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EQUIVARIANT COMPLETELY BOUNDED OPERATORS

IAIN RAEBURN, ALLAN M. SINCLAIR AND DANA P. WILLIAMS

An equivariant completely bounded linear operator between two
C*-algebras acted on by an amenable group is shown to lift to a com-
pletely bounded operator between the crossed products that is equi-
variant with respect to the dual coactions. A similar result is proved
for coactions and dual actions. It is shown that the only equivariant
linear operators that lift twice through the action and dual coaction
of an infinite group are the completely bounded ones.

1. Introduction. Let Φ: A -» B be a bounded linear map between
C* -algebras, and let a: G —• A\x\A and β: G —> Auti? be actions of
an amenable locally compact group G. If Φ is a homomorphism and
is equivariant—i.e., Φ(as(a)) = βs(Φ(a)) for s e G, a e A—then it
extends to a homomorphism Φ x i from the crossed product A xaG
to B XĴ  G. On the other hand, if C is another C*-algebra, then for
any completely bounded map Φ: A —• B there is a bounded operator
Φ x i: A® C -^ B ® C; indeed, by taking C to be the algebra 3£
of compact operators, we can see that the complete boundedness of
Φ is necessary for this to be true. We shall combine these results to
prove that any equivariant completely bounded operator extends to a
bounded map on the crossed product, formulate and prove the anal-
ogous results for crossed products by coactions of nonabelian groups,
and investigate the extent to which complete boundedness is a neces-
sary hypothesis.

We shall take similar approaches to the problems of lifting through
actions and coactions. First, we prove equivariant versions of Stine-
spring's theorem [23] on completely positive maps into 3§{%f), and
we then show how to modify Wittstock's theorem [25] to write an
equivariant symmetric completely bounded map into 3S{^) as a dif-
ference of equivariant completely positive ones. From these we can
use standard symmetrisation techniques to deduce that an equivari-
ant completely bounded operator Φ: A —•ϊ%W) can be realized in the
form Φ(a) = Tπ(a)V, where π is part of a covariant representation
(π, U) of (A9G,ά) in some larger Hubert space. We can then define
Φxi:AxaG^ &{&) by the formula Φ x i(z) = T(π x U(z))V, and
the result for Φ: A —> B follows easily.
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In the case of actions the extension of Stinespring's theorem is quite
straightforward, and in fact has already been established by Paulsen
[17] for other purposes. Our version of Wittstock's theorem is ob-
tained from [25] by averaging using an invariant mean on the group
G; of course, this means (sorry) we have to assume G is amenable.
It is possible that this hypothesis is not necessary at this stage (see
Remark 3.4) but we shall also need it later because it plays a vital
role in the present theory of crossed products by coactions. Because
this theory is so far relatively undeveloped, the equivariant versions
of Stinespring's and Wittstock's theorems for coactions are technically
considerably harder. However, we believe that some of our construc-
tions here could be of independent interest. For example, the Stine-
spring theorem includes as a special case a version of the Gelfand-
Naimark-Segal construction of covariant representations from an in-
variant state, and this appears to involve non-trivial modifications of
the usual construction (see the remark preceding Theorem 4.4). Our
proof of Wittstock's theorem depends on an averaging construction
using an "invariant mean" on the von Neumann algebra of a group
and slice maps by non-normal functionals: similar methods have been
used by Enock and Schwartz in their study of Kac algebras [6].

It is possible that a bounded lifting Φ x / can exist even if the map
Φ is not completely bounded. For example, suppose G is abelian and
acts trivially on both A and B. Then

A xa G = A ® C*(G) = A ® C0(G) = C0(G, A),

and any bounded linear map Φ: A —• B extends to a bounded map
Φ x i: A xa G —> B y\β G, which is equivariant for the dual actions
of G. However, Φ x / cannot then extend to a bounded map on the
second crossed product unless Φ is completely bounded. The idea of
the proof of this is simple: by Takai duality, (A x\a G) x& G = A ® 3£,
and the existence of a bounded extension (Φ x /) x / would imply
that Φ g / ^ o J ^ ΰ o J was bounded, so that Φ was completely
bounded. In fact, we shall prove a version of this result for arbitrary
amenable groups using non-abelian duality.

We have organized our work as follows. In §2, we set up our no-
tation and develop the necessary background material on completely
bounded operators, slice maps and crossed products. In particular, we
discuss covariant representations and crossed products for coactions,
and what we mean by saying a linear map is equivariant with respect to
coactions. Section 3 contains our results on lifting equivariant maps to



EQUIVARIANT COMPLETELY BOUNDED OPERATORS 157

crossed products by actions, and §4 the analogous results for coactions.
We have taken care to follow the same general pattern in these two sec-
tions. In §5 we prove that an equivariant map Φ: (A, G, a) —> (/?, G, β)
lifts to the second crossed product {A x^ G) xi« G if and only if Φ is
completely bounded, and briefly discuss the analogous result for the
case where G coacts on A. Our last section contains an alternative
treatment of the material in §3 for normal completely bounded maps
on von Neumann algebras, and a brief discussion of how our results
can be adapted for multilinear completely bounded operators. D

2. Preliminaries.
Notation. We denote by ® both the Hubert space tensor product and

the spatial (or minimal) tensor product of two C*-algebras. If φ and
ψ are bounded (linear) operators on spaces X and Y, then φ ® ψ will
denote both the algebraically defined operator on the algebraic tensor
product X Θ Y9 and its extension to any completion—provided, of
course, such an extension exists. The algebra of all bounded operators
on a Hubert space & will be denoted by 3S[βf), and the ideal of
compact operators by 3ί{%?) or just X. If A is a C*-algebra, M(A)
will be its multiplier algebra ([2], [21, §3.12]). As well as the norm
topology, M(A) carries the strict topology, which is defined by the
seminorms x —• \\xa\\ + ||αjc|| for a e A; note that A is strictly dense
in M{A) [2]. We write 1 for the identity element of A or M(A), and
/ for the identity map on A or M(A).

Completely bounded operators. Let Mn(A) denote the C*-algebra of
n x n matrices with entries in a C*-algebra A, which we shall identify
with A ® Mn(C). Let Φ: A —> B be a (linear) operator between C*-
algebras, and let Φn denote the tensor product Φ®/: A®Mn —• B®Mn\
under the matrix identification, ΦΛ((#/,•)) = (Φ(α ί ;)). Recall that Φ
is completely positive if Φn > 0 for all n, is completely bounded if
\\Φ\\cb ~ sup{||Φ/,||: n e N} < oo, and is symmetric if Φ(a*) = Φ(a)*
for a eA.

Wittstock's decomposition of a symmetric completely bounded op-
erator from a C*-algebra into &{βf) (see Theorem 2.2 below) and
the Stinespring representation theorem enable one to write each com-
pletely bounded operator Φ: A -> <%{%') in the form Φ(a) = Tπ(a)Vy

where π is a non-degenerate representation of A on a Hubert space
^ and V: & -> ^ , Γ: ^ -^ ^ are bounded operators such that
||φ||C£ = | | Γ | | | | F | | [19], [26]; conversely, each such operator is com-
pletely bounded with \\φ\\ct < \\T\\ \\V\\. This result immediately im-
plies that a completely bounded operator Φ: A —> 38{%?) extends to
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the enveloping von Neumann algebra A**, and hence to the multiplier
algebra M(A). More precisely, we have the following lemma.

LEMMA 2.1. Let Φ: A —• &{β?) be a completely bounded operator.
Then there is a unique strict-to-*-strong continuous, completely bounded
operator Φ: M(A) -^3§{^) which extends Φ. Further, \\$>\\cb = \\Φ\\cb,
and Φ is completely positive {symmetric) if and only ifΦ is completely
positive {symmetric).

Proof. Choose Γ, F, π as above. Since π is non-degenerate it ex-
tends to a strict-to-*-strong continuous representation π of M{A) on
^ . We set Φ(ra) = Tπ{m)V for m e M{A). Then Φ extends Φ, and
is completely bounded with

The uniqueness of Φ follows from the strict density of A in M{A).
If Φ is completely positive we can take T = V*9 and then Φ is also
completely positive since all maps of the form m H+ V*p{m)V are.
An application of Wittstock's theorem gives the observation about
symmetry of Φ. This proves the lemma. D

When we use extensions of homomorphisms and completely bound-
ed maps to operator algebras, we shall always be using the canonical
strictly continuous extension given by this lemma—and we shall de-
note the extension by the same symbol. With this convention, we can
state Wittstock's theorem ([25], [18], [19]) as follows.

THEOREM 2.2. Let Φ: A —• 3§{%f) be a symmetric completely
bounded operator. Then therearecompletelypositiveoperators^r

7: A —•
such that Φ = Ψ! - Ψ 2 and \\Φ\\ch = \\Ψ{{\) +Ψ 2 (1) | | .

Slice maps. If A and B are C*-algebras and f e B*, then

RSf{a ®b) = af{b)

defines a bounded operator RSf\ A® B —• A with norm | |/ | | , which
extends uniquely to a strictly continuous linear map of M{A®B) into
M{A). If / is the vector functional b -> {bξ9η) on ^ ( ^ ζ ) , there is
also a weakly continuous slice map RSfi &(β?\®&2)^&{%\) given
by the equation

{RSf{T)h,k) = {T{h®ξ),k®η) for h9ke%[.
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The two kinds of slice map agree when they both make sense—indeed,
the second is just the weakly continuous extension of the first (see [14,
Lemma 1.5]).

