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A separable C*-dynamical system (A, G, «) in which 4 is a continuous-trace
C*-algebra and G is Abelian is called N-principal if N is a closed subgroup of G
such that « restricted to N is locally unitary and the action of G on A defines a
principal bundle p(2): 4 - A/G. In this event, it is known that the spectrum of
A=, G is a principal N-bundle g(«) over A/G. In this article we show that a pair
([pl. [9]), where p: X — Z is a principal G/N-bundle and ¢: ¥ — Z is principal
N-bundle, determines a class in H%(Z) which vanishes if and only if there is a
continuous-trace C*-algebra 4 with spectrum X and a N-principal system (4, G, a)
with [ p(x)]=[p]. More generally, given 4, G, and [ p] as above, we consider the
question of when systems (4, G, o) with [p(a)]=[p] exist. € 1993 Academic

Press, Inc.

It has become clear over the past few years that crossed product
C*-algebras 4, G in which G is Abelian and A4 is non-commutative can
be much more complicated than they are when 4 is commutative. Thus, for
example, the criteria for simplicity of Cy(X)x G do not have good
analogues (e.g. [7-9, 11]), and the description of Prim Cy(X) x G given in
[247] does not extend even to crossed products by actions of R on non-
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commutative A [17]. The extra complications occur even when A is a
continuous-trace algebra, which is the very nicest kind of non-commutative
C*-algebra, and then a detailed analysis of 4 x, G has been possible only
if the orbit space for the action of G on the spectrum A is HausdorfF.

The two limiting situations, in which G acts trivially on A, or 4 - 4/G
is a principal G-bundle, are now well understood: in both cases we can
describe the spectrum and identify 4x,G up to stable isomorphism
by specifing its Dixmier-Douady class (see, respectively, [12, 15] and
[17, 19]). The most interesting results obtained so far, however, concern
systems (A, G, a) for which the action of G on 4 has constant isotropy sub-
group N and A — A/G is a principal G/N-bundle. If in addition o], is
locally unitary in the sense of [15] (which is automatic if N=R, Z or T*),
then the spectrum of A4 x, G is a principal N-bundle over 4/G, which fits
into a commutative diamond of principal bundles [17, Theorem 2.2].

(Ax, N)"
(Ax,G)" \ //i
A/G

The bundle maps in this diamond are all familiar from representation
theory—Ind is induction of representations, Res is restriction, and ¢ sends
an irreducible representation of 4 x, G to the (quasi-) orbit on which it
lives—and it is the possibility that ¢ could be a non-trivial bundle which
is a striking departure from the case of commutative A. It was further
proved in [17, Sect. 3(a)] that any principal N-bundle could be realized as
g, by taking A to be a suitable induced C*-algebra, and this settled several
open problems (cf., [17, Sect. 4; 12, Sect. 3(b)]). In the key examples, the
nontriviality of ¢ arose when 4 was a continuous trace algebra with non-
zero Dixmier-Douady class, confirming that actions on these algebras are
likely to be particulary interesting,

Here we continue analysis of these crossed products of continuous-trace
algebras by actions with constant isotropy, and we look closely at the
relationship between the different topological invariants associated with the
diamond. The main problem we discuss is that of identifying those
diamonds which can arise for particular choices of G, N, and 4. More
precisely, suppose A is a continuous-trace C*-algebra, whose spectrum is a
principal G/N-bundle, and g: Y — A/G is a principal N-bundle. When is
there an action a of G on A, including the given action on A, such that
(Ax,G)" is isomorphic to Y as an N-bundle over 4/G?
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We answer this question by proving the following theorem. In it,
H?(Z, %) denotes the sheaf cohomology of Z with coefficients in the sheaf
% of germs of continuous G-valued functions on Z, and we identify
H'(Z, %) with (isomorphism classes of ) locally trivial principal G-bundles
over Z.

THEOREM. Suppose that G is a locally compact Abelian group of the form
R”"xT"x Z”x F with F finite, N is a closed subgroup of G, and p: X - Z
is a principal G/N-bundle.

(1) There is a natural pairing
(o6t HNZ, 9/ ) HI(Z, ) > HY(Z; Z)

such that {[p], [q]) =0 if and only if there is a continuous-trace algebra
A with spectrum X and an action a: G — Aut(A) which is locally unitary on
N, induces the given action of G/N on X = A, and has (A »,G) " isomorphic
to q as an N-bundle over Z= A/G.

(2) There is a homomorphism
d,: {[q1e H'(Z, A): {[p]. [q))s=0} » H(X: Z)/p*(H"Z; Z))

with the following property: if A is a stable continuous-trace C*-algebra with
spectrum X, and q satisfies {[p], [g]); =0, then there is an action o of G
on 4 as in (1) if and only if 6(A)+ p*(HY(Z;Z))=d,([q]).

The appearance of an obstruction in H*(Z; Z) is at first sight surprising,
but seems more reasonable when we recall the analysis of the case G=R
and N=7 in [17, Sect. 4]. Here N> T = G/N, so that both [p] and [¢]
lie in H'(Z, )= H*Z; Z), and the pairing {[p], [¢] ) turns out to be
the usual cup product. From the Gysin exact sequence

s HNZ:Z) 2 BA(X;Z) 2 HYZ:27)
=, guz: 2y —— -

we deduce that [¢] is realizable as in (1) if and only if [¢] is the image
of a class in H3(X; Z). The exactness at H>(X) says this class is determined
modulo the image of p*, just as in part (2) of the theorem.

There are two main ingredients in the proof of the theorem. First, we
have to analyze the local structure of one of these N-principal systems
(A, G, a), and for this we use the characterization of N-principal systems
with p: X — Z trivial as induced systems; this was first established in [20],
but we can now give a more direct and elementary proof using recent work
of Echterhoff [4,5]. This analysis leads to a pair (v, 4) of cocycles, in
which ve Z*(X, &) represents 8(A), and A comes from the action of G. The
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second main ingredient is the direct construction from [18] of a
continuous-trace algebra A(v) from a cocycle ve Z%(X, #); the auxiliary
data 4 is preseicely what we need to construct an N-principal action of G
on A(v). Our problems thus reduce to ones involving cocycles, which we
solve in Proposition 3.3 and Theorem 4.1. This construction using [18] is
quite different in nature from previous ones based on crossed products [15,
Sect. 3; 17, Sect. 3; 16, Proposition 3.57, but so far this is the only way we
have been able to produce all the required examples. It could be very
interesting to find a more crossed-product oriented collection of examples.

We begin with a short section on preliminaries, in which we discuss the
pairing {-, - > used in our theorem, and recal some backgroup material
on continuous-trace and induced C*-algebras. In Section 2, we prove our
local structure theorem for an N-principal system (A, G, x) (Theorem 2.1),
and show how to compute the class of bundle ¢:(4x,G)" - 4/G in
terms of local Green twisting maps for x on N (Proposition 2.6). Although
the results of this section were all motivated by an earlier work [20],
we have tried to give direct arguments here. Sections 3 and 4 contain,
respectively, the proofs of parts (1) and (2) of our theorem.

Our final section contains some examples and applications. We first
discuss the cases G=R, N=Z and G=T, N=Z,, where the pairing, and
hence our results, can be expressed in terms of the usual cup product in
Cech cohomology. For G=R, we already have the information coming
from the Gysin sequence, and comparing this with our present results
suggested to us that our arguments should constitute part of a proof of
exactness of a generalized Gysin sequence. We plan to discuss this
elsewhere, but in Section 5(a) we do outline how the results of [ 17, Sect. 4]
in the case G=R can be recovered from our theorem. We have already
stressed that our constructions are quite different from the crossed-product
methods previously used, and in Section 5(c) we show how the most
general of these, namely that of [16, Proposition 3.5], fits in with our
present results. We close by considering briefly another promising
construction, based on the pull-backs of [19], which turns out to be the
Takai dual of that considered in Section 5(c).

1. PRELIMINARIES

Let G be a locally compact group and N a closed normal subgroup.
Since we shall be concerned throughout with locally trivial bundles, we
shall frequently want to assume that G itself is a (locally trivial) principal
N-bundle over G/N. As the action of N on G by left multiplication is always
free and proper, this happens if and only if the quotient map from G
to G/N has local sections: if ¢:G/N— G is a section, then the map
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s> (SN, sc(sN)~ '} is a bundle isomorphism of G onto G/N x N. Thus we
shall often say simply that “G — G/N has local sections.” Most of the time
G will be Abelian, in which case we can identify the dual N of N with
G/N*, and we also insist that G - N has local sections. These assumptions
are automatic for reasonable groups, and in particular if G is an elementary
Abelian group in the sense of Weil [23]: ie, if G=R?xT4xZ"x F for
some finite Abelian group F (cf, e.g,, [10, 13]).

