Separable Injectivity for
C*-algebras
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1. Introduction. A unital C*—algebra A is said to be separably injective if,
given separable unital operator systems E C F' and a completely positive unital
map ¢ : E — A, there exists a completely positive extension ¢ : F — A. This
concept arose naturally in previous work of the authors [17] in connection with
the study of completely bounded maps. It is weaker than the related idea of
injectivity, but in many situations the object on which an extension is desired
are separable, and so the notion of separable injectivity is appropriate. In the
case of a commutative C*-algebra separable injectivity was characterized in [17]
in terms of the topology of the maximal ideal space, which must be substonean.
In this paper we wish to study separable injectivity in the noncommutative case,
which was left untouched in [17].

After the commutative C*-algebras, the next most tractable class is the col-
lection of subhomogeneous C*-algebras consisting of algebras which have only
finite dimensional representations of bounded degree. It is this class of C*-
algebras which we study here. All such algebras are type I and so we do not
distinguish between the spectrum and the primitive ideal space. We also note
that any type I C*-algebras is nuclear. Since we wish to consider ideals, we do
not assume that our C*-algebra is unital. This necessitates a more general defi-
nition of separable injectivity (Definition 2.3) which is equivalent to the previous
definition for unital algebras.

The second section contains some technical preliminaries concerning sepa-
rable injectivity for use in the main results. The third section is concerned with
the case of n-homogeneous algebras and it is shown that A is separably injective

if and only if A is substonean. It is perhaps surprising that separable injectivity

depends only on the topology of A since many nonisomorphic n-homogeneous
C*-algebras can have the same primitive ideal space [11]. At the end of the sec-
tion a general method is given for constructing examples of nontrivial separable
injective homogeneous C*-algebras.

The last section is concerned with the subhomogeneous case, and once

again the topology of A plays a role. We show that if each A, (the subset of
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r—dimensional irreducible representations) is substonean in the relative topology,
then A is separably injective. The converse is not true (Theorem 4.7) and on
the way to establishing this we construct an infinite class of nontrivial separably
injective homogeneous C*-algebras (Remark 4.6). In contrast, we point out that
all injective homogeneous C*-algebras are trivial [17]. We conclude the paper
by showing that, as a consequence of our results, homogeneous algebras need not
have homogeneous multiplier algebras.

The authors would like to thank Professor Maurice Dupré for some helpful
comments concerning the material in the last section.

2. Separable Injectivity. In this section we give some basic definitions and
results concerning separable injectivity. The term “operator subspace” refers to
a subspace of a C*-algebra. If E is an operator subspace, then E* denotes the
operator subspace consisting of the adjoints of elements of F, and if E = E*,
then E is called an operator system. When an operator system contains the
identity of the C*—algebra in which it is embedded, it is called unital.

We begin by recalling a result of Choi [3], which will be used frequently
below.

Lemma 2.1. Let ¢ : A —» B be a contractive completely positive map
between C*—algebras. If

p(a*a) = p(a)*p(a)  and  p(aa”) = p(a)p(a)”,

then for allb€ A,

p(ab) = p(a)p(d)  and  @(ba) = p(b)p(a).
Such elements are said to lie in the multiplicative domain of ¢.

Lemma 2.2. Let A be a unital C*-algebra. The following are equivalent:

(1) Given separable unital operator systems E C F and a completely posi-
tive unital map ¢ : E — A, there exists a completely positive extension
p:F—A.

(2) Given separable unital operator systems E C F and a completely pos-
itive map ¢ : E — A, there exists a completely positive extension
p:F— A.

(3) Given separable operator subspaces E C F and a completely bounded
map ¢ : E — A, there exists a completely positive extension ¢: F — A
satisfying |l@llcs = [|@llcs -
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Proof. (2) => (1). This is obvious.

(3) = (2). Let E C F be separable unital operator systems, let ¢ :
E — A be completely positive, and assume that A is faithfully represented as a
subalgebra of B(H). Set a = (1) > 0. Then there exists a unital completely
positive map ¢ : E — B(H) such that
() = a/*Y(z)a’’? (¢ €E)

by [5]. Since B(H) is injective [2], there exists a unital completely positive

extension ¢ : F — B(H) of 7. Let B be the separable subalgebra of A generated
by 1 and the range of ¢, and let C be the separable subalgebra of B(H) generated

by B and the range of 1/; By hypothesis there exists a complete contraction
¥ : C — A which extends the identity embedding of B into A. Since ¥ is unital,

it follows that 9 is completely positive. Observe that a!/2 is in the multiplicative
domain of 9.
Now define ¢ : F — A by

P(z) = a1/219(1/~)(x))a1/2 (zeF).
This map is completely positive, and if z € FE, then
@(z) = a*/?9 (z[j(x))al/z = a1/219(1/)(a:))a1/2
= 9(a'/?p(2)a'’?) = 9(p(2))

= ¢(x),

the third equality following from Lemma 2.1. Thus ¢ is a completely positive
extension of .

(1) = (3). First recall that if A satisfies (1), then so also does A ® M
(17].