Of course, there are also left slice maps from A ® B to B, defined
by LSf(a <S> b) = f(a)b for / e A*, and the two kinds of slice maps
are related by the Fubini theorem

goLSf = foRSg for feA\geB\

We shall use this fact in its own right, and in §4 to give a definition of
a slice map for a non-normal functional on a von Neumann algebra.
When we imagine no confusion is likely, we shall refer to either LSf
or RSf as Sf.

Group algebras and crossed products. Let G be a locally compact
group and λ the left regular representation of G on L2(G). The clo-
sure of {λ(f): f e Lι(G)} in ̂ (L2(G)) is the reduced group C*-
algebra C*(G), and the weak closure is the group von Neumann algebra
vN{G). Let A(G) denote the Fourier algebra of Eymard [7]. Then we
have natural identifications vN(G) = C*(G)** = A(G)*; if z e Lι(G),
f e A(G) then the latter pairing is given by (/, z) = / f(s)z(s) ds. Ev-
ery such functional has the form z —• (λ(z)ξ9 η) for some ξ, η e L2(G),
and a comparison of these formulas shows that every f e A(G) can
be decomposed

f(s) = (η*ξ)(s) =

where ξ{s) = £(s~ ι). Most of the time we shall be assuming our group
G is amenable, in which case λ is an isomorphism of the full group
C*-algebra C*(G) onto Q(G) [21, 7.3.9].

By an action of G on a C*-algebra A we mean a strongly contin-
uous homomorphism a: G —• AutA A covariant representation of
(A, G,a) is then a pair (π, U) consisting of a (*-preserving) represen-
tation π of A on a Hubert space J? and a (strongly continuous) unitary
representation U of G on %? such that

π(as(a)) = Usπ(a)U; for a eA.se G.

The crossed product A x α G is a C*-algebra whose representations
are in one-to-one correspondence with the covariant representations
of (A, C?,α); it is usually constructed as the completion of the algebra
CC(G,A) of continuous ^-valued functions of compact support (see
[21, §7.6]). There are canonical homomorphisms iA: A -> M(A xa G),
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iG:G^ UM(A xa G) such that iA{μs{a)) = iG(s)iA(a)iG(s)* (see [21,
Proof of 7.6.4], or [22] for a different treatment). If we have an-
other action β: G —> AutJ?, then we shall say a bounded linear map
Φ: A —> B is α - β equivariant (or just equivariant) if Φ(as(ά)) =
βs(Φ(a)) ΐor s e G, a e A. Thus, for example, if (π, U) is a covariant
representation of (A, G, α), then π is α-Ad U equivariant in this sense.

Coactions and their crossed products. Here we shall review some of
the basic definitions and results about coactions of a group on a C*-
algebra, and then discuss what it means for a linear operator between
C*-algebras to be equivariant with respect to coactions. Our basic
reference for this material is [14, §2, 3].

Loosely speaking, a coaction of a locally compact group G on a
C*-algebra A is an action of the dual G of G on A. To make this
formal, we first have to introduce the comultiplication δG: C*(G) —•
M(C*(G) ® C*(G)), which is the integrated form of the homomor-
phism s *-• δs ® δs; spatially, δG is given by δG(z) = WG{z ® \)W£,
where WG e U(L2(G x G)) is defined by WGξ{s,t) = ξ(s,s-{t). (This
latter formula for δG implies that δG extends to a homomorphism of
vN(G) into υN(G)®vN(G).) Then a coaction of G on A is a homo-
morphism δ: A —• M(yl ® C*(G)) satisfying

(1) ί(fl)(l ® z), (1 ® z)ί(fl) E A ® C;(G) for all α e ^, z E C*(G);
(2) there is an approximate identity {ej} for 4̂ such that δ(βj) —• 1

strictly in Af(>4 ® Q(G)); and
(3) (δ®i)oδ = (i®δG)oδ.

We say δ is non-degenerate if in addition
(4) for each φ e A* there exists ψ E Q(G)* such that {φ® ψ)oδ φ 0.

Of these conditions, (1) is technically useful because it implies Sf(δ(a))
E A for / E C*(G)*9 (2) is there to ensure that (3) makes sense, (3)
is the analogue for coactions of the multiplicativity ast = as o at of
an action, and (4) is a technical assumption which is automatic if G
is amenable (see [11, Theorem 5] for equivalent formulations of (4)).
We mention three examples:

(a) if G is abelian and a: G —> Aut.4 is an action of G, then

δ(a) = {γ-+ ay{ά)) E Q(G, A) C M(A ® C0(G)) = M ( ^ ® C*(G))

defines a coaction of G on A\
(b) J(- is a coaction of (? on C*(G);
(c) there is a canonical coaction ά of G on the reduced crossed

product Ay\arG (which equals A xα G if G is amenable).
For a discussion of these examples, see [14, 2.3].
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A corepresentation of G is a representation of Cb(G), which we
think of as a representation of G (if G is abelian, C0(G) = C*(G)). A
theorem of Nakagami and Takesaki [15, Theorem A.l(b)] gives a one-
to-one correspondence between representations μ: CQ(G) -» 3S{^)
and unitary operators W e&(β?)®vN{G) satisfying

{W® \){W® \)σ = i®δG{W),

where σ denotes the flip automorphism of vN(G)®υN(G), and SQ
has been extended spatially to vN(G). This correspondence is char-
acterized by the relation

μ{f) = RSf(W) for / G A(G) = vN(G%.

Strangely, it is often more convenient to work with the unitary W
rather than the representation μ, and we refer to W as a corepresen-
tation of G on F.

Associated with a coaction δ\ A -> Af(Λ (8) C*(G)) is the
crossed product A >*# G [14, 2.4], which is the C*-subalgebra of
M(A®Jf(L2(G))) generated by the elements of the form δ{a){\ ®Λ/y)
for α G A9 f G QίG1). Representations of A y\δ G are in one-to-one
correspondence with the covariant representations of (̂ 4, G, δ), each of
which consists of a pair (π, FF) of a representation π of A on a space
^ and a corepresentation W of G on^ such that

(1) π ® ι(<J(α)) = W(π(a) ® 1)ΪF* for α e l

The representation of 4̂ xj G corresponding to (π,W) is denoted
π xW, and is characterized by the property

GΛ, feA(G).

These results are the content of [14, §3].
Let J, e be coactions of G on C*-algebras 4̂, B and Φ: ,4 -> B be a

completely bounded map. We shall say Φ is δ - e equivariant, or just
equivariant, if

(2) (Φ (8) 0 o δ = ε o φ;

notice that the left-hand side of this makes sense because completely
bounded operators lift through tensoring [5, Lemma 1.5], and extend
to the multiplier algebra by Lemma 2.1. Thus, for example, equation
(1) says that if (π, W) is a covariant representation of (A, G,δ), then
π is δ - Ad W equivariant. (Here Ad W denotes the coaction T ~>
W{T®\) W* of G on ^(<#*).) By using slice maps, we can reformulate
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(2) to avoid appealing to the lifting result: it is equivalent to

Φ(RSf(δ(a))) = RSf(e(Φ(a))) for a € A, f e A(G).

This enables us to extend the definition of equivariance to arbitrary
bounded operators from A to B.

3. Lifting through actions. Let a: G - • AnXA and β: G -» A\x\B
be actions of an amenable locally compact group G on C*-algebras A
and B. We shall prove that an equivariant completely bounded map
Φ: A —• B gives rise to a completely bounded map Φ x /: A x α G —•
By\βG. We shall deduce this from a structure theorem for equivariant
completely bounded maps Φ: A —• &(%?) (Theorem 3.3), for which
we need equivariant versions of Stinespring's theorem (Lemma 3.1)
and Wittstock's decomposition theorem (Lemma 3.2). Lemma 3.1 is
essentially proved in [17], so we shall merely outline its proof.

LEMMA 3.1. Let Φ: (A, G,a) -• {β{&\ G, Ad U) be an equivariant
completely positive map. Then there are

(1) a covarίant representation (π, W) of {A, G9a) on a space 31\
(2) a continuous operator V: %? —• 3£, and
(3) a representation p of the commutant Φ(A)f on X9

such that
(a) Φ(a) = V*π(a)Vfor aeA,

(c) VUt = WtV for all t e G, and
(d) p(x)V = Vx for x e Φ{A)f, ρ(UtxUt*) = Wtp{x)Wt* for x e

Φ(A)', t e G, and ρ{Φ{A)') c π(A)'.

Outline of Proof (See [24, pp. 195-196] and [17, Theorem 2.1].)

