JOURNAL OF FUNCTIONAL ANALYSIS 81, 385-431 (1988)

Crossed Products by Actions Which Are
Locally Unitary on the Stabilisers*

JAIN RAEBURN

School of Mathematics, University of New South Wales,
P. O. Box 1, Kensington, New South Wales 2033, Australia

AND

DaNA P. WiLLiaMs'

Depariment of Mathematics, Dartmouth College,
Hanover, New Hampshire 03755

Communicated by D. Sarason

Received June 25, 1987 revised September 28, 1987

Let (A, G.a) be a C*-dynamical system with G abelian and A Hausdorfl. We
investigate the ideal structure of the crossed product 4 x G under the hypothesis
that the stabiliser subgroups for the action of G on A vary continuously. We discuss
a new notion of locally trivial G-space for such actions, and, dually. actions 2 which
are locally unitarily implemented on the stabiliser groups. Our main result asserts
that, when x is locally unitary in this scnse and A4 is a locally trivial G-space,
(A% G) is a locally trivial G-space. ¢ 1988 Academic Press. Inc

1. INTRODUCTION

Let x be a strongly continuous action of a locally compact abelian group
G on a C*-algebra 4. Our object here is to study the topologies on the
spectrum and primitive ideal space of the crossed product C*-algebra
Ax, G. When A is commutative, and hence isomorphic to Cy(X) for some
locally compact Hausdorfl space X, Cy(X)x,G is the transformation
group C*-algebra C*(G, X), and a complete description of the primitive
ideal space Prim(C*(G, X)) has been given in [32]: roughly speaking, it is
proved that Green’s version of the Mackey machine [10] also describes the
topology (see Proposition 4.8). In principle, this machine gives at least a
set-wise description of Prim(A4 x, G), but there can be substantial com-
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386 RAEBURN AND WILLIAMS

plications, even for the relatively innocuous looking algebra Cy(X, X"} of
continuous functions from X to the compact operators (see, for example,
[13,22]).

The basic ingredients in the Mackey machine are the isotropy groups G,
for the action of G on X=Prim(4), a family of Borel cocycles
w. € ZXG,, T), called the Mackey obstructions, and the induction of ideals
from Ax, G, to Ax, G. It was originally hoped that, at least when all
the Mackey obstructions are cohomologically trivial, this procedure would
also determine Prim(A4 %, G) as a topological space —this is precisely what
happens when A is commutative, and it also works when G acts freely on X
[10, Theorem 24]. A particularly interesting example is the case G=R
because H*(S, T) =0 for all subgroups S of R [28]. However, the situation
is more subtle even when the isotropy groups are constant and the Mackey
obstructions vanish. The main results of [22] concern this case: when G is
compactly generated and 4 — 4/G is a locally trivial G/H-bundle over a
reasonable space, there is a commutative diagram

(A, HY
Iy \\
(Ax,G) (*)

™ /

where the southeast arrows are principal H-bundles and the southwest
arrows are principal G/H-bundles [22, Theorem 2.2]. The complication is
that the bundles involved can be non-trivial—indeed, any H-bundle can
arise as the bottom left-hand arrow. When G =R and H = Z, the diagram
(») consists of principal T-bundles, and the possible non-triviality of ¢ gave
counterexamples to the conjecture in [28].

The above result does, however, give a two-step description of (4%,G)”
a the orbit space for an action of G on a principal bundle (A4 x, H)  over
A. Our intention here is to extend the results of [22 Sect.2] to actions
where the isotropy groups G, vary, and thus obtain a similar two-step
description of (4 x,G)". Our results concern the case where the map
x> G is continuous from X to the space Z; of closed subgroups of G [5].
The crossed product A x, H in () is replaced by a stabiliser algebra
A, P, similar to the subgroup algebra of Fell [4] and the “algébre de
stabilisateurs” of Sauvageot [30]. As in [22, Sect. 2], we first prove a
general version concerning primitive ideal spaces, under minimal
hypotheses on the action (Theorem 3.10). We then formulate appropriate
local triviality hypotheses, and prove that when they hold the diagram
consists of bundles which are locally trivial in the required sense.
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Our first task, then, is to prove existence and commutativity of the dia-
mond in maximal generality. We have to construct restriction and induc-
tion maps on Prim(A4 x, £), which reduce to the standard ones in the case
of constant isotropy, and which have properties like those of the standard
ones used in the proof of [22, Proposition 2.1]. We begin in Section 2 by
discussing our stabiliser algebra 4 x, 2, constructing the restriction map
Res: Prim(A4 x, #) - Prim(A), and establishing its main properties
(Theorem 2.2). In Section 3, we discuss the induction of representations
and ideals from A x, 2 to Ax,G. This is done via a left 4%, G- right
A x, #-rigged bimodule, in a way consistent with the usual induction of
representations from crossed products by stabilisers; the main result,
Theorem 3.1, has been phrased entirely in terms of the usual procedure. At
the end of Section 3, we give the general version of our commutative
diamond. In fact, our result is a bit stronger that the version in [22], even
in the case of constant isotropy.

In Section 4, we discuss our notion of locally trivial space for non-free
actions: a good motivating example is the case of a constant isotropy group
H, where it makes perfectly good sense to describe the G-space X as a
locally trivial G/H-bundle. We begin by looking at an analogue of proper
actions of locally compact groups, where the isotropy map x+— G, is
assumed continuous, but where the groups G, are typically not compact.
The idea comes from [33], where it is shown that C*(G, X)) has continuous
trace if and only if the action is proper in this sense. A G-space X is called
locally trivial if it is locally (over X/G) G-isomorphic to the quotient of
(X/G)x G by the relation

(G-x,5)~(G-y,1) & G-x=G-y and st 'eG..

It turns out that a proper G-space is locally trivial exactly when X — X/G
has local sections, so this does seem to be consistent extension of the usual
notion, and we give a variety of examples as evidence that it is useful and
interesting.

Ordinary locally trivial principal G-bundles can be dually realized in
C*-algebra theory as locally unitary actions of G [207; in Section 5 we give
a definition of “locally unitary on the stabilisers” which we intend to be
dual to our more general locally trivial spaces. In Section 6, we show that if
« is locally unitary on the stabilisers and A — A/G is locally trivial, then the
diamond of Theorem 3.10 consists entirely of locally trivial spaces. We go
on to discuss examples and special cases; in particular, we analyse in some
detail what happens for actions of R. As in [22], we actually obtain new
information about transformation group C*-algebras: if Y is a locally
trivial R-space, then C*(R, Y) is a continuous trace algebra whose
Dixmier-Douady class §(C*(R, Y)) vanishes if and only if Y is globally
trivial.
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2. THE STABILISER ALGEBRA

Throughout this paper (A4, G, x) will be a C*-dynamical system with
Prim(A4) Hausdorff. In later sections we will usually want to require G to
be abelian; however, in this section, unless stated otherwise, G can be any
locally compact group. For convenience, we will put X = Prim(4) and view
A as the collection of continuous sections vanishing at infinity, /4(¢), of a
C*-bundle ¢ over X. If F< X, then /,- will denote the ideal in A4 given by

{a€e A:a(x)=0forall xe F}.

When F= {x}, we will write I, in place of I, ..
Recall that the action of G on A induces an action of G on X, defined by

s-x={aa) aex},

which makes (G, X) a topological transformation group [6, Lemma 1.3].
We will always assume that the stabiliser groups,

G,={seG:s-x=x},

vary continuously; in other words, the map ¢: X — X defined by o(x)=G,
is continuous, where 2" is the compact Hausdorfl space of closed subgroups
of G [5] Asin [33, p.44], choose a Haar measure 4, on each He X so
that for each fe Co(G), the map

Heo | f(s)dils)

is continuous (see also [6, p.907]). For convenience, we will write 2,
instead of 4 , and 4, will denote the modular function on G .
As a consequence of the continuity of o,

P={(s,x)eGxX:5€G }

is locally compact Hausdorfl. Let p::# — X be the projection on the
second factor. Then we may form the associated pull-back C*-algebra
p*(A)=Cy(P)®xy A ([23]), and by [23, Proposition 1.3] we have

pX¥(A)=To(p*é), (2.1)

where p*& is the usual bundle puli-back. We now collect some technical
observations which will be useful in the sequel.

LeMMa 2.1, Suppose that ¢ € C (P) and that ae I' (E). Then
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(i) wit, x)=¢(1, x)u(x) defines an element of I (p*) and such
elements span a dense subspace of I' (p*C) with respect to the inductive limit
topology,

(i) r(e, x)=@(t. x)a,(a)x) dejz'ﬁes an element of 1" (p*¢), and

(i)Y if ce I (p*E), then b(x)= j.(,‘ (s, X) d2 (s) defines an element of
r)

Proof. The proof of (i) 1s standard and is essentially contained in [23,
Proposition 1.3]. Parts (ii) and (ii1) follow from straightforward
approximation arguments. ||

Notice that if (s, x)e #, then «, induces an automorphism x(s. x) of the
fibre 4,. We construct our stabiliser algebra following the lines of [30:4;
33, Sect. 2] If £, ge ' (p*&), then define

-

Sleox)a(e. x)[gle ', x)] dr (v)
G,

f*glt,x)=

Froxy= A0 Dan e Y x)*),

and

1711, = sup { [

ve ¥ L7G,

T dz‘..m}.

Using Lemma 2.1 and [33, Lemma 2.5], it follows that /= g and /™* belong
to I, (p*&). Furthermore, it is straightforward to check that I (p*¢) has an
approximate identity for the | | norm; in fact, since {2 (K)}.., is
bounded for any compact set K< G, it will suffice to produce an
approximate identity in /" (p*¢) for the inductive limit topology. For this,
notice that if N is a neighborhood of ¢ in G, and K is compact in X, then
there is a self-adjoint ¢ € C* () with {se G: @(s, x)#0 for some x} S N,
and such that

-

| B, x)dr (s)=1

Gy

for all xe K (cf. Lemma 3.3 in the next section). Thus, if {a._{ is a bounded
approximate identity for I',(¢), the collection of

D x5 x)=@(s, X) a(x),

indexed by decreasing N and increasing K and 7, is a bounded approximate
identity for I, (p*¢). (By Lemma 2.1, it suffices to check that @, , ., =/
converges to f for f(s, X} = (s, x)a(x). and onc can do this by applying

%0 K121
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the usual compactness arguments, as in [23, Lemma 2.4].) The stabiliser
algebra, A x, #, is defined to be the cnveloping C*-algebra of the |-|,-
norm completion of I",(p*E), L'(#, A). (Alternatively, it is evident that 2
is a locally compact groupoid [24] with unit space X and both range and
source maps equal to p, and Haar system |72 },.,. Then 4 x, # is the
groupoid crossed-product of 4 by .# as defined in [25].)

To state our main result on Prim(4 x,.#) we shall need some further
notation. which will be used throughout the paper. For a closed subset F of
X, weset A, = A/, =1,({],). sothat Prim(A4,) can be naturally identified
with F. Let 4= {(s, x)e.#: v e F}. Then exactly the same procedure as we
have just followed starting with /' ({|,) gives us a C*-algebra A, x, 4.
The restriction map n,.: [ (p*¢)— 1 (p*(&1,)) is | -l,-decreasing, and
so cxtends to the completion L(.#, A); composing a representation of
L'(#.. A;;) with , gives a representation of L/(2, 4), and n, is therefore
decreasing for the C*-norm too. Since n, maps onto [ (p*({],)), the
extension, also denoted n,., maps A x,.# onto 4, x,.%. When F={x|
consists of a single point, we write 4, for 4/, the fibre of ¢ over x, and =,
for the canonical surjection of 4 %, .# onto A, x, G .

When G is abelian, the stabiliser algebra A x, .# and all the analogously
defined algebras A, x, # carry a canonical dual action of G. This is
defined on I" (p*Z) by

a(g)s x)= mg(a\ x);

each 4, is |-||,-isometric, and hence extends to an automorphism of
L'(#. A) and A x, 2. It is routine to check that 4 then gives a strongly
continuous action of G on A4 x, :#.

THEOREM 2.2. Let (A, G, x) be a C*-dvamical system with G abelian,
X = Prim(A) Hausdorff, and continuous stabiliser map x— G .. For xe X,
let ¢ denote the quotient mup of 4 onto A .. Then every primitive ideal of
Ax, P has the form ker((nx U)- n,) for some x€ X and some irreducible
representation nx U of A %, G, and

Res(ker(nx /) n )=ker(n ¢ )=1, (2.2)

defines a continous open surjection Res from Prim(A x, #) to Prim(A4),
which is invariant under the dual action of G. If A is type I, Res induces a
homeomorphism of Prim(A », P)/G onito A.