Let E C F be separable operator subspaces and let ¢ : E — A be a complete
contraction. Define unital operator systems E C F by

~ A T
g={(?* A pueC.z,ycE
{(y u) pES DY }

ﬁ={(y/\* ﬁ):/\,,uec,x,yGF}
and define ¥ : E — A® M, by
(DG )
¥yt o(y)” p

From [12] this is a completely positive unital map and so, by hypothesis, has
a completely positive unital extension ¥ : F — A® M,. For x € F, define
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sa=-a0i(y 5)(3)-

Then @ is completely contractive and extends ¢. O

p:F— Aby

In [17] condition (1) was taken as the definition of separable injectivity for
unital C*-algebras. We wish to widen this to include the nonunital case, and
from above it is consistent to make the following:

Definition 2.3. A C*-algebra A is said to be separable injective if, given
separable operator subspaces E C F and a completely bounded map ¢ : E — A,
there exists a completely bounded extension @ : F — A satisfying ||@|lco = ||¢|lcb -

Definition 2.4. A C*-algebra A is said to be countably unital if, given any
countable set {a,}5%, from A there exists a positive element a € A of unit norm
for which aa, = a,a = a,.

Note that this could be reformulated in two equivalent ways. The countable
set could be replaced by a separable subalgebra, or by a single element. An
element a acts as the identity for {a,}32, if and only if it acts as the identity

for
o0

—-n %
E 27 "apay.
n=1

The following result gives a necessary condition for a C*-algebra to be
separable injective.

Proposition 2.5. If a C*-algebra A is separable injective then it is count-
ably unital.

Proof. Let B be a separable subalgebra of A and let By denote a B with unit
adjoined. By hypothesis there exists a completely contractive map ¢ : B; — A
which extends the identity embedding of B into A. It may be assumed that ¢
is self-adjoint since it may otherwise be replaced by %(<p+<p*). Let z denote
(1), which is thus self-adjoint.

The map ¢** : Bi* — A** is also completely contractive. Let p denote the
identity of B** in B}*. Then ¢**(p) = p by w*—continuity of ¢**. Since

e?p+1-p)|| =1,

it follows that '
||e”9p+x —p“ <1.

Now multiply on both sides by p to obtain

le®p+pzp—p| < 1.
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These elements lie in pA**p with identity p, and so for any state w
e +w(pzp) —1| < 1,
from which it follows that

w(pzp) =1 and pITP =D.
Since 1 —x > 0 and p(1 —z)p = 0, it follows that

pr =Ip =P.
Thus, for all b € B,

br=bpr=bp=>
and

xb = xpb = pb = b,

and these equalities remain valid if z is replaced by z?. Thus z? is a positive
element of unit norm which acts as the identity for B. ]

Proposition 2.6

(1) If A is separably injective, then A is separably injective.

(2) If A, is separably injective and A is countably unital, then A is separably
injective.

Proof. (1) Let E C F be separable operator subspaces and let ¢ : E — A;
be a complete contraction. Let B be a separable subalgebra of A for which the
range of ¢ is contained in B+ C1. By Proposition 2.5 there exist two positive
elements a;, az € A of unit norm such that a; acts as the identity on B and as
acts as the identity on C*(B,a1). Let w be the state on A; which annihilates
A. Define ¢ : E — A by

Y(z) = azp(z)az  (z € E)
and 9 : E — C by
I(z) = w(p(z)) (zx€E).

By the Hahn-Banach theorem ¢ has an extension 9 : F — C which may be
regarded as a completely contractive map r — 9(z)1 into A;. By hypothesis 9

has a completely contractive extension {/; :F— A.
Define ¢ : F — A; by

o(z) = (1117;(.7!)(11 +(1- af)&(x) (zeF).

Since $(z) may be written

~

n=at) (0 (o ).
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it is clear that @ is completely contractive. To see that ¢ extends ¢, choose
z € E and write p(z) = b+ Al, b € B. Then t¢(z) = b+ Aa2 and d(z) = Al.
Thus

&(x) = a1(b+ Aa2)a; + M1 —a2)

=b+Aaf + A1+ Aa?
=p+Al

= ¢(z).

(2) Let ¢ : E — A be a complete contraction, and choose a positive
element a € A of unit norm which acts as the identity on the range of ¢. By
hypothesis ¢ has a completely contractive extension ¢ : F' — A;, and now define
p:F —> Aby

o(z) =ay(z)a (z€F).

Then @ is completely contractive and extends ¢. m}

Recall from [14] and [17] respectively the following definitions:

A C*-algebra A is said to be an SAW™*-algebra if given a, b € A, with
ab = 0, there exists e € A4 of unit norm satisfying ae = a and be = 0.

A C*-algebra A is said to have the countable Riesz separation property if,
given an increasing sequence {z,} and decreasing sequence {yn} of self-adjoint
elements of A satisfying z,, < y,, for all m, n > 1, there exists z € A satisfying
Tp<z<ypforallm,n>1.

We are indebted to Professor G. K. Pedersen for pointing out the next result.

Proposition 2.7. Consider the following conditions on a C*-algebra A:

(i) A is separably injective,
(ii) A has the countable Riesz separation property,
(iii) A is an SAW*-algebra.

Then (i) = (ii), (i) = (iil), and, if A is unital (or, more generally,
countably unital), then (ii) = (iii).

Proof. (i) = (ii). Let A be separably injective and let A; be A with
unit adjoined. By Proposition 2.6 (1) A; is separably injective. Consider two
monotone sequences {z,} and {ym} from A, satisfying

3 <r2<...<y2<y1.

Since A** is a W*—algebra, there exists t € A** (which may be taken to be the
supremum of {z,}) satisfying

r3<22<...<t< ... <y <Y1
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Consider the two separable operator systems

E = span{z1,y1,%2,¥2,...} and

F = span{E,t}.