We define a pre-inner product on the algebraic tensor product A © &

by

(a®ξ,b®η) = (Φ(b*a)ξ,η),

mod out by the vectors of length 0, and take X to be the comple-
tion. Then we set π(a)(b ® ζ) = ab ® ζ, ρ{x)(b ® ̂ ) = 6 ® x^,
W^(Λ ® ί) = α/(α) ® Utξ and, if 4̂ has an identity, Vξ = 1 ® <̂;
otherwise F^ is defined as the norm limit of eγ ® <̂, where eγ runs
through an approximate identity for A. The standard arguments show
that (a), (b) and the first part of (d) hold [24, p. 195]. The equivari-
ance of Φ implies that Wt is isometric, and it has inverse Wt-ι9 so each
Wt is a unitary operator on X\ W is a homomorphism because a and
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U are, and it follows from a standard inequality that W is strongly
continuous. Condition (c) is trivial when A has an identity, and in
general is a consequence of the fact that the operator V is the same
no matter which approximate identity we use. The other two parts of
(d) are easily checked on elementary tensors, and this completes the
proof. D

LEMMA 3.2. // Φ: (A,G,a) -+ {β{β?),G,Adi/) is a symmetric
equivariant completely bounded operator, then there are completely pos-
itive operators Φ 7 : A —• 3B{%?} such that φ = φ t - Φ 2 and \\Φ\\cb >

Proof. By the usual Wittstock theorem ([25], [19]) there are com-
pletely positive operators Ψ,?: A -+ 3S{βίT) such that Φ = Ψx - Ψ 2 and
\\Φ\\cb = | |Ψi(l) + Ψ2(1)H (In the non-unital case, the identity here is
in M(A).) Let m be a right invariant mean on G, and define Φ, by

(Φj(a)ξ, η) = m(t » (U;Vj(at(a))U£, η)) for aeA9ξ,ηe *;

here the right-hand side is a bounded sesquilinear form in ξ and η, and
hence defines a bounded operator Φ/(α) on %?. The complete positiv-
ity of Φj follows from that of Ψj and the positivity of m. The right
invariance m(t *-+ f(ts)) = m(f) shows that Φj(as(a)) = UsΦj(a)U*
for a G A, s e G, and the equivariance of Φ implies that Φ = Φi - Φ 2 .
The inequality | |Φi(l) + Φ2(l)|| < | |Φ||C^ can be obtained by averaging
the equation

and this completes the proof of the lemma. D

THEOREM 3.3. Let a be an action of a locally compact amenable
group G on a C*-algebra A, and let U be a unitary representation
of G on a Hubert space. IfΦ:A-+ 3B(&) is a completely bounded
equivariant linear map, then there are

(1) a covariant representation (π, W) of (A, G, a) on a Hubert space
X, and

(2) bounded operators V\ %f -+3?,T\ 3? ^ %?>
such that

(a) Φ(a) = Tπ{a)V for a e A,
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(b) VUt = WtV, TWt = UtT for t € G, and
(c)||Φ|U =

Proof. We begin by observing that it will be enough to prove the
result for a symmetric operator Φ. To see this, we introduce Φ: A —•

defined by

««>=(•£>• T
Then Φ is a symmetric completely bounded operator, and a calculation
using the equality

0 x
y o

= max{||x||,|M|}

shows that | |Φ|U = | |Φ|U Define U_ = UΘ U, so that Φ is a - AdU_
equivariant, let Γo: %?®%? -> %? be the projection onto the first factor,
and let VQ : %* —> ̂  © ̂  be the inclusion of the second factor. Then
if Φ(a) = Tπ(a)V is a realization of Φ satisfying (a)-(c), the required
realization of Φ is given by Φ(a) = T§Tπ{a)VV§.

Now suppose that Φ is symmetric, and let Φ = Φi — Φ2 be the
decomposition of Lemma 3.2. By Lemma 3.1 there are covariant
representations (πy, Wj) of (A, G, a) on ^ and operators Vμ 2P -* 3?j
satisfying Φj(a) = V*π(a)Vj (and the other conditions of 3.1). We
then take X = 3tλ Θ JT2, π = π{ Θ π 2 , W = Wx θ W2, V = (Vu - F 2 ) t r ,
and T = (Fj*, F2*). Properties (a) and (b) follow immediately, and we
have

\\τ\\ \\v\\ = wvw + V{v2\\ = ||Φi(i) + Φ2(i)ll < ||Φ|U.

But any decomposition Φ(a) = Tπ(a)V implies that | |Φ|U < | |Γ| | | | F | |
[4, Lemma 5.3], so this completes the proof of the theorem. D

REMARK 3.4. If there is an equivariant version of Arveson's exten-
sion theorem [1] which works for an arbitrary locally compact group,
then the techniques of [19] would enable us to remove the hypothesis
of amenability from Theorem 3.3. For another possible route to the
same end, see the proof of [8, Theorem 3.7].

THEOREM 3.5. Let G be an amenable locally compact group, and
let a and β be actions of G on C*-algebras A and B respectively. If
Φ: A —• B is a completely bounded equivariant operator, then there is
a unique completely bounded operator Φxi:AxaG-+B>4βG such
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that
(a) Φ x i(iA(a)iG(z)) = iB(Φ(a))iG(z) foraeA,ze CC(G).

We then also have
(b) (Φ x i(y))(t) = Φ(y(t))forye CC(G,A), t e G;
(c) ||Φ x i\\cb = ||Φ|U;
(d) Φ x i completely positive if Φ is, and symmetric if Φ is\
(e) Φ x i is equivariant for the dual coactions ά and β ofG.

Proof. Let (p, U) be a covariant representation of (B, G, β) on ^
such that p x U is a faithful representation of B Xβ G. Then p o
Φ is an equivariant completely bounded operator from (A, G, a) to
(β{&\ G, Ad 17), so we can apply Theorem 3.3 to realize p o φ in the
form poφ(a) = Tπ(a)V, where π, Γ, F, ̂ 5 W are as in that theorem.
Then for each aeA>ze CC(G) we have

T(π x W{ίA{a)iG{z)))V = Γπ(α)^(z)F = Tπ(a)VU(z)

= /> o φ(fl)l/(z) = /> X t/(/iί(Φ(fl))ϊσ(z)).

Thus .v h-> Γ(π x W(y))V maps i ^ α G into the range of p x C/, and
we can define

φ x /(y) = (p x c/J-^Γίπ x fΓ(y))K) for y G ̂  xa G.

Then Φ x / is a completely bounded map with

and the above calculation shows that (a) holds. Since the elements of
the form iA(^)h(z) span a dense subspace of A xa G, there is only one
continuous operator satisfying (a). Note that the strictly continuous
extension Ψ of (p x U) o (Φ x /) satisfies

Ψ(ίΛ*)) = T(π x W(iA(a)))V = Tπ(a)V = p(Φ(α)) € />(*),

soΦ = j9" 1oψo/^. But Ψ has the same completely bounded norm as
Φ x i, so this implies | |Φ||C^ < | |Ψ | | ^ = I|Φ x *\\cb> which gives (c).

To establish (b)? we approximate z uniformly on suppz by a sum
Έ,^A(^j)h(zj) where suppz7 c suppz. Since Φ is continuous,
Σiβ(Φ(aj))iG(zj) uniformly approximates Φ o z , and the continuity
of Φ x / gives

Φ x i(z) - X)Φ x i{iΛ{aj)iG{zj))

j

= J2*B(Φ(aj))iG(zj) - Φ o z .
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This implies (b). If Φ is completely positive, we can choose T = V*
(see Lemma 3.1), and then Φ x / is also completely positive. Since
a completely bounded operator is symmetric if and only if it is the
difference of completely positive operators, this also shows that Φ x /
is symmetric if Φ is. This gives (d), and it only remains to verify (e).

We shall show that

Φ x i(Sf(ά(z))) = Sf(β(Φ x Ϊ(Z))) for all / 6 A{G), z e Q(G, A),

and we begin by showing that Sf(ά(z)) is the pointwise product of the
function / and z. Choose a faithful representation p of A on &\ then
A x o G is faithfully represented on L2(G,JT) via p x λ [21, 7.7.5] and
ά(z) is given on L2 (G x G9^) by

(ά(z)v)(t,r) = J p(a;ι(z(s)))(v(s-{t,s-ιr))ds

(see [13, p. 155]). Let ξ, η e L2(G) be two vectors such that (f,y) =
(yξ,η) for all y e Q(G). Then for h,ke L2(G,J^) and z e CC(G,A)
we have

((/> x λ)(Sf(ά(z)))h, k) = (α(z)(Λ Θ ξ), (k ® I,))

= Jpxλ(f z)(h)(t)W)dt
= (pxλ(f.z)h,k).

Thus *Sy (ά(z)) = / z, as claimed. Now we have by (b) that

(Φ X |)(S>(ά(z)))(5) = Φ(/(J)Z(5)) = /(S)Φ(Z(S))

= f(s)Φ x i( ^

for all s G G, z e CC(G,A) and / e A{G). This completes the proof
of (e). D

4, Lifting through coactions. The basic structure of this section
is similar to that of §3 with the actions of that section replaced by
coactions, although the results and calculations become technically
more complicated. One underlying difficulty is that, given a coaction
δ of G on A, there is at present no nice *-algebra whose completion
is A xis G in the way that A xα G is the completion of CC(G,A) with
a suitable product and norm. At several points in the argument we
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shall split off technical sublemmas to deal with some tricky calculation.
Certain calculations will involve approximations arising from the use
of approximate identities: to simplify the notation and avoid explicit
inequalities we shall denote the approximation by ~ in these cases.

Theorem 4.1 is a covariant Stinespring result for coactions corre-
sponding to Lemma 3.1 for actions, and Theorem 4.5 an equivariant
version of the Wittstock decomposition analogous to Lemma 3.2.

THEOREM 4.1. Let G be a locally compact group, let δ: A —•
M(A ® C*(G)) be a nondegenerate coaction of G on a C*-algebra
A, and let W e 33{& ® L2(G)) be a corepresentatίon of G on %*. If
Φ: A —• 3B{&} is a δ — Ad W equivariant completely positive linear
operator, then there are

(1) a covariant representation (π,Y) of (A,G,δ) on a Hubert
space 3£,

(2) a continuous linear operator V: %? —• X, and
(3) a representation p ofΦ(A)f on 3£,

such that
(a)Φ(α) = V*π(a)V,

(c) (V®l)W = Y{V®\) and{V*®l)Y= W(V*®1),

(d) p(x)V =Vx,W*{x®\)We {Φ{A) ® 1)', and

(p (2) i)(W*(x ®l)W) = Y*(ρ(x)

for all aeA and x e Φ(A)'.

