is trivial in 
H*(Z, ‘$I), and establishes the claim. 1 

EXAMPLE 4.14. Let E be the real sub-bundle of RP” x R”’ ’ orthogonal 
to the canonical line bundle L over RP”, and for 1~ RP”, let P, denote the 
orthogonal projection of R” + ’ onto the iibre E, = I’. Then we can define 
an action of R” + ’ on E by 

u. (f, c) = (1. c + P,(u)). 
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The stabiliser map (T is the inclusion of RP” in z‘,., and, although it is not 
immediately apparent, E is a globally a-trivial R” + ’ space- in fact, the 
map h from RP” x R” - ’ to itself defined by h(l, r) = (I, P,(u)) induces an 
equivariant homeomorphism of RP” x R”’ ‘/* onto E. As an n-dimen- 
sional vector bundle, however, E is always non-trivial [ 16, Example 3, 
p. 433. 

When /I = 2, we can disguise this trivial space even more: RP can be 
identilied with [-n/2, n/2]/{ -z/2, n/l}, and E with the Mobius band 
M=[-n/2,n/2]xR/-,, where h z identifies (n/2, X) with (-n/2, -.u). 
The corresponding action of lR2 on M is given by 

(r, s). [O, x] = [U, x-r sin(O) + s cos(O)] 

Obviously one can perform similar constructions for other components of 
the Grassmanian. 

EXAMPLE 4.15. Let H be a locally compact abelian group, y: Y + Z a 
locally trivial principal H-bundle, and ‘I: Z -+ KU’” a continuous map. Then 
we claim that, for the diagonal action and with c defined by 
a(c) = {e) x T(Z), X= Y x R”’ ‘/- is a locally a-trivial (H x R” + ‘j-bundle 
over Z, which is globally trivial only if Y is trivial. 

It is easy to check that the orbit space X:( H x IR” + ‘) is homeomorphic to 
Z, that (T is as asserted, and that (T is continous. If Y is H-isomorphic to 
ZxH, then XzZx(HxR"")/- is o-trivial. The map T  is locally 
constant by Lemma 4.11 and Proposition 4.10, and hence (T is too. Finally, 
iffdenotes the continuous map [y, c] HJ* from X to Y, then a continuous 
section s for X would give a continuous section f( s for Y; thus, X can be 
globally trivial only if Y is. 

For an interesting concrete example of such a space, we can take H = Z,, 
q to be the canonical map of s” onto VU”‘, and r to be the identity. Then, 
as in the preceding example, (‘rt, C) t-+ (w,, P,(c)) induces an isomorphism of 
yx [w’s+ I!‘- onto the orthogonal complement E of the real line bundle 
q*L over S”. Since y*L is the normal bundle, E is the tangent bundle 
T(S”), and we obtain an action of Z, x R”” on T(s”) which is a locally 
a-trivial bundle over RP” for the map (T: I + { CJ) x I, but which is not 
globally a-trivial. 

5. ACTIONS WHICH ARE LOCALLY UNITARY ON THE STABILISERS 

Locally unitary actions of an abelian group G where introduced in [20] 
as a C*-algebraic analogue of (locally trivial) principal &bundles. It was 
proved there that when A is type I and a is locally unitary, then (A xx G)̂  
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is a principal G-bundle over A [20, Theorem 2.21, and, conversely, that if 
X is a principal G-bundle, then the dual action of G = 8 on C*(G, X) is 
locally unitary [20, Theorem 3.11. In [22], the main results concerned 
actions which were locally unitary on a common stabiliser group H, and 
we shall be interested here in actions which have a similar property with 
respect to continuously varying stabilisers. We think of this property as a 
dual analogue of the locally trivial spaces we studied in Section 4, and 
justify this by giving versions of [20, Theorems 3.1 and 2.23 (see 
Propositions 5.9 and 6. I ). 

We resume the notation of Section 2, so that A = I;(<) is a C*-algebra 
with X= Prim(A) Hausdorff, and we have automorphisms a(.~, .\-) of the 
libres A, for each (s, s) E Y. Also, recall that we can view a multiplier h of 
I-,,(p*<) as a (strictly continuous) field of multipliers (h(s, x)1 E 

FL,.,,. P . &(A ,) ([ 15, Theorem 21 or [I, Theorem 3.31). Note that the 
following definition works perfectly well for non-abelian groups. 

DEFINITION 5.1. Suppose that A = I;,(r) is a C*-algebra with 
X= Prim(A) Hausdorff. and that (A, G, 2) is a C*-dynamical system with 
continuous stabiliser map XI+ G,. We say that x is unitary on the 
stabilisers if there is a unitary u E .fl(Z;,(p*c)) such that for all UE A and 
(t. x), (s, x) E 2’ we have 

u(.sr, s) = u(.s, x)u( 1, x) 

r(s, x)(a(x)) = u(.s, x)a(x)u(.s, x)*. 
(5.1) 

Similarly, we say that z is locally unitary on the stabihsers if for each point 
.Y(, of X there are a neighborhood N of sg and a u E .X( r,,(p*t)) such that 
u( I, X) is unitary for each (I, X) EP ‘(N) and (5.1) holds on p l(N). 