When G is Abelian, the (isomorphism classes of ) principal G-bundles
over a fixed paracompact base Z are parametrized by the first sheaf
cohomology group H'(Z, 4) of Z with coefficients in the sheal ¥ of germs
of continuous G-valued functions on Z: if p: X — Z is a principal G-bundle,
the transition functions of p form a cocycle representing [p]e H'(Z, 4).
Our main results concern a natural pairing of N-bundles with G/N-bundles,
which we view as a bilinear map

(o De HUZ, /N Y HYZ, /) — HYNZ; Z)

with values in the Cech cohomology group H*; although we define this
pairing using the cup product in sheaf cohomology, we immediately
describe it using cocycles and use this description throughout.

If % and ¥~ are sheaves over Z, then the cup product

H(Z, UYx HUZ, ¥ ) H" *Z, URY)
is defined on cocylces by
(#U")io“"ﬂ’qz“io---i,.®vipip+1-~ip.q

(cf. [6, p.245]); it is straightforward to check that the class of puv
depends only on the classes [¢] and [v], and the resulting pairing has the
standard functorial properties. If % =% and ¥" =%, then evaluation gives
a natural homomorphism of ¥ ® 4 onto the sheaf & of T-valued functions,
and we denote the image of puv by [glu[v]. If G— G/N has local
sections, then

oA 2% %G/ 4 -

is a short exact sequence of sheaves, and there is a corresponding long
exact sequence in sheaf cohomology:

s HN(Z,4)—> HP(Z, %/ ) —5 HP N (Z, A7)
—— H N Z,9)— -

In particular, we denote by ¢ the connecting homomorphism é,: H(Z, &) —
H»*YZ: Z), which is an isomorphism because the sheaf # is fine and
hence H?(Z, #)=0for p>= 1.
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DEerINITION 1.1, Let G be a locally compact Abelian group, and N a
closed subgroup of G. Then for [ple H'(Z,%/4")and [qle H'(Z, /) we
define

<[p) [41>c=000s([pD)vq]) in HYZZ).

We have included the subscript G to stress that this pairing depends
crucially on the extension G of N by G/N: if the extension splits, for
example, so that G= N x G/N, then 0, =0 and the pairing is trivial. More
generally, if there is a bundle representing [ p] which is a quotient E/N of
a principal G-bundle E, then é4([p])=0 and {[p], [q])>c=0 for any
[q]. However, as we see in Lemma 1.3, the pairing is not always trivial.

We now give the promised explicit construction of a cocycle representing
{[rl. (91>. Suppose that *,’,-,-:N,»j—+]\7 and t,: N;— G/N are cocycles
representing [¢] and [p], defined on the same cover {N;}. Since
7: G — G/N has local sections, we can locally lift any function ¢: Z - G/N
to a function s: Z — G, and by the argument of [3, Lemma 10.7.11] we can
refine the cover to ensure that there are continuous functions s;: N; — G
such that ¢;=mos;. Because {t,j} is a cocycle, there are continuous
functions n,: Ny — N such that

5,:(2) 5(2) = 54(2) n(2) for zeNy,

and {n,} is a cocycle representing d5([p]). Then a cocycle {v;,}
representing the class <[ p], [¢]), in H*(Z, )= H*Z;Z) is given by

V:j/kl(z)='}’y(3)(”jk/(z))~ (L.1)

(Strictly speaking, {v,,} represents & '({[p], [¢]Ds), but we usually
suppress the isomorphism &.)

If the map G — N also has local sections, we can also form the cup
product [p]Lf@G-([q]) as follows. We refine {N;} to ensure that there
are 7,: N;— G with y,(z)=7,(z)|y, define x,;:Ny—>N*=(G/N)" by
7u¥ ik = Vi Xi» and let

R (2) = 2214 (2)). (1.2)

LeMMA 1.2. The cocycles u and v defined in Eqs. (1.1) and (1.2) define
equivalent classes in H*(Z; 7).

Proof. Retaining the notation of the previous two paragraphs, we
define Ayu: Ny, —->T by A,(z)=7,(2)(sk(z)), and then verify that

igk *

(CAyv=pn. 1
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Lemma 13. Let G=R and N=Z. Then GIN=T=N, and if [p],
[qle HY(Z, %), then {[p],[q] )¢ is the usual cup product of the classes
Ox([p]) and 3,([q]) in the cohomology ring H*(Z, &).

Proof. Suppose g and p have transition functions y, = exp(2mip;) and
t;=exp(2mir;), where p,; and r; functions from N, to R. On the one hand,
d([g]) and é([ p]) are the classes of {m, } and {n, }, where

Pij+pjk=mijk+p,~k and r,-j+rjk=n,»1k+r,k.

Thus, 6([q])wd([p]) is represented by the cocycle vy, =M ny,,. On
the other hand, for we T =G/N we have y,,(z)(w)=w"*"), and hence
Eq. (1.2) becomes

M (2) = (exp(2miry (z)))™*) = exp(2mis,,,(2)),
where s,,,(z) =m(z) r,,(z). Now a calculation shows that
O skim = Siatm = Sitcim + Sijim = Siseom + Skt = Mg M »
and the lemma follows. |

Since we are interested in topological invariants, it is natural for us to
work with seperable continuous-trace C*-algebras, which are classified up
to stable isomorphism by their Dixmier-Douady invariants. (Unfortunately,
there is not one good reference for this; it can be deduced from, for
example, [2, Théoréme 2; 14, Lemma 1.11; 3, Theorem 10.8.4].) For such
algebras, it is covenient to use bundle notation, even though we do not
make any serious use of C*-bundle theory. Thus, if 4 is a C*-algebra with
Hausdorff spectrum X, we write 4|, for the quotient of 4 whose spectrum
is the closed subset K of X, and we write ar a(x) or ¢, for an irreducible
representation corresponding to xe€ X, This last practice is fine so long
as we remember that this representation is only specified up to unitary
equivalence, and thus, for example, if a: G — Aut(A) induces the action
(s, x)—s-x of G on X = A, the representation ¢, , will only be equivalent
to s-¢,=¢,0a, '. (This problem arises because X is really a quotient of
the space of irreducible representations, and it is not always possible to
choose a continuous section for the quotient map; strictly speaking, a(x) is
canonically defined as the image of a in the quotient A4/ker x = ¥ () of
A by the common kernel of the representations in x).

As we saw in [17, Sect. 3a; 20], important examples of the systems we
study involve induced C*-algebras. If N is closed subgroup of G and f is
an action of N on a C*-algebra B, the induced C*-algebra is the subalgebra
Ind§(B, B) of C,(G, B) consisting of functions f such that f(sn) = B, '(f(s))
for se€ G and ne N, and such that sN > | f(s)| vanishes at infinity on G/N.
The induced action Ind B of G on Ind$(B, f) is defined by (Ind B), (f)(s) =



252 RAEBURN AND WILLIAMS

f(t 's) for s,teG. Every irreducible representation of Ind(B, §) is
equivalent to onenof the form M(p, s):f— p(f(s)) for some seG, pe B,
and if N acts on Bx G via

n-(p,s)y=(n-p,sn "Yy=(p=p,",sn"),

then M induces a homeomorphism of (B x G)/N onto (Ind(B, §))~ [19,
Proposition 3.1]. For us f is normally locglly unitary [15] and therefore
acts trivially on B, giving (Ind(B, B)) " = Bx G/N.

2. A STRUCTURE THEOREM FOR N-PRINCIPAL SYSTEMS

Let A be a separable continuous-trace C*-algebra with spectrum X, N a
closed subgroup of a second countable locally compact Abelian group G,
and p: X — Z a locally trivial principal G/N-bundle. We shall say that a
dynamical system (A, G, a) is N-principal with spectrum p: X — Z if a5 is
locally unitary and 4 — A/G is a principal G/N-bundle isomorphic to
p: X — Z. (Note that these assumptions imply that the stabilizer of each
point x € X is precisely N.) Such systems exist in abundance: we can take
A=Cy(X, ¥"), and let « be the action 7 of G by translation on X, so that
o]y 1s trivial. Our structure theorem says that every stable N-principal
system is locally isomorphic to this system, and describes the data required
to reconstruct the original system from this local information.

THEOREM 2.1.  Suppose that A is a stable separable continuous-trace
C*-algebra with spectrum X, that G is a second countable locally compact
group, and that N is a closed subgroup of G such that G — G/N and G - N
have local sections. If (A, G,a) is an N-principal system with spectrum
P X > Z, then there is a locally finite cover {N;},., of Z by relatively
compact open sets such that

(1) for each i€l, there is a Co(p~'(N,))-isomorphism @, of Al, 5,
onto Co{p~"(N;), X°) which carries o to an action exterior equivalent to t,
and

(2) for each pair i, je I, there is a unitary vye M(Co(p '(N,), X))
such that @,-® ' =Ad v,.

