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We obtain several results characterizing when transformation group C*-algebras
have continuous trace. These results can be stated most succinctly when (G, 2) is
second countable, and the stability groups are contained in a fixed abelian
subgroup. In this case, C*(G, 2) has continuous trace if and only if the stability
groups vary continuously on £ and compact subsets of £ are wandering in an
appropriate sense. In general, we must assume that the stability groups vary
continuously, and if (G, £2) is not second countable, that the natural maps of G/S,
onto G - x are homeomorphisms for each x. Then C*(G, 22) has continuous trace if
and only if compact subsets of £2 are wandering and an additional C*-algebra,
constructed from the stability groups and {2, has continuous trace.

1. INTRODUCTION

In [9], Green characterized which C*-algebras associated to freely acting
transformation group C*-algebras have continuous trace. The purpose of this
paper is to characterize those algebras with continuous trace which arise
from possibly non-freely acting transformation groups. In [9], Green showed
that if G acts freely and every compact subset, K, of 2 is wandering in the
sense that {s € G:sK MK # @} is relatively compact, then C*(G, 2) has
continuous trace. In fact, C*(G, Q) is isomorphic to the C*-algebra defined
by a continuous field of Hilbert spaces {9, Theorem 14]. If (G, £2) is second
countable, then he shows that the wandering hypothesis is also necessary [9,
Theorem 17].

With the exception of the statement about continuous fields, the results in
this paper contain those mentioned above. The first step in the argument is to
find a suitable generalization of wandering for compact subsets of 2. Notice
that with the above definition, any point which has a non-compact stabilty
group is a non-wandering compact set. In order to find a workable definition
of wandering, it is convenient to assume that the stability groups vary

40
0022-1236/81/040040-37802.00/0

Copyright € 1981 by Academic Press, Inc.
Al} rights of reproduction in any form reserved.



TRANSFORMATION GROUP C*-ALGEBRAS 41

continuously on £ (Definition 2.1). Moreover, the majority of the techniques
in this paper depend on this assumption, and the continuity of the stability
groups turns out to be a neccessary condition in order that C*(G, 2) has
continuous trace in a reasonably large number of cases (Proposition 4.1). It
may be a necessary condition in general, but I cannot prove this.

Of course the (group C*-algebras of the) stability groups must each have
continuous trace. However, more must be true: Another C*-algebra, C*(.%),
constructed from the stability groups and £ in a manner similar to Fell’s
“sub-group C*-algebra” [6], must have continuous trace. The advantage in
using C*(%) is that its construction does not depend on the G-action. For
example, C*(%) is always abelian when the stability groups are abelian and,
hence, has continuous trace.

The results in this paper are most simply stated when the stability groups
are contained in a fixed abelian subgroup and (G, £2) is second countable. In
this case, C*(G, 22) has continuous trace if and only if the stability groups
vary continuously on £ and every compact subset of £ is wandering
{Definition 2.4).

The general result is as follows: Suppose that the stability groups vary
continuously, and if (G, £2) is not second countable, that the natural maps of
G/S, onto G -x are homeomorphisms for each x. Then C*(G, ) has
continuous trace if and only if C*(%) has continuous trace and every
compact subset of 2 is wandering.

The paper is organized as follows. In Section 2 we make the necessary
preliminary definitions including the generalized wandering condition. We
also construct C*{.%), prove a variety of lemmas needed in the rest of the
paper, and state the most general sufficient conditions we obtain for
C*(G, 2) to have continuous trace (Theorem 2.7).

Section 3 is devoted to the proof of Theorem 2.7.

In Section 4, we obtain a variety of partial converse to Theorem 2.7. By
combining these results with Theorem 2.7, the general characterization of
continuous trace transformation group C*-algebras mentioned above is
obtained (Theorem 4.8).

In Section 5, we give a number of examples and summarize the results
when G is “almost” abelian (cf. Theorem 5.1) and the action is essentialy
free (Theorem 5.2). We also suggest a number of unanswered questions.

In Section 6, we prove some results concerning Morita equivalence which
were stated without proof in Section 2.

The arguments used in this paper depend somewhat on the results in |20,
21]. In particular, for the precise definition of transformation group C*-
algebras, and additional references, the reader is encouraged to see Section 2
of [20]. Since it will often be convenient to consider C (G X £2) as a dense
subalgebra of C*(G, 2), we will denote the latter by C.(G, 22) to distinguish
it from the subalgebra of Cy(G X 2). Also some familarity with Rieffel’s
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theory of induced representations of C*-algebras [15] and Morita
equivalence of C*-algebras [16; 17; 15, Sect. 6] would be helpful.

Isomorphisms, homomorphisms, and representations of C*-algebras will
always be assumed to be *-preserving. Representations are also assumed to
be non-degenerate. Ideal will always mean two-sided ideal, but m(4) and
K(A) (defined in Section 3) may not be closed ideals.

Finally, our proof of Theorem 2.7 is considerably different from Green’s
proof of [9, Theorem 14]. However, Proposition 4.2 uses several ideas from
{9, Theorem 17]. The proof of Theorem 2.14 in Section 6 appeared in the
author’s doctoral dissertation at the University of California at Berkeley
written under the supervision of Marc Rieffel.

2. PRELIMINARIES

Let (G, 2) be a locally compact transformation group. That is, G is a
locally compact group and €2 is a locally compact Hausdorff space together
with a jointly continuous map of G X 2 to £, which we denote by
(s, x)r—=s-x, such that r-(s-x)=1¢5-x for all 5, t€G and x€ Q. If
x € 2, then S, will denote the stability group at x. Let £ denote the space of
subgroups of G endowed with the Fell topology (cf. {5]).

DEFINITION 2.1. The stability groups are said to vary continuously if the
map x — S, from 2 to X is continuous.

For the remainder of this section, the stability groups will be assumed to
vary continuously. It should be pointed out that this is a rather severe
restriction. However, the constructions and techniques of proof in this paper
are heavily dependent on this assumption. Moreover, in Section 4 it will be
shown that, for abelian groups (or, if the stability groups are contained in a
fixed abelian group), the stability groups must vary continuously in order for
C*(G, 2) even to have Hausdorff spectrum. Thus, this assumption would
seem impossible to ignore.

To find the appropriate generalization of the wandering hypothesis for
possibly non-free actions, it will be necessary to consider a quotient
topological space.

DErFINITION 2.2. Let 2 X G/~ denote the quotient topological space
obtained from R X G by identifying (x,s) and (y,r) when x=y and r - x =
s - x. Also, let : 2 X G— 2 X G/~ be the natural map.