It may be illuminating to reformulate the above definition in terms of 
groupoids: first let Aut(r) denote the groupoid consisting of pairs (x, K), 
where .YE X and ~eAut(A,) (both the range and the source maps are the 
projection onto the first factor). Then there is an associated groupoid 
homomorphism x’ from d to Aut(<) defined by LX;, ,, = (x, a(.~, x)), which is 
continuous in the sense that (s. .Y)H x(s, ,~)[a(.~)] is a section of p*; for 
each UE r,,(r). In our terminology, x is unitary on the stablisers exactly 
when x’ is implemented by a unitary in .K(f,(p*<)). 

Other than the trivial example of free actions, it may not be immediately 
obvious that many actions are locally unitary on the stabilisers; hence, we 
will provide a number of classes of examples. Our first observation points 
out that Definition 5.1 extends that of [20]; the proof is straightforward. 

LEMMA 5.2. Let x: G --t Aut(f,(<)) he u locull~v compucr uheliun 
automorphism group with G, = H for all .r E X. Then r IfI is iocully unitat-!, $ 
and only if‘ CI is locul!,~ unitur)* on the stahilisers. 
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For convenience in the sequel, we will sometimes shorten the phrase 
“locally unitary on the stabilisers” to simply “locally unitary.” This should 
cause no confusion as the previous lemma says that these notions coincide 
whenever it makes sense for them to do so. 

We will lind it useful to consider actions where the stabiliser map is 
locally constant on the orbit space X/G as described in Definition 4.9. For 
simplicity, we assume that we can take U = X/G in Definition 4.9. In other 
words, we have a map c: X + Aut(G) which is constant on G-orbits, 
continuous in the compact open topology on G, such that there is a sub- 
group H 5 G satisfying c(.u)( H) = G, for all .Y E X. It follows that the maps 

(3, x) I-+ c(s)(s) and (s, X)HC(X) ’ (s) 

are continuous from G x X to X. Furthermore, by the uniqueness of Haar 
measure on G, for each .Y E X there is a m(.~) E [w + so that 

(5.2 

It is easy to see that m: X+ R ’ is continuous [ 12, Sect. 26.211. 

LEMMA 5.3. Suppose that x: G -+ Aut(f,,({)) is an ahelian automorphism 
group and that c: X -+ Aut(G) is as above. Then if‘s E G, a E r,(l), and x E X, 

B,(aH.y) = ~,,,,,,(a)(.~) 

defines an automorphism group qf‘ r,( <) with ull stahiliser groups equal to H. 
In addition, 

Proof This is a straightforward extension of [22, Lemma 4.161. One 
defines @ from C,(G, f,(t)) to C,(G, rec.(<)) by 

@(h)(s)(x) = m(.u) h(c(x)(s))(x). 

The only subtlety lies in calculating elements of the form r,,(@(g)(r))(.r). 
First of all, we observe that 

[~(g)(r)-m(.u)K(c(.~)(r))](.s ’ ..rI=O. 

Then, by definition of the induced action on X, we have a(s ’ ‘x) = 0 if 
and only if r,,(a)(x) = 0, so this implies 

r,(@(g)(r))(x) = d-v) a,(g(c(-~r)(r))K~). 
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Using this formula, it is a matter of direct calculation to check that @ is a 
*-homomorphism (see the proof of [22, Lemma 4.161); as @ preserves the 
L’-norm, it passes to the C*-completion. It is an isomorphism because we 
can define its inverse in a similar fashion. 1 

COROLLARY 5.4. With the .sunze notution us uhozx, if /j ) H is locall?* 
unitarjs, then CY is locally unitar)! (on the stahilisers). 

We will say that ~1: G -+ Aut(T,,(t)) is pointwise unitary on the stabilisers 
(or simply pointwise unitary), if given ,V E X there is a representation u of 
G, such that r,(u)(x) = u,,a(.r) I(,* for all s E G, and aE f,(r). If A is type I, 
this is equivalent to saying the Mackey obstructions vanish. 

PROPOSITION 5.5. Let A = In(<) he u separable continuous trace 

C’*-ulgehra. Suppose that r: G -+ Aut(A) is u compactly generuted ahelian 
uutomorphisnz group with locul!,~ constunt stuhilisers. Then, f  r is pointwise 
uniturj’ (on the stahilisers), a i.s lo~*ully unitury. 