Proof. Let N be the subspace of the pre-inner product space A
of vectors of zero length, where the pre-inner product is defined by
{a®h,b®k) = (Φ(b*a)h, k) as usual. Then JΓ is the completion of
A Θ β^/N, and π, /?, and V are defined in the usual way (see Lemma
3.1). We shall define a unitary operator Y on X ® L2(G) by

Y(a ® h ® ζ) = (π ® i){δ{a)){V ® \{W{h ® ί)))

for all a e A, h e H and £ e L2(G), where we are viewing C*(G)
as acting concretely on L2(G). We shall show that this equation does
define a unitary operator Y by verifying

(i) Y is a well-defined operator on the algebraic tensor product

(ii) JV
(Hi) 7 is isometric from ((AQJT)/N)QL2(G) into &®L\G\ and
(iv) Γ is surjective when extended to X ® L2(G).
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We shall then prove that Y is a corepresentation and that (c) and
(d) hold. The conclusions not involving Y are standard Stinespring
theory.

We begin by noting that Y is the composition

A © MT © L2(G) - ^ > M(A 0 Q(G)) Θ {MT 0 L2(G))

0 L2{G)) Θ (X 0 L\G)) - ^ - > X 0 L2(G),

where for a Hubert space -2*, eval: 3B{&) Θ -2̂  -• -S* is the linear
map such that eval(Γ ® /) = T(l). Thus 7 is a composition of linear
operators and hence is a well-defined linear operator; this proves (i).
To obtain (ii) and (iii) we need a couple of lemmas.

LEMMA 4.2. / / / = (η * ξ)~ e A(G) with η,ξe L2(G), then

{(π ® i)(m)(b ® h ® ξ), c ® A: ® >/) = (Φ(c*Sf(m)b)h, k)

for all m e M(A ®

Proof. First we suppose that m = α ® z G AQL1(G). Then the
left-hand side is

(ab 0 A Θ zξ, c ® /: 0 A/) = (αί? ®h,c®k) (zζ9 η)

= (Φ(c*ab)h,k)(z,f)

because the pairing between A(G) and C*(G) is given by

(z9f) = (zξ9η)iίf={η*ξ)-9

= (Φ{c*a(z9f)b)h,k)

= (Φ(c*Sf(a®z)b)h,k).

This formula extends to A 0 C*(G) by continuity, and then to
M(A 0 C;(G)) by strict continuity. D

LEMMA 4.3. If a, beA, h,keJT, and ξ,ηe L2(G), then

{Y(a ®h®ξ),Y(b®k® η)) = (a®h,b®k) {ξ9 η).

Proof. By definition we have

I = (Y(a®h®ξ)9Y(b®k®η))

= (π 0 i(δ(a))(V 0 \{W{h® ξ)))9 π 0 i(δ(b))(V 0 \{W{k 0 η)))).
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We can approximate W{h ® ζ) and W(k ® ή) by finite sums ]Γ hj ® £,-
and X) kj®ηj mβ?®L2{G). Let /)> denote the functional in vN(G)* =
i4(G) defined by

(g,fjr) = (gξj,*lr)

for g G L^G) c C*(G). Let e7 be a bounded approximate identity
for A and let Vγ: J^ -> 3T be defined by Vy{h) = eγ ® Λ. Then the
operator F occurring in the Stinespring decomposition is the strong
operator limit of the Vγ; this is how V is defined when A does not
have an identity [24, p. 197]. Choose γ large enough to ensure that
Vγ(hj) is near V(hj), Vγ(kr) is near V(kr)9 and e*Sfjr(δ(b*a))eγ is near
Sfjr(δ(b*a)) for all 7 and r. Then

r ® ηr)),

which by Lemma 4.2 equals

/ is therefore close to

Σ(Φ(Sfjr(δ(b*a)))hj,kr).

Since Φ is equivariant,

= (a®h,b®k)(ξ,η).
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The various approximations involved can be made arbitrarily accurate,
so Lemma 4.3 follows. D

Proof of Theorem 4.1 (continued). It follows from Lemma 4.3 that
if Σ dj ® ζj e(AQJ^)Q L2(G), then

Thus Y is a well-defined isometry on (AQ^)/yT Θ L2(G); this estab-
lishes (ii) and (iii).

Since Y is an isometry, it will be surjective if it has dense range.
Thus to prove (iv) it will be enough to approximate an arbitrary el-
ementary tensor by something in the range of Y. So fix a ® h ® ζ e
AQ^Q L2{G). Choose γ such that aeγ ~ a and Vγ(h) = ey®h~Vh,
and factor ξ = z η for z e Q(G) and η e L2(G). Then

a®h®ξ~ aeγ ®h®z-η — (n(a) ® z)(ey ®h®η)

= (π ® ϊ){a ® z)(K}; ® 1(Λ ® ?/)).

Since the coaction δ is non-degenerate, the span of δ{A) (A ® C*(G))
is dense in 4̂ ® C*(G) [11, Theorem 5], so α ® z can be approximated
by a finite sum Σ ^ ( Λ 7 )(1 ® zy). Thus

®i(δ(aj)(l ® zj))(Vγ(h) ® A/)

7

so the range of Γ is dense and (iv) follows. We have proved that Y is
unitary.

To show that Y is a corepresentation of G on ^ we shall check
that 7 satisfies the identity (Y ® 1)(1 ® σ)(Γ ® 1)(1 ® σ) = / ® δG(Y)
on X ® L2(G!) ® L2(G), where σ denotes the flip σ(ξ®η) = η® ξ.
Applying the left-hand side to an elementary tensor a<g)h(g)ξ<g>ηin

L2(G) ® L2(G) gives

= (7 ® 1)(1 ® σ){π ® /(<J(α))(K Θ 1(FΓ(A ® >/))) ® ξ}.
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The element W{h®η) in H ® L2(G) can be approximated by a finite
tensor Σhj ® ̂  then each η'j can be factorized η'j = z7- r\j for some
z7- G C;{G) and */,- e L2(G). Then, for each j \ δ{a){\ ® zy) e Λ ®
C*(G)9 and hence can be approximated by a finite tensor Σr

 ajr®yjr-
We now choose γ large enough to ensure that Vγhj = eγ ® hj is near
Vhj for all y and ajrej is near Λ;> for all j \ r. Then

x ( F ® 1 (8)

on applying the coaction identity (δ ® /) o J = (/ ® J^) o δ. Continuing
this calculation gives

π ® i <g> i((i ® δG) o δ(a))((V ® 1 ® l)(ίF® 1)(1 ® σ)

x (1 ® W){h® η®ξ))

δ(a))((V ® 1 ® 1)/®^(^)(1 ®σ){h®η®ξ))
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Applying the right-hand side of the corepresentation identity for Y to
the same elementary tensor yields

i®δG{Y){a®h®ξ®η)

= (1 ® WG)(Y® 1)(1 ® W£){{a®h)®ξ®η)
= (1 ® WG){Y ® l)(a ®h®WG>{ξ® η))

x(h®WG(ξ®η))}

WG){V ® 1 ® 1)

δG{W))(h®ξ® η)

Again the approximations can be made arbitrarily accurate, so Y sat-
isfies the corepresentation identity.

To show that (π, Y) is a covariant representation of (A,G,δ) we
have to prove that

π ® i{δ{a)) = Y(π{a) ® l)Y* for a e A.

Let b ® ζ be an elementary tensor in A Θ (Jf ® L2(G)); then

π ® z((5(α))r(6 ® C) = π ® ι(<5(α))π ®

= Y{ab

So (π, F) is a covariant pair. The consistency condition (c) also follows
from an approximation. Note that

Y(V ® 1(0) ~ Y(eγ ®ζ) = (π® i)(δ(eγ))(V ® \)(W(ζ)).

Because δ(eγ) converges to 1 strictly in M(A ® C*(G)), and π ® / is

non-degenerate, the right-hand side converges to V® 1 (W(ζ)), and this

proves the first inequality in (c). To prove the second we evaluate both

sides on a generator a® W*(h®y • η) for X, where aeA,η& L2(G),

and y e C*{G). We choose Σ a j ® z i n e a r <^(Λ)( 1 ®y)> and γ such that

^ 7 ® h ® η is close to (V ® l)(h ® η) and such that | | α 7 ^ - α 7 | | is small
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for all j . Then

{V* ®\)Y{a®W*(h®y -η))

= (V*

n)

= Φ®i(δ(a))(h®y η)

= W(Φ{a)®l)W*(h®yη)

= W{V*®\){a®W*{h®y-η)).

This proves (c) and it remains to verify (d).
Let x e Φ{A)' and aeA. Then

(x®l)W(Φ(a)®l)W*

and the slice maps Sf, for / € A(G) = υN(G)*, may be applied
to it. Since property (1) in the definition of a coaction implies that
Sf(δ(a)) G A, the equivariance of Φ gives

Sf((x®l)W(Φ(a)®l)W*)

= xSf{W(Φ{a) ® \)W*) = xΦ(Sf{δ(a)))

= Φ(Sf(δ(a)))x = Sf(W{Φ{a) ®\)W*(x®\)).