LeEmMMA 2.3. If the stability groups vary continuously, then the natural
map 6: 2 X G- 2 X G/~ is open and 2 X G/~ is Hausdorff.
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Proof. Let U and V be open in 2 and G, respectively. It will suffice to
show that @ = 1(6(U X ¥)) is open in 2 X G. Note that a typical element
of @ has the form (x, st) withx € U,s € V, and t € §,. Let {U,} be a family
of neighborhoods shrinking to x in 2 and let V' be a symmetric
neighborhood of e in G such that s(}')>< V. It is enough to show that
U, X sV't is eventually in &.

If the above were false, then, passing to subnets if necessary, there are
x, €U, and s, € V7 such that

(X4, 88, 1) €.

However, x, - x, so by assumption, S, — S,. Thus, there are ¢, € S, with
t, =t Since

(x,,88,1)=(x,,ss,1;'t,)

and ;' is eventually in V', (x,,s(s,(tr;")¢,) is eventually in
(x,, Vt,) <. This is nonsense; therefore, ¢ is an open map.

Now let (x,,s,) denote a net in 2 X G/~ which converges to (x, s) and
(», r). In order to show 2 X G/~ is HausdorfT, it will suffice to show (x, s) =
(», r) in 2 X G/~. Since o is open, we may assume that (x_,s,) converges
to (x, s) in 2 X G, that x =y, and that there are ¢, € S such that (x,,s,¢,)
converges to (x, ) in 2 X G. In particular, ¢, »s~'r. Again since §, - S,,
it follows that s~ € S,,and s - x=r - x. Q.E.D.

Notice that if S, is not compact, then no set containing x can be
wandering in the usual sense. The most that can be hoped for is the
following.

DEeFINITION 2.4. A subset U of 2 is G-wandering if {(x,r) € 2 X G/~:
x € U and rUN U # @} is relatively compact in 2 X G/~.

Then in analogy with Green’s work (cf. [9, Theorems 14 and 17], the
appropriate condition on (G, 2) is that compact subsets of 2 be G-
wandering.

It will also be necessary to consider a C*-algebra the construction of
which is modeled after Sauvageot’s “C*-algébre des Stabilisateurs” [19] and
Fell’s subgroup C*-algebra [6]. Let

S ={,NENRXG:LES, I

If x— S, is continuous, then one sees easily that .’ is a closed, hence locally
compact, subset of 2 X G. In fact, . is a locally compact groupoid as
defined by Renault in [14], and the C*-algebra described below is simply the
C*-algebra of the groupoid %
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First, we fix a non-genative function, f;, in C,(G) which does not vanish at
the identity. For the remainder of his paper, we set a, to be the left Haar
measure on H € X with the property that

J o0 dan(® = 1.

Such a choice f measures is called a continuous choice of Haar measures,
and has the property that

Hi J £(2) day(t)

is continuous on X for every f€ C.(G) {7, p. 908]. For convenience, let a,
denote a5 _and let 4, be the modular function on S,. Notice that {a,},.q are
a left Haar system on the groupoid . as defined in [14]. The next lemma
summarizes some of the properties that the a, enjoy.

LEMMA 2.5. Suppose that the stability groups vary continuously on Q.

(i) Suppose that {f} is a net of functions in C (G) converging to f in
the inductive limit topology and that x; — x in 2. Then

[ S0 dar =] SO da.

(i) A4,(t) is continuous on .

(i) If W is a locally compact Hausdorff space and F € C.(W X .7),
then

f F(w, x, t) da,(t)

Sx

defines an element of C.(W X 2).
(iv) If Wis as above and G € C (W X G), then

f G(w, 5) daty(s)

defines an element of C.(W X X).

Proof. This is essentially [20, Lemma 2.12]. Parts (i) and (ii) follow
directly, while (iii) is only slightly more complicated.

On the other hand wi— G(w, -) clearly defines a continuous function from
W 1o C.(G) with respect to the inductive limit topology. Part (iv) now
follows directly from |20, Lemma 2.12(i)]. Q.E.D.
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C.(¥) may be given a *-algebraic structure in the following manner. If
/.8 € C (%), then let

frglo =] [ gl r') da),
and let

SH =47 (7).

The fact that fx g and f* are also in C(%) follows from Lemma 2.5.
Moreover,

170 = 1f e 1)l day()

defines a norm on C(.%’). We can also put a norm on C.(*’) making it a
pre-C*-algebra, namely,

1711 = sup LU,

where L runs over ||-||,-norm decreasing representations of C.(%¥).

DErINITION 2.6. Let C*(%) denote the C*-algebra which is the
completion of C,(%) with respect to the norm {|-||.

It is now possible to state one of the main results of this paper.

THEOREM 2.7. Suppose that the stability groups vary continuously and
that C*(.¥) has continuous trace. Then if every compact subset of 2 is G-
wandering, C*(G, 2) has continuous trace.

The proof of this theorem will be taken up in Section 3. The remainder of
this section will concentrate on the structure of C*(%).

Suppose that x € 2 and that 7 € §_. Then we may define an irreducible
representation, M%, of C*(.¥) on the space of 7 as follows. For f€ C.(%)

M) =[S0 0)7(e) das o)

LEMMA 2.8. Every irreducible representation of C*(.%) is equivalent to
a MZ for some x€ 2 and n € S,

Proof. It is not difficult to see that C*(.%’) is isomorphic to a quotient of
Co(2) ® C*(G), where C*(G) is the subgroup C*-algebra constructed in [6,
Sect. 2]. To be precise, the primitive ideal space of Cy(2) ® CXG) is
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parameterized by the set {(x, H,kero):x€ 0, HE X, 6 € A} [6, Lemma
2.8]. Since the map from Prim C¥(G) to X defined by (H, Kero)— H is
continuous by [6, Lemma 2.5}, {(x, S, kero):x ER,6 € S,} is closed in
Prim(Cy(22) ® C¥(G)); the lemma now follows easily. Q.E.D.

LEMMA 2.9. The map from Prim C*(%) to 2 defined by ML x is
continuous.

Progf. This follows immediately from the isomorphism of C*(%) with
the quotient of C,(2) ® C¥(G) described in the proof of the previous lemma.
Q.E.D.

Although we cannot prove it, we think of C*(.%”) as a field of C*-algebras
over £ with the fibre over x being C*(S,). Recall that C*(H) is (strongly)
Morita equivalent to C*(G, G/H) |16, Definition 1.1]. Thus, one should
expect C*(.¥’) to be Morita equivalent to a field of C*-algebras over 2 with
fibre C*(G, G/S,) over x. Before we proceed with the construction of this
algebra, we describe the C*(H)- and C*(G, G/H)-valued inner products
implementing the Morita equivalence between C*(H) and C*(G, G/H). As in
[15]), we usually will work with pre-C*-algebras.