Proof: Fix a .YE X. Then there is a representation u of G, so that 
r,(a)(x) = u,a(x) UT for all a E A. Thus, 

for all SE H. In other words, /?I,, is pointwise unitary. It follows from [29, 
Corollary 2.23 that 11 (,, is locally unitary. Now apply Corollary 5.4. 1 

Our next family of examples involves the notion of pull-backs of 
C*-algebras (see [23]). For this, let p denote the induced action of G on 
C,,(X) and assume that X/G is Hausdorff. Then if B is a C*-algebra with 
spectrum X/:G WC can define the pull-back 

q*B= C,,(J”)Oc,x,c;, B 

of B via the quotient map q: X-+ X/G. Furthermore, if ;’ is an 
automorphism of B, then there is a well-defined automorphism of the pull- 
back q*;*=pOC,x:G,y as delined following the proof of Theorem 2.2 in 
~231. 

LEMMA 5.6. I/‘ ;‘: G + Autc.O,x,c;, (B) i.s u locully unitury automorphism 
group and 

2 = j) Of’,.t.;C;, 7. 

then x is locally unitary (on the .stahili.ser.s). 

Proof: As this is a local result, there is no loss in generality in assuming 
that ; is inner; thus, 7 =ad u, where u: G + U(.&(B)) is a strictly 
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continuous homomorphism. Then v(s, x) = 1 @c.,w, 1 @c.,,u,c;, u,(G ..u) 
deIines a CE U(.A(r,(y*t))) which implements r over :‘Y’ as in 
Definition 5.1. [ 

Remark 5.7. Even when an action r on a pull back q*B does not have 
the form y*y, we can sometimes reduce to this case by comparing r with 
the canonical action r = y*id by translation. Provided A = q*B is separable, 
we obtain a I-cocycle fl= r r ’ with values in the Polish G-module 
Aut,.,,, A, where .YEG acts by conjugation by 5,. If b takes values in 
Inn(A), there is an obstruction in the Moore cohomology group 
H’( G, C( X, T)) which vanishes if and only if r is exterior equivalent to r 
[22. Theorem 0.113, in which case we have 

When B (and hence also A by [22, Lemma 1.23) has continuous trace and 
the (5ech group fi*(X, Z) is countable, then Inn(A) is open and closed in 
Aut,.,,,, A [22, Theorem 0.83. Thus, for connected G, the cocycle fi often 
automatically lies in Inn(A). This will be particularly interesting when 
G= R, for then the cohomology group H*(R, C(X, T)) is trivial [22, 
Theorem 4.11. 

Another class of examples arises as the natural generalization of [20, 
Theorem 3.11. As we stressed in Section 4, a locally a-trivial G-space X is 
the (non-constant fibre) analogue of a locally trivial principal G-bundle. 
Therefore it is not surprising that it is a consequence of Proposition 4.5 and 
[33, Theorem 5.11 that C*(G, X) has continuous trace. Furthermore 
following Proposition 4.8, the map 

(G ..Y, 7)~ Indz%(c, x 7) 

induces a homeomorphism of X/G x G/+ onto C*(G, X)^. Furthermore, 
the map [G ‘.Y, s] H G. x is a well-defined open, continuous surjection by 
virtue of the remarks following [32, Theorem 5.33. It follows from [31, 
Theorem 8.31 that C*(G, X) may be realized as the sections of a C*-bundle 
over X/G with libre over .r isomorphic to C*(G, G. x), which is in turn 
isomorphic to C*(G, G/G,) since .F H s . s induces a homeomorphism of 
G/G, wih G.x (which certainly follows from [3], since (G, X) is second 
countable, or from [ 33, Proposition 2.173 ). 

PROPOSITION 5.8. Suppose that X is a locally a-trivial G-spuce as in 
D.efinition 4.2. Then the dual action on C*( G, X) is locall~v unitary on the 
stahilisers. 

Proof: We are guaranteed local sections for X + X/G; thus, we may as 
well assume that there is a global section c: X/G 4 X and prove that d is 
unitary on C*(G, X). 
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As above, WC realize C*(G, X) as sections of C*-bundle E over X/G, with 
fibre C*(G, G/G,) over G ..Y. In fact, if ZE C,(G x X), then the associated 
section, n(z), is given by 

n(z)[G ..Y](.s, tG,) = I(S, rc(G ..Y)). 

Now given G. .Y E X/G and 7 E G; we define a multiplier w,~ ,,>, of the fibre 
over G ..Y (i.e., C*(G, G/G,)) by 

(‘I.,(; ,.;,.v)(s, IG,) = s(t)):(.~, rG,J 
and 

(.bW. ,(, ,.;,Ks, ~3,) =J$.s, rG,) Y(J ‘11, 

where J’EC,(GXG/G,). It follows from [22, Lemma2.41 that, for fixed 
G . x, i’ ++ u* ,(; )(.;, defines a strictly continuous homomorphism of G,L into 
U(.k’(C*(G, G/G,))) which implements the dual action of 6. 

On the other hand Lemma 2.3 of [22] implies that 

Therefore in this example, 

Our object is to use u’ to define an element of U(,M(p*(C*(G, ,I’)))). Now 
p*(C*(G, X)) has spectrum 9 [23, Lemma 1.11 and may be viewed as 
sections over 9 with tibre over ([G ..Y, x], 7) equal to C*(G, G/G,). Hence 
if h l p*( C*(G, X)), then we can define 

wh([G.x, x1.-y)= w,(; ,.j,b([G~s,~].;‘). 