Thus
{x ® \)W{Φ{a) ®\)W* = W{Φ(a) ® 1)ΪF*(JC ® 1),

and therefore

W*(x ® l)ΪΓ(Φ(α) ® 1) = (Φ(Λ)
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SO

ιy.
Finally for a in A and ζ in %* <g> L2(G), a direct computation gives

the last part of (d):

Y{p®i{W*(x®l)W)(a®ζ))

= (π ® i)(δ(a)){(p(x) β 1)(K 0 1) W(C)} by (d)

= (p(x) ® l)(π ® ι(<5(

for a\\a e A and £ E βf®L2(G). This completes the proof of Theorem
4.1. D

REMARK 4.4. When the completely positive map is scalar-valued—
i.e., a positive functional—Stinespring's theorem reduces to the
Gelfand-Naimark-Segal construction, and the equivariant version
(Lemma 3.1) reduces to the well-known construction of a covariant
representation of (A, G, a) from an invariant functional. It seems rea-
sonable to say that a positive functional ω E A* is invariant under a
coaction δ if

LSω(δ(a)) = ω(α)l in M{C*r{G)) for all aeA.

For such a functional, Theorem 4.1 gives a covariant representation
(π ω , Yω) of (v4, G, <$), where πω is the usual GNS-representation of A
associated to ω.

In this case, the representation μ of A(G) corresponding to the
corepresentation Yω is given on the dense subspace A of %?ω by μ(f)(a)
= RSf(δ(a)) for / e Λ((j). To see this, choose ξ, η e L2(G) such that
(f9y) = (y^5 >/) for y E C*(G)9 and suppose for simplicity that 4̂ has
an identity. Then for α, 6 E ̂ 4 we have

{Sf{Yω)(a)9 b)ω = (yω(α β ί ) , fc 0 A/)

= (Sf{πω<8>i(δ(a)))(l)9b)

as required. It is interesting to note that, while it is quite easy to
verify directly that / ι-» Sf(δ(a)) is a well-defined homomorphism,
it does not appear to be so obvious that μ is *-preserving. Thus the
GNS construction may not be significantly easier than our Stinespring
theorem. D
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THEOREM 4.5. Let δ be a coaction of a group G on a C*-algebra A,
and let W be a corepresentation of G on a Hίlbert space βf. If Φ is an
equivariant symmetric completely bounded linear operator from A into

then there are equivariant completely positive linear operators
and Φ2 from A into 3§{^) such that Φ = Φj - Φ 2 and | |Φ|U =

This result is the coaction version of Lemma 3.2, and the proof
has the same overall structure though the averaging is more compli-
cated because of the coaction. By the usual Wittstock theorem [25]
completely positive maps τ{ and τ2 can be chosen satisfying the con-
clusions except for the equivariance. It will therefore be enough for
us to construct from each completely bounded map τ an equivariant
completely bounded map m(τ) in such a way that m(τ) depends lin-
early on τ, m(τ) is completely positive if τ is and m(τ) = τ if τ is
already equivariant. The idea is to average τ using an invariant mean
m on the von Neumann algebra υN(G) — λ{G)", just as an invari-
ant mean on L°°(G) can be used to average bounded functions on an
amenable group G.

In order to write down the appropriate invariance condition this
mean must satisfy, we shall need to extend the usual notion of slice
map to non-normal functional on a von Neumann algebra. We shall
deal with the right slice maps RSf—obviously we can define left slice
maps LSf with similar properties. Recall that ® denotes the von Neu-
mann algebra spatial tensor product of two von Neumann algebras.

LEMMA 4.6. Suppose M, N are von Neumann algebras acting on
%T,& respectively, and feN*. For each T e &{β?)®N we define an
operator RSf(T) e &{&) by

(*) (RSf(T)h\k) = (fLSωhk(T)) forh,ke^,

where LSωhk denotes the usual spatially defined, slice map correspond-
ing to the normal functional ωhk\ Q\-+ (Qh\k) on 3S{β^). Them

(1) RSf is a bounded linear map of norm < \\f\\.
(2) / / / > 0 in N* andT>0 in M®N, then RSf{T) > 0 in
(3) IfUe 3B{&) and QeN, then

U(RSf(T)) = RSf((U® 1)Γ), RSf(T)U = RSf{T(U ® 1)),

RSQ.f{T) = RSf(T(l ® β)), RSf.Q(T) = ΛS>((1 ® β)Γ),

where, for example, Q f is the functional T h-> f{TQ) on N.
(4) IfTe M®N, then RSf{T) e M.
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Proof, We notice that the right-hand side of (*) is a bounded sesqui-
linear form in h, k of norm < ||/| | ||!Γ||, so RSf is certainly a bounded
linear map of 38{%?)®Ή to &{%f) of norm < ||/| |. If T > 0 and
A G ^ , then LSωhh(T) > 0 in N. It follows that

(RSf(T)h\h) = (f,LSωhh(T)) > 0 for all h e H,

so RSf(T) > 0 in Sty) and (2) holds. If U € &{&), then

= (f,LSωh,((U®l)T)) = (RSf((U®l)T)h\k);

the other parts of (3) follow similarly from the analogous properties
of the usual slice maps. Finally, suppose T e M®N and Q e Mf.
Then Q ® 1 e (M®N)', and by (3) we have

Q{RSf{T)) = RSf((Q 0 1)Γ) = RSf(T(Q ® 1)) = RSf(T)Q\

thus RSf(T) e (M'Y = M. This completes the proof. D

Recall that the comultiplication 6Q extends to a homomorphism
6Q\ υN(G) —»• vN(G)®υN(G)\ to see this, just observe that SQ is
given spatially by

PROPOSITION 4.7. There is a positive functional m on vN(G) such
that

LSm(δG(T)) = (m,T)l forTevN(G).

Proof. Choose a decreasing net {Ka} of compact neighborhoods of
e with P[aKa = {e}, and let ξa = μ{Ka)~ι/2χKn, so that each ξa is a
unit vector in L2(G). Let /* G -4(G) be the functions

so that for z e L^G) we have (z,/α) = (z * ξα |^α). Then by Holder's
inequality

\fa(s)\ < I \ξa(S-lt)\ | 4 ( 0 | dt < \\λj\ξa)\\2\\ξa\\2 = 1,

and we have

in other words, the net {fa} is bounded in A{G) = vN(G)* c vN(G)*.
We can therefore suppose by passing to a subnet that {/J converges
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in the weak *-topology—to m, say. We claim that this limit has the
required property.

We have to prove that, for any T evN(G) and ξ,η e L2(G),

(1) (LSm(δG(T))ξ\η) = (m

Let g e A(G) be given by

Then by definition of the left slice map (Lemma 4.6), the left-hand
side of (1) is

(m,RSg{δG(T))) = lim(RSg(δG(T))ζa\ζa)

= lim(δG(T)(ξa®ξ)\ζa®η)

= JJ
= Jf

Now

JJ \W£(ζa®ξ)(r,s)-ξa(r)ξ(s)\2drds

\ξa(r)\2\ξ(rs)-ξ(s)\2dsdr

= f\ta(r)\2\\λ7ιξ-ξ\\2

2dr.

The continuity of the left regular representation λ implies that
HA^1^ - ξ\\2 —> 0 as r —>• e, and supp£α = Ka is shrinking to e, so

II W£{ζa ®ξ)-ξa® ξ\\2 -* 0 as a increases.

Of course, we have a similar convergence in the ξa<8>η variable, so

\((T ® l)WS{ξQ®ξ)\W£(ξa ® η)) - (Tξa®ζ\ξa ® ̂ ) | - , 0.

Thus

(m,RSg(δG(T))) = li

and m has the required invariance property. The mean m is obviously
positive. D

REMARK 4.8. (1) Notice that the fa constructed in the proof also
satisfy
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and
fa(s) = 0 unless s e KaK~\

so that /* —• χe pointwise. If G is second countable, then we can work
with sequences throughout, and the dominated convergence theorem
implies that for μ e M(G)

(m9μ) = ]im(fn9μ) = limy fn{s)dμ{s) = μ({e}).

This should help give some intuitive feeling for the "mean" m.
(2) The functional m is also a topologically invariant mean on G

in the sense of Granirer [9]. To see this, let V evN(G) and suppose
u e A(G) satisfies u > 0 (as a functional on vN(G)) and u(e) = 1.
Then

(m, u V)= lim(/Q, u V) = lim(w/β, V)9

a a

by definition of the module action of A(G) on vN(G). But

l|κ/α - fah(G) -+ 0 since w(e) = 1;

to see this, note we can approximate u in A(G) by a function which
is identically 1 near e, [7, 4.11], and that the supports of the fa are
shrinking to {e}. Thus

\(ufa, V) - {fa, V)\ —• 0 as α increases,

and therefore

(3) After we had found this proof of Proposition 4.7 we discovered
the result had already been obtained by Enock and Schwartz [6, Propo-
sition 2.11]. They deduce it from a general discussion of amenability
of Kac algebras [6, Theoreme 2.4]; in their terminology, our m is a
right invariant mean on the Kac algebra KS{G). We have preferred to
retain this self-contained proof, but we refer to [6] for some interesting
applications. D

We are now in a position to define our averaged version of a com-
pletely bounded map τ: A -• <%{&) (such that τ(l) = 1). There is a
unique strictly continuous extension of τ®/ to a map of M(A<S)C*(G))
into gg{%T ® L2(G)), and we can define

m(τ)(a) = RSm(W*(τ Θ i{δ{a)))W).