By Lemma 2.2 (2), the identity embedding of F into A has a completely positive
extension ¢ : F' — A;. Let z = ¢(t). Then

$1S$2<...SZS...Sy2$y1 (lIlAl)

and, since A is an ideal in A;, 2 € A. Thus A has the countable Riesz separation
property.

(ii) = (iii) for countably unital algebras.

Let a, b € A4 satisfy ab = 0, and without loss of generality suppose that
llall, ]|6]] € 1. Since A is countably unital, there exists f € Ay, ||f]| =1
such that fa = af = a, fb=bf =b. Forn > 1, m > 1 write z, = a'/",
Ym = (f —b)™. Then

z1 <22 < ... S y2 < W1,

and, by assumption, there exists e € A satisfying
;<3< ...5e<...<y2 < 1.
It is easy to check that

ea =ae=a and eb=0be=0.

(i) = (iii). If A is separably injective, then it has the countable Riesz
separation property, from above, and it is countably unital by Proposition 2.5.
Condition (iii) now follows from (ii) == (iii) for countably unital algebras. O

Remark. In general (iii) does not follow from (ii). It is easy to check that
¢o has the countable Riesz separation property, but no infinite dimensional sep-
arable C*-algebra can be an SAW*-algebra [14, Corollary 2]. All W*-algebras
satisfy (ii) and (iii) but only satisfy (i) if they are injective. Thus, the implica-
tions (iii) = (i) and (ii) = (i) fail, but (iii) = (ii) is an open conjecture.

Proposition 2.8. Let J be an ideal in a C*-algebra A.
(1) If A is countably unital, then A]J is countably unital.
(2) If J and A/J are countably unital, then A is countably unital.
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Proof. (1) Let p: A — A/J denote the quotient homomorphism. If C is
a separable subalgebra of A/J, choose a separable subalgebra B of A for which
p(B) = C. By hypothesis there exists a positive element ¢ € A of unit norm
which acts as the identity for B, and then p(a) acts as the identity for C.

(2) Let B be a separable subalgebra of A which in turn is considered to

be an ideal in A;. By hypothesis there exists a positive element x € A of unit
norm for which

p(z)p(b) = p(b)p(x) = p(b) (b€ B),
or, equivalently,
(1-z)b,b(1—xz)e J (be B).

Since J is countably unital, there exists a positive element j € J of unit norm
such that

A1-7)H)A-z)b=0b(1-2)(1-5)=0 (b€ B).
Thus

1-z)1-j)A-2p=b1-2z)(1-j)1-2)=0 (b e B).
Write (1-z)(1-j)(1—z)=1—a, wherea € A. Then 0 <1—a <1 and so
"a”Sl, a>0.

In addition, a acts as the identity on B and so A is countably—unital. O

The following is a result which will allow us to concentrate on unital algebras
in future work. Let C be a class of C*-algebras closed under the formation of
quotients, ideals and the adjunction of units. (We have in mind the class of
subhomogeneous C*-algebras.)

Theorem 2.9. If, for unital members A of the class C the implication
J and AJJ separably injective => A separably injective

1s valid, then it is also valid for nonunital members.

Proof. Let A € C, and let J be an ideal in A. Assume that J and A/J are
separably injective. By Proposition 2.5 J and A/J are countably unital, and
so by Proposition 2.8, A is countably unital. Regard J as an ideal in A4;, and
identify A,/J with (A/J),. By Proposition 2.6 (4/J), is separably injective,
and so both J and A;/J are separably injective in C. By hypothesis A; is
separably injective, and so A is separably injective, by Proposition 2.6(2). O

We close this section with a result which, while not relating directly to
subsequent sections, may be of interest.
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Theorem 2.10. Let A be separably injective. If E is a separable unital
operator system and ¢ : E — A is completely positive with ¢(1) = a > 0, then
there exists a unital completely positive map ¢ : E — A; such that

o(2) = a'*p(2)a? (s € E).

Proof. Let A; be faithfully represented as a unital subalgebra of B(H). By
(5] there exists a completely positive unital map n: E — B(H) such that

¢(z) = a’*n(z)a’?  (z€E).

Let B be the unital separable subalgebra of A; generated by the range of ¢, and
let D be the separable subalgebra of B(H) generated by B and the range of 7.
By Proposition 2.6(1) there is a completely contractive map ¥ : D — A; which
is the identity when restricted to B. Since ¥(1) = 1, 9 is completely positive.
Define ¢ : E — A; by

P(z) = 19(7)(:5 ) (x € E).
Since ¥(a!/2) = /2, by definition of 9, it follows from Lemma 2.1 that

19((11/217(:1:)&1/2) — a1/20(17(x))a1/2 (reE).

Thus
o(z) = 9 (p(x))
= 9(a'/?n(z)a/?)
— al/zﬂ(n(z))al/z
= a/?y(z)a'/? (z € E),
and the theorem is proved. O

3. Homogeneous C*-algebras. If A is a C*-algebra, let A denote the prim-

itive ideal space of A. If A is n—homogeneous, then A is a locally compact
Hausdorff space, and Fell [9] has classified such C*-algebras as algebras of cross—

sections of bundles with base space A and fibre M,,. The object of this section
is to characterize the separably injective n-homogeneous algebras as those with
substonean primitive ideal spaces. We do not wish to assume that A has in iden-
tity, and this introduces the complication of considering noncompact spectra.