DeFINITION 2.10. Let A, k€ C,(G) and HE X,

(8) Let 1(1) = (Ag(t)/4(0)"™, 1€ H.
(b) (f&)u () =yult) [c.L*(5)g(s™'1) dug(s), t € H.
©) L &wG.ambs )= Jaf(rty g*(t~'r7's) day(t), r, s € G.

Let x€ 2, H< S, and suppose 7 is a representation of H on V. Let N¥
and Ind{, ,,(n) be the representations of C*(G, G/H) and C*(G, 2) induced
from 7 on H |20, Definition 3.4|. Recall that both N% and Indf, ,,(7) act on
the completion of C.(G)® V, with respect to the pre-inner product given on
elementary tensors by

®&eg®nyy= (g  u) &y,
where (-, -), is defined above. If f€ C.(G, 2), then
Indf ) (M(h ® & =A®E,
where A(s) = [;f(v,s - x) h(v™'s) da,(v). And if ¢ € C (G, G/H), then
NP ® ) =h®¢
where A(s) = [, d(v, s) (v~ 's) day(s).
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DEerFINITION 2.11. Let & =0 X G X G/~ be the quotient topological
space obtained from Q X G X G by identifying (x,r,s) and (y,u,v) if and
only if x=y,u=r,ands-x=v - x.

Notice that & is simply the product of G with the quotient space defined
in Definition 2.2. Therefore, the next lemma is clear.

LEMMA 2.12. The natural map, o, from QX GXG to & is open.
Moregver, & is a locally compact Hausdorff space.

In view of the openness of g, elements of C.(&) may always be identified
with continuous functions, f; on 2 X G X G such that f(x, r, -) defines an
element of C,(G/S,) and there is a compact subset of 2 X G X G of the form
C X K X K, such that supp f< o~ '(0(C X K X K)).

Now C.(&) may be given a *-algebraic structure. For f, g € C (&) define

S*xg(x, s, 1) =f S, v, r)glx, v s, 07 s, 07 ') dag(v)
G

and

SH¥x 8, ) =46 (x, s, s7r).

Using the above remarks it is not hard to see that f* g and f* are again
elements of C.(&).

Of course if f€ C.(£), then f, defined by f.(r,s)=f(x,r, s) defines an
element of C.(G, G/S,).

DEFINITION 2.13. Let U* denote the representation of C.(&) defined by
Ui(f) = N3x(f,)- Also, let L} denote Ind¢, s (7).

Of course, since C*(S,) and C*(G, G/S,) are Morita equivalent, it follows
that if 7 is irreducible, then N3 is irreducible as well. It follows that U% is
irreducible. Moreover, if we give C (&) the norm defined by

1711= sup U,

where the UZ run over all x € 2 and 7 € S,, then C (&) becomes a pre-C*-
algebra. Thus, the completion is a C*-algebra which will be denoted by
C*(&).

There is a natural action of C.(G, 2) on C(&€). Namely, if f€ C.(G, 2)
and e € C (&), then define

fe(x,s,r) =j f,r-x)e(x,v™'s, v 'r)dag(v).

580/41/1-4
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A straightforward computation shows that
Un(f- &)= L3(f) Uzle). (1

Thus,
I/ elle <N levi.o el

Therefore the action defined above extends to one of all of C*(G, 2) on
C*(&) and, in fact, gives a homomorphism of C*(G, 2) into M(C*(&)) such
that Eq. (1) holds for every /€ C*(G, 2) and e € C*(&). Recall that if 4 is
a C*-algebra, then M(A) is the algebra of double centralizers [2].

The next two theorems explain the need for introducing the algebra C*(&).

THEOREM 2.14. C*(¥) and C*(&) are Morita equivalent. In particular,
the representation of C*(&) induced from M, via the above Morita
equivalence is unitarily equivalent to Uy,

Since the proof, although not difficult, is rather long, technical, and
somewhat peripheral to the main results of the paper, the proof will be
postponed until Section 6.

The next theorem is part of some unpublished work of Green’s on C*-
algebras with continuous trace [11]. His proof is also given in Section 6.

THEOREM 2.15. If A and B are Morita equivalent C*-algebras, then A
has continuous trace if and only if B has continuous trace. In particular,
C*(&) has continuous trace whenever C*(5”) has.

COROLLARY 2.16. The map I' from C*(&)" to 2 defined by Uy — x is
continuous.

Proof. By Theorem 2.14 and Corollary 6.27 of {15], the map M7 — U}, is
a homeomorphism of C*(%)" onto C*(&)". The corollary now follows
immediately from Lemma 2.9. Q.ED.

The next proposition highlights some direct consequences of the wandering
hypothesis.

PROPOSITION 2.17. Suppose that the subgroups vary continuously and
that every compact set of Q is G-wandering, then each of the following hold.
(i) /G is Hausdorff.
(ii) The natural map of G/S, onto G - x is a homeomorphism for each
X.

(ili) C'(G, R) is EH-regular. In particular, every irreducible represen-
tation of C*(G, R2) is (equivalent to) a L% for some xE€ Q and n€ S,.
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Proof. The proofs of parts (i) and (ii) can be taken from the beginning of
{9, Theorem 14] with only minor modifications.

Since part (i) implies that each orbit is closed and, by 10, Corollary 19],
that C*(G, 22) is quasi-regular (cf. [10, p. 221]). It follows, just as in the
proof of Proposition 3.2 in [20], that every irreducible representation of
C*(G, R2) factors through C*(G, G - x). However, C*(G, G - x) is isomorphic
to C*(G, G/S,) since the homeomorphism from part (ii) is G-equivariant.
Since every irreducible representation of the latter algebra is equivalent to a
N7 and the isomorphism clearly carries LY (on C*(G, G - x)) to N*, part (iii)
has been proved. Q.E.D.

Recall that a Bruhat approximate cross section for G with respect to G/H
is a continuous, bounded, non-negative function, b, on G with the following
properties: First the intersection of the support of b with the saturant of any
compact set, C, in G (i.e., CH) is compact. And second

j b(st)day(t)=1  foralls.
H

Such functions are shown to exist in [1, Proposition 8], for example. It will
be frequently necessary to make use of the existence of a cut-down
generalized version of the above.

PrROPOSITION 2.18. Let C and K be compact subsets of G and £,
respectively.