The first part follows from the local triviality of the bundle p: X — Z and
our knowledge of systems with p trivial: up to isomorphism, they are all
induced from systems (D, N, ), where D=2Z and f is locally unitary
(Proposition 2.2). A system induced from a unitary action f=Adu is
Morita equivalent to translation on Cy(G/N, D), and, since D is locally
stably isomorphic to Cy(Z, ¥°), partl follows from the equivariant
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stabilization theorem of Combes [1] and a little bookkeeping (Proposi-
tion 2.4). To get part 2, we have to show that we can refine the cover to
ensure that @;° @' € Aut(,-1(5,,Colp ~'(N;), X') are inner. For this, we
have to exploit our special circumstances, because the fibre G/N of p could
easily have non-vanishing second Cech cohomology, in which case
Co(p~'(N,), #") has outer center-fixing automorphisms [14].

PROPOSITION 2.2. Suppose that (A, G, a) is an N-principal system with
spectrum p: X — Z, and suppose that p is trivial as a G/N-bundle. Let
¢: Z — X be a continuous section for p, and let D = A/I be the quotient of A
with spectrum c¢(Z). Then D is homeomorphic to Z, the action
B: N - Aut(D) defined by B a+I)=oa,(a)+ 1 is locally unitary, and
the homomorphism ®: A —Ind(D) defined by ®(a)(s)=aa)+I is an
equivariant isomorphism of (A, G, a) onto (Ind$(D, B), G, Ind B).

Proof. The triviality of p is equivalent to the existence of a continuous
G-equivariant map w: X — G/N—given a global section ¢, define w by
w(x)=sN where s-c(x)=x. Then ¢(Z)=w~'(N) is closed and, identifying
X=A with Prim(4), we have =) {J:w(J)=N}. Therefore it follows
from [5] that the map @ is an equivariant isomorphism, and since ¢ is a
homeomorphism of Z onto c(Z) with inverse p|,z,, we only have to check
that § is locally unitary. However, if ¢g: 4 — D is the quotient map,
j:m—moq is the continuous embedding of D as a subset of 4, and if
u: N— UH(A) implements «|, over the open set W, then ¢ -u implements
Bly over g~ (W) 1

LemMma 23, Let G be a locally compact group and N a closed normal
subgroup such that G — G/N has local sections. Suppose that D is a stable
separable C*-algebra with Hausdorff spectrum Z, and u: N > U H (D) is a
strictly continuous homomorphism. Then there is a Cy(Z x G/N)-linear
isomorphism of Ind$(D, Ad u) onto D® Cy(G/N) which carries the action
Ind(Ad u) of G onto one exterior equivalent to 1® 1.

Proof. Let B=1IndS(D, Ad u), C = Co(G/N, D), and

fsn)=uX(f(s))forseG,ne N, and }

Y= C,(G, D . e
{fe 4 ) ’ sN s || f(s)|} vanishes at infinity on G/N
We define actions of B and C on Y by

(b-f)s)=b(s) f(s),  [-cls)=[(s) c(sN),

and B- and C-valued inner products on Y by

L gral(s)=f(s)g(s)*  figdc(sN)=[(5)* g(s).
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As in the proof of [19, Theorem 3.2(2)] (where Ind$(A4) appears as
GC(X, AY"), Y is a B-C-imprimitivity bimodule.

Now define an action v of G on Y by the formula v,(f)(s)= f(¢+ " 's). It
is apparent that v defines a strongly continuous action on the imprimitivity
bimodule ¥, which is complete in the imprimitivity norm (the sup-norm).
Furthermore,

<V,(_f), 1',(g}>3=0,(<f, g>B) and <vr{f)a Vr(g)>(‘=rr(<f’ g>(‘)s

so (B, o) and (C, ) are Morita equivalent in the sense of Definition 1 in
Section 3 of [1]. Also note that, since we are assuming that G — G/N has
local sections, B is locally isomorphic to Cy(Z x G/N, X). It follows from
[14, Proposition 1.12] that B is stable. Since B and C are separable, the
Proposition in Section 9 of [1] implies that ¢ and T are outer conjugate;
that is, there is a *-isomorphism @ if B onto C such that @og.d ! is
exterior equivalent to T.

To see that @ is Cy(Z x G/N)-linear, we first observe that the action of
Co(ZxG/N)=Co(G/N, Cy(Z)) by pointwise multiplication on Y is
compatible with the natural actions on B and C, in the sense that

(¢-b)-fre=bA(d-f)-c=b-f-(¢p-c) for peCo(ZxG/N)

Thus we can define an action of Cyo(ZxG/N) on the linking algebra

L=(% {)by
¢ ) 50

Since the 1somorphism @ is given by
. b 0
b+ | bottom right-hand corner of w* 0 0 w

for a suitable partial isometry w in .#(L), it follows that @ is Cy(Z x G/N)-
linear. |

ProrosSITION 2.4. Suppose that (A, G, 2) is a stable N-principal system
with spectrum p: X — Z. Then for each point z€Z there is a compact
neighborhood W of z and a .Co(p”(W))-linear isomorphism @ of A|,-\w)
onto Co(p~"(W), X°) which carries (the action on the quotient induced by)
o onto an action exterior equivalent 1o T.

Proof. Since the problem is local in Z, we may suppose that
X=ZxG/N. Then by Proposition 2.2, there is an isomorphism ¢ of
(A4, G, 2) onto (Ind(D, B), G, Ind(f)), where D is a quotient of 4 and f is
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locally unitary. For any compact subset W of Z, D}, is the quotient of
A|,-1w) with spectrum {(z, N}: ze€ W}, and the isomorphism @ induces an
equivariant isomorphism @, of A|,-iu, onto Ind(D|,, B). Since A is
stable, so is its quotient D, and hence D is locally C(Z)-isomorphic to
Co(Z, ¥°). Thus we can take W to be a neighborhood of = such that D[,
is C(W)-isomorphic to C(W, . ®"), and such that there is a strictly
continuous homomorphism u: N — % .#(D|,) implementing f|,.. Now
Proposition 2.4 gives us a Co( W x G/N)-isomorphism ¥ of Ind(D|,) onto
Co(W x G/N, X°) carrying « into an action exterior equivalent to 1, and we
just have to check that the composition ¥e @ is Co( W x G/N)-linear.
Since D is the closed subset Z x {N} of Z x G/N, which we identify with
Z, for any x=(z, sN) in Z x G/N = X the representation ¢, is equivalent to
Me.,s)e®=¢. yoa;'. Therefore, for any ¢ in Co( W x G/N), we have

M(e.,s)-D(p-a)=¢(z, sN) M(e_, s)- D(a). (2.1)

But the formula M(s_, s\ ¢ -b)=d(z, sN) M(c., s)(b) characterizes the
canonical action of Co(W x G/N) in Ind(D), and hence Eq. (2.1) says that
®,,. is Col Wx G/N)-linear. |}

PROPOSITION 2.5. Let G be a locally Abelian group and let N be a closed
subgroup such that G — N has local sections. Suppose that p: X —Z is
a principal G/N-bundle, that a, :G — Aut Cy(X, X') are both exterior
equivalent to the action t of G by translation, and that ¥ € Aut .y, Co(X, X)

satisfies Wea,o¥ ~'=P,. Then each point :yeZ has a compact
neighborhood W for which there is a unitary ue.#(Co(p (W), X))

satisfying
Y(a)l,-\wy=ulal, ) u* for aeCyX, X).

Proof. Again we may suppose that X=ZxG/N. We begin by
producing a neighborhood V and a function A: V' x G — % () such that

Y(a)(z, sN)=h(z, s)a(z, sN) h{z, s)* (2.2)

for (z,s)e Vx G and ae Cy(X, X"). By assumption, there are t 1-cocycles
w, v such that

afa)=wr(a)w} and  fla)=v,1(a)v}

for ae Cy(X, X"). Further, since ¥ must be locally inner [14, Proposi-
tion 297, we can choose a strictly continuous function y from a
neighborhood V of z, to #(5¢') such that

Y(iaWz, N)= y(z) a(z, N) y(z)*
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for all zeV. Using Woa=pf-o%¥, and the formula w(z, IN)*=
w, 1(z, s "tN), we compute
¥(z, sN) = B(¥(a, '(a)))(z, sN)

=0,(z, SN) (2, '(a))(z, N) v,(z, sN)*

=0v,(z, sN) y(z) a,-1(a)(z, N) v(z)* v,(z, sN)*

=vz, sN) y(z} w,(z, sN)* a(z, sN) w(z, sN) y(2)* v(z, sN)*.
Therefore we may define

h(z,s)=uvz,sN) y(z) wy(z, sN)*,

and above shows that Eq. (2.2) holds.
Observe that if ne N, then

¥(a,(a@))(z, N)=y(z) a,(a)(z, N} p(2)*
=y(z) w,(z, N)a(z, N)w,(z, N)* p(2)*,

while, because ¥o-x = - . the left-hand side also equals

B.(¥(a))(z, N)=v,(z, N) P(a)(z, N) v,(z, N)*
=v,{z, N) y(z)a(z, N) p(z)* v,(z, N)*

It follows that there is a continuous function x: Vx N = T such that
k(z, n) y(z) w,(z, N)=v,(z, N) y(z)

for all ze V and ne N. Since we must have x(z, nm)=«(z, n) k(z, m), the
function z — k(z, -) is continuous from V to N. Because G — G/N has local
sections, we may choose a neighborhood W of z, contained in V and a
continuous function ¢: W— G such that ¢(z, n) =«(z, n) for all ze V and
neN.