The following result was proved for unital algebras in [17]. Recall from [10]
that a locally compact Hausdorff space is said to be substonean if disjoint co—zero
sets have disjoint compact closures.
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Proposition 3.1. A commutative C*-algebra Co(X) is separably injective
if and only if X is substonean.

Proof. (=>) Suppose that Co(X) is separably injective. To prove that X
is substonean, it suffices, by [10], to show that if 0 < f, g <1 and fg =0, then
there exists h € Co(X) such that

kf=f and kg=0.

Let U = {z € X: f(z) # 0}, and let h be the characteristic function of
U. Let B be the subalgebra of Cy(X) generated by f and g, and let C be the
algebra generated by B and h in the algebra of bounded Borel functions on X .
By hypothesis, the identity embedding of B in Cp(X) has an extension to a
completely contractive map ¢ : C — Cp(X). Let k = ¢(h). For any integer n

|h—2f" <1
and so

Ik -2/ < 1.
If x € U, then
|k(z) —2f(@)"/"| <1
and this leads to k(z) = 1 by letting n — oco. Thus kf = f.
Since h and g have disjoint supports,
le®h+g"/m <1
and so

ek +g*/"| < 1.

If z € X and g(z) > 0, then
lek(2) +g(2)/"| < 1,

leading to

le?k(z)+1| <1
in the limit. Thus, k(z) =0, and kg = 0.

(=) Suppose that X is substonean. Let f € Co(X), and apply the

Grove—Pedersen criterion [10] to | f| and 0 to obtain h € Cy(X) such that hf = f.

If necessary, h may be replaced by min{|h|,1} so that 0 < h < 1. Thus, Co(X)
is countably unital.

Let X be the one point compactification of X with extra point w. Co()? )
may be regarded as Co(X) with unit adjoined. If f, g > 0 in C()?) and fg =0,
then one, say f, vanishes at w, so that f € Co(X). From above there exists
h € Co(X) such that fh = f, and the functions fh and gh lie in Co(X) with
disjoint supports. Then there exists k € Co(X) such that

f(hk)y=fh=Ff and  g(hk)=0.
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Thus X is substonean and compact, from which we conclude that C()? ) is sep-
arably injective [17]. By Proposition 2.6(2), Co(X) is separably injective. O

Theorem 3.2. If A is a separably injective n-homogeneous C* —algebra,
then A is substonean.

Proof. The center Z(A) may be identified with Co(A), so by Proposition
3.1 it suffices to show that Z(A) is separably injective. Every n-homogeneous
algebras has continuous trace [9] and moreover the ideal of continuous trace
elements consists of the entire algebra. Thus there is a completely contractive

projection P : A — Z(A) defined, for m € A, by
P(a)(m) = 1 Trn(a).
The diagram

~
~
~
S o ~
~
id "/
~
~

E % z) L™ 2z
shows that Z(A) is separably injective. O

We now turn to the converse of this theorem. The first step is to show that
the general case follows from the case of a unital algebra.

Lemma 3.3. If the implication

A substonean = A separably injective

is true for unital n-homogeneous C*—algebras, then it is also true in general.

Proof. Let A be an n-homogeneous C*-algebra and suppose that A is sub-
stonean. Let E C F be separable operator subspaces and let ¢ : E — A be
completely contractive. The range of ¢ generates a separable subalgebra B of
A. Choose a dense countable subset {b;}32; of B and set

U=|J{r e A Trn(bb:;) > 0}.
=1

U is a co—zero set and so, since Ais substonean, is substonean, U is compact.
Thus there exist z;, 20 € Z(A) which are compactly supported and satisfy

0<z1,220<1,z,=10nU, 2129 = 21.
Notice that z; and z; act as the identity on B. Let J be the ideal defined by
J = {j: jz2 =0}
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and observe that (A/J)" is a compact subset of A. Thus A/J is a unital n—
homogeneous C*-algebra with a substonean primitive ideal space. By hypothesis
A/J is separably injective. Denote by p: A — A/J the quotient homomorphism.

The map pp : A — A/J is completely contractive and so has a completely
contractive extension ¢ : F — A/J. Let D be the separable subalgebra of A/J
generated by the range of ¢ and the identity. Then D is a separable type I
algebra and is thus nuclear. The Choi-Effros lifting theorem [4] may be applied

to obtain a completely contractive map ¥ : D — A such that pd is the identity
onD.

Define ¢ : F — A by

f(2) = 29(u(@) (s F).

Then ¢ is completely contractive and it remains to be seen that ¢ extends . If
z € E, then ¢(z) € B and pp(z) € D. Thus

3 (%(x)) = p(z) +j
where j € J. It follows that
P(z) = 210(2) + 215

= 21p(x) + (2122)]
= z1p(x) + 21(225)
= ¢(z)
and so A is separably injective. O
Theorem 3.4. Let A be an n-homogeneous C*-algebra. Then A 1is

separably injective if and only if A is substonean.