The proof of this theorem will occupy the rest of the section. For the
moment, we do nor assume that G is abelian. We shall construct the
restriction map Res by defining a homomorphism R of 4 into the multiplier
algebra .#(A », .#), taking the induced map R* on ideals, and showing
that it has the required properties.
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Forae A=1,(&)and ge I" (p*&) we define
(R(a) g)(t, x)=a(x) g(t, x). (2.3)

Since we then have ||R(a) g|l, < |lall ligll,, and L'(#, A) has a | -||,-bounded
approximate identity, we can extend (2.3} to g in the enveloping
C*-algebra Ax,#. We can then verify that (2.3) gives a *-homomorphism
R of 4 into .#(Ax,#). (The right multiplication is defined by
(gR(a))(1, xy=glt, x)a,(a¢)(x).) In the same manner we can define a
natural *-homomorphism V of Cy(X) into the center of . #(A4 %, .#), and
the two maps are related by R(ga)= V(¢)R(a) for g€ Cy(X), and a€ A.

LeMMa 2.3, For xe X, let J, denote the ideal {f f(x)=0} in Cu(X).
Then the kernel of n .. Ax, 2 — A %, G, coincides with

V{J) (A%, 7)=3pan{V(g)f el fel (p*d)].

Proof. It is clear that K= V(J,) (A %, #) is contained in ker(n.). We
shall prove the converse by showing that, if t is a representation of 4 x, ./
with K=ker(t), then t factors through n.. So suppose that 7 is such a
representation. By a standard approximation argument, we can see that K
contains any sections in I (p*Z) which vanish on p '(x). Thus if
figel (p*f) satisfy n(f)=n.g) we have f—geK and hence
(f)=1(g). Since n.: [ (p*E)— C(G,, A,) is surjective, this means we
can define a representation  of C (G .. A} by T(n.(f}) =1(f). Further, for
any ¢ € C (X) with ¢(x)=1 we have

IE( NI =N = lIt(@f)] < IS |

<sup (B0 | /(e p)l d2 (o).

ve X ¢

By [33, Lemma 2.5], the right-hand side is a continuous function of y for
any ¢eC.(X), so by letting the support of ¢ shrink to a small
neighborhood of x we obtain

1D < [ X di o

¢

Thus 7 is bounded in the L’-norm on C (G, A,), and therefore extends to
a representation of A =, G, satisfying t=7-n,. Since K=ker(t), this
implies K2 ker(n,). |

Now let p be an irreducible representation of 4 x, #; we also use the
same letter for the canonical extension of p to .#(A x, .#). Observe that V
is non-degenerate in the sense that if {e,} is an approximate identity for
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Co(X), then V(e,) converges to | strictly, and that the range of V is
contained in the center of .#(A4x,#) Thus p-V is a non-trivial
homomorphism with values in C1, and hence is given by evaluation at
some point x of X. It follows from the lemma and the Cohen factorization
theorem that every element of ker(n,) has the form V(¢) f for some geJ,
so ker(p)=2ker(n,} and p has the form (z x U) n, as claimed.

To sec that (2.2) gives a well-defined continuous map Res on ideals, we
consider the map R*: .#(A %, #) — ¥ (A) defined by

R¥(J)=lae A: R(a)-(Ax, )= ]},

which is continuous by [10, Proposition 9]. With the notation of the
previous paragraph, we have

R*(ker(p))={ae A:(nx U):n (R(a)f}=01forfe Ax, #!
={aeA:n(a(x))(nx U) a }f)=0forfe A%, 2}

=ker(n ¢,);

note that because Prim(A) is Hausdorff, ker(n-¢ )=1, is primitive. In
particular, our restriction map Res is well defined and continuous, with
values in Prim(A4). It is clearly surjective, and when G is abelian, a routine
computation shows that

(nxU) n, 4, "'=(nxyl, U)-n,,
50 it is G-invariant as well.

Next we shall prove that Res is open. Our proof of this will depend on
the construction of a unified induction process from ideals of A to ideals of
A x, #; this will be done using a left 4 x, #- right A-rigged bimodule, so
that it is automatically continuous. We begin with some general results on
inducing ideals via bimodules, which will also be required in the next
section.

Suppose that Y is a A-rigged space [26, Definition2.1]. Let X'(Y)
denote the imprimitivity algebra associated to Y so that Y is a X' (Y)-
A-imprimitivity bimodule. Hence there is a lattice preserving
homeomorphism /2 of .#(A4) onto .#(X (Y)) [27, Theorem 3.1]. By [10,
Lemma 16], .#(X'(Y)) is isomorphic to the algebra #(Y) of A-linear,
adjointable operators on Y. If in addition, Y is a left D-module in such a
way that d* acts as the adjoint of d e D, then there is a *-homomorphism S
of D into .#(#°(Y)), and hence a continuous intersection preserving map
S* of #(A(Y)) into £(D). We will call such a Y a left D- right A-rigged
bimodule and write 3, for the continuous intersection preserving map
S*.h of .#£(A) into .#(D).
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LEMMA 24. Let Y be an E-A-imprimitivity bimodule and let
h: #(A)— F(E) be Rieffel’s lattice preserving homeomorphism. Then for
Je F(A) we have

hJ)y=leeE e-x,y> eJforallx, yeY}.

Proof. Suppose that eeh(J) and that x, ye?Y. The submodule
corresponding to Ah(J) is by definition Y,, and equals i{J)-Y by [27,
Lemma 3.1], so e-xe Y, and {e-x, v ,eJ by [27, Theorem 3.1].

Conversely, suppose that {e-x, y) ,eJ for all x, ye Y. Then we have

{z,e-XDp-y=z-e-X,y>,eY-J
for all x, v, ze Y. Thus,
(zye-x)p (=<5 e X0y, w)peh(J)
for all x, », z, we Y, which implies
{z.e-X>, feh(J])

for all z, xe Y and fe E. Letting f run through an approximate identity, we
see this can happen if and only if

edx, 2=z, e x> )*eh(J])
for all x,zeX, and hence if and only if e¢feh(J) for all fe E. Thus,
ech(J). 1

COROLLARY 2.5. Let Y be a left D- right A-rigged bimodule and
F,:(A)— F(D) the map defined above. Then for Ke .#(A) we have

I K)=1{deD:{d-x,y>,€K forallx, yeY}.
Proof. By definition,
I (K)=S*-h(K)={de D: S(d)ee h(K)forallee # (Y)].
Thus, by the lemma (with £=%7(Y)),
3AK)={deD:(S(d)e -z, yy,eK forallee ¥ (Y) z yeY}
={deD:{d-x,y) €K forallx, yeV},

since E-Y spans Y. ||

Let Y, be I',(p*&) (without the s-algebraic structure). Using Lemma 2.1,
we see that

<S84 (-V)=_[(_ (s, X)Lf(s7 L x)* gls L x) ) di(s)
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defines an A-valued sesqui-linear form on Y. Similarly, f ae 4 and ge ¥,,,
then

g-a(t, x)=g(t. x)a(t, x)[a(x)]

defines a right 4-action on Y, which satisfies

hgray,=<figr,a
LEMMA 2.6. With the above definitions, Y, is a right A-rigged space.
Proof. 1t is clear that
gri=<g /4

so 1t will suffice to show that (Y,, Y,>, is dense in A, and that
Sy f>4=0. However,

</’ g>,4(x)= </‘\*/‘\>v4\’

where (-,-), is the A.-valued inner-product defined on the left
C(C,, A,)- right A -rigged bimodule C (G, 4.) defined in [10, Sect. 2],
and f, g, are the obvious restrictions of f and g in C.(G,, A,). Thus for
cach xe X,

LS4 (x)20 and (Yo, Yo (x)# {0}

Therefore, (f. f>,>0, and since (Y, Y, ), is an ideal in A. (Y, Y,) ,Is
dense. |

Furthermore, there is a left action of I'.(p*¢) on Y, defined by con-
volution:

f-g=r*g

Again, f-g(1, x)=/, * g (1), and since every irreducible representvalion of
A %, G lifts to A x, #, we have

e f8oa()=Lfi*8 fi*8a,
g |!A/.\'”i‘)¢1(,“ <gr7 g\'>.4\
< H/“i)‘.‘/ {8 8)alx)

Since this action is clearly A-linear and adjointable, we obtain a
*-homomorphism

W.Ax, P> L(Y),
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where Y is the completion of Y, (cf. [26, Sect. 3]). In other words, Y is a
left Ax, #- right A-rigged bimodule. We shall be interested in the
inducing map 3, defined by Y.

LeMMA 2.7, Let xe X and suppose that G is amenable. Then with the
abote notation, 3 ,(I.)=ker(n ).

Proof. We first observe that if fe I' (p*¢) and = (/) =0, then
{foyozr,(x)=0, forall y, zeVY,.

It therefore follows from Corollary25 and Lemma23 that
ker(n,) = 3,(/,). To prove the converse, we relate Y to the A4 .-rigged
bimodule V. used for inducing from A, to 4,%, G, [10, p.200]. Define
re:Yo—=>CJAG,, A,) by r.(y)(s)=1(s, x); then it is easy to check that for
fel' (p*¢), v,ze Y, we have

Sforax)=Lmfy-r(rdz)),. (2.4)

The map r, is continuous from (Y, I'-| ;) to (¥, -]l 4.), and has dense
range, so it extends to continuous map of Y onto V.. The module actions
are continuous, and we can therefore extend (2.4) to feAx,# and
v, z€ Y. In particular, this shows that for fe 3,(/,), n (/) belongs to the
ideal Ind¢+{0} in 4, x, G, induced in the usual way from the zero ideal of
A .. Since G, is amenable, Ind{0} = {0} [ 10, Proposition 137, and we have
proved that 3,(/ )< ker(n,). [

PROPOSITION 2.8. Suppose that (A, G, x) is a C*-dvnamical system with
Prim(A4) Hausdorff and such that x v G . is continuous. If for each xe X, G,
is amenable, then Res is a continuous open map of Prim(A x, ?) onto
Prim(A4).

Proof. At this point, we have only to prove that Res: Prim(A4 x, #)
— X is open. Let K be an ideal in 4 x, 42, so that

¢ ={PePrim(Ax,?) P2 K]

1s a typical basic open set in 4 %, 2, and suppose we have a convergent
net x, - x such that x,¢ Res ¢ for all i. If xe Res ¢, then we can {ind a
primitive ideal M € Res '(x) such that M e ¢. Now M 2ker(n,), and then
we must have ker(n,) 2 K. By Lemma 2.7, this implies 3,(/,) 2 K. Since
3y is continuous and x; — x, we eventually have ker(n,)=3,(/,) 2 K.
But then there is a primitive ideal P with P 2 K and with P2ker(n, ) —in
other words, Pe - and Res P = x,. This is a contradiction, so we must have
x¢ Res (¢ and Res € is open. ||
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Since when G is abelian, Res is G-invariant, it follows from the above
proposition that Res defines a continuous open surjection of
Prim(A4 x, #)/G onto Prim(A). If in addition, 4 is type I, 4, =X and
A.x, G, is stably isomorphic to a twisted group algebra C*(G,, w,) via
an isomorphism which preserves the dual actions of G [10, Theorem 187. It
follows from [10, Proposition34] that G acts transitively on
Prim(C*(C,, w,)), and hence also on Prim(A4,x, G.). Thus Res induces a
bijection of the orbit space Prim(A4x, 2);G onto A, which is a
homeomorphism because Res is both continuous and open. This completes
the proof of Theorem 2.2. |

Remark 2.9. 1t is not clear if amenability of the G, is required for
Proposition 2.8  (although Lemma 2.7 is false without assuming
amenability, as can be seen from the case 4 =C and G any non-amenable
group). At this writing, we know of no counterexamples.

3. INDUCING REPRESENTATIONS FROM THE STABILISER ALGEBRA

We will retain our notation as well as our assumptions from the previous
section. In particular, given s€ G and x € X, there is a *-isomorphism of A4,
onto A, . defined, given ae I'y(£), by a(x)— a(a)(s- x). Writing a(s, s - x)
for this isomorphism, we have

x(a)(x)=afs, x)[als - x)].

If G is abelian, so that G, =G, .., then, for each fe I (p*f), we can
define

B x)=a(s, ) f(t,s 7" x) ]

Using Lemma 2.1(i), it follows that (4 x,#, G, ) is a C*-dynamical
system.