Next note that

h(z, sn)=v,,(z, sN) y(z) w,,(z, sN)*
=0z, sN)v,(z, N) p(z)(w(z, sN)w,(z, N))*
=k(z,n) vz, sN) p(z) w,(z, N)w,(z, N)* w(z, sN)*
=u(z, n) h(z, ).

Now define u(z, s) =¢(z, s) h(z, s); since u(z, sn)=u(z, s)forallze W, se G,
and ne N, u has the required properties. ||
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Proof of Theorem 2.1. Using Proposition 2.4, we can assume that there
is a open cover {U,};., of X/G and Cy(p '(U,))-isomorphisms ¥, of
A|,-yp,; onto Co(p~'(U,), ") which carry « to actions exterior equivalent
to 7. The issue then is the existence of v; on overlaps. However, if
zeUgn U,, then by Proposition 2.5 there is a compact neighborhood
ZcUynU, of z and a unitary ve #(Co(p '(Z), X)) which satisfies
¥, ¥ ;'=Adv. The argument now proceeds by selecting an appropriate
refinement of the {U,} exactly as in [3, Lemma 10.7.11]. |

The main point we made in [20] was that, if (4, G, «) is an N-principal
system, then the class of the N-bundie g is the obstruction to implementing
a by a Green twist on N—-that is, by a homomorphism u: N - % .#(A)
such that « (u,)=u, for se G and ne N [20, Theorem 7.2]. We now want
to show how we can compute a cocycle representing [¢] from a family of
local Green twists. (The local triviality of ¢ as an N-bundle implies,
via [20], that there is such a family, but this also follows directly
from Proposition 2.2; indeed, if u: G — #.#(A) implements an exterior
equivalence between o and any action of G/N, then u|, is a Green twisting
map for x on N.)

PROPOSITION 2.6. Suppose that (A, G, 2} is an N-principal with spectrum
p: X = Z. Suppose that {N,} is an open cover of Z and that there are strictly
continuous homomorphisms u': N — U M(A|,-\5,) such that

(1) a(a)l,-15,=Ad uilal,-z,) for acA, neNn;
(2) au)=ul, inUM(A|,~\5,) for s€G, neN.

Then the cocycle y,: Ny~ N defined by u'(x)=17,(p(x)) ui(x) is a repre-
sentative for q: (Ax, G)" — Z.

LEMMA 2.7. Suppose that (A, G, o) is N-principal, and that there is a
strictly continuous homomorphism u: N — U M (A) such that a|=Ad u and
au,)=u, for se G, ne N. Then the map

(m, )= Ind§(n x y(nou))

induces an N-equivariant homeomorphism of A/G x N onto (A x, G) " .

Proof. Since a|y=Adu, Ax,N is isomorphic to A® C*(N) and
the map (m y)—>axy(nou) is an ]V-equivariant homeomorphism of
Ax N onto (A%, N)~. As in [17, Proposition 2.1], induction induces an
equivariant homeomorphism of (Ax,N)"/G onto (Ax,G)", so it
remains to identify the G-action on A x N which is carried onto the action
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of G on (A=, N)" coming from the action f: G — Aut(4 x, N) given by
B(z)(n)=ua(z(n)) for ze C (N, A). But

s-(mxypmou))=(nxy(mou))p, "
=(moa; ")y xp(mou)
=(moo ) p((moas " )ou)
=(s-m)xy((s-7m)ou),
which gives the lemma. |

Proof of Proposition 2.6. Recall that the map ¢q: (A, G) " — A/G is
defined as follows: for any nx Ue(Ax, G) ", kern={) {kers-p:seG}
for some pe A, and g(n x U) is the orbit G- pe A/G (we say that nx U
lives on G- p). Now if F is a closed subset of 4/G, p~'(F) is a closed
G-invariant subset of 4, and 4 [,-1r) %, G is the quotient of 4 x, G whose
irreducible representations are those of 4 x, G living on orbits contained in
p~'(F)—in other words, we can naturally identify (A],-1 », G) " with
g~ "(F). Thus, for each i, the above lemma says that

(7, 7) = Ind(m x y(x > u'))

is a homeomorphism 4, of‘}\_/,-xN onto ¢ '(N,). Now just have to recall
that the dual action of ye N on (4 x,G) " is given by

x-(Ind§(nx U))=IndS(n x x¥)
[17, Lemma 2.3], to realize that
hi(G-n,7)=Ind$(n x y(nou’))
= Ind5(n x (77, (p(R))(mou’)))
=y;(p(n)) (G -7, 7),

as claimed. §

3. REALIZING BUNDLES AS THE SPECTRA OF CROSSED PRODUCTS
Our object in this section is the following theorem.

THEOREM 3.1. Let G be a second countable locally compact Abelian
group, and let N be a closed subgroup such that G — G/N and G — N have
local sections. Suppose that p: X - Z is a principal G/N-bundle and that
g:Y—Z is a principal N-bundle. Then there is an N-principal system
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(A, G, 2) with spectrum p: X — V4 and with (A x, G)~ N-isomorphic to q if
and only if {[p],[9]1>c=0in HY(Z; Z).

We have broken the proof of this theorem into three propositions. In
Proposition 3.2, we show how the structure theorem of Section 2 leads to
a pair (v, 1) of cocycles, in wich ve Z*(Z, ) represents the Dixmier-
Douady class of A4, 4 is determined by the action of G on A4, and 2 also
contains information determining [¢]. Our next proposition (3.3) shows
that there can be such data (v, 1) compatible with a given [¢] if and only
if <[p],[9])>¢=0. Finally, in Proposition 3.6 we use the construction of
[ 18] to produce an N-principal system from one of these pairs (v, 4).

PROPOSITION 3.2. Let (A, G, 2) be an N-principal system with spectrum
p:X—Z and suppose that both G—G/N and G- N have local
sections. Then there are an open cover {N.} of Z, a cocycle v={v,}e
Z¥({p '(N;)}, &) representing 6(A), and continuous maps Ayt p YNy x
G - T such that

(@) Aylx, st)=A,(x, s) A, (s7 " x,2),
(b) )'ij(x9 1) ljk(xa 1) V;‘jk(x)= Aalx, 1) vijk(til - X),

and such that the bundle q:(Ax,G)" —Z has transition functions
Vi Ny= N satisfying
(©) vu(p(x))n)=24;(x,n)  for xep '(N;), neN.

Proof. Since we may replace (4, G,a) by (A® X, G, a®id), we may
assume that A is stable, and invoke Theorem 2.1. We take {N.},.,, {®.}ic
and {v,}, ;., as constructed there, and let u": G —» %M (Cy(p ' (N,), X))
be unitary t l-cocycles implementing the exterior equivalence of
2'=@.o00oP " and 1, so that o’ = Ad u’- 1. Note that, since G is Abelian,
u'| v is a Green twisting map for « on N.

On A4/, g, we have

Ad® 'cAdu'st=Add ' Ad w1,
since both implement the restriction of a to A},-1g,,. Consequently
P cAducr=Adu'cto PP !

on Co(p~'(N;), ). Since tb,-od)j":Ad v; by construction, there is a
continuous map

A p N xG—T

580/116,2-2
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defined by

Ay, 1) 0y () wj(x) = uj(x) v (1" x), (3.1)
and a straightforward computation shows that
Ayl rt)= A, (6, r) Ay(r=" - x, 1) (3.2)

for all xe p~'(N;), and r, 1 € G. Because G is Abelian, Eq. (3.2) implies that
for all ne N and 1€ G,

Ay(x, m)=A,(x, 1) A,(x, n), and Ay, n)=2,;(t7"-x,n).  (3.3)

In particular, if follows from the second equation that Eq. (c) gives a well-
defined continuous function y,: N, — N.