Proof. In light of the previous results of this section it suffices to show that
if A is a unital n-homogeneous algebra with compact substonean primitive ideal
space X, then A is separably injective. By Lemma 2.2 we consider separable
unital operator systems L C K and a completely positive unital map ¢ : L — A.
It is possible to make a further simplification; we assume that L is of codimension
1 in K so that there exists a self-adjoint element b € K with K = span{L,b}.
If the extension can be accomplished in this case, then a countable repetition
of the argument will settle the general case. All inequalities in M, (K) may be
written

(3.1) Y<Ab (YeM(L),AeM,)
so it suffices to choose f € A such that

(3.2) er(Y) < Af whenever Y < Ab.
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By [9] every n-homogeneous C*-algebra with compact primitive ideal space
X arises as the algebra of continuous cross sections of a locally trivial bundle
B over X with fibre M, and structure group PU(n). For our purposes a more
useful description may be obtained from [15]. Choose two coverings of X by

compact sets {Ui}:=1 and {W,;}:=1 such that

(i) B is trivial over each U; and W;;
(ii) for each ¢, U; C interior (W;);
B

(iii) for the bundle projection | 7 there exist homeomorphisms
X

@it Wi x My — n~ Y (W;);
(iv) there exist maps ¢;; : W; NW; — PU(n) such that for x € W; N W;,
0i tpj(z,a) = (z,0i5(z)(a));
(v) for z € U;NU; N Uy,
vij(x) = pik(z)pri(T);

(vi) the restrictions of ¢; to U; and ¢;; to U; NUj satisfy (i)-(v).

Here an element ¢;;(x) € PU(n) is thought of an defining an automorphism
of M,, by conjugation.

Define a bundle F' by
T
F=]]wixM,
i=1

= {(i,az,a): ISiST,xEWi,aEMn}.

Now define an equivalence relation on F by setting (i,z,a) ~ (j,z,b) if and only
ifz e Wij and

a = ¢i;(x)(d).

F is a trivial bundle over [[;_, W; while F/ ~, the bundle obtained from the
equivalence relation is isomorphic to B. Replacing W; by U; throughout this
construction creates two other bundles F and E// ~, and again E/ ~ is isomorphic
to B. As circumstances dictate, it will be convenient to think of A as the algebra
of continuous cross sections of E/ ~ or F/~. Let I'(D) denote the continuous
cross sections of any bundle D.

Now A may be regarded as certain cross sections in I'(F') (or I'(E)) which
satisfy the relations (iv) and (v) on the overlaps of the covers. I'(F) is trivial
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of the form C([I}_, Wi) ® M,,, and since [[;_, W; is substonean, ['(F) is sep-
arably injective. Thus there exists f = (1,f1),...,(r,f.) € I'(F) satisfying the
inequalities (3.2). This element need not lie in A, and the idea of the proof is
to fit together the cross sections f; on W; to form a cross section of E/ ~ still
satisfying the inequalities. For simplicity, we assume that r = 3, since this case

contains the essence while keeping the details to a minimum. Define g € T'(E/~)
as follows:

9(1,z) = f(1,z) on {l}xUl-
Choose 9; and 9, € C(X)* such that
0<v; <1,

P1(z) =1 for x € Uy, supp ¢¥1 C Wi,

Yo(x) =0 for x € U, supp ¢2 C Wy,

P1(z) + Y2(z) =1 on U3 UU;.
Define
9(2,z) = ¥1(2)pn (z) [f(1,2)] + va(z) £(2,2)

for x € U;. The element g has now been defined on U; and U; and satisfies
(by construction) the correct relations on Uy NUs,. It remains to define g on Us.
Choose 13 € C(X)* such that supp ¥3 C W3 and () + ¥2(x) + ¥3(z) = 1 on
U; UU,UU3. Automatically, ¥3(z) =0 on U; UU;. Set

9(3,z) = Y1(x)p31(x) f(1,x) + Ya(x)p32(x) f(2,2) + ¥3(x) f(3,2)

for £ € Us. This uses f(1,z) on Uy NUs, f(2,z) on UsNUs, and f(3,z) on
the remainder of Us. The relations (iv) and (v) guarantee consistency on the
multiple overlap U; NU; NUs, and that g € T'(E/~).

Recall that ¢ : L — A =~ I'(E/ ~) is completely positive and define & :
K — I'(E/ ~) by setting $(b) = g. It remains to be shown that g satisfies the
inequalities (3.2). Let Y < Ab be a typical inequality. Then, by construction,

o(Y)(i,x) < Af(i,x)
for all (i,z) € ]_[?=1 U,. Now, for z € Us,
Ag(3,2) = P1(2)pa1(z) (Af(1,2)) + Y2(2)a2(z) Af(2,2) + ¢3(2) £ (3,2)
2 P1(2)ps1(2)(0Y)(1,2) + $2(2)(9Y)(2,2) + ¢3(x) (Y )(3,7)
= (Y1(2) + P2(z) +¥3(2)) () (3,2)
= (pY)(3,2)

and so the inequalities are satisfied on Us. The verifications are similar on U;
and Us. Thus A is separably injective. O
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This characterization may be used to construct nontrivial examples of sep-
arably injective homogeneous C*-algebras.

Let B be any unital n-homogeneous C*-algebra, and let R* denote [0,00).
Set

A=C"(R*,B)/Co(R*,B)
(this is a generalization of the corona construction of [10]). As B, and hence A,
is unital, it is not difficult to verify that A is n-homogeneous and that

Z(A) = C*(R*,2(B))/Co(R*,Z(B)).