(i) There is a non-negative function b € C,(X X G) such that

j b(H,st)da,(ty=1  foralls€ CH.
H

(ii) If the stability groups vary continuously, then there is a non-
negative function b € C (2 X G) such that

j b(x,st)da()=1 foralls€ CS andxEK.
S

X

Proof. 1t clearly suffices to prove only part (i). Fix HE€ X, and let
b € C(G) be a cut-down Bruhat approximate cross section for G with
respect to G/H. That is, b¥ > 0 and

f b(st)day(t)=1  foralls € CH. )
H
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Since f(s, £) = b”(st) may be viewed as an element of C.(C X G), Lemma
2.5(iv) implies Eq. (2) is continuous in H and s. Moreover, since C is
compact, there is a neighborhood, U, of H such that

j (s, £) dag () > }

for every K € Uy, and s € C. Of course the left invariance of the a, implies
the above actually holds for all s € CK.

Since X is compact, suppose Uy, seess Uy, cover Z. If f},.... f,, are a partition
of unity on X' such that supp f; & U,,, then

¢ bs)
b(H, 5) = (\:.fi(H) T, 5i(st) day (1)
will do. o

It will also be necessary to recall some basic observations from (18, 19]
concerning the appropriate choice of quasi-invariant measures on the
quotient spaces G/S,.

DEefFINITION 2.19. (a) Define w=G X 2-R* by
[ fust™)da(o) =00 [ f(s)da, ()
S St.x

(b) Define p: GX 2R by p(s, x) =d;(s ") w(s, x).
LEMMA 2.20. Suppose the stability groups vary continuously. Then the
Jollowing statements hold.
(i) Both p and w are jointly continuous on G X .
(it) For all s, r € G and x € £2; p(rs, x) = p(s, x) p(r, 5 - X).
(ili) Forallx€ Q,s€ G, and € S,; p(st, x) = A (t) A5(t™") p(s, X).

(iv) There is a unique quasi-invariant measure, .., on G/S, such that,
Jor all f&€ C(G),

JS©p6x) dags) = [ [ lst)da(r) du(o)

Proof. Let f; be the function in C,(G) defining the continuous choice of
measures «,. Lemma 2.5 implies

[ fotest™) dats) (3)
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is continuous in x and ¢ However, Eq. (3) is equal to w(#, x) since
[s,fo(s) da,(s) =1 for all y. This proves part (i).

The proofs of parts (ii) and (iii) are simple computations, and part (iv)
follows from |1, Chap. VII, par. 2, no. 5, Théoréme 2]. Q.E.D.

The essential properties of the g, needed in the following are outlined in
the next two lemmas.

LemMmA 2.21. Iff€ C.(G/S,) and r € G, then s \— f(sr) is an element of
C.(G/S,.,) and

[IOLTRORS IFC L TeO!

G/S,.x

Progf. Let b be a Bruhat approximate cross section for G/S,. Then the
left-hand side of the above equation equals

fcf(S) b(s) p(s, x) dag(s)
= do(r) [ f(sr) blsr) p(sr, x) dag(s)
= w(r, x)l( S (sr) b(sr) p(s, r - x) da(s)

=[ Serotx) | bir)da,. (1) de,.(s)
G/Sy.x Srx

which equals the right-hand side. Q.E.D.

LEMMA 2.22. Suppose that the stability groups vary continuously and
that compact subsets of 2 are G-wandering.

(i) If ¢ € C(Q), then
F)=[ 4(s-x) duyfs)
G/S,

is an element of C (G/02).

(i) If C< 2 is compact and ¢,: G/S, — Q2 is the natural map, then
U (85 '(C)) is bounded on . In fact, if ¢.€ C,(2) is any non-negative
Sunction which is identically one on C, then

105 1C)) <l 6cloo-
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Progf. ¢ is constant on orbits by the previous lemma and clearly has
compact support. For x, € 2, let U be a compact neighborhood of x,. Let
C=supp ¢ and K =CU U. Since

(x, ) ENRXG/~:xEK,sKNK + @}

has compact closure in 2 X G/~, it follows from Lemma 2.3 and
Proposition 2.18 that there is a b € C.(£2 X G) such that

o(r-x)=¢(r- x)J b(x, rt) da(¢)

provided x € U. In particular, for every x € U,

0)= [ 902 b 7) p(r. ) dag(r),

which is clearly continuous in x. This establishes (i).
Let ¢ be as in (ii). Then

o) = o+ x) dus(r) > 185 '(C) QED.

SX
3. ProOF OF THEOREM 2.7

If 4 is a C*-algebra, let m(4) denote the two-sided ideal of continuous
trace elements in A. That is, the set of a € A4 such that mi— tr(n(a)) is
continuous from 4 to R* [3, 4.5.2]. Let x(A4) denote the dense, hereditary,
two-sided ideal in A which is minimal among all dense two-sided ideals (i.e.,
the “Pedersen ideal,” cf. [12, 5.6.1]. If B is an ideal in 4, then B* will
always denote the intersection of B with the positive cone of 4.

Since C*(.%’) and C*(&) are defined only when the stability groups vary
continuously, we shall assume this throughout this section.

The idea of the proof will be to use the fact that m(C*(£))* spans a dense
set to produce sufficiently many continuous trace elements in C*(G, £2).
Towards this end, we define a linear map, P, from C,(&} to C.(G, 2) by

PUNSX)=[ S xsr™) dudr) )

It is not difficuit to check that rit— f(r-x,s,r~') defines an element of
C.(G/S,) and, hence, that P(f)(s, x) is well defined.

LEMMA 3.1. Iff€ C(&), then P(f) € C(G, Q) and P(f*)= P(/)*.
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Proof. Suppose that suppf<o(C XK X K,). Then, supp(P(f))<
K X K,C. Let b € C (2 X G) be a generalized cut-down Bruhat approximate
crosssection such that

j b(x, rt) da (f) = 1,

Sx

if x€eK,C and r€ K; .
It follows that, for every x € £2 and 5, r € G,

fr-x,8rY=fr xsr") j b(x, rt) da (1).
Sx

Thus, one can show that P(f) is continuous in much the same way as in
Lemma 2.22.
The assertion about adjoints follows quickly from Lemma 2.21. Q.E.D.

For the moment, fix x € 2 and w € S,. Also, let L7 be the corresponding
element of C*(G, 2)" (L% is irreducible by |20, Proposition 4.2]) and denote
the space of L% by simply V. If r € G, let "w be the representation of S,
defined by "w(f) = w(r~'tr). It will be convenient to realize "U%, = U7 as a
representation on V. Thus, if F® ¢ is an elementary tensor in C.(G)® V,,
then define T from the space of "U*¥ to V by T(f®¢=
(w(r, x) 2 p(r~') F) ® & where p(r) F(v) = A(s)"? F(vr).

Now,

(TF® &), T(GRn))y

= o) () Gplr™) Fls, (w(t) & 1) day(n)

:w(r,x)_IJ’ ys.() j G*(s) F(s~'rtr=") dag(r){w(t) & 1) da (1).