Let ¢, and n, be the natural projections of 4 and 4 x, # onto A, and
A%, G, respectively. Our object in this section is to prove:

THEOREM 3.1. Let A be a separable C*-algebra with Hausdorff primitive
ideal space X and a an action of a second countable locally compact abelian
group G on A with continuously varying stabiliser groups. Then every
irreducible representation of Ax, P has the form (axU)en, for some
xeXandnxUe (A, =, G,) . Moreover, the map

ker((n x U)on )= ker(Indg ((n=¢,) x U))
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defines a homeomorphism of the quasi-orbit space 2(Prim(A X, #), G, )
onto the primitive ideal space of Ax, G, which is equivariant for the dual
actions of G.

Our strategy for proving this theorem will be as follows. We know the
result is true when the stabiliser map is constant [22, Proposition 2.1]; the
inverse in this case is Green’s restriction map [10; Proposition 9]. In
general, the stabiliser map is continuous on a Hausdorff space and constant
on orbits, hence constant on orbit closures. We will construct continuous
induction and restriction maps between A x,# and A4 x, G, which are
consistent with the usual ones on the quotients of 4 corresponding to orbit
closures, and then deduce the desired propertics from known facts about
these quotients.

We begin by recalling what is known when the stabilisers are constant.
Throughout this section we shall assume that (4, G, x) satisfies the
hypotheses of the theorem.

LEMMA 3.2, Suppose that the stabilisers of points in X are all equal to a
Jixed closed subgroup H in G. Then induction gives a continuous map Ind of
Prim(A4 x, H) onto Prim(A x, G) which defines a homeomorphism of the
quasi-orbit space 2(Prim(A x, H)) onto Prim(A4 x, G); the inverse is given
by restriction, and we have

Res(Ind(M))= () s- M

se (s

Jor all M e Prim(A4A x, H).

Proof.  This follows by applying Theorem 24 of [10] to the essentially
free system (G, A x, H, t"), as in the second paragraph of the proof of
[22, Proposition 2.1]. As remarked there, practically all that is needed to
make this work is Effros—-Hahn regularity of (G, 4 x, H, t*'), which is
automatic since G is amenable [8]. |

We now want to define a continuous map Ind from .#(4x,2) to
#(A %, G). As in the previous section we will do this by first constructing
a left Ax, G- right Ax, #-rigged bimodule Y. As usual, we start with
dense subspaces of the algebras and modules in question, and pass to com-
pletions later.

Let By=T.(p*,)s Ax,#. View G x ¢ as a bundle over G x X and let
Y,=TI.(Gx¢). The module action of B, on Y, and the By-valued inner
product will be given by

f-b(s, x)=J’_ Fist L x) (st x)[b(, s~ - x)] dAL(1) (3.1)

Gy

< g>,,(z,x)=J' (s, )[f(s 's ox)*gls ‘s ox)]ds. (3.2)
G
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Since it is not immediately clear that these formulas define continuous
sections, we shall outline a proof that f-» belongs to I (G x £), and merely
observe that similar arguments show that {f, g>z€ B,.

Suppose that fe Y, and b € B,. Both sections have compact support, and
hence if f; and b, uniformly approximate f and b then f, - b, will uniformly
approximate f-b. Because the formula is bilinear, we may therefore
suppose that f=¢®a, b=y ®c for some ¢eC(G), yeC(#), and
a,ce L (&). Then

foblsox)=[ st wins x)alx)alse ! x)[e(s™! - x)] di (o).
The function =, defined by
(s, t, xy—= (st ', x)y(t, s ' x),

is continuous and compactly supported on G x.#, and hence uniformly
approximable by a finite tensor in C(G)® C{#). Thus we can replace =
by an elementary tensor {®ne C (G)® C(#), and then we have

n(t, x) o, {c)x)di (1)
G

S-b={(s)a(x)

v

=C(S)a(x)1x(£_ n(t, x)a, n(c')(.r)d/'-x(l))

By Lemma 2.1, the last integral defines an element d in I"(¢), and the
formula

S b(s, x)={(s) alx) a(d)(x)

defines a continuous function from G to I (¢)--in other words, a con-
tinuous section of G x & as required.

It is now straightforward to verify that the formula for /- b does define a
module action of B, on Y, and that

f.8-byp={f8)p*b

We still need to check the positivity of the inner products, and that the
range of the inner products spans a dense subspace of 4 x, #. For the first
of these, it will be enough to prove that

n (/i f>8) 20

in A %, G, forevery fe Yoand xeX. Let F=G -x, let -, -, denote the
CAG ., A,)-valued inner product on C G, 4,) constructed in [10, p. 200],
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and define r.: Y, - C (G, A;) by r.(fNs)=nf(s)). Then it is easy to
verify that

(L o)=Ll fhrd ),

which is positive in A, x G, by [10, p. 202]. Since =, factors through =,.
this proves that = ({f, f>5) is positive in A4 .x,G,, and hence that
S f g itself is positive.

The density will follow in the standard way from the existence of a
suitable approximate identity:

LEMMA 3.3. There is an approximate identity for A x, P consisting of
elements of the form (f, [ >g with f€ Y.

Proof. By virtue of the remarks following Lemma 2.1, it will suffice to
produce, for each relatively compact neighborhood U of ¢ in G and each
compact set C < X, a non-negative function Fe C (#) such that

-

b0 ety ,\‘)=J Fis s "“x)F(s 't,s ' x)ds
[6)
vanishes for r outside U, and satisfies

[ beenlte x) di (1) =1

Y6,

for xe C. Once we have constructed F, then if {a.} is an approximate
identity for I',(&) and we define /(s, X) =@, (s, X) a}?(x), it follows that
Yven=<lf>s=0u.a, will be an approximate identity for the
inductive limit topology, and hence for 4 x, 2 as well.

To construct ¥, we choose a symmetric neighborhood ¥ of e with V> < V
and ge C.(G) such that g>0, supp(g)< ¥V, and g#0. If in addition,
Y eC(X)is such that y =1 on U-C, then

¢ r - 12
F(s,x)=¢(.x)"2g(s)(J | alr ’)g(r"l)drd).Y(t)>

G G

has the required properties. This proves the lemma. ||

We have now proved:

PROPOSITION 3.4. Let Y denote the completion of Y in the (semi-} norm
defined by the inner product (3.2). Then with the module action given by
(3.1), and the inner product (3.2), Y is a right A x, #-rigged space.
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The next step is to define a left action of 4%, G on Y. For fe C (G, A)
and ge Y,, we define

»

f-glt, x)= ./'(s, xyals, ) gls '6,s 'ox)])ds. (3.3)

This is the usual formula for multiplication in C (G, 4), so it certainly
defines an element of Y,, and gives a module action of C (G, 4} on Y.

PROPOSITION 3.5. (1) The formula (3.3) defines a left action of A%, G
as adjointable A »x, #-linear operators on the rigged space Y.

(2) Suppose thar F is a closed G-invariant subset of X on which all
stabilisers are equal to H (ie., G.=H for all xe F), and let Y be the
(complete) left Apx, G- right Ap.x, H-rigged space constructed in [10,
Sect.2]. Let p, and m, denote the natural surjections of Ax,G and
Ax, P onto Apx, G and Apx, H. Then the restriction of sections from
2 top (F)extends to a surjection rp of Y onto Y such that

(@) rudf-b)=rAf) -ndb), forfeYandbe Ax, #;
(b) A</, gop)=<rdS) rd&)D apug 110 forf,geY;
() rdf-)=pdf)-rdg),  forfeAx,Gandge?.

Proof. The usual boring calculations show that

f-gh), . (& f* h>, -
for g, he Y, and fe C (G, 4), that

(f-g)b=f-(g-b)

for fe C(G, A), ge Y,, and be B,, and that the three properties (a), (b),
and (c) hold, at least for continuous sections of compact support. To
establish (1) it remains only to check that the left action satisfies

<f'gaf'g>,4n,y<”f“z <g’g>,4x,.w (34)

Let fe C.(G, A), ge Yy, xe X, and F=G-x. Write H for the constant
stabiliser of points in F. We know that A4,%,G acts as adjointable
operators on Y, so, using (b) and (c), we have

ﬂ;{<f~g,f'g>m,,«)= plfIrdg) pf'(f)’i-(ﬂ))m«,u

< ||PF(./.)||2 (rde) rl"(g)>v4,n, "
< Hf”z n<g, g>,4»,y)‘
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Since every irreducible representation of A x, # factors through some n,
and hence through some n, this implies (3.4) and (1) is proved.

Equations (a) and (b) show that r, is norm-decreasing on Y, hence
extends to the completion, and that r, then vanishes on the submodule
Yyernp corresponding to the ideal ker(n,)=1,%,G in A4x,G. Let 7
denote the induced homomorphism of Y/Y,, ., into Y*: by part (a), 7 is
an isometry of A, x, G-rigged spaces. Every elementary tensor ¢ ® 2 in
CAGY®T' (S |f) is in the range of r., so 7, has dense range and is
therefore surjective. We can now extend (a), (b), and (c) to the completions
by continuity. |

DerINITION 3.6. Let Ind: #(Ax, #)—> #(Ax,G) denote the con-
tinuous map 3, defined by the left 4 %, G- right A x, #-rigged bimodule
Y. Similarly, if Fis a closed G-invariant subset of X’ with constant stabiliser
H, then we denote by Ind, the continuous map from .#(A4,.x, H) to
#(A %, G) defined by the bimodule Y*.

ProposiTiON 3.7. (1) If ker(nx U) 1s a primitive ideal in A x, H,
then

Ind(n¥(ker(n x U))) =ker(Indg ((n-¢,) x U)).

(2) If Fis a closed G-invariant subset of X with constant stabiliser H,
then the diagram

Ind
F(Ax, P) —— J(Ax,G)
nt Iﬂf
Ind,. |
F(Apx, H) —5 9(A,;%,G)
commutes.
Proof. By Corollary 2.5 we have
Ind(n¥(ker(n x U)))
={fedn, G (nxU)-n({f-z,y>p)=0forally, ze ¥,}.

Inducing representations from A x, G, to 4%, G is done using C (G, 4),
viewed as a C (G, A)-rigged space with inner product given by

<;}»Amm(m=j a(z(t YV* (1 7's)) de.

&
[t is easy to check that

(2 ¥2a)8) =2 (s, x) =6 (K2, ¥) 4 ¢, (5)),
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and hence
Ind(n¥(ker(nx U)))={fe Ax, G (n e )x U f 2. VD, 0)=0

forally, ze Y,}.

The last ideal is the kernel of Indg ((n -£,)x U), and (1) is proved.
For an ideal J< 4, x, H, Corollary 2.5 implies

pHInd () ={cedx,G:{pc)-x, ¥>,, . yesforallx, ye ¥"}

={c€AX, G:{pc)-rxhrdy)) 4, n€Jforallx, yet|
={cedx, G n{c-x, yygleJforallx ye Y}

Another application of Corollary 2.5 shows that the latter is
Ind¢ (n2(J)). 1

We shall now build a homomorphism R’ of A x, # into .#(Ax, G),
and define our restriction map RES from .#(4 %, G) to .#(A %, #) to be
R'* [10, Proposition9]}. For fel (p*¢)S Ax,# and ge C (G, A) we
define

~

(R(/Vg)shx)=| flr.x)aln, x)[g(r "s)(x)] didr)

(RN = gl MWxdatst ")/ (s " x)] dido)

The usual arguments involving approximations of f'and g by finite tensors
show that R'(f) g and gR'(f) belong to C (G, A), and a quick calculation
shows that

WR(S)g)=(hR(f)¢g (3.5)
for h, ge C (G, A) and fe I".(p*E).

ProOPOSITION 3.8. (1) For each fe [ (p*&), R'(f) extends to a mul-
tiplier of Ax,G, and R’ extends to a homomorphism of Ax,# into
M(Ax,G).

(2)  Suppose that F is a closed G-invariant set with constant stabiliser
group H, and that R, denotes the usual embedding of A,x,H in
M(Apx, G), so that R;* is the usual restriction map RES,. #(4,.%,G)
— I(Apx, H) [10, p. 209]. Then we have a commutative diagram

s(Ax,G6) RES, siax, 2)
prj {n:
RES,

(A%, G)——5 #(A,.x, H)
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Proof. We have seen that the pair of maps R’ has the correct algebraic
property (3.5), and we just need to check continuity to ensure that R’
extends to a multiplier. However, a simple calculation shows that with F as
in part (2),

RAm(fNodg)=pHR(f)g). (3.6)

This enables us to exploit the known properties of R}

IR/ &N 4y =3P oG A RSV v, s

vex

< sup [RG=(ne= (U N pe=(8)I
xe X

S Sup ”nﬁ(/)“ v4m N ”PE_\(g)” ,4ﬁ Xy
ve X

N T AV (W G

A similar calculation works on the other side. Hence R'(f) extends to a
multiplier of norm less than or equal to |/, and we obtain a
homomorphism R’ as claimed. Now Eq.(3.6) implies that R} -n,.=p,-R"
The homomorphism p - is surjective, and it is straightforward to verify that
the image under R} of an approximate identity in 4, %, H converges to
the identity of .#(4,x,G) in the strict topology. The next lemma
completes the proof. |

LEMMA 39. Suppose that T:C—- . #(D) and S:D—.#(E) are
homomorphisms, and that there is an approximate ientity d, for D such that
S(d)) converges to the identity of #(E) in the strict topology. Then S
extends uniquely to a strictly continuous homomorphism of .#(D) into
H(E), and (S-TY*=T* S*.