By Theorem 3.4 and [17] it suffices to show that Z(A) is separably injective,
and so, replacing B by Z(B), we may assume from the outset that a B is a
commutative algebra C(X). From the characterizations of substonean spaces
given in [17] it is enough to verify the following condition: If

isfo<..Sfa<..Sgn<...Sg2<g1  inCY(RY,0(X)),
then there exists h € C®(R*,C(X)) such that
fi<h<g;  in CYRF,C(X))/Co(R,C(X)).
Define h: R* — C(X) on [n—1,n] by
h(n=14+X)=1=XNfn(n—=14+XN)+Afns1(n =1+ )
(0<A<1,n=1,2,3,...). Then
h <gj(on R*)and h > f; on [i —1,00),

so that o

fi<h<g;.
Thus

C*(R*,B)/Co(R*,B)

is separably injective. O

We will denote this algebra by x(B) (see [10]). Recall from [9] that a unital
n—homogeneous C*—algebra B is said to have a 1-dimensional projection field if
there exists p € B such that m(p) is a 1-dimensional projection for all m € B.
Algebras of the form C(X)® M, (called trivial) always admit 1-dimensional
projection fields, and so the following result will guarantee the existence of non-

trivial separably injective n-homogeneous C*-algebras (see Section 4 for explicit
constructions).

Proposition 3.5. Let B be a unital n-homogeneous C* -algebra. Then
B has a 1-dimensional projection field if and only if x(B) has a 1-dimensional
projection field.
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Proof. Suppose that p € B is a 1-dimensional projection field, and define
f € C*(R*,B) to be the constant function with value p. It is easy to check that
f € x(B) is a 1-dimensional projection field.

Conversely suppose that f € C®(R*,B), 0 < f <1, is such that fe x(B)
is a 1-dimensional projection field. Then f2 — f € Co(R*,B) and so

lim [1£0? - £0)] = 0.

Choose € such that 0 < € < 1, and choose a continuous function g : [0,1] —
[0,1] which is identically 0 on [0,£] and identically 1 on [1 —¢,1]. Applying the
functional calculus to g and f gives an element p = g(f) € C*(R*, B) satisfying

(1) lime—oo | £() = p(®)[| = 0,
(ii) p(t)? = p(t) for all t > to, where ty is a sufficiently large number.
Suppose that for no value of ¢ is p(t) a 1-dimensional projection field in B.

Then for each integer r > to there exists an irreducible representation m, € B
such that =, (p(r)) is not 1-dimensional, and so

Tr . (p(r)) € {0,2,3,...,n}.
It follows from (i) that
Jim Trm, (f(r)) — Trm, (p(r)) =0,
and so there exists an integer r¢ > to such that
T, (f(r) € {0,2,3,...,n}+ [-1,3] (r>ro).
Let ~, be the representation of C®(R*,B) defined, for h € C®(R*,B), by
ve(h) = m, (h(r)).
Then {7, }r>r, contains a limit point v € x/(E). By continuity of the trace,
Trvy(f) € {0,2,3,...,n} + [-3,1]

and so Try(f) = Try(f) # 1, a contradiction. Thus, for r sufficiently large, p(r)
is a 1-dimensional projection field in B. i

4. Subhomogeneous C*-algebras. A C*—algebra is subhomogeneous if there
is an integer n for which dim7 < n for all irreducible representations 7 of A.
The smallest such integer n will be called the degree, and A will be said to
be n—-subhomogeneous. In this section we give sufficient conditions for A to be
separably injective.

Recall that for each integer r, A, denotes the subset of A consisting of
r—dimensional irreducible representations. Each A, is a Hausdorff space in the
relative topology from A [13], and if A is n-subhomogeneous, then A, is open.
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Theorem 4.1. Let A be a subhomogeneous C*-algebra. If each A, is
substonean in its relative topology, then A is separably injective.

Proof. The proof will be by induction on the degree n of A. Observe that
the case n = 1 is the commutative situation, handled by Proposition 3.1. Now
suppose that the result is true for all subhomogeneous algebras of degree at most
n, and let A have degree n+ 1.

Let J = {a € A: m(a) = 0 for dimm < n}. Then J is homogeneous of
degree n+ 1 while A/J is subhomogeneous of degree at most n. Since (4/J )A =

U, A, and J = Ay [13], the induction hypothesis and Theorem 3.4 imply
that A/J and J are separably injective. We now wish to show that A is separably
injective.

Consider two separable operator subspaces E C F' and a completely con-
tractive map ¢ : E — A. Let p: A —» A/J denote the quotient map. Then
pp: E — A/J is completely contractive, and so has a completely contractive ex-
tension 9 : F — A/J. Denote by B the separable subalgebra of A/J generated
by the range of ¥. Adjoin units to A and B, and consider the identity embedding
B; — A,;/J. Since B; is type 1, it is nuclear, and so there exists a completely
positive unital lifting  : By — A; by the Choi-Effros lifting theorem [4]. It is
easy to check that n maps B into A, and so ¢ = nd : F — A is completely
contractive. Observe that if x € F, then

po(z) — py(z) = pp(z) — pnd(z)

= pp(z) — pnpd(z)

= pp(z) — pp(z)

=0
in A/J, and so

p(r)—yY(z) e J (reE).

The C*-algebra C generated by the elements {¢(z) — ¢(z): = € E} is separable
and so, as in the proof of Lemma 3.3, there exist j;, j2 € Z(J) such that 0 < j;,
Jj1 <1 and j; acts as the identity on C and js acts as the identity on C*(C,j;).
If J is an ideal in any C*-algebra, then it is easy to prove that Z(J) = Z(A)NJ,
and so ji, jo € Z(A).

The map =z — jop(x) is a complete contraction of E into J, and so has a
completely contractive extension £ : F' — J, since J is separably injective. Now
define A : F — A by

Mz) =5ié(x)+ (1 —j)y(z) (z€F).