Notice right away that if τ is already equivariant, then

Sf(τ <g> i(δ(a))) = τ(Sf(δ(a))) = Sf(W{τ{a) ® 1)W*) for all / e A*
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which implies
τ®i{δ{a)) = W(τ{a)®\)W\

and hence that

m(τ)(a) = RSm(τ(a) ® 1) = (m, l)τ(α) = τ(a)

(taking T = δe in the invariance condition forces (m91) = 1). The
map

a h-> W*(τ ® ι(<5(fl)))fF: ,4 -> a(jr)®υN(G)

is completely bounded, so to verify that m(τ) is always completely
bounded we just need the following lemma.

LEMMA 4.9. Suppose T: A —• ^(^f)~®N is completely bounded and
f G N*. Then RSf o Γ is completely bounded', it is also completely
positive if T is and iff > 0.

Proof. Suppose (α^) e Mn(A). Then

(1) ((RSf o Γ) β /π)(fly) = (JWy o Γ(fly)) = RSn

f(T(au)),

where i?S^ denotes the slice map from &(&) ~® N®Mn to 38{&)®Mn.
(To see this last equality, let {e^} be the usual basis for Cn and apply
the vector functional R »-+ (i?(Λ ® ̂ ) l ^ ® ̂ /) to both sides.) Thus

\\((RSfoT)9in)(aij)\\ < \\RS}\\\\T®in\\\\(au)\\

< 11/11 ll(αy)ll \\T\\cb,
and RSfoT is completely bounded. If / > 0, T is completely positive
and (ay) > 0 in A/Λ(^), then (Γ(fly)) > 0 in ^ ( ^ ) ® AfΛ. The
positivity of ((/?5/oΓ)®/)(fl/7 ) now follows from (1) and the positivity
of RSJ (Lemma 4.6). This proves the lemma. D

To prove Theorem 4.5 it remains only to verify that m(τ) is δ -
Ad W equivariant. So we have to prove that

m(τ)(RSg(δ(a))) = RSg(W(m(τ)(a) ® \)W*)

for a € A and g e A(G), or, equivalently, that

RSm(W*(τ®i(δ(RSg(δ(a)))))JV)
[ ] =RSg(W(RSm(W*(τ®i(δ(a))W))W*).

We're going to want to juggle these slice maps around, and this will
require a little care since RSm is not the usual spatially-defined slice
map. We introduce the outer slice map

= LSω oRSg = RSg o LSω: L®N®M -• N
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for ω G I», g G Λ/*, and the middle slice map

MSf . L®N®M -> L®M,

for f&N*, which is defined by

η) = if,

for A,A: € •Γ(L) and C,^ G &(M). Notice that, modulo the flip
σ: L~®N"®M —• L~®M~®N, MSf is just the right slice map RSf
defined in Lemma 4.6, and therefore has all the same properties. We
introduced MSf because

(3) RSfoRSg = RSgθMSf for f<EN*,geM*.

To see this, note that if g = a)ζ>η, then

(RSfoRSg(T)h\k) = (f,LSωhλoRSg(T))

= (/, 0SωtΛ9g(T)) = (MSf(T)(h ® ζ)\k ® η)

= (RSg(MSf(T))h\k).

With these conventions, the left-hand side of (2) becomes

RSm(W*(τ®i(RSg(δ ® i{δ{a)

= RSmoRSg{{W*®l){τ®i®i{i®δG(δ(a))))(W®\))

using the coaction identity

= RSgoMSm{{W*®\)i®δG{τ®i{δ{a))){W®\)) using (3)

= RSg o MSm{{W*

= RSg o MSm{{W® \)σ{\

x((τ ® i(δ(

using the fact that W is a corepresentation

= RSg(WMSm{{\

by Lemma 4.6. Let Γ G ̂ (^)®υΛΓ(G), h,k £βT, ηt G L2(G) and
define ^ G A(G) by
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Then

(MSm((l ® WG){T® 1)(1 Θ Wg)){h <g> ηx)\k ® η2)

= {MSm{i Θ

= (m,L5ωu(Γ))(>/i|ι/2) since m is invariant

= (RSm(T)h\k)(ηι\η2)

= {(RSm(T)®l)(h®ηι)\k®η2).

Applying this with T = (W*(τ ® /(J(α)))fΓ) gives immediately that
the left-hand side of (2) is equal to

RSg(W(RSm(W*(τ Θ /(^(fl)))^) ® l)W*)9

which is just the right-hand side of (2).
This completes the proof of Theorem 4.5. D

The direct sum of two representations of a group G is a representa-
tion; the following lemma is the analogous result for corepresentations.

LEMMA 4.10. Let Y\ and Y2 be corepresentations of a group G on
Hubert spaces β^χ and βf2 and let ij\ βή -+ & = %\ ® &2 denote the
natural inclusions. Let

u:(#[® L2(G)) Θ (^ζ ® L2(G)) -> JT ® L2(G)

be defined by

Then u is a unitary operator and

Y = U(θ Y2)
U

is a corepresentation ofG on βf.

Proof. Clearly u is isometric and has inverse given by

where Pj is the projection of %\ Θ ̂  onto Jy. If

V: (MT ® L2(G) ® L2(G)) Θ [MT ® L2(G) Θ L2{G))

L2{G) ® L
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is defined in a similar fashion to u, then Y <g> 1 can be described in
terms of ϊ) ® 1 by

o Y2®ι)

Recall that σ: L2(G) ® L2((?) -+ L2(G) ® L2(G) is the flip σ(£ ® η) =
?; ®^, and that (ϊ} ® l ) σ = (1 ® σ)(Y, ® 1)(1 ® σ) and similarly for Y.
Now

σ)Θ(l®(τ)) = F

so that

(r®iχr®i) f f

, ® i o \ /(7,®ir o \
i/ V ° (r2<s>i)σy

= /(r,®i)(r,®ir o \
V o (r2®i)(i2®i)v

wG o \ / r , ® i o \
0 1 ® Ϊ F G ; V ° Ϊ 2 ® 1 /

® ^ 0
o \®

Hence 7 is a corepresentation. D

THEOREM 4.11. Let δ bea non-degenerate coaction of a locally com-
pact group G on a C*-algebra A, and let W be a corepresentation of
G on a Hubert space %f. If Φ is an equivariant completely bounded
linear operator from A into 3B{&\ then there are

(1) a covariant representation (π, Y) of {A, G,δ) on a Hubert space
JΓ, and

(2) continuous linear operators V: & -> 3?, and T\3£ -+%*
such that

(b) (V ® \)W = Y{V ® 1) and ( Γ ® 1 ) 7 = r ^ ( Γ ® 1), and
(c)||Φ|U =
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Proof. The proof is basically similar to the proof of Lemma 3.2.
First we reduce to the case where Φ is symmetric. To do this, let
Φ: A -> ig'pF θ & ) be defined by

Φ(a)=( °
) o

then Φ is symmetric and completely bounded with \\Φ\\Cb = ||Φ||C&
the notation of the lemma with ^ = %[ = βft we set

— =

It is straightforward to verify that

and that, for all / e A(G) and all Q, R, S, T e &{MT ® L2{G)),

Sr(u(Q R)u*) = (Sf{Q) Sf{R))*f{U{s T)U) \Sf{S) Sf(T)J

as operators on %f®%f. The identity Sf(c)* = Sf.(c*) implies that Φ*
is also δ — Ad W equivariant. Putting all this together gives

/ 0 Sf{W{Φ{a)®\)W*y
Φ(Sf(δ(a)) =

\Sf(W(Φ*(a)Θl)W*) 0

0 \ , / 0 Φ(α)
W)uu\φ*{a)W)uu\φ*{a)®\ 0

o w
= Sf{W(Φ(a)®l)W*)

so that Φ is (δ - AdWQ-equivariant. If π, Y, T, V_ can be found
satisfying conditions (a, b, c) appropriate to Φ and W_, then let T =
P\ T_ and V = VJ2, where p\ is the projection of %? ®β^ onto the first
coordinate βf and ii is the embedding of X into / φ / onto the
second coordinate. Conditions (a) and (c) are easily checked, and (b)
follows from the analogous properties of Γ and V_, and the observation
that

(i2<8>lW=W(i2®l) and (p{ (8) l)W = W(p2 ® 1).

Therefore we shall suppose that Φ itself is symmetric. Apply Theo-
rem 4.5 and Theorem 4.1 in the standard way one after the other (see
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the use of 2.1 in the proof of Theorem 2.2). Thus there are covariant
representations (π, , Yj) oΐ(A,G,δ) on Hubert spaces Xj and bounded
linear operators Vj : %? -* Xj (j = 1,2) such that

Φ(a) = Vι*πι(a)Vι-V2*π2(a)V2

for all a e A, \\Φ\\cb = \\V*Vλ + F2*F2 | |, and K, r ; , Ĥ  satisfy the
intertwining condition (c) of Theorem 4.1. We now let 3? =
π = π\ Θ π 2 ,

Γ = (*?*?), ^ = ( _ ^ ) > and Y =

where w is as in Lemma 4.10. Conclusions (a) and (b) are checked
as in Theorem 3.3. The covariance of (π, Y) and the intertwining
property (b) follow directly from the corresponding properties of Yj
(j = 1,2). Property (c) follows from | |Γ| | = ||K|| = \\VX*VX + V2*V2\\1/2

and \\Φ\\cb = \\V*Vι + V£V2\\. This completes the proof. α

COROLLARY 4.12. Let δ be a nondegenerate coaction of a locally
compact group G on a C*-algebra A, and let W be a corepresentation
of G on a Hilbert space &. IfΦ: A-> &{&) is a completely bounded
linear operator satisfying

(<5(α)) = W(Φ(a)®l)W*

for all a e A, then there is a completely bounded operator φ: A>\δG
such that, for all aeA and fgeA(G),

φ((l®Mg)δ(a)(l<g>Mf)) = Sg(W)Φ(a)Sf(W).