Proof. That § extends uniquely is well known (cf. [14, Lemma 1.1]).
Then, given an ideal J in E,

T*:S*(J)={ceC:S(T(c)d)eeJforallde Dand e E}.

But the hypothesis implies that clements of the form S(d)e are dense in E,
so the above is equal to (S: T)* (J). |

Proof of Theorem 3.1. We have already seen that every irreducible
representation of 4 x, - factors through some =, and it is easy to check
that Ind is G-equivariant. By part (1) of Propositon 3.7, it will be enough
for us to show that the map Ind of Definition3.6 induces a
homeomorphism of 2(Prim(A4 x, #)) onto Prim(4x,G). In fact, we
claim it suffices to show that

(1) ¥ KePrim(A %, G), then Ind(RES(K))=K;
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(2) If JePrim(Ax, #), then Ind(J) is a primitive ideal in A4 x, G,
and
RES(Ind(J))= ) B.(J).
e

We now prove the claim, and then prove (1) and (2). It follows from (1)
and (2) that Ind is constant on quasi-orbits, and hence induces a map 4
from 2(Prim(A4 %, #)) into Prim(A4 x, G); this map is continuous since
Ind is. By the Gootman-Rosenberg thecorem [8] the system (G, A, a) is
Effros- Hahn regular; by Proposition 3.7, this means every primitive ideal
of Ax, G is induced from a primitive ideal of the form ker((n-¢,)x U),
and Ind is surjective. As it stands, RES is a continuous map of
Prim(A4 x, G) into (A x,#), but the map sending a quasi-orbit in
2(A %, #) to its kernel is a homeomorphism onto its range in .#(A4 x, #)
[10, Lemma, p. 2217, and (2) shows that RES maps primitive ideals to
kernels of quasi-orbits, so RES defines a continuous map k of
Prim(A4 %, #) into Q(Prim(4 x, #)). Now (1) says that A & is the iden-
tity, (2) says that k- h is the identity, and we have proved the claim.

We have already observed that Ind is surjective, so every
KePrim(Ax,G) has the form Ind(zX*(J)) for some xeX and
Je Prim(A4, %, G ). Let F denote the G-invariant set G - x, and H =G the
common stabiliser. The map =, factors through =n,, so n¥(J)=nr}L) for
some primitive ideal L of 4, », G, and by Proposition 3.7 we have

K=Ind(n¥(/))=Ind(n}(L))=p}(Ind (L))
By Proposition 3.8, therefore,
RES(K)=RES(p}(Ind,{L)))=nX¥RES,.(Ind,{L))).
Thus, by Proposition 3.7(2),
Ind(RES(K)) = Ind(n }(RES {Ind (L)) = p ¥(Ind (RES {Ind {L)})).

Now RES, and Ind, are the usual restriction and induction maps for
A, G, so Ind (RES,) is the identity by Lemma 3.2, and (1) follows.

Finally, suppose that Je Prim(A4 %, #). Then, as above, J=n}(L) for
some x€X, F=G-x, and Le Prim(4, %, G.). Then

RES(Ind(J)) = RES(Ind(n *(L)))
=RES(p#(Ind(L)))
=n}(RES,(Ind,(L)))

nt ( N /ff’(L)),

e G
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by Lemma 3.2. But n,. intertwines 8 and B, so it follows that

RES(Ind(J) = () BdrE(L))= ) B.J).

S€EC se (;
This completes the proof of Theorem 3.1. ||

We can now combine our two main results to give a version of [22,
Proposition 2.1] describing the primitive ideal space of A x, G when the
stabilisers vary continuously. In fact our result is slightly stronger than [22,
Proposition 2.1] even when the stabilisers are constant: we have also
established openness of the restriction map.

THEOREM 3.10. Let (A, G, a) be a separable C*-dynamical system with G
abelian, Prim(A) Hausdorff, and with continuously varying stabilisers. Then
we have a commutative diagram of continuous open surjections

Prim(A x, 2)
er Y’s
Prim(A4 %, G) Prim(A4)

N/

2(Prim(A), G)

where Ind is the inducing map of Theorem 3.1, Res is the restriction map of
Theorem 2.2, q assigns to each primitive ideal P the quasi-orbit gq(P) on
which it lives (¢f. [10, p. 2217), and p is the canonical map of Prim(A) onto
the quasi-orbit space 2(Prim(A), G) for the action of G.

Proof. The properties of Res and Ind are established in the cited
theorems. That p is a continuous open surjection follows from the lemma
on page 221 of [10], and the same properties of ¢ have been established by
Gootman and Lazar [7, Theorem 2.4]. So it remains only to show that the
diagram commutes. If xx Ue (4,%,G )", so that J=ker((nx U)=7,) is a
typical element of Prim(A x, #), then ResJ=1, by Theorem 2.2, and
p(Res J) is the quasi-orbit (G-x)~ of x. The argument in the second
paragraph of [22, Proposition 2.1] can be used essentially verbatim
(replacing H by G.) to show that

ker(Indg ((moe,)x U)l )= ) a,(ker(moc,)).

se G

Thus g-Ind(J) is also the quasi-orbit (G-x)~ (see the definition of ¢ on
p. 221 of [10]). 1

580:81:2-14
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4. LocaLLy TRIVIAL G-SPACES

Let (G, X) be a locally compact Hausdorfl transformation group with
continuous stabiliser map ¢: X - 2; defined by o(x)= G, (here, G need
not be abelian). Define an equivalence relation on X' x G by

(x,s)~(y, 1), ifandonlyif x=y and st 'eG,.

Then the continuity of ¢ implies that the quotient topological space
X x G/~ is locally compact Hausdorfl, and that the quotient map is open
(33, Lemma 2.3].

DerINITION 4.1. Let (G, X) be as above. We say the G-action is proper
relative to the stabilisers, or just g-proper, if the map (x, s)— (x, 5-x) of
X x G/~ into X x X is proper.

As a good motivating example, consider the case where the action has
constant stabiliser H, so that (x)= H for all x. Then X x G/~ is naturally
homeomorphic to X x G/H, and X is a o-proper G-space if and only if X is
a proper G/H-space in the usual sense. It is reasonably easy to show that G
acts g-properly on X if and only if, given any compact subset K of X, the
image in X x G/~ of

{(x,s)e XxG:xeKands -xeK} 4.1)

is relatively compact. Any set K for which the image of (4.1) is relatively
compact is called G-wandering. This terminology does not agree with that
of Definition 2.4 of [33], and is in fact logically distinct, as we shall show
by example in an appendix. Unfortunately, the argument in the first
paragraph of the proof of [33, Lemma 4.3] requires the above definition of
G-wandering. Fortunately, the above definition suffices for a// the results in
[33, 17], so that they remain true if we use this definition in place of [33,
Definition 2.4].

Our definition has been motivated by recent characterizations of proper-
ness for second countable pairs (G, X) involving the transformation group
C*-algebras C*(G, X). When G acts freely, our definition reduces to the
usual one, and Green [9, Theorems 14 and 17] has shown that the action
is proper if and only if C*(G, X) has continuous trace. In the general case
of a continuous stabiliser map o: X - 2, [33, Theorem 5.1] asserts that
the action is o-proper if and only if C*(G, X) has continuous trace. Thus
we feel confident that we have made an appropriate and useful
generalization of the usual notion. We shall now discuss the analogous
version of local triviality when G is abelian.
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DErFINITION 4.2. Suppose that (G, X) is a locally compact abelian trans-
formation group with continuous stabiliser map ¢:X — 2 ;. We shall say
that X is a locally o-trivial space if X/G is Hausdorff and if every xe X has
a G-invariant neighborhood U which is G-homeomorphic to U/Gx G/~ ,
where

(G-x,8)~, (G-, 1) ifandonlyif G-x=G-y and st 'eG_,

X
and G acts on U/G x G/~ , by translation in the second factor.

Extending Definition 4.2 to the case when G is non-abelian is com-
plicated by the fact that the stabilisers vary along orbits. Since our
definition of a locally o-trivial space implies that there are local sections for
the orbit map p: X - X/G, Definition 4.2 can be modified by requiring the
existence of a continuous section ¢: U/G — U and defining

(G-x,5)~,(G-y, 1) ifandonlyif G-x=G-y and st 'eG

gl xy

However, as the applications we have in mind here involve only abelian
groups, we have chosen to restrict ourselves to that case for ease of
exposition, even though some of our results—such as the next
proposition— go through for non-abelian groups.

A free and proper action of G on X is locally trivial exactly when the
orbit map X — X/G has local cross-sections, and we shall now show that ¢-
properness and local o-triviality are related in the same way. Again, for
motivation we note that, in the case of a constant stabiliser group H, the
following proposition implies that X is locally o-trivial if and only if it is
locally trivial as a G/H-space.

PROPOSITION 4.3, Let X be a locally compact Hausdorff G-space with
continuous stabiliser map o: X - 2.

(1Y If X is locally o-trivial, then the G-action is a-proper.
(2) If the G-action is a-proper, then the orbit space X/G is Hausdorff.

(3) If the G-action is a-proper and the orbit map X — X/G has local
sections, then X is locally o-trivial.

Proof. To prove (1), let K be a compact set in X. Also suppose that
{(x;,5;,)} is a net in X x G with x,, s,-x,€ K for all i. Since it will suffice to
find a convergent subnet, we may assume that x;,—»x and s, -x,— ).
Moreover, we can even assume that K< U, where U is the G-invariant
neighborhood of x specified in Definition 4.2. In particular, we can reduce
to the casc where X = X/G x G/~ |. Notice that the natural map of X/G x G
onto X will be open by [33, Lemma 2.3]. Thus we may write K as the

image of C,x C,< X/G x G with C; compact. We put x,=[G-x,, ¢,] and
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s;-x;=[6-x;,5;t;] for G-x,eC, and t,€ C,. But [G-x,,t,]>[G-x, 1]
while s, - x; converges to some [G - x, s]. Using the openness of the natural
map again, we can assume that ¢, —» 1 and that there are v, € G, so that
v,s;1; converges to s. However, all this means that

(-t,', S:Ui)= ([G '-\‘n I,'], Slv/) = ([G 'XH Ii]s(szvilz)li_l)

converges to (x,st ') in X xG. This implies [x,.s;] converges in the
quotient.

Statement (2) 1s [33, Proposition 2.17].

For (3), it will suffice to show that if n: X - X/G has a global (con-
tinuous) section ¢: X/G — X, then X is G-homeomorphic to X/G x G/~ ,.
Define f: X/Gx G/~ — X and g: X - X/G x G/~ , by

SUG x,s])=5-¢(Gx)
and
g(x)=[G -x,s], where x=5-¢(G-x).

[t is easy to see that both fand g are well-defined G-equivariant maps, and
that f is continuous. Furthermore, both f:g and g<f are the identity map;
hence, it will suffice to show that g is continuous.

Suppose that x, converges to x in X. It will suffice to show that every
subnet of {g(x,)} has a subnet which converges to g(x). Put
x;=$,-¢(G-x;) and x =5-¢(G - x). Since ¢ is continuous, the o-properness
implies that {[x,,s;]} (has a subnet which) converges to some [x,r] in
X x G/~ . Since the quotient map of X xG onto X x G/~ is open [33,
Lemma 2.3], we can assume that there are 1,€ G such that 5,1, converges
to r. Therefore, x,=5,-¢(G-x,)=st;-¢(G - x;} converges to r-¢(G-x). In
particular, g(x)=[G-x,r]. |

We believe this proposition provides convincing evidence that we have
the correct notion of local triviality to go with our definition of o-proper-
ness. However, there is one slight problem. For free actions, locally trivial
G-spaces can be recovered from the local trivializations using transition
functions, and this allows us to use the machinery of sheaf cohomology. In
our more general setting, these transition functions need not exist, and we
are forced to impose an extra condition on the stabiliser map ¢ to make
sheaf-theoretic techniques available. (We give examples following
Proposition 4.5 to show that the extra hypothesis is not redundant.) We
shall distinguish between the two situations by reserving the word “bundle”
for the case where transition functions exist.