It must now be verified that A is completely contractive, and is an extension of
. Since j; € Z(A), A may be written

= (iM% (1 _ ;s \1/2 £(z) 0 j11/2
Az) = (3", (1= 31) )( 0 ¢(x)) ((1—j1)1/2



128 R. R. SMITH & D. P. WILLIAMS

and so is completely contractive. If x € E, then

A(@) — p(2) = 51{(z) + (1 - j1)¥(z) — o(z)
= jij2p() + (1 = j1)¥(z) — ()
= J1p(2) + (1 = j1)¥(z) — ¢()
= (1-41)(¢(z) - ¢(2)) =0

since 9¥(z) — ¢(x) € C and j; acts as the identity on C. Thus A extends ¢ and
A is separably injective. This completes the induction step, and the result
follows. o

As will be seen, the converse of this theorem is not true (Theorem 4.7). Let
A be an n-homogeneous unital C*—algebra with compact primitive ideal space

A. By compactness and the results of [9], there exists a finite collection {U;}]_,

of compact subsets covering A on each of which the restriction of A is isomorphic
to C(U;) ® M,,. Thus rn? elements {ai,...,a,,2} may be chosen from A such
that, for every irreducible representation =, the set {w(a1),...,m(arn2)} spans
M,,. We may now introduce an integer valued index ¢(A), defined to be the
minimal number of elements of A required to form a spanning set 7(A) for all
irreducible representations of A. The index is invariant under isomorphism and
so if £(A) # £(B), then A and B cannot be isomorphic. However, the two
nonisomorphic 2-homogeneous C*-algebras over the sphere S?, constructed in
[11], both have index 4 by direct calculation. We omit the details since we only
mention this fact in passing.

Proposition 4.2. Let {A,}22, be a sequence of n-homogeneous unital
C*-algebras satisfying lim, o £(A,) = 0o. Then As, the Lo, —direct sum @ Ay,
is n—subhomogeneous but not n-homogeneous.

Proof. If Ay, were not n—subhomogeneous, then it would have an irreducible
representation 7 of dimension at least n+ 1, and possibly infinite. By [16, Sec-
tion 3] there exists a C*-algebra B and a map A : B — Ay which is n—positive
but not (n + 1)-positive. It would follow that the map fails to be (n + 1)-positive
in some factor A,, and hence that A, possesses an irreducible representation of
dimension at least n+1 [16, Section 3]. This contradiction ensures that A is
n—-subhomogeneous.

Now if A were n-homogeneous, then it is simple to see that £(A,) < £(Ax)
for each r. The sequence {{(A,)}22, would then be bounded, in contradiction
of the hypothesis. [}

We now describe examples of k-homogeneous unital C*-algebras A for
which £(A) may be arbitrarily large. We need a technical result.
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Lemma 4.3. Let S™ be the unit sphere in C"*', and let g1,...,9r :
ST — C be continuous functions satisfying

(a) gi(—€) =—-gi(§) (€S, 1<i<r)
(b) for each & € S*, at least one of g1(£),...,9-(€) is nonzero.

Then r > 3% +1.
Proof. By compactness there exists § > 0 such that, for all £ € SZ,

sup |gi(§)] = 6.
<i<

1<i<r

Define three closed subsets of the unit circle
T, = {ew: 0<¥9< %"},
T,={e: F <9< T},
T3 = {ew: %" <9< 27r}.

Now define 3r closed subsets of S? by
¥y = {0 a1 2 6 ana 48 e
?
for1 <i<r,1<j<3. Since g;(—=¢) = —gi(£), it follows that if £, —¢ € Y,

then
" 9:(§)
19:()1
However, the T} ’s have been constructed to preclude this possibility, and so no
Y;; contains a pair of antipodal points.

S is naturally identified with the real unit sphere $?"*! in R?"+2. By the
Lusternik—Schnirelmann Theorem [1, p. 205], it is necessary that 3r > 2n+3,
since otherwise at least one of the Y;; would contain a pair of antipodal points.
Thus r > -327 +1. a

GTj.

Example 4.4. Fix two integers n, k with n > k+1, k > 2, and fix an or-
thonormal basis {ej,es,...,e,} for C*. Let X, be the set of k~dimensional
subspaces of C" containing {e;,...,ex—1}. We identify a subspace with its asso-
ciated orthogonal projection in M, , and then X,, ; becomes a compact Hausdorff
space in the relative norm topology. We identify S?~* with the unit sphere of
span {ek,...,en}, and define P, for each £ € S’;‘“k, to be the projection onto
span {e1,...,ex—1,£} € Xp . The map £ — P is clearly continuous on Sn—k,

For each P € X, ; let A(P) be the subalgebra PM,P of M,,. Since P is
k-dimensional, A(P) is isomorphic to M. Now define

Anj = {f: Xnk — My: f is continuous and f(P) € A(P)}.
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It is easy to check that A, x is a unital k-homogeneous C*-algebra whose prim-

itive ideal space is X, . Suppose that {fi,...,fr} € An i spans My at every
point in X, .

For each £ € S?~% define B; € M,, by
Ben=(n,e1)  (neC").
Then B € A(P:) and so there exists constants Ay, ..., A, such that

> Nfi(Pe) = Be.
=1
Consequently,
D Al fi(Pe)er ) = (Beer,€) =1,
i=1

and so at least one of the numbers (f;(P¢)e;,£) is nonzero. Let
9:(§) = (fi(Pe)e1,).