It will then suffice to show that \vb is in p*(C*(G, X)) ([ 151 or [ 11). Since 
p*(C*(G, X)) is spanned by sections of the form h = 40 n(z) with 
d E C,(9) and ZE C,(G x X), it will be enough to show that 

(CG..r, ~1, ~)-4([G..r, ~3, ;1) H‘(<; ,.;.,4z)[G..rl (5.3) 

defines a section on p*(C*(G, X)). Since the appearance of 4 in (5.3) 
guarantees that the section vanishes at infinity, it will suflice to show the 
following: given E > 0, G . -rO E X/G, and y. E G ;,,, there is a )’ E C,.( G, X) and 
a neighborhood N of (G . .Y”, yO) E 9’ = {(T, x) E X/G x G: x E G; } such that 

whenever (T, 7) E N. 

II M ,r:;,~,(=) - &(.Y)Il <E 

Let K, E G and K, E X be compact sets with supp(z) c_ K, x K,. Because 
the action of G is a-proper (Proposition 4.5) and the quotient map 
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h:XxG-+XxG/- is open [33, Lemma 2.31, we can lind compact sets 
1, E X and A4 E G such that 

G(c(K,jG)uK,)c_Lx M,'-. 

Now choose .r E c‘, (G x X) such that supp J E supp 2 and 

y(s, rc(G .x0)) = ;‘o(f)z(.s, fc(G ..Y~)) 

for all s, f E G. Choose a neighborhood N of (G .x0, 2”) such that, whenever 
(5,~) E N, we have T E K2;G and 

SUP {Ij’(.S. fC(T)) -,i*(.s, rc(G .&,))I ) <c 
I 6 .%I 3dK,) 

SUP { I=(& f(.(T))-:(S. rc(G ..u,,))l} <(: 
I E .\I 3dK, 1 

sup f!y(f)-;‘O(f)l 1 < 
E 

IC si 3 l!Jrc; ,,,Ml' 

Now fix (T, %)E N and compute that 

d suP Ix(f)Z(.S, fC(T)) 
d(; ,c %I 

(5.4) 

(5.5 

(5.6 

-+I’(& fc(T))! d.Y, 

and. using the fact that +t’ = 7,). z on G x G ..Y,,, this is 

+ I SUP { lit(f) - ;',J(f)I z(.s, fc(G ..q,))} ds 
G rt.w 

It follows from (5.4)(5.6) that the last sum is bounded by r:; this completes 
the proof. m 

6. THE SPECTRUM OF A xx G WHEN r Is LOCALLY UNITARY 

ON THE STABIIJSERS 

In this section we assume that A is type I, and we shall show that when r 
is locally unitary on the stabilisers and A + A/G is locally trivial, then the 
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diamond in Theorem 3.10 consists of locally trivial spaces. We shall then 
discuss some interesting examples in detail. 

We begin by considering the G-space Res: (A xl, 9) -+ A^ of 
Theorem 2.2; we assume A is Hausdorff. Recall that the dual action of C? on 
(,4 XI, .Y)- is given by 

y.((?Tx U)-n,)=((nx U) 7r,).>i,, ‘=(7rxj’I(,* U):,71,. 

When a is pointwise unitary, the action s I-+ LY(S, X) of G, on A, is unitary, 
and it follows from, for example, [20, Proposition 2.11 that 7c x y lG., U is 
equivalent to II x U exactly when 7 E Gt. Thus the stabihser map for the 
action of d on (A xl, 9)^ is the composition ~5 of r~ with the map HI+ H’ 
of L,; onto 2‘(;; this is continuous when u is [343. 

If x E X = k, we shall write I:, for the representation a H U(X) of A, and if 
U: G + U, I(A) implements CY( ., .u) in the representation c,, we denote by 
C, x u the representation of A Mu 9 such that 

for f‘~ 1; (p*c). 

Our next result is a direct generalization of [20, Theorem 2.3 and 
Proposition 2.51. 

PROPOSITKK 6.1. Suppose that A i.s u type I C*-ulgehra with Huusdoyfj 
spectrum X and 2: G + Aut( A) is locally unity,, on the stahilisers. Then 
A )(I~ d is type I and Res: (A Mu .Y)- -+ X is lodly b-trivial spuce M’ith 
respect to the duul action qf6; if‘u~ .N(p*A) implements a over N, then 

induces u homeomorphism h qf (N x d)/- onto Res ‘(N). Jf ci is locull~~ 
l~ftuhle, then Res is u ri-trivial bundle lf anti only if’ x is unitary on the 
stuhi1i.ser.s. 