And, since 45 (r~'tr) =4 _(t), the above equals

FRELEG®my,~

Thus T extends to a unitary map onto V.
Let "R}, denote T"U7, T*. It is not difficult to compute that, if e € C (&),

RLEFn=F®n, (5)

where

Fs) ='f e(r - x,x,sr™ ") F(v™'s) day(v). (6)
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Or, more simply, ‘R (e) = NSx(e,), where e,(v,5)=e(r - x,sr™'). It follows
from Eq. (6) that "R, depends only on the class of r in G/S, and w € §,.
Moreover it is not hard to see that if r,—»r in G, then e, —e, in the
inductive limit topology on C.(G,G/S,). Thus, ri— "R} (e) is norm
continuous. In particular,

| R du(r)
G/s.\'
is a well-defined operator in B(V).

LEMMA 3.2. For each f€ C (&), LL(P(f)) = /s, RE(S) du(r).
Proof. By definition LX(P(f))(F X &) = F ® &, where

F(s)= j P, s - x) F(v™'s) dag(v)

= j f(rs - x, 0,7~ ") F(o™"s) du,. (r) dag(v),
G7G/S, .,

which by Lemma 2.21 is

F(s) = j

G/S,

(J f(r-x,v,sr " )YF(v™'s) daG(v)) du (r).
G
By comparing with Eq. (6) above, one gets

LEFeI=([ Ridu0) FOO

/S,
Q.E.D.

Now, suppose C*(.¥) has continuous trace. Then certainly each stability
group has continuous trace, and in particular each stability group is C.C.R.
It follows from Proposition 2.17 and [20, Proposition 3.2] that if every
compact subset of 2 is G-wandering, then C*(G, 2) is C.C.R. Therefore,
LY (P(f)) is a compact operator.

Suppose {v,},c, is an orthonormal basis for V. Since LI (P(f)) is
compact, there are only countably many v, such that

(LLPU)) v 000y # 0.
Moreover, if f€ C (&) C*&)*, then

[ R () v o)y du() =0
G/S,
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if and only if (RL(f)v,,v,), =0 for all r€G. Thus, for fixed
SE CA&)N C*(&)*, there are {a;};>, = 4 such that

WLAPUM = X LD 200,

and

UOREN) = N CRE(S) Uy 2 )y

i=1%

Therefore, the next lemma follows by the monotone convergence theorem. Of
course, tr(*U%) = tr(°RY).

LemMA 3.3. IffE€ C(&)N CX(E)*, then

w@LPU)=[  aCUL) duds)
G/S,
Unfortunately, it does not seem possible to extend P to all of C*(&). In
fact, if suppf< o(C X K X K,), then it is clear from Eqgs. (5) and (6) that
R{*(f)=0if s - x & C. In particular,

IL*PUM < fG/S PR di(s) <INz (85" (C)):
Thus, bu Lemma 2.22 if ¢. € C(2) with ¢ identically one on C and ¢. > 0,
then

ILEPUM < IS Nl Beloo- ()

Since the compact set C varies with £, there seems to be no reason to suspect
P is bounded. However, if g€ C/(&), then let P, denote the map
S P(g * f*g*).

PrOPOSITION 3.4.  Suppose that the stability groups vary continuously on
£ and that every compact subset of Q is G-wandering. Then P, is bounded
and extends to a positive linear map from C*(&) to C*(G, 2).

Proof. Let g€ C.(&) be fixed with supp(g)<o(Cx KX K,). Let
S€ C.(€) have support in a(C,; X K, X K,). Then, g *f* g* has support in
o(C X KK, K~ X K,). Since Eq. (7) above holds for any L , it follows that

1P+, <11 8113 1 Bclleo 1/ s
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where g is any non-negative function in C.($2) which is identically one on C
(Lemma 2.22). Thus, P, is bounded and can be extended in the usual way.

On the other hand, if f€ C (&) N C*(&)*, then it follows immediately
from Lemma 3.2 that

(L5PAS))0)y 20
for every LY € C*(G, 2)" and v € V; that is, P, is a positive map.  Q.E.D.

Remark. 1t is possible to show that P is a generalized conditional expec-
tation as defined in [15], but this fact is not needed in what follows.

LEMMA 3.5. For every g € C(€) and f€ C*(&),
() LyP)) = Jgs, Ru(g */* ") dus).
And, if f€ CX*(&)*,
(i) t@LLPLN) = J s, trCUL(8 * S * 8% )du(s).

Progf. Let f, be a sequence of functions in C,(&) converging to f in
C*(&). Then LL(P,(f,)) - LL(P,(f)). But, by Lemma 3.2

L(P(f) = / ‘R(8 * [y * &%) du{s)-
G/Sy

Since ||*RX(g*f,*g*)| is bounded by a multiple of the characteristic
function of ¢, !(C) for all n, the right-hand side of the above equation
converges to

[ RE(gxsx g duds),
G/S,

by the Lebesque dominated convergence theorem.
Part (ii) now follows from part (i) as in Lemma 3.3, since L} (P,(f)) is
compact. Q.E.D.

Now suppose f€ m(C*(£))*. Then
U, — (Ui (g xS/ * g%))

defines a non-negative continuous function on C*(&)". Consider

UL =[ wCUL(g*S*g") dus) ®)

G/S,

as a function on C*(&)".
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LEMMA 3.6. The map from GXCH&) to CX¥&) defined by
(s, UX) = *U% is continuous.

Proof. By Theorem 2.14 and [15, Corollary 6.27], it suffices to show
(s, M7,) > M ™ is jointly continuous on G X C*(”). However, this follows
from [6], Lemma 2.9 and the fact that C*(%) is isomorphic to a quotient of
Co(2)® CHG). Q.E.D.

ProrosiTioN 3.7. Suppose g € C.(&) and f€ C*(&)*. If, in addition,
every compact subset of 2 is G-wandering, then ®, as defined in Eq. (8), is
continuous from C*(&)" to R*.

Progf. Fix U in C*(&)" and let W be a compact neighborhood of U2 .
Let I' denote the map of C*(&)" onto 2 defined by I'(UX)=x. I is
continuous by Corollary 2.16. In particular, I'(W) is a compact set
containing x,. Suppose g has support in 6(C X K X K,). Then U’(g * [ * g*)
is zero if y & C.

If K=T(W)U C, then

{(x, ) ER X G/~ xEK,sSKNK + @}
has compact closure in 2 X G/~. Using this fact and Proposition 2.18, one

can find b € C.(2 X G) such that, for all U2 € W and s € G,

trCUL(g *f* g*)) = tr(CU (g * S/ * g*))j' b(y, st) da,(¢).

It follows that if UY € W, then

O(L) = [ uCUg*S*8*)b(y,5) pls, y) dugs).