Proof. Choose π, Y, Γ, V as in Theorem 4.11 and define

φ{z) = T{π x Y)(z)V for zeA*δG.

Then φ is completely bounded with \\φ\\cb < \\T\\ \\V\\ = \\Φ\\cb. If φ
is the unique strictly continuous extension of φ to M(A x<$ (J), then
φ o δ(a) = T(π x Y{δ{a))) V = Tπ(a) V = δ(a). Thus

<

From condition (c) of Theorem 4.11 we obtain

φ{{\®Mg)δ{a){\®Mf)) = T{π x Y){(\ ® Mg)δ{a){\ ® Mf))V

= TSg(Y)π(a)Sf(Y)V = Sg((T ® l)Y)π(a)Sf(Y(V ® 1))

= Sg(W)Tπ(a)VSf(W) = Sg{W)Φ{a)Sf{W\

as required. D



EQUIVARIANT COMPLETELY BOUNDED OPERATORS 185

COROLLARY 4.13. Let δ and e be non-degenerate coactions of a lo-
cally compact group G on C*-algebras A and B. If Φ: A —• B is a
completely bounded linear operator such that Φ ® i(δ(a)) = e(Φ(a))
for all a £ A, then there is a completely bounded linear operator
Φ x /: A xî  G —• B x ε G satisfying

Φ x /((I ® Mg)δ{a){\ ® Mf)) = (1 ® M^)ε(Φ(α))(l ® My)

Proof. We choose a faithful nondegenerate representation πxW of
B xiε (J on a Hubert space ^ . Then

(π o φ ) x /(<5(α)) = (π ® /) o (Φ ® /)

= π ® z(β(Φ(α))) = W (̂π o Φ(α)

so that π o Φ is J — Ad W7 equivariant. By the previous corollary there
is a completely bounded linear operator ψ: AxδG —• 3§{&) such that

= π x

for all / G ̂ ( ( J ) ; hence the outside equality is true for all / E
We define Φ x i = (π x W)~ι o ψ, which has the required proper-
ties. D

5. Lifting equivariant maps twice. Let Φ: (A,G,a) —> (B,G,β) be
an equivariant completely bounded map. In §3, we constructed a
completely bounded map Φxi: AxaG -+ BxβG which is equivariant
for the dual coactions ά, β of G. By Corollary 4.13 there is therefore
a completely bounded map

(Φ x 0 x /: (A xa G) xά G -> (5 xî  G) Xβ G

satisfying

(Φ X I) X i(ά(iA(a)iG(z))(l ® My)) - )»(li?(Φ(fl))lG(z))(l(8)My)

for α € A, z e CC(G) and f e CQ(G). We now prove that the existence
of this second lifting characterizes the complete boundedness of an
equivariant map.

THEOREM 5.1. Let a and β be actions of an infinite amenable locally
compact group G on C* -algebras A and B, respectively, and let Φ: A —>
B be a bounded operator satisfying Φ(as(a)) = βs(Φ(a)) for a e A,
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s e G. If there is a continuous linear map θ from {A y\a G) *<$, G to
(B*βG)XβG satisfying

θ{ά{iA{a)iG{z)){\®Mf)) = β{iB{Φ{a))iG{z)){\®Mf)

for a e A, z e CC(G), f e Co(G), then Φ is completely bounded.

We would like to prove this theorem by showing that the compo-
sition of θ with the duality isomorphisms (A xi G) xi G = A ® J£,
(Bx\G)xG = B®^ of Imai andTakai ([10], see also [14, §6]) agrees
with Φ® / on the algebraic tensor product AQ^\ this would imply that
Φ® / is bounded on A © ^ , and hence that Φ is completely bounded.
Unfortunately, we only know what θ does on a set of generators which
are not carried into AQ3? under the duality isomorphism. We get
around this problem by using the following characterization of com-
pletely bounded maps, which may be of some independent interest.

LEMMA 5.2. Let A and B be C*-algebras, and let Φ: A —> B and
Ψ: A ®3£ -> B ® 3? be bounded linear maps. Then the following
statements are equivalent:

(1) Φ is completely bounded and Ψ = Φ ® z;

{2) RSgo^ = Φo RSg for all ge&*\
(3) LSf o ψ = LSfoφ for all f e B\

Proof. That (1) implies (3) follows from the continuity of both sides
and a computation on elementary tensors. Now suppose (3) holds, and
g € Sΐ*. Then for any / e B* and y e ^ ® l , the Fubini theorem
gives

f(RSg(Ψ(y))) = g(LSf(Ψ(y)))

which implies (2). Finally, suppose (2) holds. Then for / e B*
g eJf* and y e A © JΓ, we have

= f(RSg o Ψ(y)) = /(Φ o RSg(y))

= ((/ o Φ) ® g)(y) = (/® g) o (Φ ® i){y).

Hence Φ ® / is bounded on A 0 J , and its extension to A ® ̂  agrees
with Ψ. Since we can embed each 4̂ ® Mn in yl © ̂  in such a way
that Φn is the restriction of Φ® /, this shows that for each n, \\Φn\\ <
||Φ®/H = ||Ψ||. This gives (1). α
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Proof of Theorem 5.1. The duality isomorphism θ is usually given
in three stages:

{A x α G) x ά G Λ {A ® C0(G))

£ G 4
we shall use the isomorphisms 0, ^ described in [14, 6.1, 6.2] (and
denoted there by Φ, Ψ). We fix a faithful representation π of A on ^ ,
so that A x a G is represented concretely on %? ® L 2 (G) via Ind π = π x A
[21, 7.7.5], and (Λ x α G) xά G acts on & ® L2(G) ® L2(G). If we
similarly use a representation πi of B on ^ to realize (B x\ G) x G
on ^f ® L2(G) ® L2(G), then for α e A, z e Q(G) and / e C0(G) we
have

(1) θ ( ά ( π ( a ) ( l ® λ f

= β{πx{Φ{a)){\®λ{z))){\®Mf).

We shall first compute ψoφ on the generator

and use this and the analogous computation for (B x G) xi G to pull θ
over to a map Ψ\ = (ψoφ)oθo(ψoφ)~ι of (A®CQ(G)) X/(8)T G into
(5 ® Co(G)) x/0 τ G. We then rewrite property (3) of Lemma 5.2 in
terms of the corresponding map Ψi on {A ® Q(G)) x ί Θ τ G, and finally
verify that our Ψj has the required property.

We shall view both crossed products {A ® Q(G)) x α 0 τ G and
(yίΘCo(G)) x/^τG as algebras on (β?®L2(G))®L2(G) via the faithful
representations (π ® Af)~ x A. From the proof of [14, Lemma 6.1] we
have

= φ(ά(π(a)))φ(ά(l ®λ{z)))φ(l ®Mf)

= (π ® M)^(α ® 1)(1 ® 1 ® A(z))(π

By definition, ψ is induced from the automorphism γ of 4̂ ® Q(G)
given by y(y)(5) = αjHyί^)) ( s e e t 1 4 ' Lemma 6.2]), which is the iden-
tity on 1 ® C0(G). Hence

ψoφ(c) = ψ((π®M)~(a® 1))(1® 1 ®

= (π®Λ/)~(y(α® 1))(1 ® 1 ® A(z))(π®

We now compute this operator on L2{G^mM) =
First of all, for ^ G C0(G, ̂ ) we have

[(π ® JI/)-(g)(i)(r)](i) = [(π ® Λ/ 1

= π(i ® τ;ι(g)(t))(ξ(r)(ή) = π(
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Therefore

[ψoφ(c)ζ(r)](t)

= π(γ(a ® l)

= π(α,-,Γ-.(a))

If we write

(2) w(s){u) = wz>/>έϊ(s)(w) = z

then w e CC(G, C0(G,A)), and a calculation shows that

[(π ® A/)- x λ(ti;)(£)(r)] = [^ o φ(c)(ξ)(r)](t).

Thus ^ o 0(c) is given by the continuous function wzj^a defined by
(2). Of course, equation (1) and exactly the same calculation show
that

ψ o φ(Θ(c)) = wzJMa) e CC(G, C0(G, B))9

which implies that

(3) Ψj (Wzjya) = (ψoφ)oθo(ψo φ)~X{wzjA) = WzJMa).

Notice that the usual approximation arguments show that the w's span
a subspace of CC(G9CQ(G9A)) which is dense in the inductive limit
topology, and hence is also dense in CQ(G,A) XI G.

The isomorphism θ of (A ® CQ(G)) XI/̂ T G onto A® 5? carries the
generator

iA®Co(G)(a ® f)h(z) = (π ® Af)~(α ® /)(1 ® 1 ® λ(z))

into the generator a® (Af/λ(z)) for A®3?(L2(G)). Given £ e yί*? the
slice map 5^: 4̂ ® CQ(G) —• Co(G) is completely bounded and /® τ — τ
equivariant. Thus by Theorem 3.5 there is a continuous linear map
Sg x / of (A®Co(G)) xi/<g>τ ^ into CQCG) x τ G satisfying

(4) Sg x

and

(5) ^ x /
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The analogue of (4) for the algebra B implies that for g e JS* we have
a commutative diagram

CQ(G) x τ G

Thus for w e (A ® C0(G)) xi G we have

M x λ(S, x /(ΨKti/))) = S,(0(Ψ

Hence condition (3) of Lemma 5.2 is equivalent to

(6) Sg x /(Ψi(tu)) = ^ o φ x j(w) for # e B\w e (A ® Co((?)) xi G.