The idea of the proof is to localize to an ideal of A where r is unitarily 
implemented, and then prove the spectrum is G-trivial. For this we need to 
know that if F is a closed subset of X, IF is the corresponding ideal in A 
and ;Ty k = [(s, x) E 9: .r$ F}, then IFS,, :Yx r embeds as an ideal in 
A xX 9. Technically, we have not yet defined IFS, 9x I, but we can use 
the construction of A >a, 9 essentially verbatim. As usual, we write 
A = 1-J 5). 

b3fMA 6.2. Let F he a clo.sed subset ?f X. Then the mup 
i: I;(p*< I,y F) -+ I‘,(p*<) &fined bj, 

.f(.s, .y 1, 
i(J‘)(s, x) = o 

1, 
(f (s, x) E 9x p. 
if (s, .Y)E .Y,:. 
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extends IO a *-homomorphism of IFx, Yx r into A xa, b, and we haue a 
short exact sequence 

In particular, IFS, .yv F= 0 {ker(n,): XE F}. 

ProejI It is clear that i is a *-homomorphism, and it is isometric for the 
C*-norms because every irreducible representation of A )(I~ ./p factors 
through some rr , , and rr ,2 i = 0 unless s E F. For .r 4 F, we have (I,:) ~ = A r;, 
so the map rr, i: IP>a% .s, F-+ A, Mu G, is surjective, and it follows that 
the range of i is not contained in ker(p 2 n,) for any pc (A, x1 G,)-. Since 
the range of i is an ideal and every ideal is the intersection of the primitive 
ideals containing it, this shows that 

range i= n (ker(rr,): XE F). 

But this is the kernel of rrI.-, again because every irreducible representation 
of A I ~1~ .YF factors through some rr, for .Y E F. 1 

Pro@’ of Proposition 6.1. For each .Y E X, the action !x( ., s) of G 1 on A, 
is actually unitary, so 

is of type I. Since every irreducible representation of A X> 9 factors 
through some 7c *, it must be type I too. Now suppose that u implements u 
on &. It follows from Lemma 6.2 that (I,Y ,,, X, &)- can be naturally 
identified with the open subset Res ‘(N) of (A xl, .‘P)-. The dual action of 
G leaves the ideal IX ,V xl, Se\ invariant, and this identification therefore 
preserves the actions of 6. So we may as well assume that u is implemented 
by u over all of A’ and prove that (A M= 9)- is b-trivial. (This reduction is 
more subtle than it may look at first sight, as we no longer have an action 
of G on I, ,., which restricts to the action of /TV! However, this is not 
important for what follows because the action of G on A only enters the 
argument through the fibre automorphisms r(r, x) for (r, x) E 9.) 

We next consider the case A = C,(X), where C*(9) = A M, 9’ is abelian. 
We define 4: Xx G + C*(Y)- by 4(x, 7) = E, x 7; note that 4 is onto by 
Theorem 2.2. It can be easily verified that 4 induces a G-equivariant 
continous bijection of Xx G/- onto C*(S)-; as in the final three 
paragraphs of [ 17, Lemma 2.61 (where X = Z,;), the openness of 4 follows 
from the continuity of inducing representations. 

Now we suppose that A is as in the statement of the proposition. If we 
let D be the pull-back C*-algebra C*(#)@c,X, A, then it follows from [23, 
Lemma I.11 and the preceding paragraph that (x, 7) H (E, x 7) @id induces 
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a homeomorphism 4, of (Xx 6)/w onto b. We can view D as the 
completion of T,(p*t) with the *-algebraic structure defined as for the 
subalgebra of A M, 9, but with x trivial. Then the map Y: f,(p*r) --t 
T,(p*c) defined by Y(.j’) =jii is a *-homomorphism of a dense subalgebra 
of A xl, 2’ onto a dense subalgebra of D. Further, Y is isometric for the 
,I. )I ,-norms, and extends to an isomorphism of A xX 2 onto D. A quick 
calculation shows that 

((E,Xj’)@id),,Y ’ = c, xi’ I(,, u( ., x), 

so that the homeomorphism Y* 4, of (XxG)/- onto (A>a,.Y)- is as 
described. It is clearly G-equivariant. 

Now suppose that 6 is locally liftable, that u,~.k’(p*A) implements r 
over N,, and that h, are the corresponding local trivializations. Then as in 
the proof of Proposition 4.5, we can assume there are transition functions 
;‘,,: N,, + G such that 

h,( [.\., 7,,(-lr)yl) = h,( [.c ?I), for .YE!V,,, ;EG. 

By Proposition 4.5. saying Res is d-trivial implies (shrinking the N, again if 
necessary) that there are maps x,: N, -+ d such that 

x,(.1-) ’ ;.,,(.I-) ;(,(.T)E G,’ , for s E N,, 

Then 

h,(C.K ir,(.uPil) =A,([-r, x,(-v);‘lL for -KEN,,,, ;*EG., 

which implies that 

x,(x) I G‘, u,( .> .u) = %,(.V’) I G, u,( .* -t-l in 6,. 