Of course, since (®,oP ")o(PoP, )=D-P, ', we can define a
continuous function v,: p~ (N ) — T by

0y (X) vl(x) = vul(x) vy (x), (34)

and then {p '(N,),v,} is a 2-cocycle in Z*(X, %) which represents
the Dixmier-Douady class 6(4) of A [3, Section 10]. By comparing
Ve (X) vy (x) ul(x) with v,v,-(x)v,k(x)uf(x), and using Eq. (3.1) repeatedly,
we obtain Eq.(b). It follows, restricting ¢ to lie in N, that {N,y,}
defines a 1-cocycle in Z'(Z, .47). Since @, extends to an isomorphism of
M(A), 15,) onto M(Co(p (N,), £)), we can define a strictly continuous
homomorphism w': N — #%.#(A], 5,) by w,=@, '(u,). Note that the
restriction of a]y to 4}, 4, satisfies x,(a) =w)a(w})*. (This exhibits |
explicitly as a locally unitary action on A4.) Furthermore, considering w’,
and w} as elements of #.#(A4], 5,
wyo=® '(uv, vk

=4i,(-,m) @, (v ulv})

[/ e/

=7y,(-)n) D, ' ¢i“¢,‘ l(“,’;)=7'i/(')(n)“',l,-

Thus, Proposition 2.6 implies that {y,} represents [¢], and the result is
proved. |

PrOPOSITION 3.3. Suppose that G is a locally compact Abelian group,
that N is a closed subgroup such that G — G/N has local sections, and that
p: X — Z is a principal G/N-bundle.
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(1) Suppose that {p~'(N,), v} is a cocycle in Z*(X, &) defined on
a G-invariant cover, and that i;: p~'(N;)x G — T satisfy

1

(@) Alx,st)=4A,(x,58) A;(s " - x,1),

(b)  A,(x, 0) Aulx, 1) vir(x) = Ay, ) vyt 1 - x).

Then we can define continuous maps y;* N, — N by

(€) yy(p(x))(n)=4,(x, n),

and q={y;} is a cocycle in Z'({N,}, N such that {[p], [q]1Dc=0.

(2) Conversely, suppose that G — N has local sections, and that {7 il €
Z'({N,}, N) is a cocycle such that {[p],[q1>c=0. Then there is a
cocycle {vy}eZ{p "(N)}, &¥), and a family i, p ' (N)xG->T of
continuous maps satisfying conditions a, b, and c.

Proof. Since N acts trivially on X and since G is Abelian, condition a
implies that A,(x,-) is multiplicative on N, and y; is a well-defined
continuous function on N, (see the argument following Equation (3.2)
above). Condition b implies that {y,} is a cocycle, and allows us to define
Yiw' P I(N:jk) x G/N—-T by

XIik(x’ SN) = (a;‘( ) s))ijk (x);

note that by condition a, y,; will also be a cocycle in the second variable.
We may suppose that p: X' — X/G has local sections on each N, and
hence there are equivariant projections w;: p~'(N,) — G/N. In particular,
p(x)—w,. '(x) w,(x) define transition functions for p, and since G — G/N
has local sections, we assume these transition functions have the form
z+>5,(z) N for continuous functions s,: N, — G. Then we define #,, by
Sy S, = Sy . Next, we try to define a cochain {u,,} e C"({N,}, &) by

ﬂi/k(p(x)) = X:_'/k(x’ wil(x)) A.,‘(“',‘(-’Cy Lox, S p(x))) vie(x).

The right-hand side, R(x) is obviously continuous on p~ '(N ) and defines
a continuous map u,; on N, if R(+ ' x)= R(x). Well,

R(t ' x)= Ko™ P, 0 wy(x)) ig,'(“'j(x) "y, S p(X))) vt box)

= (X, IN) (20, wi(x)) A, (0w, (x) 71 x, 5, (p(x)))
(GA(-, f));j/‘k (x) vil(x),

which is just R(x) by definition of y;.
We claim that du is the cocycle y,(n,,) representing ([7], [p]>. To see
this, we fix xe p~'(z) and expand
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(a,u),)'kl (z)=(2x(-, 5)).;;1(/ 5.9 ] R Z,;/k(X, w,(x)) Xijk(x’ w;(x))
(8A(-, S))._',‘k (wi(x) ! ‘X) |5’:sk1|:} /li;'(wk(x)‘ box, su(2))

AW (0) T X, s(2)) A (wi(x) 71X, 8(2)) - (8Y) g (X).

Now dv=1=27y(-, s), so combining the second two yx’s and the second and
fourth A’s gives

(Ou) s (2) = X.jk(Wk(-")“l X, we(x) T w(x)) A"ij(wj(x)il X, $(2) 544(2))

AW (), 5,0(2)) L (Wa(X) 7 X, 554(2))

= ;Lij(wj(x)7‘ X sj[(:) n;kl(z)) /“ij(wj(x)i 'ox, Sj/(z))
z}’y(z)(”jkl(z)), (3.5)

as required. This proves part 1.

For part 2 we use the usual notation, so that {([p], [y]) =0 means we
can refine the cover to ensure that there is a cochain {u; } e C*({N,}, &)
satisfying

(Ot ) (2) = 74 (2) (e (2)). (3.6)

We refine the cover again so that there are continuous functions
7,0 Ny — G with y,=7,|y, and define

Ay(x, 5)=7,;(p(x))(s); (3.7)

note that conditions a and ¢ are then obviously true. Next, reversing the
argument of part 1, we define

H X, SNY = (820, ) () = () (PLON5), (38)
and
V(%) = (6 wi (X)) 4, (w,(x) 72, s (p(0)) i (p(x)). (3.9)

The computation (3.5) used only the identities ¢y =1 and condition a, and
can therefore be turned around to show that {v;} is cocycle. Condition b
foliows from the computation

Lt ™, w0 x)) = i, EN) g, wilx))
= (0A(, 1)) e () L X, wie(x)),

and the proposition is proved. |

At this point, we hit a minor but irritating technicality. We want to use
the data 4, to build an action of G on the concrete C*-algebra 4(v) with
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Dixmier-Douady class [v] constructed in [18, Theorem 1]. For this,
however, it is necessary that the cocycle v= {v, } be alternating, in the
sense that, if o is a permutation of {J, j, k}, then

Votiratj)atk) = (Vijk)sgn(“;
unless this is the case, the involution on A(v) defined by ef =¢,; will
not satisfy (ab)* =b*a*. (Unfortunately, this point was overlooked in
[18].) Of course, it is well-known that every cocycle is equivalent to an
alternating one, but we give the details to make it clear that the new one
can still be defined relative to a G-invariant cover.

Lemma 34. Let X be a locally compact space, let sf = {N,},., be an
open cover of X, and let v={N, v, }€Z*(, ¥). Then there is a cochain
peCYot, &) such that (8p)v is alternating.

Proof. We may assume that [ is totally ordered (this is trivial if I is
countable, and equivalent to the axiom of choice in general). Define
p={N,—, pij}ezl(‘d’y) by

v (2) if i<y,
Pv‘(z)={m it i
and let u=(2p) v. Note immediately that for any i€/,
Miy(z) = 1. (3.10)
On the other hand, if i < j, then
uy,-(z)=m-m-vm(z)-v,,-,-(z): 1. (3.11)

The remaining properties now follows from Egs. (3.10) and (3.11) applied
to the cocycle identities

1= l‘iij(z) : lliij(z) : #iy(z) i (2),
= p;(2) - plz)- lljii(z) : #jﬁ(z)’

= w2} piy (2) - piy(2) - py(2),
= ujik(z) Ma(Z) - Ili]'k(z) : /‘iﬁ(z),

and

= lliji(z) : “kji(z) Mp(2) - ﬂkij(z)- |

COROLLARY 3.5. Suppose that p:X—Z is a principal G/N-bundle,
{Niv,}€ZNZ, ), and that (v, 2) is a pair satisfying the conditions a, b,
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and c in Proposition 3.3. Then there is a pair (v', ") satisfying a, b, and c, in
which v’ Is an alternating cocycle of the form (0p)v.

Proof. Choose p as in the lemma, let v’ =(dp) v, and define 4(x, s):
p '(N)xG-T by

']';’j(xs 5)= p;(x) pij(sil -X) ft,_-,-(x, 5. 1

PROPOSITION 3.6. Let G be a locally compact group acting on a para-
compact locally compact space X. Suppose there are an open cover {M,}
of X by G-invariant sets, a cocycle vy My — T, and continuous maps
Ay M;x G — T satisfying conditions a and b of Proposition 3.3.

(1) There is a dynamical system (A, G, a) with spectrum G-homeo-
morphic to X and with 8(A) = [v, ]
(2) If G is Abelian and X is a principal G/N-bundle with orbit map p,
then there is an N-principal system with spectrum p: X — X/G such that
(A)— [vix] and q: (A=, G) "~ — X/G has transition functions 7y;: p(M ;) —
N defined by Proposition 3.3.(c).