Then g1,...,9, are continuous complex valued functions on S™~* satisfying the
hypothesis of Lemma 4.3, since

9i(=€) = (fi(P-¢)e1, — &) = —gi(€).
Thus
r>2(n—-k)+1,

and so £(Ank) > 2(n—k)+1.
Now, for any fixed integer £ > 2, we may let n increase to obtain k-
homogeneous unital C*-algebras of arbitrarily large index. O

We require the further refinement that our C*-algebras should be separably
injective. This is achieved by the next result.

Proposition 4.5. Let A be a unital n-homogeneous C* —algebra. Then
L(A) = E(x(A)) .

Proof. For convenience, we write B for C®(R*,A), I for Co(R*,A) and
p: B — B/I for the quotient map. We first show that £(A) > £(x(A)).

Let r = £(A), and choose a spanning set {ai,...,a,} from A. For each ¢ let
fi be the constant function in B with value a;. Consider an irreducible repre-
sentation m : B/I — M,,. Then mp is an irreducible representation of B whose

restriction to the constant functions in B induces an irreducible representation
mo of A. Then

span{7(p(f1)),...,7(p(fr))} = span{mo(a1),...,mo(ar)}
= M,
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and so {p(f1),... ,(fr)} is a spanning set for B/I. Thus
£(x(A) < 7 = £(4).

Conversely, let r = £(x(A)), and choose a spanning set {p(f1),...,0(fr)},
fi € B. Let Ey,...,E) be an enumeration of the subsets of {f1,...,fr} of length
n?, and define

S; = {7r €B: w(E;) fails to span Mn}, 1<i<k.

We wish to show that each S; is closed, so fix ¢, and let gy, ...,g,2 be the elements
of E;. Let U be the unit sphere in £,,(n?) and let {m,} € S; be a net converging
tor € B.

Since 7, € S;, there exists A, = ()\f‘, &, ...,)\,‘:‘2) € U such that

n2
Z Ao Ta(gm) = 0.
m=1

Choose a convergent subnet (Ag) with limit A = (Ay,A2,...,Ap2) € U and
observe that

,n2 n2
Z AmT(gm) = lim Z Ara(gm) = 0.
m—1 A m=1
Thus 7 (E;) fails to span M, , and so 7 € S;.

Thus S = ﬂf___l S; is a compact subset of B, and consists of those represen-
tations 7 for which {m(f1),...,n(f,)} fails to span M,.

If, for every integer p, the set {fi(p),...,f-(p)} failed to be a spanning set
for A, then there would be a sequence {7} € A for which

dim span{mp (f1(p)), .-,y (fo(p)) } < 0¥~ 1.
Let v, : B — M, be the irreducible representation defined by

w(f) =mp(f(p)  (f€B).

Then each v, € S, and so any limit point of {'y,,}:il is also in 5. Clearly this
set has a limit point in (B/I)" and so SN (B/I)" is nonempty. This would
contradict the original choice of {fi,...,fr}, invalidating the assumption. Thus,

for some sufficiently large integer p, {f1(p),...,f+(p)} is a spanning set for A.
We conclude that

£(A) < r = £(x(4)),

establishing the reverse inequality. O
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Remark 4.6. Recall that a k-homogeneous unital C*-algebra A is said to
be trivial if A is isomorphic to C(A)® M. The set {1® E;;} is a spanning
set for C(A) ® My, and so £(C(A) ® My) = k2. Thus, if £(A) > k?, then A is
nontrivial. Applying this to the algebras A, ; constructed in Example 4.4, we
find that A, ; and x(An,k) are nontrivial provided that

2 _
3k -1)

2 +k. O

It is now possible to disprove the converse of Theorem 4.1.

Theorem 4.7. There exists a unital 2—-subhomogeneous separably injective
C*-algebra A for which A is not substonean.

Proof. From Example 4.4 there exists a sequence

{Bn}aes

of 2-homogeneous unital C*-algebras for which £(B,,) > n. By Proposition 4.5,
K(X (Bn )) >n.

Let A and Ag be respectively the £,,— and cp—directs sums of { x(Bn)}:‘;l.
By Proposition 4.2 A is 2-subhomogeneous but fails to be 2-homogeneous. Let
I be ﬂ,re A kerm. Clearly Ag C I, and I = A,. If A, were substonean, then I

would be separably injective, by Theorem 3.4, and hence I would be countably
unital, by Proposition 2.5.

Let 1, be the identity in x(B,) and consider a = (1,27115,3713,...) € Ap.
Then a € I, so there exists © € I such that za = ax = a. This would force z
to be the identity, implying that I = A, which would in turn imply that A is
2-homogeneous. This contradiction means that Aj is not substonean. O

The techniques of this section lead to a surprising result which runs counter
to intuition. To the best of our knowledge it is new.

Corollary 4.8. For each integer k > 2 there is a k—homogeneous C* -
algebra A whose multiplier algebra M(A) is k-subhomogeneous but not k-
homogeneous.

Proof. Fix k > 2. By Example 4.4, there exists a sequence {Bn}f;l of
k-homogeneous unital C*—-algebras for which £(B,) > n. Let A be the cyo—direct
sum of {Bn}:ozl. Then A is k-homogeneous, since each irreducible representa-
tion is an irreducible representation of one of the factors. M(A) is the £, —direct

sum of {Bn}:°=l, which, by Proposition 4.2, is k—subhomogeneous but not k-
homogeneous. 0O
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