DEFINITION 44. Let Z be a locally compact Hausdorfl space, G a
locally compact abelian group, and ¢: Z — X ; a continuous map.
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(1) We say that ¢ is locally liftable if every continuous section
. Z—->2ZxG/~, is given locally by a continuous map s:Z -G (ie.,
c(z)=1[z, s(z)] for ze Z).

(2) We say a locally compact G-space X is a locally o-trivial
G-bundle over Z, if Z= X/G, if o is locally liftable, and if X is a locally
a-trivial G-space as in Definition 4.2 (when ¢ is viewed as a map on X
which is constant on orbits).

PROPOSITION 4.5. Let G be a locally compact abelian group and
a: Z = X a locally liftable map from a paracompact space Z. Let & denote
the sheaf of germs of continuous G-valued functions on Z, and ‘B the subsheaf
whose sections over U are continuous functions s: U — G such that s(t) e o(t)
Jor 1e U. Then the set of isomorphism classes of locally o-trivial G-bundles
over Z is in one-to-one correspondence with the cohomology group

H'(Z, &/P).
Proof. Suppose p: X — Z is a locally o-trivial G-bundle, and let
hi:UxGi~ —-p Y(U)

be equivariant homeomorphisms. Then for each pair i j, the map
s h, 'oh([z,e])is asection of U, x G/~, and hence is given locally by a
continuous map s into G. By the argument of [2, 10.7.11], we can refine
the cover {U,} and assume there are continuous maps s,,: U, — G such that

hilz, s =)ty =h([z t]) for zelU 1eG. (4.2)

1y

By comparing (h,”' ~h;)o(h~ ' h,) and h7'-h, on triple overlaps, we find
that

sil2) su(2) sul2) 'eG.=a(z), for zelUy, (4.3)

so that the s, define a l-cocycle {U,, s} with values in the quotient sheaf
®/P. (We shall refer to the s, as transition functions for the bundle.)

Although Eq. (4.2) does not determine the functions s, completely, the
corresponding section of G/B is uniquely determined, and of course
refining the cover will not affect the class of {U,,su} in HY(Z, G/P).
Suppose we had picked different trivializations g, over U,. By the liftability
of ¢ we can refine the cover to ensure there are continuous maps k;: U, —» G
satisfying

hlz, k(z)tD=gdlz 1]), for zelU,;, teG.
The corresponding transition functions s, and r,, are then related by
kiz) 's(2) k(=) r(z) '€, for zelU

so that the cocycles {U,s;}, {U,r,} are cohomologous. Similar

i
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arguments show that the class of {U,s;} depends only on the
isomorphism class of the G-space X — Z.

Conversely, if we are given a l-cocycle with values in %/, we can by
refining the cover assume that it is given by continuous s,: U, — G satisfy-
ing (4.3), and by the usual method construct a bundle with transition
functions s5,. As usual, cohomologous cocycles give isomorphic bundles,
and the result follows. |

Of course, in the freely acting case, the locally trivial spaces are
automatically bundles, but in general they need not be. To see this, it suf-
fices to consider the case where H is a subgroup of G and 6: Z -2 is
defined by a(z)=H for all z. Then Zx G/~ =Z x G/H, and sections are
just functions from Z to G/H, which always lift locally if and only if
G — G/H has local cross sections. Although it is automatic for Lie groups
[19], there are pairs (G, H) for which this is not the case. For example, let
G=T1;.,T and H=[]/_, {1, —1}. Our next example shows, however,
that even for actions of R, there can be a difference between our locally
trivial spaces and bundles when the stabilisers vary.

ExaMPLE 4.6. Choose a complex line bundle p: L — Y, and give it a
Hermitian structure. Then we can define an action of R on L by

etz il |zl #0,
r “”{g, if 1z1=0. (44)
Then we have
Iz| Z, if |z]#0,
)=G.= 45
o(z)=0 {R, it |z1=0, (43)

so the stabilisers vary continuously. The argument of [33, Example 5.4]
(which is the special case where Y is a point) shows that the action is
o-proper, and it is easy to verify that the continuous map
q: L - Yx [0, o) defined by g(z)=(p(z), |z]) induces a homeomorphism
of the orbit space L/R onto Y x [0, oc). The local triviality of L as a line
bundle implies that there are local cross sections of ¢, so that L is a locally
o-trivial space for the map o¢: Y x [0, xv)— 2 defined by o(y,r)=rZ
(r #0), and o(y, 0) = R. In general, L is not globally o-trivial—in fact, it is
easy to see that it is globally o-trivial exactly when it is trivial as a line
bundle. We claim that L is not a locally o-trivial hundle; the map ¢ is not
locally liftable.

To see this, it is enough to consider the case where Y is a point, so that
L =C. We define ¢: [0, oc) = [0, o0} x R/~ by

LRVt for r#0,
(’)’{[0,0], for r=0.
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Away from 0, ¢ is continuous because r+— 1/r is; thus, to prove that ¢ is
continuous on [0, oc), it will be enough to show that ¢(r,) = ¢(0) whenever
r,~0. For each n we can choose an integer m, such that
|1/r, ~r,m,| <r,. Then since a(r,)=r,Z, we have

1 1 )
[r,,,—]:l:r,,,;——r,,m,,J—» [0,0] in [0, c)xR/~,

rll n
and ¢ is continuous. If s:(0,¢) > R is a continuous function such that
c(ry=[r. s(r)], then we have 1/r—s(r)erZ for all r 0. Then the function
ri— 1/r* —s(r)/r is continuous on (0, ¢) and integer valued, so it must be
constant, say equal to N. But this implies that s(r)= —rN + 1/r for r #0,
which cannot possibly extend to be continuous at 0. Thus the section ¢
does not have a local lifting near 0, and ¢ is not locally liftable.

ExaMPLE 4.7. To show that a proper space need not be locally trivial
let R act on C? by the formula (4.4). As in Example 4.6, this action is
a-proper for the stabiliser map ¢ given by (4.5). To see that C? is not
locally trival, let p: S> — S? denote the Hopf fibration. Let |-| denote the
usual norm in C2 Then, identifying the unit sphere in C* with S* and the
unit ball in R? with S2, we can define ¢: C> —» R* by

(z)= |z} p(z/121), if z#0,
q i 0’ lf ::0.

Then ¢ is continuous and open, and therefore induces a homeomorphism
of C*/R onto R* If there was a local section s near 0, then for sufficiently
small >0 we would have a continuous map s:86S%—6S* such that
g(s(6x)) = dx for all xe §? which in turn would give a continuous section
x—(1/0) s(6x) for the Hopf fibration. Since no such section exists, we
deduce from Proposition 4.3 that C? is not a locally o-trivial R-space.

PrROPOSITION 4.8. Suppose (G, X) is a second countable locally compact
abelian transformation group which is proper relative to the continuous
stabiliser map 6: X — X . Then, with respect to the dual action of G, the
spectrum of the transformation group C*-algebra C*(G, X) has stabiliser
map 6: X » G ¢, and C*(G, X) is a (globally) é-trivial G-space oter X/G.

Proof. To see this, we recall from [32, Theorem 5.3] that the map
(x, 7)+— Indﬁ\(s_‘- X7 la,)

induces a homeomorphism of XxGj/~, onto Prim(C*(G, X))=
C*(G, X)~, where

(x.7)~ (1 x)s G-x=G-y and 7y 'eG:=G}.

X ¥



412 RAEBURN AND WILLIAMS

It follows from [34] that C*(G, X) is Hausdorff. Because G acts
o-properly, the orbits are all closed, X/G is Hausdorff (Proposition 4.5),
and we can identify X x G/~ , with (X/G)x G/~ . If y € G and 4 denotes the
dual action of G on C*(G, X), then by [22, Lemma 2.3] we have

lndfj‘(zz\ X7 1)) jt '~ Ind};ﬁ\(a,@z;' lah

This implies both that the stabiliser of Ind(e, x y) is G !, and that the above
homeomorphism is G-equivariant. Notice that the continuity of x+— G
follows from the continuity of x— G, and that of the map H+— H* from
22 [34] 1

Some particularly well-known and interesting subsets of 2. are the
Grassmanian manifolds Gr(n, k) of k-dimensional subspaces. We shall now
study locally o-trivial R”-bundles where ¢ takes values in a component of
the Grassmanian. Our main result says that, in this case, the only g-proper
R"-actions are the trivial ones on Z x R"/~. This is, of course, well known
for free actions, but the general result is a little surprising in view of the
highly non-trivial topology of Gr(n, k). We shall, however, give some
examples to show that even these trivial actions can arise in interesting
ways, and we show how they can be modified to give locally trivial actions
of larger groups which are not globally trivial. The basic idea here is that
locally we can adjust such actions to ensure the stabilisers are constant.
More formally, we make a definition:

DEerINITION 4.9. A continuous map o: Z — 2 is locally constant if for
each z,e Z there are a neighborhood U of z, and a map ¢: U — Aut(G),
continuous in the compact open topology on G, such that ¢(z)(6(zy)) =
o(z) for ze U.

ProposITION 4.10. (1) Suppose a: Z —» X, is locally constant, and that
each map G — G/G. has local cross sections. Then o is locally liftable.
(2) Suppose o is locally constant, and that each quotient G/G. is a Lie
group. Then everv a-proper space is locally g-trivial.

Remark. Both hypotheses on G/G. are automatically satisfied if G is a
Lie group.

Proof. (1) Given zoe Z, we choose U and ¢ as in Definition 4.9, and
define a homeomorphism 4 of Ux G/G_, onto p "'(U)=Ux G/~ by
h(z,1G )= [z, c(z)1)].

Thus any continuous section s of p '(U) is given by a continuous function
of U into G/G.,, which by shrinking U we can lift to a map r of U into G.
Then the map z+ ¢(z)(r(z)) provides the required lifting.
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(2) Let X be a g-proper G-space with X/G=Z. We are only
interested in local properties, so without loss of generality there is a point
Xo€ X and a continuous map c: X/G — Aut(G) such that ¢(x)(G,)=G, for
all x. We now define a new action of G on X by s: x = ¢(x)(s) - x; this is an
action because ¢(x) is a homomorphism and ¢ is constant on cosets, and
continuous because it is a composition of continuous maps:

(x, s)—= (s, ¢(x), X) = (c(x)(s), xX)— c(x)(s) - x.

We have G:x= G -x because c(x) is onto, so the orbit spaces for the two
actions coincide; furthermore,

{rtex=x}={tc(x)(eCG, =G

o’

so - induces a free action of G/G,, on X. We claim it is also proper.

The map A XxG—- XxG defined by h(x,s)=(x,c(x)""(s)) is a
homeomorphism which carries {(x,s):xe K, s-xe K} into {(x,1):xeK,
t:xe K}. If we define an equivalence relation =~ on X xG by (x, r) = (x, ()
if and only if rr '€ G,,, then we have

(x,8)~(x, )= h(x,s)x h(x, 1),

and 4 therefore induces a homeomorphism of X x G/~ onto X xG/x =
XxG/G,,. Now if K is compact in X, then {(x,s): xeK, s-xe K has
relatively compact image in X x G/ ~, and its image {(x,7):xe X, t:xe K}
under 4 has relatively compact image in X x G/=x. Thus the action = of G
on X induces a proper free action of G/G . Since G/G,, is a Lie group,
Palais’ slice theorem [19] implies that there is a local cross section for this
action. But X/G is the same for either action, so there are local cross sec-
tions for the original action too. |

Lemva 4.11. Suppose 6: Z — 3. is a continuous map which takes values
in one component Gr(n, k) of the Grassmanian. Then o is locally constant.

Proof. For zyeZ the natural map p: GL,(R) — Gr(n, k) defined by
p(T)y=T(a(zy)) 1s a smooth surjection and thercfore has local cross
sections. Composing with one of these gives the required lifting of ¢ into
GL,(R)=Aut(R"). |}

ExaMpPLE 4.12. If Z=RP=RP' and ¢: Z - RP=Gr(2, 1) is the iden-
tity, then o is not globally constant; that is, we cannot take U=Z in
Definition 4.9. To see this, let ¢ denote the natural map from S' to RP, let
R: S' = SO,(R) be the isomorphism which sends ¢** to rotation through
0, define p(T) to be the line through 711, 0), and let A: GL,(R) —» SO,(R)
be the continuous map which sends the invertible matrix with Iwasawa
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decomposition KAN to K (see [11, p. 270]). Then we have a commutative
diagram
§' —% SO,(R) &= GL,(R)

[T

id

Z=RP=“4 Rp “, RP X, RP

Since ¢ does not have a global section, therc can be no global lifting of o
with values in SO,(R). However, a global lift /1 Z - GL,(R) for ¢ would
give such a lifting k- f: Z — SO,(R), which justifies the claim.