In view of the previous lemma and the compact support of b, the right-hand

side is continuous in Uj, and y. On the other hand, if U} converges to Uje,

then the continuity of I" implies that y, — x,. Thus, @ is continuous at U°.
Q.E.D.

Notice that by Lemma 2.21, @(°*UY) = ¢(172).

PropOSITION 3.8. Suppose that the stability groups vary continuously
and that compact subsets of 2 are G-wandering. If g€ C(&) and
SEmM(CHE))?*, then P(f) € m(C*G, 2))*.

Proof. Since LI is a typical element of C*(G, 22) (Proposition 2.17), it
suffices to show that L — tr(L}(P,(f))) is continuous at L.
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Suppose, to the contrary, that there were a net {Lj"},.,, converging to
L7 such that

(L5 (Pe(fN) — tr(LE(P (/M) > 6> 0

A De annivalantls
< /. wi, CJulvadiciiu

|P(UL) — PUL) 2¢e>0 )

for every a € A.
Suppose in addition that U¥ is not in the closure of

{'Us:a€dands € G}
in C*(&)". In particular, there would be an e € C*(&)* such that
‘Uiz(e)=0
for every a € 4 and s € G, while
Ui(e)+#0.
By Lemma 3.5(i) (and the fact ‘U7, is equivalent to R'™),
L (Py(€))=0
for every a € A and g, € C(&). Moreover, since P, (e) is in the common
kernel of the L3z ,
L7(Py(e))=0
as well. On the other hand, there is a g, € Cy(&) and a v € V such that
(Ui(gox exgg)v,v)y > 0.

And by Lemma 3.5, (L%(P,(e))v,v) is the integral of a continuous,
nonnegative, and non-zero function on G/S,; hence, L} (P(e)) # 0.

In view of the above contradiction, it may be assumed that there is a net,
{"Bg, tpenn converging to U, with {UB}se s S (Ut bacs- By the previous
proposition anf the remark following, the ¢(‘BU§,1’B)= fD(U"fFA) converge to
@(U7). This contradicts Eq. (9) and completes the proof of the proposition.

Q.ED.

To complete the proof of Theorem 2.7, it will suffice to show that for an
arbitrary LY € C*(G, 2)" there is a f€ m(C*(G, 2)) such that LL(f)+#0
[3, 4.5.2]. Since C*(¥) and C*(&) are Morita equivalent, m(C*(&)) is
dense in C*(&). Thus, there is an e € m(C*(&€))* such that U (e) #0 and a
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g € C(£) such that UX(g * e x g*) = 0. It follows from Lemma 3.5, just as
in the proof of the previous proposition, that L} (P,(e))# 0. Of course,
P (e) € m(C*(G, 2)) by the last proposition.

In the next section, a variety of partial converses will be established.

4, CONVERSES TO THEOREM 2.7

As mentioned earlier, the assumption that the stability groups vary
continuously is a strong one. However, the next proposition will show that
the assumption is necessary in a large number of cases. (Recall that C*-
algebras with continuous trace have Hausdorff spectrum.)

PROPOSITION 4.1. Suppose that the stability groups are contained in a
Jfixed abelian subgroup H. In addition, suppose that the natural maps of
G/S, onto G - x are homeomorphisms for each x, and if G is not abelian,
that C*(H, Q) is quasi-regular. Then, if C*(G, 2) has Hausdor(f spectrum,
the stability groups vary continuously on £2.

Remark. If (G, Q) is second countable, then C*(H, 2) is automatically
quasi-regular [9, Corollary 19], and the assumption on the natural maps
from G/S, onto G - x is unnecessary [8].

Proof. Note that the maps from H/S, to H-.-x are also
homeomorphisms. It follows from [10, Corollary 19 and Proposition 20]
that both C*(G,2) and C*(H,2) are EH-regular. If H=G, then the
proposition follows from [21]. In general, the arguments in [21] show that if
x— 8, has a point of discontinuity, then there is a net in 2 X A such that
(x,,0,) converges to (x, o) and ¢, is identically one on S, , while ¢ is not
identically one on S,. It follows from {20, Lemma 4.9] and TIO, Proposition
8] that L converges to both L} and LY, where 1 denotes the trivial
representation and a5 _denotes the restrlctlons of o to S,. However, L7 ;.and
LY are not equwalent since | # o _implies that their unitary parts are not
equivalent. Q.E.D.

For the remainder of this section, it will be assumed that the stability
groups vary continuously. The proof of the necessity of the wandering
hypothesis is inspired by Green’s proof in [9]. The basic idea is the same: To
produce an element in the Pedersen ideal which is not continuous trace. The
minimality of the Pedersen ideal among dense ideals then implies that
C*(G, 2) does not have continuous trace.

PROPOSITION 4.2. Suppose that the stability groups vary continuously. If
(G, 2) is not second countable, then suppose that the natural maps
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¢..G/S.— G - x are homeomorphisms for each x. Then if C*(G,2) has
continuous trace, every compact subset of 2 is G-wandering.

Before proceeding with the proof, it will be necessary to prove a number
of lemmas.

Lemma 4.3. Suppose that the stability groups vary continuously. If
C*(G, Q) is C.C.R. with Hausdorff spectrum, then 2/G is Hausdorff.

Proof. Follows immediately from [20, Theorem 4.11 and Proposition
4.16]. Q.E.D.

Suppose that K is a non-G-wandering compact subset in £. That is, if
Sy=1{(x,5)ENX G/~ xEKSKNK#@},

then S, is not relatively compact in 2 X G/~. In particular, given C< G
compact, there is x.€K and a r.€ CS, such that r.x.€ K. Using
compactness, we may assume x.—z € K and rox.— y € K, where the nets
are directed by increasing compact sets. Moreover, since £2/G is Hausdorff,
there is an s, € G such that z = s, . In particular, if s, = syr, then sox.— 2z
and

Sc € 5,CS,,- (10)

Fix z€ 2 and let f€ C,(2) be a non-negative function which is iden-
tically one on an open neighborhood, W, of z. Let N be a compact set
containing the support of /. For each x € 2 let f,(s) =f(s - x) and let F be a
compact set in G such that FS, contains the support of f,. F and N may be
taken so that F=F~', e € F, and W< N.

It follows from [20, Lemma 4.14] that L] is equivalent to a represen-
tation, L*, on L*(G/S,,u,) such that, if h € LXG/S,) and G € C(G, 2),
then

L¥(G) h(s) = fc G(v, s X)p(v™", s - )V B(v™"s) datg (V).