Thus U(S, X) = X,(X) u,(s, X) for .r E N, defines an element of .I/( f,(p*r)), 
s H U(S, X) is a homomorphism on G, for all .Y, and u implements r over all 
of/Y. 1 

We now come to our main theorem. The key point here is that there are 
commuting actions of G and d on the stabiliser algebra A )(I~ 9: the dual 
action 5 of 6, and the action /? of G discussed in Section 3. The space 
(A >a, 9)- is locally trivial for both these actions, and we can use Res and 
Ind to identify the orbit spaces (A )(I~ .9)-/G and (A xa, 8)*/G with a and 
(A x7 G)-. 

THEOREM 6.3. Suppose thut (A, G, a) is u sepurable C*-dynomkul 
.s~s~em with G ahelian, A^ Huusdot-f, und cwnfinuous stabiliser map 
(T: k + .?I,. !fr is locally unitar!v on rhe stahilisers and A^ is u locally a-tricial 
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G-space, then A ~~ .9 and A XI, G are type I and the commutative diagram 
of Theorem 3.10 

(A ~1, ,Y’)- 

consists of local!,~ trivial spaces: the southeast arrows are locally b-trivial 
G-spaces and the southw*est arrow‘s are locally u-trivial G-spaces. 

ProoJ We have already seen that A xl, ;‘P is type 1, and because the 
orbits in A^/G are closed, the corresponding fact for A )(I* G follows easily 
from Green’s version of the Mackey machine (see, for example, the first 
paragraph of the proof of [22, Theorem 2.21). That Res is locally k-trivial 
was proved in Proposition 6.1, and in particular (A X, .P)̂  is Hausdorff: 
we shall next prove it is a o-proper G space. To this end, suppose that 
1(,‘,,7 

^ 
s,,) 1 is a sequence in (A ~~ 9’) x G such that s, .J*,! -+ M’ and J,, + ,I’. 

It will sufice to show that there is a subsequence (s,,~ ) such that there exist 
t,,, E G,.“‘ with .s,~* t,,, -+s. However, the continuity of Res implies that 

(s, . Res I*,, Res J,) = (Res(s,, .I.,,), Res .I!,,) -, (Res 119, Res r I 

in A x A, so this follows from the properness of k. 
By Proposition 4.3(2) and Theorem 3.1, the spectrum of A xx G is 

Hausdorff. To see it is a b-proper G-space, suppose we have sequences 
{:,,I, (;‘,,} such that (;I,,.~,,,~,,)-‘(II~,~ ). As Ind is open, we can by passing 
to a subsequence suppose there are {J*,,} z (A X? 9)^, (s,)( c G, and 
~3, J” E (A XI, Y)- such that 

Ind(.tq,,)=z,,, .)‘,1 4 ? and s,, . ̂  ;,1 ?‘,I --) .I”; 

because Ind is continuous and G-equivariant, we must also have Ind( y) = ,- 
and Ind( ~3’) = H’. Now we have 

(Rests,, . y,, y,,). Rest r’,, 1) = (s,, . Res(?l,,). ReQ,,)) -, (Wy’), Res(y)), 

and because 2 is u-proper we can by passing to another subsequence 
suppose that {s,} converges to some s in G. Then we have 

(II,, . (s,, .y,,), s,, .y,) = (s,, (7, ‘?-,I, .s, .r,,) -+ (J’, s ..YL 

because (A )(I~ .9)- is &-proper, we can pass to yet another subsequence to 
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ensure that y,, converges in G. Thus (A NJ, G)- is indeed a ci-proper 
G-space. 

By Proposition 4.3, it will now suffice to show that both Ind and y have 
local cross sections. Since this is a local problem, we may as well suppose 
the map p has a global section C, and that there is a section d for Res 
defined on a neighborhood U of ((a/G). Straight away this gives a section 
,f= Ind. dc.c for y, and it remains to find one for Ind. As in the proof of 
Proposition 4.3(3), using the section j’ we define a G-isomorphism q5 of 
(A^:iG x 6),1- onto (A X~ G)- by 

4(Cf. ;*I)=7 ~./I~), for r~k/G, 7~6; 

the inverse is given by 

4~ 'Cl-) = [y(.r), 71, where ;’ satisfies 7 .f(q(x)) = .Y. 

We take g: (A >a, G)- + (A X, d)- to be the composition 

(Ax,G)- d’+(A/Gxd)/--~(Uxd)i- ” +A’, 

where 

(,xid([r,~])=[~(r),~] and p(C.v, yl)=;~.dtJ). 

Then g is continuous because all its constituents are, and 

Ind .>g(s) = Ind(p(c x id( [q(.r). y]))), where i’ .f’(y(x)) =x 

= Ind(~.d(c(y(.u)))) 

A 7. Ind c,nL c(q(.r)) 

= ;’ .,/Id-y)) 

= .Y, 

so g is a section for Ind. This completes the proof of Theorem 6.3. 1 

Remurk 6.4. If both CT: k -+ L, and 6: A -+ LG are locally liftable, then 
the diamond in Theorem 6.3 will consist of locally trivial bundles. We 
observe, however, that these seem to be independent properties of the map 
(T, in the sense that one of (T or ci can be locally liftable while the other is 
not. For example, consider the map 6: [O,s) + 2Y, defined by 

a(r) = 
i 

r& r # 0. 