PROPOSITION 4.13. If 0: Z — Gr(n, k) is continuous and Z is paracom-
pact, then every o-proper R"-space with orbit space Z is isomorphic to
ZxR" ~.

Proof- By Lemma 4.11 and Proposition 4.10, every a-proper R"-space
X is a locally o-trivial bundle. According to Proposition 4.5, the
isomorphism class of X is determined by the class in H'(Z, &/B) of the
cocycle defined by the transition functions of X. Here, & is the fine sheaf of
germs of R"-valued functions, so that H?(Z, ®$)=0 for all p> 1, and the
long exact sequence of sheaf cohomology implies that H'(Z, &/8)=
H*(Z,PB). We shall prove that H*Z,B)=0; this suffices by
Proposition 4.5.

Suppose {U,, 4, } is a 2-cocycle with values in ‘B, so that in particular
tu(z)ea(z) for all zeU,,. Viewed as a cocycle with values in ®, it is
trivial, so by refining the cover we can find p,;: U, —» R" such that

Aau(2) = pi(2) = pal2) +pgl2).  for e Uy. (4.6)

If P(z) denotes the orthogonal projection of R” onto a(c), then
P: Z — Aut(R") is continuous, and hence so is the map Pxp,;: Z - R”
which sends z to P(z)(u,(z)) for each i, j. But each P(z) is also linear, so
(4.6) implies

A(2) = P(2)(Apl2)) = Px p(z) = Px pu(2) + P x py(z)

Each Pxpu, is a section of P, so this shows that {7} is trivial in
H*(Z,B), and cstablishes the claim. |

ExXAMPLE 4.14. Let E be the real sub-bundle of RP"x R"~ ' orthogonal
to the canonical line bundle L over RP”, and for /e RP", let P, denote the
orthogonal projection of R"*' onto the fibre £,=/-. Then we can define
an action of R"*! on E by

u-(Lv)y=(,v+ Plu)).
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The stabiliser map ¢ is the inclusion of RP" in X', and, although it is not
immediately apparent, E is a globally o-trivial R”*! space— in fact, the
map h from RP"x R" ! to itself defined by A(/, v)=(/, P,(v)) induces an
equivariant homeomorphism of RP"x R"*'!/~ onto E. As an n-dimen-
sional vector bundle, however, £ is always non-trivial [16, Example 3,
p-43].

When n=2, we can disguise this trivial space even more: RP can be
identified with [ —=n/2, n/2]/{ —n/2, n/2}, and E with the Mobius band
M=[—-=n/2,7/2] xR/~ ,, where ~, identifies (n/2, x) with (—=/2, —x).
The corresponding action of R? on M is given by

(r,s)-[0,x}=1[0, x— rsin(0) + s cos(8)].

Obviously one can perform similar constructions for other components of
the Grassmanian.

ExampLE 4.15. Let H be a locally compact abelian group, ¢: Y - Z a
locally trivial principal H-bundle, and t: Z — RP" a continuous map. Then
we claim that, for the diagonal action and with ¢ defined by
o(z)={e}x1(z), X=YxR"* '/~ is a locally o-trivial (H x R"* ')-bundle
over Z, which is globally trivial only if Y is trivial.

It is easy to check that the orbit space X/(H x R" *') is homeomorphic to
Z, that ¢ is as asserted, and that ¢ is continous. If Y is H-isomorphic to
ZxH, then XxZx(HxR""')/~ is o-trivial. The map 7 is locally
constant by Lemma 4.11 and Proposition 4.10, and hence ¢ is too. Finally,
if / denotes the continuous map [ ¥, v]+ y from X to Y, then a continuous
section s for X would give a continuous section f«s for Y: thus, X can be
globally trivial only if Yis.

For an interesting concrete example of such a space, we can take H=7,,
g to be the canonical map of S” onto RP", and 1 to be the identity. Then,
as in the preceding example, (w, v} (w, P, (v}) induces an isomorphism of
S"xR"*'/~ onto the orthogonal complement E of the real line bundle
g*L over S". Since g*L is the normal bundle, E is the tangent bundle
T(S"), and we obtain an action of Z,x R"*' on T(S") which is a locally
o-trivial bundle over RP" for the map o:/— {e} x/, but which is not
globally o-trivial.

5. ACTIONS WHICH ARE LOCALLY UNITARY ON THE STABILISERS

Locally unitary actions of an abelian group G where introduced in [20]
as a C*-algebraic analogue of (locally trivial) principal G-bundles. It was
proved there that when A is type I and « is locally unitary, then (4 x, G)~
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is a principal G-bundle over A4 [20, Theorem 2.2], and, conversely, that if
X is a principal G-bundle, then the dual action of G = G on C*(G, X) is
locally unitary [20, Theorem 3.1]. In [22], the main results concerned
actions which were locally unitary on a common stabiliser group H, and
we shall be interested here in actions which have a similar property with
respect to continuously varying stabilisers. We think of this property as a
dual analogue of the locally trivial spaces we studied in Section 4, and
justify this by giving versions of [20, Theorems 3.1 and 227 (see
Propositions 5.9 and 6.1).

We resume the notation of Section 2, so that 4 =[y(&) is a C*-algebra
with X = Prim(A) Hausdorff, and we have automorphisms a(s, x) of the
fibres A, for cach (s, x)€ 2. Also, recall that we can view a multiplier » of
Iy(p*¢) as a (strictly continuous) field of multipliers {b(s, x)}e€
Il ccr #(A,) ([15 Theorem 2] or [1, Theorem 3.3]). Note that the
following definition works perfectly well for non-abelian groups.

DEFINITION 5.1. Suppose that A=17(¢) is a C*-algebra with
X =Prim(A4) Hausdorfl, and that (4, G, 2) is a C*-dynamical system with
continuous stabiliser map x+— G,. We say that x is unitary on the
stabilisers if there is a unitary ue . #(I'y(p*¢)) such that for all ae A and
(t. x), (s, x) e # we have

u(st, x) = u(s, x)u(t, x) 5.1)

a(s, x)a(x))=u(s, x)a(x)u(s, x)*.

Similarly, we say that x is locally unitary on the stabiisers if for each point
Xo of X there are a neighborhood N of x, and a ue #(y(p*¢)) such that
u(t, x) is unitary for each (¢, x)ep '(N) and (5.1) holds on p '(N).

It may be illuminating to reformulate the above definition in terms of
groupoids: first let Aut(£) denote the groupoid consisting of pairs (x, x),
where xe X and x € Aut(A4,) (both the range and the source maps are the
projection onto the first factor). Then there is an associated groupoid
homomorphism %’ from # to Aut({) defined by «(, ., = (x, a(s, x)), which is
continuous in the sense that (s, x) a(s, x)[a(x)] is a section of p*& for
each ae I'y(¢). In our terminology, « is unitary on the stablisers exactly
when a' is implemented by a unitary in .# (I y(p*&)).

Other than the trivial example of free actlons it may not be immediately
obvious that many actions are locally unitary on the stabilisers; hence, we
will provide a number of classes of examples. Our first observation points
out that Definition 5.1 extends that of [20]; the proof is straightforward.

LEMMA 52. Let x:G — Aut(l'(($)) be a locally compact abelian
automorphism group with G, = H for all xe X. Then x| 4 is locally unitary if
and only if a is locally unitary on the stabilisers.



LOCALLY UNITARY ACTIONS 417

For convenience in the sequel, we will sometimes shorten the phrase
“locally unitary on the stabilisers” to simply “locally unitary.” This should
cause no confusion as the previous lemma says that these notions coincide
whenever it makes sense for them to do so.

We will find it useful to consider actions where the stabiliser map is
locally constant on the orbit space X/G as described in Definition 4.9. For
simplicity, we assume that we can take U= X/G in Definition 4.9. In other
words, we have a map c¢: X - Aut(G) which is constant on G-orbits,
continuous in the compact open topology on G, such that there is a sub-
group H < G satisfying ¢(x)(H)= G, for all xe X. It follows that the maps

(s, X) > c(x)(5) and (s, x)—=c(x) "(x)

are continuous from G x X to X. Furthermore, by the uniqueness of Haar
measure on G, for each xe X there is a m(x)eR* so that

~

sy ds=m(x) j(‘ F(e(x)(s)) ds. (5.2)

It is easy to see that m: X - R' is continuous [12, Sect. 26.21].

LEMMA 5.3. Suppose that a: G — Aut(I'((&)) is an abelian automorphism
group and that c: X — Aut(G) is as above. Then if se€ G, ae I'(&), and x€ X,

Bla)(x)= Lepnl@)x)

defines an automorphism group of I'o(&) with all stabiliser groups equal to H.
In addition,

Ax, G=Ax,G.

Proof. This is a straightforward extension of [22, Lemma 4.16]. One
defines @ from C (G, I' (¢)) to C (G, I'(&)) by

D(h)(s)(x)=m(x) h(c(x)(s))(x).

The only subtlety lies in calculating elements of the form = (P(g)(r))(x).
First of all, we observe that

[@(g)(r)—m(x) glc(x)rN (s ' x)=0.

Then, by definition of the induced action on X, we have a(s ' x)=0 if
and only if 2 (a)(x)=0, so this implies

2 (P(g)r))x)=m(x)a(glc(x)(r)))x).
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Using this formula, it is a matter of direct calculation to check that @ is a
x-homomorphism (see the proof of [22, Lemma 4.16]); as & preserves the
L'-norm, it passes to the C*-completion. It is an isomorphism because we
can definc its inverse in a similar fashion. |

COROLLARY 5.4. With the same notation as uabove, if B |y is locally
unitary, then a is locally unitary (on the stabilisers).

We will say that a: G — Aut(/,(£)) is pointwise unitary on the stabilisers
(or simply pointwise unitary), if given x e X there is a representation u of
G, such that x (a)(x)=wu,a(x)uX* for all se G, and ae [y (&). If A 1s type,
this is equivalent to saying the Mackey obstructions vanish.

PROPOSITION 5.5. Let A=1y<{) be a separable continuous trace
C*-algebra. Suppose that x: G — Aut(A) is a compactly generated abelian
automorphism group with locally constant stabilisers. Then, if a is pointwise
unitary (on the stabilisers), a is locally unitary.

Proof. Fix a xe X. Then there is a representation v of G, so that
afa)x)=wu,a(x)u¥ for all ae A. Thus,

/‘\(a)(x) = u('l A li.\’)a('\.) u(*( N)(s)

for all se H. In other words, f|,, is pointwise unitary. It follows from [29,
Corollary 2.2] that f|,, is locally unitary. Now apply Corollary 54. |

Our next family of examples involves the notion of pull-backs of
C*-algebras (see [23]). For this, let p denote the induced action of G on
Cy(X) and assume that X/G is Hausdorfl. Then if B is a C*-algebra with
spectrum X/G wc can define the pull-back

g*B=Co(X)®cxih B

of B via the quotient map ¢: X — X/G. Furthermore, if y is an
automorphism of B, then there is a well-defined automorphism of the pull-
back ¢*y=p®c(y.c,7 as defined following the proof of Theorem 2.2 in

[237.

LeMMa 5.6, If 7: G = Autx.q, (B) is a locally unitary automorphism
group and
A= p®cxa s
then x is locally unitary (on the stabilisers).

Proof. As this is a local result, there 1s no loss in generality in assuming
that 3 is inner; thus, y=adw, where u:G—- U(.#(B)) is a strictly
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continuous homomorphism. Then v(s, x)=1®¢x, | @ ¢x¢) U,(G - x)
defines a ve U(#(Iy(¢*E))) which implements « over # as in
Definition 5.1. |

Remark 5.7. Even when an action 2 on a pull back ¢*B does not have
the form ¢*y, we can sometimes reduce to this case by comparing a with
the canonical action t = ¢*id by translation. Provided 4 = ¢*B is separable,
we obtain a l-cocycle f=a .7 ' with values in the Polish G-module
Aut v, A, where se G acts by conjugation by 7. If § takes values in
Inn(A4), there i1s an obstruction in the Moore cohomology group
H?*(G, C(X, T)) which vanishes if and only if x is exterior equivalent to t
[22, Theorem 0.11], in which case we have

AN, G=q*Bx,G=q*Bx,.,G=C*(G, X)Q¢x.h B

When B (and hence also 4 by [22, Lemma 1.2]) has continuous trace and
the Cech group H*(X, Z) is countable, then Inn(4) is open and closed in
Aut. ) A4 [22, Theorem 0.8]. Thus, for connected G, the cocycle § often
automatically lies in Inn(A4). This will be particularly interesting when
G =R, for then the cohomology group H*(R, C(X, T)) is trivial [22,
Theorem 4.1].