Of course, p(v™", s - x)V* = p(v~'s, x)"? p(s, x) " by Lemma 2.20.
Suppose b € C(2 X G) has the property that

j b(x, rt) da(f) = 1

Sx

whenever x € N and r € F%, Also let

Gr,y)=fINS™" - p) by, r= 1) dg(r= ") p(r=', »)", (11)
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where f is as above. Then,

LXG)(h)(s) = ff (s - x)f(rs - x) b(s - x,r) p(r, s - x) h(r - 5) dag(r),

which, using Lemma 2.20 and sending r— rs~*,

L*(G)(h)(s)
= w(s, x)™! j F(s - x)f(r - x)b(s - x, rs™") h(r) p(r, x) dag(r),
which is equal to
J S(s-x)f(r- x)j b(s - x, rs™'t) da. (t) h(r) du,(r). (12)
G/S, Sgox

And in particular, if x = z, then

L@ =[S+ 1) ) dur) (13)

which is a rank one positive operator.

Let ¥, be a symmetric neighborhood of the identity in G with compact
closure. V. Also, let K = V*F?V*F, Notice that @: G X 2 - £, defined by
(s, x)— (s - x), may also be viewed as a function on Q X G/~. Thus,
0(z X KN\O(z X Vo F) = 6(z X (K\V,FS,)) is compact and is contained in
@~ !(2\N), an open set. Therefore, for each (z, s) € 8(z X (K\V,FS,)), there
is an open neighborhood, U XV,c2XG, such that
HU, X V)< @~ (Q\N). Suppose that &(U, X V,),...0(U, X ¥, ) cover
3z X (K\V(FS,)). Let U=]_, U, and ¥, = U}_, V,. Then,

HUXV,)268(z X (K\V,FS,))
and
(U X V) S &~ (2\N).

Moreover, d ' (d(U X (V, U V,F))) is a saturated open set in £2 X G which
contains z X K Thus, there is a neighborhood of x, U, € U, such that

8(U, X K) S 8(U X (V, U Vo F)).
Notice that (U, X Vo F) € d(UyX V, U VoFIN\o(Uy X Vo F)S Uy X V) =
(U X V,) < @ '(2\N). Therefore if x € U,, then

f(s-x) if seKS,,
1 —_ X
T49= 15 if sé& V,FS,
is a well-defined, continuous function on 2 X G.
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Now assume the function b € C.(2 X G) in Eq. (11) has been chosen so
that

f b(y,rt)da,(t)=1

¥

for all yEN and r € VF?V. And that the support has been cut down, if
necessary, so that :

b(y,ry=0
if (y,r)& 5~ "(6(M X V*F*V?)), where M is compact and M 2 N.

LEMMA 4.4. With the notation and definitions established above and if
x € U,, then

S-S x) [ b xrs ™) dag (O30 (14)

5-x

and

SA8)S(r - x) fulr) (15)
are equal for all 5, r € G.

Proof. Notice that both equations depend only on the classes of s and r
in G/S,. If r& V,FS,, then f(r) =0, so both equations are zero. Thus, it
can be assumed that r € V F.

If sE€ V,F, then f}(s)=f(s - x) and rs~' € V,F*V,. Thus,

b(s - x,rs™ ') da,. ()= 1.

Ss.x

Of course, the above holds for all s € V,FS,. And in that case, Egs. (14)
and (15) agree.

If s€ K\V,FS,, then fi(s)=f(s-x)=0. It follows that Egs. (14) and
(15) are both zero.

Finally if s € K, then f,(s) is zero as is Eq. (15). On the other hand,
whenever rs~' € V2F*V?, it follows that s € V?F*V?r. But if r € V,F, that
implies s € K. Thus, by our choice of b,

b(s-x,rs"'t)da,. (t)=0

Ssx

if s € K and Eq. (14) is also zero. Q.E.D.
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It follows from the above lemma and Eq. (12) that f is an eigenvector for
L*(G) for each x € U;. Moreover, the corresponding eigenvalue is

A= Sr-x)fx(r) du(r).

G/S,

On the other hand, assuming U, < W< N,
£X0) | bl ryda () =130)
Sy
for all x € U, and r € G (since e € F implies V F < VF*V). Thus,

=] S X)) bxs 1) p(r, x) dat(r).
G
In particular, Af¢ converges to A3 = tr(L*(G)).

LEMMA 4.5. Let W be as above. There is an open, symmetric
neighborhood, Q, of e in G and a neighborhood of z, U, < U,, such that
r-x €U, implies Qrx = W.

Proof. 1f the lemma were false, there would exist s,, 1, € G and x_ € 2
such that ¢, —»e, r,-x, -z andt,r, - x, isnotin W. But, ¢, - (r, - x,)— 2.
Q.ED.

Let Q and U, be as above with @ = @~ and Q> < V. Let K, be a compact
set containing s; 'QVF such that x. and s.x. are both in U, if C2K,.
Notice that s, € QVF and that Qs and VF are disjoint.

Let h¢ be the characteristic function of Qs.S,_in L*(G/S, ). Notice that
if s € QOs,, then

b(s - xc, rs™'t) day.  (£) he(r) = he(r),

S

s xC

because Q< V'S VF?V and s - x. € Qscx. S W S N. But since f is iden-
tically one on W, for all s € Qs,. it follows that

L*(GY(hc)(s) = (he» hey = | helle.

Of course || - || denotes the norm in L*(G/S, ). In particular, viewed as an
operator on the orthogonal complement of f LC, L*¢(@) is a positive compact
operator of norm at least || .|| and, therefore, has an eigenvalue A, such
that

A5 2 N hell* = u(QscS,.)- (16)

580/41/1.5
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Let Q, be a neighborhood of e in G with Q§ < Q. Then it is possible to
find b° € C,(2 X G) with the properties that if x € U,, then

f BO(x, rt) dat (1) = ]

Sx

for all r& @,S,, and

j B(x, rt) da () =0

Sy

if r & QS,. Define b%(x, r) to be w(sg', x) b°(sc - x, rsc'). Also let
b%(x, r) = I b%(x, rt) da,{¢t).
SX
Since

bt(x, r) =I b°(sc - x, rsc't) da, . (),

S

sCx

it follows that 5(x, -) is a non-negative function in C.(G/S,) which is one
on Q,5.S, and zero off Qs.S,. In particular,

Me(@5c8:) > [ Bolxe, r) du () (17)
G/S,
LEMMA 4.6. There is a compact set, K, containing K, and an a >0
such that C 2 K, implies AZ > 3a, AS > 2a, and 25> A1 —a.

Proof. The right-hand side of Eq. (17) is, by Lemma 2.21, equal to

Bc(x(." rsC) dtuscvxc(r)9

G/Ssc-xc

which, by definition, is equal to

(53" %) [ B(sc + Xes rsctsc ) dan(t) dis. o 0
sx

G/Sscexc

:I bO(sc - x¢» 1) pUrs Sc - xc) dag(r)-
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However, the last equation approaches

I 6%z, r) p(r, z) day(r) > 0

as C increases. The assertions of the lemma now follow easily in the light of
Eq. (16). Q.E.D.