[w, r = 0, 
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for which c?: [IO, zc ) + ,?I& = Z, is given by 

6(r) = 
(l/r)& r #O, 

0, r = 0. 

We saw in Example 4.6 that cr is not locally liftable, and we shall now see 
that ci is. Suppose c: [0, co)-+ [0, X)X I&!/- is a continuous section, where 
the equivalence relation is that determined by 6. There is no problem away 
from 0- CJ and 6 are locally constant so Proposition 4.10 applies. The 
quotient map 4 is one-to-one on the neighborhood U= [0, t) x [0, f) of 
(0, 0), and hence induces a homeomorphism of U onto a neighborhood W 
of [ (0, O)] in the quotient. But then h ’ 7 c is a continuous map of c - ‘( W) 
into [0, i) x R, and the projection of h- ’ : c on the second factor gives the 
required local lift for c. 

We shall now discuss some examples, mostly concerning actions of R”. 
Our first observation, however, is that any locally b-trivial space can arise 
as the bottom left-hand arrow in our diamond. 

PROPOSITION 6.5. Let Y he a separuhle locally a-trit:ial G-space for u 
second countable locull~ compuct group G. Then A = C*(G, Y) has con- 

tinuous truce, the dd uction CI of 6 on A is IocuI/~ unirary on the .ytahili.yers, 
and q: (A Xz c)- + k/c = Y/C is G-isomorphic to Y + Y/G‘. 

ProoJ The algebra A has continuous trace by [33, Theorem 5. I ] and a 
is locally unitary by Proposition 5.8. The Takai duality theorem gives a 
covariant isomorphism 

(C*(G, Y)xl,~,G,~)~(C,(Y)OX’(L2(G’)),G,rOAdp); 

since r 0 Ad p clearly induces the original action of G on 
Y = (C,( Y) @ X)-, this isomorphism induces the required G-isomorphism 
of (A xl, d)- onto Y. 1 

EXAMPLE 6.6. Suppose r is an action of R” on a separable continuous- 
trace algebra A such that the stabiliser map 0 is continuous with values in 
Gr(n, k) for some k, the action of R” on A’ is a-proper, and the Mackey 
obstructions all vanish (equivalently, the action is pointwise unitary on the 
stabilisers). Then u is locally constant by Lemma 4.11, and r is therefore 
locally unitary on the stabilisers by Proposition 5.5. For such a stabiliser 
map c, every o-proper action is locally a-trivial (Proposition 4.10) and 
Theorem 6.3 applies. We deduce that (A )oX IV’)- is a locally ti-trivial 
R”-space over A/R”. Since c? is continuous with values in Gr(n, n-k), 

such spaces are globally trivial by Proposition 4.13. Thus, (A X, R”)* 
is R”-isomorphic to the space (k/IV x IX’)!- defined by the map 
6: A/lRn + Gr( n, n - k ) C_ 21xn. 
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EXAMPLE 6.7. Actions (d‘ R. Suppose A’ is a locally a-trivial [W-space, 
and A =p*B is the pull-back of a continuous trace algebra B with 
spectrum A??! along the orbit map p: X -+ X/K Then, as in Remark 5.7, we 
can compare an action r of [w on A inducing the given action on X with the 
translation action T =p*id. Here the appropriate Moore cohomology goup 
H’( [w, C(X, U)) is trivial [22, Theorem 4.11 and [w is connected. Provided 
fi’(X, Z) is countable, therefore, 2 will be exterior equivalent to T, and 

where q is the projection of C*([w, X)^ = (X/W x Iw)!- onto X/Iw (see 
Proposition 4.8). 

Now Proposition 6.5 shows that any locally a-trivial W-space Y can be 
realized as (A X% lR)- for the dual action of Iw on A = C*(Iw, Y); if A were 
the pull-back of some algebra B, then by the argument in the preceding 
paragraph we would have (A X, Iw)* trivial. Thus if Y is non-trivial, A 
cannot be a pull-back. Stabilizing A does not affect the spectrum of 
A M, Iw, so by [23, Proposition 1.43 this implies that 6(A) is not in the 
range of the induced map p* from fi3(a/R, Z) to fi’(k, Z). In particular, 
we have: 

PROPOSITION 6.8. Let Y be u second countable locul!,~ a-trivial [W-space, 
and suppose that fi ‘( ( Y/F% x R)/ + , Z ) is countable (where the equivalence 
relation is the one determined by 6). Then C*(W, Y) is .a continuous trace 
C*-ulgebru with spectrum ( Y/[w x rW)/ +, und rhe Dixmier- Douady class 
fi( C*( Iw, Y)) vanishes IY and only $ Y i.r globally a-trivial. 