The slice map Sg sends a continuous function y e CQ(G,B) to the
function s —• g(y(j)) in QίG), so condition (5) can be rewritten

((Sg x i)(w)(s))(u) = g(tι;(j)(M)) for ti; € CC(G,CO(G,^)).

We can now compute:

Sg x ι(Ψi(tι;z>/^))(i)(iέ) = Sg x /(^,/,φ(β))(5)(w) (by (3))

= z(s)f(s-ιu)g(Φ(a-ι(a))) = Sgoφ x i(wzJtfl)(s)(u).

Thus (6) holds for w's of the form wzjta. Since such w's span a
dense subspace of (A Θ Q ) xi G? and both sides of (6) are continuous,
(6) holds. Thus Φ satisfies condition (3) of Lemma 5.2, and Φ is
completely bounded. This completes the proof of Theorem 5.1. D

There is an analogue of this result for completely bounded maps
φ: A-± B which are equivariant for coactions δ, ε of G on A, B. This
time we first apply Corollary 4.13, and then use Theorem 4.5 to give a
bounded map (φ x /) x / from (A x\s G) * $ ̂ t 0 (^ ™ε G) ™έ G. Again, the
existence of such an extension implies that φ is completely bounded;
the proof of this is similar to that of Theorem 5.1, except that it uses
Katayama's duality theorem ([12], see also [14, §4]) in place of Imai
and Takai's theorem. It turns out to be quite straightforward, so we
shall omit the details.

THEOREM 5.3. Let δ,ε be coactions of an infinite amenable locally
compact group G on C*-algebras A, B respectively, and let Φ: A —• B
be a continuous linear map satisfying

Φ(Sf(δ(a))) = Sf(ε(Φ(a))) foraeAJe A(G).
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Suppose there is a continuous linear map Ψ of (A xδ G) x$ G into
(B xεG) XiG satisfying

(z)) = iBxG(e(Φ(a))(l ®Mf))iG{z)

for aeA, f e CC(G), z e CC(G). Then Φ is completely bounded, π

6. The von Neumann case and multilinear operators. In this sec-
tion we shall briefly outline and discuss normal liftings of completely
bounded operators between von Neumann algebras and some results
on multilinear operators. The situation for normal completely bound-
ed linear operators between von Neumann algebras is simpler than the
C*-algebra situation, because there is a nice fixed point description of
the cross product in terms of suitable actions on a von Neumann al-
gebra tensor product [15]. We illustrate this idea by giving a normal
operator—von Neumann algebra cross product version of the main
action result (Theorem 3.5); there are similar coaction results but we
do not discuss them.

THEOREM 6.1. Let a and β be normal actions of a locally compact
group G on von Neumann algebras M and N, respectively. If Φ is a
completely bounded normal operator from M into N such that Φoα/ =
βtoφ for all t e G, and if Ψ: υN(G) -^vN(G) is a normal completely
bounded operator such that Ψoλ t = λt oψ for all t e G, then there is a
natural completely bounded linear operator ΦxΨ: MxaG^ N5<βG.

Proof. The operator Φ ® Ψ may be extended by complete bound-
edness and normality to a completely bounded normal operator from
M ® &{L2(G)) into N®&{L2(G))\ see [5, Lemma 1.5] or use the rep-
resentation theorem for a completely bounded normal operator [19].
By [15, p. 23] it is sufficient to show that

(1) & o ( φ ® ψ ) = (φ®ψ)oά/

for all t G G, because Φ ® Ψ will then map the G-invariant subalgebra
of M®&(L2(G)) into the G-invariant subalgebra of N~®3S{L2{G)),
and these algebras are naturally isomorphic to My\aG and NxβG,
respectively. By definition άt = at <g> λt and βt = βt ® λt so that (1)
becomes /?, o φ ® λ , o ψ = Φ o α ^ φ ψ o λ , , which holds by hypoth-
esis. D

There are multilinear versions of the results in this paper based on
the definition of a completely bounded multilinear operator in [4] and
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[20]. We shall state two results of this type for actions of a locally
compact group on a C* -algebra, and indicate how the proofs may be
obtained by combining the techniques of §3 and ([4] or [20]).

PROPOSITION 6.2. Let a be an action of a locally compact amenable
group G on a C*-algebra A, and let g \-^ugbe a unitary representation
of G on a Hilbert space β^. Suppose that Φ is a completely bounded
n-linear operator from An into 3S(%f). IfΦ is equivariant, in the sense
that Φ(α/(jci),.. .9at(xn)) = utΦ(x\,.. .9xn)u*f then there are

(1) covariant representations (#j9 π, , Wj) of {A, G, a) for 1 < j < n,
(2) continuous linear "bridging" operators

*n-\ Vn—2 V\
— • </Γn—\ — • ' * * — •

such that

(b) utV0 = VoW^WjiήVj = VjWj+x{t) (1 < j < n- 1), and
Wn{t)Vn = Vnut for all t e G,

Outline of the proof. The basic proof in [4] and [20] is by reduction
to the symmetric case using a standard 2 x 2 matrix symmetrization
[4, 5.3] followed by induction on n with step length 2 [4, 4.1]. The
induction ends with n = 1, which was dealt with in §3, or n = 0, which
is just a fixed intertwining operator on a Hilbert space (note, n here
is k in [4]). The induction starts with the existence of a completely
positive linear operator ψ: A -> SB{&) such that | |^ | | < | |Φ|U and

for all x9a2,...,an-ι e Mk(A) with (a2,...,an-ι) = (a*n_v...,a*2)

[4, Theorem 2.8]. The completely positive linear operator ψ is now
averaged by the invariant mean m of G to obtain a completely positive
(^-invariant linear operator φ defined by

(φ(x)ξ, η) = m(t h+ {u*ψ(at(x))utξ, η))

(x e A\ξ,η G ̂ ) . In inequality (*) we replace α, by ottikiaj) where
atk z=at®lk is the &-fold amplification of α, we replace x by at^{x),
and act on the resulting inequality by Ad(κ* ®/). The (z-invariance of
Φ implies that Φ^ is invariant under the fc-fold amplification of the
actions of G, so a similar inequality results with ψk{x*x) replaced by

{Ad(u*t) o ψ oat)k(x*x).
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Averaging this by the invariant mean of G yields inequality (*) with
ψ replaced by the completely positive G-invariant linear operator φ.
We now combine the G-invariant Stinespring Theorem (Lemma 3.1)
with [4, Lemma 3.1]. Together these give rise to a covariant repre-
sentation of (A, G, a) on a Hubert space 3£ and a completely bounded
G-invariant symmetric {n — 2) linear operator Ψ from An~2 into 3B(3£)
such that Φ(au...,an) = V*π(aι)Ψ(a2,...,an-ι)π(an)V9 for all
a\9...9an G A; where π and V are the representation of A and the
linear operator from W into Jf given by Lemma 3.1 (note π = θ of
[4, Lemma 3.1]). This construction has reduced the problem from n
to (n - 2) with the same hypothesis, and completes the sketch. D

PROPOSITION 6.3. Let a and β be actions of an amenable group G
on C* -algebras A and B, respectively. If Φ is a completely bounded
n-linear operator from An into B, which is G-invariant in the sense that

βtΦ(au. ..,an) = Φ(α,(αi),.. ., at(an)),

then there is a completely bounded n-linear operator Φ x / from
(Ax\aG)n into B xβ G such that

(l)\\Φxi\\cb = \\Φ\\cb,and

(2)

= JJ - j Φ(yι(sι),aSι(y2(s2)),aS]S2(y3(s3)),

• , OLsiSr-Sn^ (yn(s~lι ' ' ' i f 1 1 ) ) ) dS\- - dsn-\

for allyι,...,yne CC(G,A) and t e G.

This result is proved from Proposition 6.2 in the same way that The-
orem 3.5 is deduced from Theorem 3.3. The other parts of Theorem
3.5 also carry over but we omit these. We also omit the corresponding
multilinear versions of our results on coactions.

REMARK 6.4. The above multilinear results may be applied in the
study of equivariant completely bounded cohomology. There is a
discussion of completely bounded cohomology for C*-subalgebras of
£&{%?) in [3]. Here we shall restrict attention to a simple special case.

Suppose that A is a subalgebra of another C*-algebra B, and a: G —>
Aut(J5) is an action of an amenable group G, which restricts to an
action of G on A. We let C^b{A, B\ G) denote the space of equivariant
completely bounded n-linear maps Φ: An —• B. Observe that the
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usual Hochschild coboundary operator δ maps equivariant maps to
equivariant maps. Now define the equivariant completely bounded
Hochschild cohomology groups to be those of the complex

BG Λ Cib(A,B;G) Λ C?b(A,B;G) Λ • .

Denote these groups by H£b(A9B; G). For n > 1 we define operators

j G : C?b(A,B\G) - Cn

ch{A x α G,B xa G)

by 7(7(Φ) = Φ x /, and for n = 0 we define j G = /^: i?G —• M(B xa G).
Then a calculation using property (2) of Proposition 6.3 shows that
j G commutes with δ, so we get induced homomorphisms

ΓG: H?b(A,B;G) -> H*b(A x G,B x G).

Thus our construction induces a homomorphism from equivariant
completely bounded cohomology into the completely bounded coho-
mology of the crossed product. This may play a useful role in studying
equivariant cohomology.
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