Proof. Let A be the algebra constructed in [18, Theorem 1], with 4,
there equal to our v,;; Condition | holds by [18]. For each re G, define
o, by

o, (Z ¢ijeij) = Z A, )t ld,)e

note that 7,(¢;) e Co(M ), since M is G/N-invariant, and that a,(3"; 7€y
is in A4 because each 1, is continuous and bounded on M. Because v is
alternating, condition b implies that A Ay, and o, is *- preservmg, also,
condition b immediately implies that a, is a homomorphism. Since condi-
tion a implies that a,(a)=a,(2,(a)), it follows that each a, has an inverse,
and that « is a homomorphism from G to Aut(A4). Furthermore, if ¢, — ¢
in G, then A,(-, ¢,) = 4;(-, t) uniformly on compact subsets of M,j, and it
follows easily that a,(a) is continuous in ¢ for fixed a e 4. Thus « is strongly
continuous action of G on A, justifying (1).
Using condition a, we see that the formula

ul(x)=Y A,;(x,n)e,;

for xe M; and ne N defines a strictly continuous homomorphism u’ of N
into .#(A|,,). It follows from condition b that

a, (Z ¢jkejk) = ui,(x) (Z Piu(x) ejk) ui,(x)*.
g k Jj, k
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Since the irreducible representations of A1,, are just the point evaluations,
we have shown that u’ implements o|, over M,; hence, af, is locally
unitary. Further, since i,=1, a,(u})=u), so u' is a local Green twist for
a, and since condition b implies

ui(x) = Ay(x, n) ul(x) =y, (p(x)(n)ul(x)  for xeM,,

the conclusion follows from Proposition 2.6. |

4. REALIZING BUNDLES AS THE SPECTRA OF CROSSED PRODUCTS OF
A GIVEN ALGEBRA

Now that we know which bundles can arise as the spectrum of the
crossed product of an N-principal system (A, G, «), it is natural to ask
for which algebras 4 we can do this. Since continuous-trace algebras are
determined up to stable isomophism by their Dixmier—-Douady classes, the
question can be reformulated as follows: given principal bundles p: X — Z
and g: Y — Z satisfying {([p], [¢]D>s=0, then for which e H3(X;Z) is
there an N-principal system (A, G, «) with spectrum p: X — Z, such that
(Ax,G)" is N—isomorphic to Y, and such that 8(4)= 4?7 We have already
shown how to construct one such class 6(q) in the proof of Proposition 3.3,
and it is not difficult to adapt this argument to produce systems (A4, G, )
in which 8(A) is any class of the form &(g) + p*e for ee H*(Z; Z) (see the
first part of the proof of Theorem 4.1 below). Our main result says that
these are in fact the only classes for which this is possible.

We begin by recalling the construction of the class 8(g). Given [¢] such
that {[p].[¢]>s=0, we extend the transition functions 7, for g to
74 N;— G, and define

Ai(x, 8)=7,(p(x))(s) (4.1}
Xu‘/k(xa §)=(0A(-, 5)),_',1( (x)
=2;(x, 5) Aulx, 5) Aylx, 5). (4.2)

Next, we choose a cochain {u,,} with
() gue (2) = 75 (2N 40(2)), (4.3)
where {n, } =a({s;}) represents d5([p]), and let
V(%) = 106 W () A, (9, (x) 71X, 50 (pO))) s p(x)). (4.4)

Since we could multiply ¢ by any cocycle in Z*(Z, &) without affecting
Eq. (4.3), the class 6(q) of {v,; ] depends on the choice of u, and we shall
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rather define d,,([q]) to be the image of [v,, ] in the quotient of H3(X; Z)
by the range of p*: H*(Z;Z) > H(X, Z).

LemMA 4.1, Suppose that G is locally compact Abelian group, and that N
is a closed subgroup such that G — G/N and G — G/N* have local sections.
Let [ple H\(Z, %/A4") and [q) e H'(Z, A) satisfy {[p], [q]>c=0. Thus
the class d,([q]) in the quotient H*(X; Z)/p*(H*Z; Z)) defined above is
independent of any of the choices made, and d, is a homomorphism of
ker(<[p), - >¢) into H¥X;Z)/p*H(Z; Z).

Proof. Any other cochain {u;,} satisfying Eq.(4.3) will differ from
{uu} by a cocycle {p,}eZ*Z; %), and then the corresponding {vi;}
will differ from {v,} by p*({p;.}), and hence define the same class in
H? (X Z)/Im p*. Replacing the lifting s; for the transition functions ¢,
by s, m,; will change n, by &(m),; ; however, multiplying u, by y,(m;)
cancels the resulting change on the right-hand side of Eq.(4.3), and
also cancels the change inside 4i; on the right-hand side of Eq. (4.4),
so v, is unchanged. Similarly, if we change the liftings §, for y,, we get
compensating changes in A; and u;;, and v, is unchanged.

Thus we only have to worry about different choices of equivariant pro-
jections w; and transition functions y, for g. Another choice of equivariant
pl‘O_]CCt]OﬂS v;: p~ " (N;) = G/N must differ from the first by continuous
maps y,: N;— G/N; that is, v,(x) = w;(x) y;(p(x)). We may as well suppose
y,: N;— G, and then s, is replaced by y; 's, y;, and v by

Vi () = g (x, wi(x) pi(p(x)) N)
Ay Ap(x)) w0 X (1) s v Up(X)) pa(p(x))
=(07) i (PO i (P())) 7, (PO, (p(x) ™" 1u(p(x))) Vil x)
= (0m) i (p(X)) v,ulx),

where 7;,(z) =7,(z)(y,(z)). Next, suppose we had started with é ,),,é
instead of Vi AS usual we can by refining the cover assume &,=¢,|,, and
replace 7, by c,,,,g, . This does not change y;, though we have to
multiply u,, by &, (n,,k ) and adjust 4,; v, becomes

Vi) = 7 (06 W (30)) Ay Ow,(x) 7 x, 5, (p(x))) & &N (p(x)) sl p(x)))
~§i(p(,r))(n,,k(p(.r))' 1)/~tiik(p(x))'
But
[C 5 I(Y,A)] 15 (n R )=E/(Sjk)7l E.'(S,j,-)_l gi(sik)

is a coboundary, and hence {vj,} is again equivalent to {v}.
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Finally, to see that d, is a homomorphism, we just have to observe that,
when dealing with a product {y;{;}, we can just multiply the liftings 7;,

¢, and the cochains satisfying Eq. (4.3). (I

THEOREM 4.1. Suppose that G is a second countable locally compact
Abelian group, and that N is a closed subgroup such thar G — G/N and
G — N have local sections. Let p: X = Z be a principal G/N-bundle, let A be
a stable continuous trace C*-algebra with spectrum X, and let q: Y - Z
be a principal N-bundle. Then there is an N-principal system (A, G, x) with
spectrum p: X — Z such that (4%, G)" is N-isomorphic to Y if and only if
d,([q])=8(4) +1Im p* in H*(X; Z)/p*(H*(Z; 2)).

Proof. Suppose first that 6(4)+Im p* =d ([¢]), and that {v,} is the
cocycle representing d,([g]) constructed above. If we refine {N,} to ensure
that 8(A4) — [v,x] can be realized by a cocycle p*({u,; }) in p*(Z*(Z; ¥)),
then {v,(u - p)} is a representative for 6(A). But it is straightforward to
check that the family 4, given by Eq. (4.1) still satisfies conditions a and b
of Proposition 3.3 relative to the cocycle v(u - p), and hence it follows from
Proposition 3.6 that there is an N-principal system (4, G ,«) with spectrum
p: X — Z implementing [q].

Next suppose that there is an N-principal system (A4, G, «) with
[(Ax,G)"]=1[q], and let (p, 4) denote the corresponding data satisfying
conditions a and b of Proposition 3.3 (i, p; and ¢, are, respectively, the
vie and A, of that proposition). As usual we define y,:N,—» N
by y(p(x))(n)=46,(x,n), so that [g]=[y,]. As in the proof of
Proposition 3.3(1), if we define

8iJ'k()C’ S) = (65( B s))ijk (X)
Pl p(X)) = €26, wi (X)) 6, (W, (x) "1 x, 54 (p(X))) piulx),  (4.5)

then du is a representative for {([p], [¢]>. We use this cochain p to
construct a representative {v, } for d,({q]) by extending 7, to 7, and
defining 4, x,x, and v, by Egs. (4.1), (4.2), and (4.4), respectively. We
have to find n,: p~'(N;)— T such that (on) pv ! is constant on orbits,
and hence has the form p*n for some ne Z*({N,}; &¥).