Proqf That C*([w, Y) has continuous trace and the given spectrum is 
proved in [33, Theorem 5.1; 321 (see also Proposition 4.8), and we have 
just seen that if Y is non-trivial, then 6(C*(lR, Y)) # 0. Conversely, if Y is 
isomorphic to ( Y/[w x [w)/- (for - defined by a), then Y + Y/lR has a 
continuous cross section and [ 17, Lemma 3.2 and Theorem 2.31 imply that 
G(c*(R, Y))=O. 1 

Remark 6.9. This result implies, of course, that there can be no 
non-trivial, locally a-trivial [W-spaces with orbit space T unless the group 
ri’(( TX W)/- d, Z) is non-zero. In fact, we have proved a little more: there 
are no such R-spaces unless the induced map 

p*: fi’(T, Z) -+ I-?‘((Tx [W)/yd, Z) 

fails to be surjective. To get some feeling for what is happening here, we 
shall consider the case where a(r) = Z for all r, and where we can compute 
all of the invariants involved. 
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EXAMPLE 6.10. Suppose Y is a principal U-bundle over T--or 
equivalently, that Y is a locally o-trivial R-bundle over T for the constant 
map a( I) = Z. Then by [ 18, Corollary 2.51 

C*(R, Y)~1nd~,(C*(7, Y), 5). 

The group ci I zI = j, II is locally unitary, and by duality the obstruction 
<(3ill) of [20] is the class of the T-bundle Y in fi*(T, Z). By [22, 
Corollary 3.53, the Dixmier-Douady class 6(C*( R. Y)) is the external 
product ~x[(ir I,) of ((5 lo) with a generator z for fi’(U, Z)=Z. In this 
case, TxR/-~z TX 8, and by the Ktinneth theorem, the external product 
induces an injection 

thus the Dixmier Douady class 6( C*( R, Y)) and the range of p* do indeed 
lie in the disjoint parts !?‘@I?’ and fi”@fi.’ of fi-‘(%x T). 

Remark 6.11. We have now shown that the description of the topology 
on (A xl, G)- given in [22, Sect. 21 extends to the case of continuously 
varying stabilisers. In [22], however, it was also proved that when A has 
continuous trace and 2 is locally unitary on the constant stabiliser H, the 
crossed product A Mu G has continuous trace too. There are therefore four 
topological invariants associated with the diamond: the classes of the 
principal bundles p and q, and the Dixmier- Douady classes of the algebras 
A and A M? G. There are various relationships between these classes, but 
various examples have been given to show that all four can be non-zero 
simultaneously [22, Sect. 3(b); 211. 

We have not yet proved in our setting that A )(I~ G has continuous trace 
when A does, although such a result would certainly be interesting. 
However, in the various examples of R-actions studied above, A )(I~ Iw does 
have continuous trace and we can easily compute all the invariants. When 
A =p*B is a pull-back, A and A X, R 2 q*B have Dixmier-Douady class 
p*(d(B)) and q*(6(B)) (see [23, Proposition 1.41); the bundle p is the one 
we started with and (A M% IF!)- is isomorphic to C*( R, A’)- = (X/R x R)j -. 
When r is the dual action of fi on A = C*([w, Y), A M, f&f 2 C,( Y)@X by 
duality, and 6(A) = 0. We have already seen that 6(C*( R, Y)) # 0 if Y is 
non-trivial, but A = C*( R, Y)- is trivial by Example 4.6. 

7. APPENDIX 

Here we give the example mentioned in Section 4 of a o-proper G-space 
in which not all compact sets are G-wandering (when one uses 
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Definition 2.4 in [33]). The space X is the subspace of R’ which is the 
range of the function s: ( I, 2, . . . . JX ) x R’ --+ R2 defined by 

(1.0). if n=I, 

.u(n. I) = (n - (n - ljn) cos(l/(n - l/n)), (n - l/n) sin(l/(n- l/n))), 

if l<n<s, and 

(0, 11, if n=x. 

If we let O,,= (-u(n, t)jlEX, then we see that, for n = 2, 3, . . . . each 0, is a 
circle of radius n - I/n centered at (n, 0). Furthermore, all the 0, are 
isolated with the exception of 0 ,. Since .v(nk, tr ) -+x( ,co, r) if and only if 
n, -+ CC and tk + 1, we get a continuous R-action by defining r ..r(n, 1) = 
x(n, I + r). The {O,,} then coincide with the R-orbits and, if S,, is the 
common stabiliser on O,, then 

r 

R if n= I, 

S,, = 2n(n - I,‘n)Z, if I<n<;c, and 

Ph if n=3(;. 

Thus, the stabiliser map is continuous and it is not hard to verify that A’ is 
a a-proper G-space. On the other hand, if K is the compact set 
{.r(n, 0));:;’ , then 

S(K)={(.X,S)EX~G/-:.reKandrKnK#@) 

is not relatively compact (in particular, { (0, 2n(n - l/n)) )z , & S(K)). 
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