Another class of examples arises as the natural generalization of [20,
Theorem 3.1]. As we stressed in Section 4, a locally o-trivial G-space X is
the (non-constant fibre) analogue of a locally trivial principal G-bundle.
Therefore it is not surprising that it is a consequence of Proposition 4.5 and
[33, Theorem 5.1] that C*(G, X) has continuous trace. Furthermore
following Proposition 4.8, the map

(G-x,7)—Ind¥ (e, x7)

induces a homeomorphism of X/G x G/~ onto C*(G, X) . Furthermore,
the map [G-x, 7]+ G- x is a well-defined open, continuous surjection by
virtue of the remarks following [32, Theorem 5.3]. It follows from [31,
Theorem 8.3] that C*(G, X) may be realized as the sections of a C*-bundle
over X/G with fibre over x isomorphic to C*(G, G- x), which is in turn
isomorphic to C*(G, G/G ) since s+— s-x induces a homeomorphism of
G/G, wih G -x (which certainly follows from [3], since (G, X) is second
countable, or from [33, Proposition2.17]).

PROPOSITION 5.8. Suppose that X is a locally o-rrivial G-spuce as in
Definition 4.2. Then the dual action on C*(G, X) is locally unitary on the
stabilisers.

Proof. We are guaranteed local sections for X — X/G; thus, we may as
well assume that there is a global section ¢: X/G — X and prove that 4 is
unitary on C*(G, X).
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As above, we realize C*(G, X) as sections of C*-bundle E over X/G, with
fibre C*(G, G/G,) over G-x. In fact, if ze C (G x X), then the associated
section, n(-), is given by

n(z)[G - x](s, tG )= z(s, tc(G - x)).

Now given G - xe€ X/G and y € G; we define a multiplier w ., ., of the fibre
over G-x (ie, C*G, G/G,)) by

(W((i r.;‘)}‘)(sa tG\) = 7’(’)}’(5, IGr)
and
W@ e N8 1G )= p(s,1G ) 7(s 'n),

where ye C (G xG/G,). It follows from [22, Lemma2.4] that, for fixed
G-x, 7w ., defines a strictly continuous homomorphism of G into
U(#(C*(G, G/G.)})) which implements the dual action of G.

On the other hand Lemma 2.3 of [22] implies that

Ind§ (e, x7)-4, ' =Indg (exyx |¢,).
Therefore in this example,
'jf: {([G‘.\', Z]s ;‘)E(X//GXG‘/N)XG‘/'GG‘I }

Our object is to use w to define an element of U(#(p*(C*(G, X)))). Now
p*(C*(G, X)) has spectrum 2 [23, Lemma 1.1] and may be viewed as
sections over # with fibre over ([G - x, x ], ) equal to C*(G, G/G ). Hence
if be p*(C*(G, X)), then we can define

”b([G + X, l]’ ‘/') = w((i- y(.',‘)b([(; 'va]v A/')

It will then suffice to show that wb is in p*(C*(G, X)) ([15] or [1]). Since
p*(C*(G, X)) is spanned by sections of the form b=¢®@n(z) with
$eC (?)and ze C(G x X), it will be enough to show that

([G-x 1) 7))~ d[G-x. x ). V)W «ym(2)[G - x] (5.3)

defines a section on p*(C*(G, X)). Since the appearance of ¢ in (5.3)
guarantees that the section vanishes at infinity, it will suffice to show the
following: given ¢ >0, G - xo€ X/G, and y,€ G|, there is a ye C (G, X) and
a neighborhood N of (G - x,, 7o)€ #' = {(1, ¥) € X/G x G: %€ G:} such that

||W“._(,)7t'(:) - nz(}")h <e
whenever (7, y)e N.
Let K, =G and K, € X be compact sets with supp(z) € K, x K,. Because
the action of G is o-proper (Proposition4.5) and the quotient map
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0: XxG - XxG/~ is open [33, Lemma 2.3], we can find compact sets
L <X and M < G such that

(s((‘(Kz/G)UK:)_C_LX M/~
Now choose ye C (G x X) such that supp y < supp z and
P(s, 1e(G - x)) = yolt)z(s, 1e(G - xy))

for all 5, 1€ G. Choose a neighborhood N of (G - x4, 7,) such that, whenever
(r,7)e N, we have 1€ K,/G and

£
19:15 £1p(s, te(T)) = v(s, 1e(G - X))} < KL (5.4)

ye G

sup {|z(s, te(1))— =(s, 1e(G - x)) } < ¢ (5.5)

re M 3/. (K )

SEG

&
S L) — (e '-<—— 5.6
sup O =l Ol < 3o (>6)

Now fix (z, ¥) € N and compute that

““'u,,)”z( )—n (‘)H(q(,(,(,‘)\J’ ||“(r /,Tt( )(s)—m (¥)(s )“(l,m (,\)dS

< | S |y(1) (s, te(e)) = y(s, 1e(e))) ds,

YGore M

and. using the fact that y =5,z on G x G - x,, this 1s

~

<

~

SUp | (1) z(s, te(t)) — x(1) z(s, te(G - xo))| ds

YGreM

+ ] sup 4120 = 30 25, 1¢0G - x))} ds
CreM

+ sup 13(s. 1e(G - xo)) = y(s, te(0))] ds.

“GieM

It follows from (5.4)-(5.6) that the last sum is bounded by &; this completes
the proof. |

6. THE SPECTRUM OF A x, G WHEN 2 IS LocaLLy UNITARY
ON THE STABILISERS

In this section we assume that A4 is type I, apd we shall show that when
is locally unitary on the stabilisers and 4 — 4/G is locally trivial, then the

580 81 2-15
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diamond in Theorem 3.10 consists of locally trivial spaces. We shall then
discuss some interesting examples in detail.

We begin by considering the G-space Res:(Ax,#) = A of
Theorem 2.2; we assume A is Hausdorfl. Recall that the dual action of G on
(4%, #) is given by

axU)y-n)=(nxVU) n)-d, "=(nxy |, U)m,.

When « is pointwise unitary, the action s+ a(s, x) of G, on A, is unitary,
and it follows from, for example, [20, Proposition 2.1] that mx7y |, U is
equivalent to n x U exactly when ye G}. Thus the stabiliser map for the
action of G on (4 x, #) is the composition ¢ of ¢ with the map H H*
of 2 onto 2';; this is continuous when o is [34].

If xe X = A, we shall write ¢ for the representation a— a(x) of A4, and if
u:G— U.#(A) implements x(-, x) in the representation ¢,, we denote by
¢, x u the representation of A x, # such that

eoxul(fy=| fls, X u,difs), for fel (p*¢)
Y6y
Our next result is a direct generalization of [20, Theorem 2.3 and
Proposition 2.5].

ProrosITION 6.1. Suppose that A is a type I C*-algebra with Hausdorff
spectrum X and .G — Aut(A4) is 1()(A'ally unitary on the stabilisers. Then

Ax, P is type I and Res: (A x, P) - X is locally é-trivial space with
respect to the dual action of G; if ue.#(p*A) implements x over N, then

h(.\', }!)=8\ X7 |('i\ u('s X)

induces a homeomorphism h of (N x G)/~ onto Res '(N). If 6 is locally
liftable, then Res is a G-trivial bundle if and only if « is unitary on the
stabilisers.

The idea of the proof is to localize to an ideal of 4 where « is unitarily
implemented, and then prove the spectrum is ¢-trivial. For this we need to
know that if F is a closed subset of X, [, is the corresponding ideal in A4
and A ,={(s,x)eP:x¢ F}, then [,x,7 , embeds as an ideal in
A x, 2. Technically, we have not yet defined /%, #, ,, but we can use
the construction of A x,# essentially verbatim. As usual, we write
A=Ty).

LEMMA 6.2. Let F be a closed subset of X. Then the map
LU (p*E |y p)—= I (p*E) defined by
./‘(ss X )1 1/ (S‘ X) € y/\' fal

i(fNs, x) = {0‘ if (s, x)e P
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extends to a *-homomorphism of 1.x, P, ., into Ax, 2, and we have a
short exact sequence

01,3, P p— Ax, P 5 Apx, P -0,
In particular, 1. %, #, =) {ker(n,): x€ F}.

Proof. 1Itis clear that i is a *-homomorphism, and it is isometric for the
C*-norms because every irreducibie representation of A4 x, # factors
through some n,, and n,.-i=0 unless xe F. For x¢ F, we have (/). =4,
so the map n,-i:lp.x, #, r— A, %, G, is surjective, and it follows that
the range of i is not contained in ker(p-n,) for any pe(4,.x,G,) . Since
the range of i/ is an ideal and every ideal is the intersection of the primitive
ideals containing it, this shows that

range i = () {ker(rn,): xe F}.

But this is the kernel of n,, again because every irreducible representation
of A, x, #. factors through some =, for xe F. ||

Proof of Proposition 6.1. For each xe X, the action a(-, x) of G, on 4,
is actually unitary, so

A%, G, =4, ®C*HG,)=A,®CyG,)

is of type I. Since every irreducible representation of A x, 2 factors
through some =, it must be type [ too. Now suppose that u implements a
on #,. It follows from Lemma 6.2 that (/. yx,#;) can be naturally
identified with the open subset Res '(N) of (4 %, #)". The dual action of
G leaves the ideal I, \x, #, invariant, and this identification therefore
preserves the actions of G. So we may as well assume that « is implemented
by u over all of X and prove that (4 x, #)  is é-trivial. (This reduction is
more subtle than it may look at first sight, as we no longer have an action
of G on I, , which restricts to the action of #,! However, this is not
important for what follows because the action of G on A only enters the
argument through the fibre automorphisms a(r, x) for (r, x)e 2.)

We next consider the case 4 = Cy(X), where C*(#)= A4 %, # is abelian.
We define ¢: X x G — C*(#)” by ¢(x,7)=¢,x7; note that ¢ is onto by
Theorem 2.2. It can be easily verified that ¢ induces a G-equivariant
continous bijection of X xG/~ onto C*(#)"; as in the final three
paragraphs of [17, Lemma 2.6] (where X = Z;), the openness of ¢ follows
from the continuity of inducing representations.

Now we suppose that A is as in the statement of the proposition. If we
let D be the pull-back C*-algebra C*(2)®(x, 4, then it follows from [23,
Lemma 1.1] and the preceding paragraph that (x, y)— (¢, x y) ® id induces
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a homeomorphism ¢, of (XxG)/~ onto D. We can view D as the
completion of I (p*&) with the =x-algebraic structure defined as for the
subalgebra of 4 x, #, but with x trivial. Then the map ¥: I (p*¢)—>
I .(p*&) defined by ¥(f)=fu is a x»-homomorphism of a dense subalgebra
of A%, # onto a dense subalgebra of D. Further, ¥ is isometric for the
|-l /norms, and extends to an isomorphism of 4 x, # onto D. A quick
calculation shows that

((exx7)@id)-¥ '=¢ x5 [, ul-s x)

so that the homeomorphism ¥* ¢, of (X xG)/~ onto (Ax,?) is as
described. It is clearly G-equivariant.

Now suppose that ¢ is locally liftable, that u,e . #(p*A4) implements x
over N,, and that A, are the corresponding local trivializations. Then as in
the proof of Proposition 4.5, we can assume there are transition functions
v4. N, — G such that

h(lx y()y D =h[x 7]) for xeN,

, T€G.
By Proposition 4.5, saying Res is d-trivial implies (shrinking the N, again if
necessary) that there are maps y,: N, = G such that

1Ax) Ty Ax) g (x)eG, for xeN

i

Then
h{lx )y D=h(lx x(x)7]),  for xeN, ;€G,
which implies that
1) g ud X)=74x) g ul- x)  inG,.

Thus u(s, x)=y,(x) u,(s, x) for xe N, defines an element of .# (I (p*¢&)),
s u(s, x) is a homomorphism on G for all x, and v implements x over all
of X. 1|

We now come to our main theorem. The key point here is that there are
commuting actions of G and G on the stabiliser algebra A4 x, #: the dual
action 4 of G, and the action B of G discussed in Section 3. The space
(A x, #) " is locally trivial for both these actions, and we can use Res and
Ind to identify the orbit spaces (4 %, .2) /G and (4 %, #) /G with 4 and
(A%, G) .

THEOREM 6.3.  Suppose that (A, G,a) is a separable C*-dynamical
system with G abelian, A Hausdorff, and continuous stabiliser map
0: A — X, If xis locally unitary on the siabilisers and A is a locally a-trivial
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G-space, then Ax, % and Ax, G are type I and the commutative diagram
of Theorem 3.10

Ax, #)

(
(A%, G)"
A/G
consists of locally trivial spaces: the southeast arrows are locally é-trivial
G-spaces and the southwest arrows are locally a-trivial G-spaces.