Comparing Eqgs. (4.4) and (4.5) shows that

P X) V() = xr(x, wie(x)) £ (x, wi(x)) T(x),

where 7 is constant on orbits, and hence it is enough to find {n,} such
that

R(x)= (an)ijk (x) erk(-‘” Wel(x)) €5 (x, wilx))
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i1s constant on orbits. We take
nij(x) = ?U(p(.\c))(w,—(x)) lij(xs Wj(x)),

which is well-defined since two representatives in G for w,(x) differ by an
element of N, and since

5(p())m) =7,(p(x)n)=4,(x,n)  forall neN.
Then
(37) ¢ (5 - x) = () (PLNS) (DAL, 5)) g (5 X )87 gy (x)
= m £ (8- X, S)(OM) i (x),

and hence

R(s-x)=(0m)y (s-X) giuls x5 - we(x)) euls X, 5-wi(x))

= (57T)ijk (s-x) puls-x, s) X:_‘/‘k(xs wi(x)) &8 - x, s) Eijk(xi wi(x))
= R(x),
and the theorem is proved. ||

Remark 4.2, For a more C*-algebraic proof of the first part, suppose
(A, G, a) is an N-principal system, 6 =8(A4)+ p*¢ and B is a continuous-
trace algebra with spectrum Z and with 6(B)=e¢ Then

C=A4AQcz) B=A®x) (Co{X) R ¢z) B)= AQx) P*B
has Dixmier-Douady class
3(C)=0(A)+3(p*By=3(A)+ p*(3(B))=6(A)+ p*e=$
(cf. [19]), and the action f=2®, id of G on C satisfies
Cxy G=(AQcz) B) Xy0,ia G=(AX, G)® 2 B,
which has the same spectrum as A4 x, G since B=Z.
S. EXAMPLES AND APPLICATIONS

(A) The Case G=R, N=Z

We now want to show how to recover most of [17, Sect. 4] from
our work. The main points made there are as follows. First of all, it is
shown that if 4 is continuous-trace algebra whose spectrum is a principal
T-bundle p: X —» Z then there is an action « of R on A inducing the
given action of T=R/Z on X=A4 [17, first part of Theorem 4.12].
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Next, it is deduced from the vanishing of the Moore cohomology group
H*R, C(X,T)) [17, Theorem4.1] that this action « on 4 is unique
up to exterior equivalence [17, Corollary 4.3]. And third, it is shown
that the class [¢] in HY(Z, #)=H*Z;Z) of the principal T-bundle
q: (A%, G)" - Z is the image of the Dixmier-Douady class d(4) under
the map p,: H>(X;Z)— H*Z;Z) given by “integration along the fibres”
[17; second part of Theorem 4.127. Thus it follows from exactness of the
Gysin sequence

v HNZ: 7)) H3(X;2)—2— H(Z;2)

.:i[_ﬂ,ﬁ“(z;z)____.

that a class ce H*(Z;Z) can arise as [¢] if and only if cu[p]=0 in
H*Z;Z), and since a stable algebra 4 then carries an action a with
[(Ax,G) " ]=c if and only if p,(6(A4))=c, 8(A4) is uniquely determined
modulo the image of p*.

Given the existence and uniqueness of the action «, and our results, it is
quite easy to believe the rest of this. Suppose for a moment, then, that we
have established this existence and uniqueness. They imply that the
Dixmier—-Douady class d(A) uniquely determines a system (A4, G, o), and
hence in particular the class [¢] of the bundle ¢: (A4 x, G) * — Z. In this
case, N=T and [¢] lies in H(Z, ¥)= H*(Z; Z), so 5(4)— [¢] defines a
map y: H3(X; Z) - H*Z; Z). The class of the bundle p: X — Z also lies in
H*(Z;7), and our theorem says precisely that there is an exact sequence

Sl OR gz 7). (5.1)

ANZ,7)—"— B3(X:2)—*— AXZ; Z)
It is, of course, clear that this should be the Gysin sequence, but while it
is relatively easy to identify the pairing < -, - >, with the usual cup product
in Cech cohomology (cf. Lemma 1.3), it is not so obvious that our V is the
map p, appearing in the Gysin sequence.

We plan to show elsewhere [22] how, for more general pairs (G, N),
there is an exact sequence like Eq. (5.1). Showing that this sequence spe-
cializes to the usual Gysin sequence when G=R and N =2 involves an
analysis which, in our setting, gives an alternative proof of all the results
of [17, Sect. 4] mentioned above. Here we merely outline the argument.

Let p: X — Z be a fixed T-bundle, and let 4 be a stable continuous-trace
C*-algebra with spectrum X. To see that there is an action a« of R on A4
covering the action of T=R/Z on X = A, we first show that 3(4) can be
realized by a cocycle {n,, } defined relative to a T-invariant cover {M,} of
X. Next, we construct a family A;: M;xR— T satisfying consistency
conditions a, b and c of Proposition 3.3, and then use [18] as in Proposi-
tion 3.6 to produce an action of R on a continuous-trace C*-algebra stably
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isomorphic to A. To see that the action is unique up to exterior
equivalence, we prove directly that any two families {4} are equivalent in
a natural sense. It follows from the construction of {4,} that the map ¢ is
the usual “integration over the fibres” map p, appearing in the Gysin
sequence.

In our general Gysin sequence, we replace H3(X; Z) = H*(X, &) with an
equivariant cohomology group HZ(X, &), in which the cocycles are pairs
(v, 4) with ve Z*(Z, #) and A= {4,} satisfying conditions a, b and ¢ of
Proposition 3.3. Using Proposition 3.6, we can identify HZ(X, %) with
Morita equivalence classes of systems (A4, G, «) [21], and the argument we
outlined above amounts to showing that, if p: X - Z is a T-bundle, then
(v, )+ v induces an isomorphism of H2(X, &) onto H*(X, ¥). We defer
the details to [22] largely because, to get a long exact sequence, we need
equivariant cohomology groups HJ(X, #) of other dimensions, and we
shall want H5(X, ¥)= H"(X, &) in general in order to deduce the usual
Gysin sequence from ours.

{B) The Case G=T, N=12,,

As in the previous example, the pairing (-, >, can be expressed in
terms of the usual cup product in integral cohomology: if é,: H(Z;2Z,) —
H?(Z;Z) is the coboundary map associated to the exact sequence

0— Z72-"572—Z7,— 0,

then we have

Lr) [q1> =alpDodillg)  for [¢leH'Z:Z,).

The easiest way for us to see this is to reduce to the case G = R; our claim
follows from the next lemma and the equation ¢, =d-1i,.

LEMMA 5.1. Let it Z,,—» T denote the inclusion of Z,, as the nth roots of
unity, and suppose p: X — Z is a principal T-bundle. Then if G=T and
N=1iZ,), we have

pl (91> =<[pL i [gD))s  for [qleH'(Z:Z,),

and the homomorphism d; of ker({[p), -)y) into H3(X; Z) is given in terms
of the one for G=R, N=Z by d, =d-i,.

Proof. We identify both N and N with {(Z,), so that if we view
exp(2nik/nye N and exp(2mil/n)e N, then

exp(2nil/n)(exp(2nik/n)) = exp(2riki/n). (5.2)
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Then the bundles g and i*q have the same transition functions
vy =exp(2nim;/n), where m;: N;—Z is a cocycle moda. If [p] has
transition functions ¢ —exp(Zmr ) then the lifting s;: N, —» G =T is given
by s,=-exp(2mir;/n), and 0. ([p]) is represented by n,,k—exp(Zmp,,k)
where P =ryi+rp—rygeZ From Eq. (5.2) we have

<Lrl. [91)+ = [v4(nu)] = [exp(2mim;/n)(exp(2rip;, /n))]
= [CXP(znimtj ij//")]-

On the other hand, to compute {[p],i,[g])g, we lift 1;: N;—»T=R/Z
tos;: N, — R (so we can take s;; =r,), let {nj, } = d({s};}) (sonj, = p,;), and

CIp1i 910 g = [vy(np,)] = Lexp(2rim;/n)( py,) ] = (exp(2mim, /n)) "]
=<{[pl. [91>+.

To calculate ), we need to lift y,: N;—» N to §2: N, — G =T =Z along
the quotient map k> exp(2nik/n):Z -Z,<T. So we take Ji(w)=w".
Now y#, = ({73} )« takes values in N *, and hence it makes sense to apply
19(z) to weT=G/N: note that we T=G/N is really identified with
w'"Z,eT/Z,=G/N, and hence if ye N* corresponds to y' € (G/N)"*

then y'(w)=y(w'") (which is well-defined because yeZ}).Thus if ou=
{7,(n,,)}, then a cocycle representing é+([¢]) is given by

Vijk(x) = wk(x)(mu+m,kfmm)ip(x))/‘n sjk(p(x))m,,(p(x)) l‘ijk(x)

= wy () PN exp(2mir; (p(x)) my( p(x))/n) pg(x).