Proof. We have already seen that 4 x,# is type I, and because the
orbits in 4/G are closed, the corresponding fact for 4 x, G follows easily
from Green’s version of the Mackey machine (see, for example, the first
paragraph of the proof of [22, Theorem 2.2]). That Res is locally §-trivial
was proved in Proposition 6.1, and in particular (4 x, #)" is Hausdorff:
we shall next prove it is a a-proper G space. To this end, suppose that
{(¥n.5,)} is a sequence in (4 »,.#2) x G such that s,-y, »w and v, — y.
It will suffice to show that there is a subsequence {s,, } such that there exist
1,€G,, withs, -1, —s However, the continuity of Res implics that

(s, Resy, Resy,)=(Res(s, r,), Resy,} - (Res w, Res y)

in A x A, so this follows from the properness of A.

By Proposition 4.3(2) and Theorem 3.1, the spectrum of A%, G is
Hausdorf. To see it is a G-proper G-space, suppose we have sequences
{z,}, {y.} such that (y,-z,, z,) = (w, z). As Ind is open, we can by passing
to a subsequence suppose there are {y,}<=(4dx,?), {s,} =G, and
v, 1" € (A%, #) such that

Ind(y,)=2z,. VY, and Sy T Ya )

because Ind is continuous and G-equivarianl, we must also have Ind(y)=:
and Ind(y’)=w. Now we have

(Res(s, -7, - ¥ya) Res(y,)) = (s, -Res(y,), Res(y,)) = (Res(y’), Res(y)),

and because A is o-proper we can by passing to another subsequence
suppose that {s,} converges to some s in G. Then we have

Tnt (Sn 'yn)’ Sn 'yn) = (sn : (.)'n '.“n)? S '.Vn) - (.}"' S '.V);

because (A4 %, ) is 6-proper, we can pass to yet another subsequence to
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ensure that 7, converges in G. Thus (Ax,G) is indeed a g-proper
G-space.

By Proposition 4.3, it will now suffice to show that both Ind and ¢ have
local cross sections. Since this is a local problem, we may as well suppose
the map p has a global section ¢, and that there is a section  for Res
defined on a neighborhood U of ¢(A4/G). Straight away this gives a section
f=Ind:d-c for ¢, and it remains to find one for Ind. As in the proof of
Proposition43(3), using thc section f we define a G-isomorphism ¢ of
(A’GXG) ~ onto (4 x,G) by

#([t.D)=7-f(1),  for 1€ A/G, 7€G;
the inverse is given by

¢ Ux)=[q(x), 7], where 7 satisfies 7 - f(g(x)) = x.

We take g: (A4 x, G)A—> (A%, #)" to be the composition

(A%, G) —2— (A/GxG)ji~ L (UxG)/~ —— X,

where

exid([t,7]) =[c(t),7]  and  p([y.7]D=7-dy).
Then g is continuous because all its constituents are, and

Ind ~g(x) = Ind(u(c x id([q(x),7]))), ~ where 3 -f(q(x))=
= Ind(y - d(c(g(x))))
=v-Inded-c(g(x))
=7-f(4(x))

=X,

so g is a section for Ind. This completes the proof of Theorem 6.3. ||

Remark 6.4. 1f both 6: 4 — 2 and 6: A — X are locally liftable, then
the diamond in Theorem 6.3 will consist of locally trivial bundles. We
observe, however, that these seem to be independent properties of the map
o, in the sense that one of ¢ or ¢ can be locally liftable while the other is
not. For example, consider the map o: [0,50) — 2, defined by

r) rZ, r#0,
a(ry=
' R, r=0,
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for which ¢: [0, c) > L'g =2 is given by

o:(r)_{(l.’/r)zﬁ r¢0$
10, r=0.

We saw in Example 4.6 that ¢ is not locally liftable, and we shall now see
that 4 is. Suppose ¢: [0, o) — [0, o¢ } x R/~ is a continuous section, where
the equivalence relation is that determined by 6. There is no problem away
from 0—o¢ and ¢ are locally constant so Proposition 4.10 applies. The
quotient map ¢ is one-to-one on the neighborhood U= [0, {)}x [0, 1) of
{0, 0), and hence induces a homeomorphism of U onto a neighborhood W
of [(0,0)] in the quotient. But then 4 '~ ¢ is a continuous map of ¢ ~'( W)
into [0, ) x R, and the projection of 4~ ': ¢ on the second factor gives the
required local lift for c.

We shall now discuss some examples, mostly concerning actions of R”.
Our first observation, however, is that any locally d-trivial space can arise
as the bottom left-hand arrow in our diamond.

PROPOSITION 6.5. Let Y be a separable locally o-trivial G-space for a
second countable locally compact group G. Then A= C*(G,Y) has con-
tinuous trace, the dual action a of GonAis locally unitary on the stabilisers,
and q: (Ax,G) — A/G = Y/G is G-isomorphic to Y - Y/G.

Proof. The algebra A has continuous trace by [33, Theorem 5.1] and «
1s locally unitary by Proposition 5.8. The Takai duality theorem gives a
covariant isomorphism

(CHG, Y) %, G, G, 3)=(Col Y)® X (LHG)), G, t® Ad p);

since T®@Adp Aclearly induces the original action of G on
Y=(Co(Y)® X7) , this isomorphism induces the required G-isomorphism
of (Ax,G) onto Y. |

ExaMPLE 6.6. Suppose « is an action of R” on a separable continuous-
trace algebra 4 such that the stabiliser map ¢ is continuous with values in
Gr(n, k) for some k, the action of R” on A is o-proper, and the Mackey
obstructions all vanish (equivalently, the action is pointwise unitary on the
stabilisers). Then ¢ is locally constant by Lemma 4.11, and « is therefore
locally unitary on the stabilisers by Proposition 5.5. For such a stabiliser
map o, every o-proper action is locally o-trivial (Proposition 4.10) and
Theorem 6.3 applies. We deduce that (4x, R")" is a locally ¢-trivial
R”-space over A/R". Since ¢ is continuous with values in Gr(n, n—k),
such spaces are globally trivial by Proposition 4.13. Thus, (4%, R")”
is R"-isomorphic to the spacc (A/R"xR")/~ defined by the map
6: A/R" > Gr(n,n—k)S L.
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EXAMPLE 6.7. Actions of R. Suppose X is a locally o-trivial R-space,
and A=p*B is the pull-back of a continuous trace algebra B with
spectrum X/R along the orbit map p: X — X/R. Then, as in Remark 5.7, we
can compare an action « of R on 4 inducing the given action on X with the
translation action t = p*id. Here the appropriate Moore cohomology goup
H*(R, C(X, T)) is trivial [22, Theorem 4.1] and R is connected. Provided
H*(X, Z) is countable, therefore, 2 will be exterior equivalent to , and

AX, R=(Co(X) @iy a) B) ¥euwR=CHR, X)® .y B=q"B,

where ¢ is the projection of C*(R, X) = (X/RxR)/~ onto X/R (see
Proposition 4.8).

Now Proposition 6.5 shows that any locally o-trivial R-space Y can be
realized as (A4 %, R)” for the dual action of R on 4 =C*(R, Y); if A were
the pull-back of some algebra B, then by the argument in the preceding
paragraph we would have (4 x, R) trivial. Thus if Y is non-trivial, 4
cannot be a pull-back. Stabilizing A4 does not affect the spectrum of
Ax, R, so by [23, Proposition 1.4] this implies that d(A4) is not in the
range of the induced map p* from H3(A/R, Z) to H(A, Z). In particular,
we have:

PROPOSITION 6.8. Let Y be a second countable locally o-trivial R-space,
and suppose that H*((Y/Rx R)/ ~, Z) is countable (where the equivalence
relation is the one determined by 6). Then C*(R, Y) is .a continuous trace
C*-algebra with spectrum (Y/RxR)/~, and the Dixmier-Douady class

SC*(R, Y)) vanishes if and only if Y is globally a-trivial.

Proof. That C*(R, Y) has continuous trace and the given spectrum is
proved in [33, Theorem 5.1; 32] (see also Proposition 4.8), and we have
just seen that if Y is non-trivial, then 8(C*(R, Y))#0. Conversely, if Y is
isomorphic to (Y/RxR)/~ (for ~ defined by ¢), then Y — Y/R has a
continuous cross section and [17, Lemma 3.2 and Theorem 2.3 ] imply that
HC*R, YN=0. |}

Remark 6.9. This result implies, of course, that there can be no
non-trivial, locally o-trivial R-spaces with orbit space 7 unless the group
H*(TxR)/~ ;, Z) is non-zero. In fact, we have proved a little more: there
are no such R-spaces unless the induced map

p* HYT,Z)» H(TxR)/~ ;. Z)

fails to be surjective. To get some feeling for what is happening here, we
shall consider the case where o(r) = Z for all r, and where we can compute
all of the invariants involved.
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ExaMpLE 6.10. Suppose Y is a principal T-bundle over T-—or
equivalently, that Y is a locally g-trivial R-bundle over T for the constant
map o(t)=Z. Then by [18, Corollary 2.5]

C*(R, Y)=Ind%.(C*(T, Y), 2).

The group 4 |,. =4, is locally unitary, and by duality the obstruction
{(d],) of [20] is the class of the T-bundle Y in H*(T, Z). By [22,
Corollary 3.5], the Dixmier-Douady class §(C*(R, Y)) is the external
product zx {(4 |,) of {(%|,) with a generator z for H*T,Z)=Z. In this
case, Tx R/~ ;= Tx T, and by the Kiinneth theorem, the external product
induces an injection

@ HANT,Z)QHUT,Z)-HYTxT,2),

pPryg=13

thus the Dixmier Douady class 3(C*(R, Y)) and the range of p* do indeed
lie in the disjoint parts H'® H? and H°® H* of H3(T x T).

Remark 6.11. We have now shown that the description of the topology
on (Ax,G) given in [22, Sect.2] extends to the case of continuously
varying stabilisers. In [22], however, it was also proved that when 4 has
continuous trace and « is locally unitary on the constant stabiliser H, the
crossed product A4 x, G has continuous trace too. There are therefore four
topological invariants associated with the diamond: the classes of the
principal bundles p and ¢, and the Dixmier- Douady classes of the algebras
A and A x, G. There are various relationships between these classes, but
various examples have been given to show that all four can be non-zero
simultaneously [22, Sect. 3(b); 21].

We have not yet proved in our setting that 4 x, G has continuous trace
when A4 does, although such a result would certainly be interesting.
However, in the various examples of R-actions studied above, 4 x, R does
have continuous trace and we can easily compute all the invariants. When
A=p*B is a pull-back, 4 and A4 x, R=¢*B have Dixmier-Douady class
Pp*(0(B)) and ¢g*(5(B)) (see [23, Proposition 1.4]); the bundle p is the one
we started with and (A4 %, R)” is isomorphic to C*R, X) = (X/R x R)/~.
When 2 is the dual action of R on 4=C*(R, Y), A%, R=Cy(Y)® X by
duality, and 6(4)=0. We have already seen that 6(C*(R, Y))#0 if Y is
non-trivial, but A= C*(R, Y) is trivial by Example 4.6.

7. APPENDIX

Here we give the example mentioned in Section 4 of a g-proper G-space
in which not all compact sets are G-wandering (when one uses
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Definition 2.4 in [33]). The space X is the subspace of R* which is the
range of the function x: {1, 2, ..., 30} x R — R? defined by

(1,0), if n=1,

n 1) = | (1= (n=1jn) cos(t/(n = 1/m)). (n = Lin) sin(t/(n = 1/m))),

if l<n<x, and
(0, 1), if n=ox.

If we let O, ={x(n, 1)}, .., then we see that, for n=2,3, .., each O, is a
circle of radius n— 1/n centered at (n, 0). Furthermore, all the O, are
isolated with the exception of O, . Since x(n,, 1,) = x(2c, t} if and only if
n, - oc and t, —» 1, we get a continuous R-action by defining r-x(n, 1) =
x(n,t+r). The {O,} then coincide with the R-orbits and, if S, is the
common stabiliser on O,, then

R, if n=1,
S,=(2nn—-1/n)2, if l<n<ox, and
{0}, if n=c.

Thus, the stabiliser map is continuous and it is not hard to verify that X is
a o¢-proper G-space. On the other hand, if K is the compact set
{x(n,0)}2Z, then

S(K)={(x,s)e XxG/~:xeKand rKn K# J}

7R

not relatively compact (in particular, {(0, 2n(n—1/n))}>* |, < S(K)).
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