To compute d%®([i,[q]), we need a lifting $}¢ for y,: N, — Z along the
quotient map x&—»ez’”‘ R=R— T=2, and we can take )7: “(z)=my(z)/n
Saying that &({727}) takes values in Z =T just means that d(m,)enZ, so
w— w™V is well-defined on T, and a cocycle representing d})( [z*q] is

T = W) P 54 p(x) ) (57 ((x)) i x)

= w ()t T mPCN exp(2mir; (p(x)) my(p(x))/n) pe(x),

which is exactly the same as {v; }. |

It is easy to construct exampies in which #'(Z;Z) and H*(Z;Z) are
torsion-free groups, and ([p],->g=ud([p])=0—for example, take
Z=S5"'xS% For such a space i, will be the zero map, and hence
d,=d}-i, is also zero, even though ker({[p],-)) is all of HYZ;Z,).
Thus for any A satisfying the consistency condition d(4)+Imp*e
range d;, there will be many ¢'s satisfying d;([¢])=d(4)eIm p*. Since
for each of these there is a Z,-principal action of T on A with
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(Ax, T)” =g, there must be many non-equivalent Z ,-principal actions of
T on the same A. Thus this example is quite different from the previous
one, in spite of the similarity in the calculations of {([p], ), and d,.

(C) Actions on Quotients of Induced C*-Algebras

If B: N— Aut(B) is locally unitary and (4, G, )= (Ind$(8B, B), G, 1),
then (A%, G)" is N-isomorphic to (Bxz N)*, and hence [g] can be any
class in H'(Z, VV) [17, Sect. 3(a)]; for these examples, however, p: A-Z
1s trivial as a G/N-bundle. In [16, Proposition 3.5], it was shown that by
inducing along other principal G-bundles and taking quotients, we could
construct many examples in which both [ p] and [¢] were non-trivial. This
construction only worked when p: X - Z was the quotient Y/N — Z of
some G-bundle, but for any such [p], we could obtain any [g¢]. This
is easily seen to be consistent with our theorem: the existence of such a
bundle Y is equivalent to the vanishing of é4([p])e H*(Z, .#"), and hence
it follows immediately from Definition 1.1 that {[p], [¢])>c=0 for any
[g]e H'(Z, A).

In [16, Proposition 3.5], we gave a formula for the Dixmier-Douady
class 6(A) also, and we now check its compatible with our theorem. In
this formula, (-, ) denotes the pairing of HY(Z, A" )x H'(Z, 4") into
HZ;Z)=a3(H¥Z, &)) given by

< [?ij], Lr;10 =0([4]), where '{ijk(l) =7y, () (1)),

which is just the cup product composed with evaluation as in
Definition 1.1.

PROPOSITION 5.2. Let r: Y — Y/N = X be the quotient map. Then for any
[gle H(Z, &), we have

d,([q1)=<p*[q),[r1>+Imp* in H3(X;Z)/Imp*.

Proof. We retain the usual notation, so {y,} are transition functions
for [¢], the functions 7,: N, — G extend the y,, and {y,} = {7;7x«7%"}
represents d([q]) in H*(Z, A" *). In addition, we fix local trivializations
kiir='"(p~'(N))) > N,xG such that k,ok;'(z,s)=(1, 55;(z)) and assume
that the trivializations of p: Y/N — Z are induced by k,, in the sense that
h(yN)=k,(y) N. We define w,:p~"(N))=G/N by h,(x)=(p(x), w,(x)).
To define d,([¢]) we need a cochain py: Ny — T such that

a( {ﬂijk})yu: Vij("jk/)a
but here {s,} is a cocycle, so n, =1, and we can take yu, =1. We now set

Vi,k(x) = X,_','k(P(x))(Wk(x)) ?ij(l’(x))(sjk (p(x))) for xep~ l(N.'jk),
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and then d,([¢]) is the image of [v,] in H*X, ¥)/Imp*=x
H3(X; Z)/Im p*.

To find transition functions for r: Y — X, we choose local sections
¢, M, - G for G— G/N, and consider the cover Fup=h'(N;xM,) of
X. On F; ,,, we have sections

i py(X) =k (p(x), cp(wi(x))),
and r is represented by the cocycle {n, ., ,} wWhere
Ay, ) =10 pys X)) dyj, o (X);

observe that since k,-k ' is implemented by s,,, we have

Cp(wi(x)) =N pyy. q)(x) Cq(wj(x)) S.‘J(P(x))7 L (5.3)

Now we let x€ F; ,);. 4. -» and compute {v,, }. Since y,.(p(x))e N, we
can use any representative for w,(x) when calculating y,(p(x))(wi(x)),
and we obtain from Eq. (5.3):

Vi) = (P ) e, (wi (X)) 75 (p(x))(s 4 (p(x)))
=7, (PO, (wi(x)) s p(x)) 1)
TP Awi(x))) Tul p(x))e,(wi(x)))
=y, (PN gyx (X)) T (P, (w;(x)))
Tl px))e,(we(x))) 7l plx) e, (wi (X)) (5.4)

If we define p; .y, v Fupyijg— T by

P p)(j.q)(x) = "171,'(P(-’())(Cq("',’(x)))’
then Eq. (5.4) says that
Vi(X) =000 ). pris. ik 1 (X) 75 (PO gy, (X))

Thus we have shown that {v} differs by a coboundary from the cocycle
defined on the cover {F; , } by

b ;. gk XY =75 (PCNR gy (X)),

which represents <[y,°p1, [ny pii 1> =<p*[q], [r1). 1

In light of the proposition, our main theorem predicts that, given ¢ and
an algebra A over X, there will be an N-principal action of G on 4 with
(4%, G) " isomorphic to ¢ if and only if

8(A)= p*c+ {p*[q].r> for some ce HYZ;2Z),
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and [16, Proposition 3.5] provides concrete examples for each of these
possibilities.

(D) Actions on Pull-Back C*-Algebras

In [19], we studied diagonal actions on the pull-backs of C*-algebras
along principal bundles, and, by Theorem 1.1 of [17], these are essentially
the only examples (4, G, a) in which 4 is a principal G-bundle. There
are also natural diagonal actions of G on algebras p*B pulled back along
a G/N-bundle p: X —> Z, and if original action of G on B was locally
unitary, these actions are N-principal. In fact, the systems we obtain this
way turn out to be dual to those of the previous section: now (4 x, G) "
has the form Y/N* for some G-bundle Y over Z.

PROPOSITION 5.3. Let N be a closed subgoup of a locally compact
Abelian group G, let p: X - Z be a G/N-bundle, and let f: G — Aut(B) be a
locally unitary action of G on a C*-algebra B with spectrum Z. Then
the diagonal action p*B=1d® B on p*B=Co(X)Q®cz B is locally
unitary on N, and the spectrum q.(p*BX,.;G)" = Z is N-isomorphic to
(Bx; G) " /N~

Proof. 1f w:G— UM(B) implements B over M, then 1® . uly
implements p*B|, over p~ '(M), and p*B| , is locally unitary. We also have
a commutative diagram

(6, 7)EMXG — g, xyu(x)e(Bx;G)"

l lnes

(6, TN eMX(GINY ) =M x N—— e, x(y|yu(x)|y)e (Bx; N) ",

which implies in particular that Res:(Bx,G)" —(Bx;N)" is con-
tinuous and open, and induces a homeomorphism of (Bx,; G)"/N* onto
(Bx; N) . Since the last two maps are homeomophism, it follows that the
composition / given by

A idxRes
—_—

X (BxyG) X(BxyN)" —— p*(Bxy N)* ~—— ((p*B)=,.; N) "

(X, (gpy X)) — (X, (E,m)X“',\‘))*_’E\ ®('(11(5p(,\—>x“|,\') — £, X (u|y)

induces a homeomorphism of the fibre product X *(Bx,;G)"/N* onto
((P*B) Xy N) .

We next claim that if « is the action of G on p*Bx N, then the map A
satisfies

h(s - X, (€00 X U)) ZA(X, (g, X 1)) o0t '
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For we have from {17, bottom of p.21] that
(eexuly)oa, = (e, (p*B), ) xuly,
and we can compute ¢, (p*B), " if f® .z, be p*B, then

e.o(p*B); ! ([ ®czb)=¢, iz Epaf T, 1(f)®c‘(zl B, "(b))
= f(s-x) Ad u; '(g,)(0))
=Ad ufl(sx.x(f®(‘(2) b)).

Thus
hix, &y xu))ea ! = Adus (e, ) xuly
=Adu, (e, xuly)
~h(s X, €, X U),
as claimed.

Since we know that Ind induces a homeomorphism of (p*BxN) " /G
onto (p*BxG)"~ [17, Proposition 2.1], it follows that Ind-#4 induces a
homeomorphism of

(X ((BxG) "IN )/G=Z ((Bxy G)"IN*)=(Bxz G)"/N*

onto {p*BxG)". But Ind-h is clearly N—equivalent, and the result
follows. |
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