Finally, let r be the function on [0, o) such that

0, 0<<a,
r(t)={ 2(t — a), a<t< 2a,
t, 2at.

Now, r(G) is in the Pedersen ideal of C*(G, 2) by [13, p. 134]. Moreover,
by [20, Lemma 4.9] L*c converges to L* in C*(G, )" since S, - S, by
assumption. Therefore, the next lemma completes the proof of Proposition
4.2,

LEMMA 4.7. With the above definitions and notation, tr(L*<(r(G))) does
not converge to tr(L*(r(G))).

Proof. Notice that L*(r(G)) = r(L*(G)). In particular, L*(r(G)) = L*(G)
because L°(G) is a rank one operator with eigenvalue A} > 2a. But if C2 X,
then r(17<) = A% and r(AS) = 5. In particular,

tr(L*(r(G))) = tr(r(L*(G))) > Afc + AT > Ai +a
= tr(L*(r(G))) + a.
Q.ED.

Combining the results of the previous sections with a final observation one
obtains the following theorem.

THEOREM 4.8. Suppose that the stability groups vary continuously and,
if (G, Q) is not second countable, that the natural maps of G/S, onto G - x
are homeomorphisms for each x. Then C*(G, 2) has continuous trace if and
only if C*() has continuous trace and every compact subset of 2 is C-
wandering.

Proof. In view of Theorem 2.7 and Proposition 4.2, it will suffice to
show that, with the given hypotheses, C*(G, 2) having continuous trace
implies C*(.%) has continuous trace. By Theorems 2.14 and 2.15, it will be
enough to show that C*(&) has continuous trace. In the following, if
[E C*(G, 2), then let f denote the image of fin M(C*(&)).
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LEMMA 4.9. Suppose that f€ m(C*(G, 2))* and that e € C*(&)* with
F> e in M(C*(&)). Then e € m(C*(&))".

Proof. Recall that C*(&) can be viewed as an open subset of
M(C*(&))". Then, if y=f—e€ M(C*(&))", the (possibly infinite-valued)
functions

- tr(n(y))
and
7+ tr(n(e))

are non-negative, lower semi-continuous on M(C*(&£))* (3, 3.5.9]. In
particular, when restricted to C*(&)", they are still lower semicontinuous
and have sum

Uy, = tr(T5(F)) = tr @5 ()),

where U denotes the canonical extension of UX to M(C*(£)). Applying
[10, Proposition 9(i)| to the homomorphism of C*(G, 2) into M(C*(&)), it
is not difficult to check that the map of C*(£)" onto C*(G, 2)" defined by
Uf+ L} is continuous. Thus, the sum described above is finite and
continuous on C*(&)". It follows that both summands are continuous; thus,
eEm(C*&)*. Q.ED.

To finish the proof of Theorem 4.8, let UX be an arbitrary element of
C*(&)". Since C*(G, 2)" has continuous trace, there is a f€ m(C*(G, 2))
such that LX(f)#0. Let e€ C*(&) be such that U,(f-e)#0. It
follows that d=(f-e)x (f e)* <|lel|% f+f* € m(C*(G,R2))*. Thus,
d € m(C*(&))* by the last lemma, and

U@l = UL - e)f* .
This suffices (cf. [3, 4.5.2]). Q.ED.

5. EXAMPLES AND QUESTIONS

One important class of examples is the case when all the stability groups
are abelian. Then C*(%’) is commutative, and clearly has continuous trace.
In particular, the hypothesis on C*(¥’) may be omitted from Theorems 2.7
and 4.8 in this case. If in addition the stability groups are contained in a
fixed abelian subgroup H, then the next theorem and remark summarizes the
conclusions of Theorems 2.7 and 4.8 and Proposition 4.1.
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THEOREM 5.1. Suppose that all the stability groups are contained in a
fixed abelian subgroup and that (G, ) is second countable. It follows that
C*(G, 2) has continuous trace if and only if the stability groups all vary
continuously on 2 and every compact subset of 2 is G-wandering.

Remark. The hypothesis that (G, ) is second countable may be
replaced by assuming that the natural maps of G/S, onto G-x are
homeomorphisms for each x and, if G itself is not abelian, that C*(H, 2) is
quasi-regular.

Another class of examples is the case when the action is essentially free.
That is, all of the stability groups are the same, say S, = H for all x. Then
the stability groups obviously vary continuously and C*(.¥) has continuous
trace if and only if C*(H) does. Notice that H is normal in G.

THEOREM 5.2. Suppose (G, Q) is an essentially free transformation
group with stability group H. If (G, Q) is not second countable, then assume
each orbit is homeomorphic to G/H. Then the following are equivalent:

(i) C*(G, Q) has continuous trace.

(ii) Every compact subset of 2 G-wandering and C*(H) has
continuous trace.

(iii) C*(G/H, ) and C*(H) have continuous trace.

Proof. This is a direct result of the ‘above remarks and Theorem 2.7 as
well as Proposition 4.2. Of course, (ii) = (iii) is just [9, Theorem 14} and, in
the second countable case, (iii) = (ii) is |9, Theorem 17]. Q.E.D.

ExampLE 5.3. Let G =T, the 1-dimensional torus, and 2 = C. Let G act
by multiplication. That is, e’®(re™) = re'®*%), Then the orbits are concentric
circles about the origin together with the origin. Thus, the orbit space is
{homeomorphic to) [0, c0), but the stability groups do not vary continuously
since the action is free everywhere except at the origin. It follows that
C*(T, C) does not have Hausdorff spectrum and, in particular, does not have
continuous trace. Note that by [9, Theorem 14], freely acting compact
groups always result in algebras with continuous trace. In general, if G is a
compact abelian group, then C*(G, £2) has continuous trace if and only if the
stability groups vary continuously.

I know of no examples of transformation group C*-algebras having
continuous trace and stability groups which do not vary continuously. On
the other hand, I can find no proof of the necessity of this condition in the
general case. It would be very interesting to know whether or not this
condition is necessary for any class of non-abelian groups.
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ExAMPLE 5.4. Let G=R and 2=C. Let R act on C by fixing the
origin and, if |&]| # 0, r - & = exp(27i(r/|&|)) & The orbits again are concentric
circles and the orbit space is homeomorphic to |0, co). Notice that points
rotate about the origin much more quicly as one approaches the origin.
Moreover,

S - ¢ Z if &#0,

(R if £=0.

Thus, the S; vary continuously. It is not hard to see that compact sets are R-
wandering. In fact, let K< C be compact. If 0 € K, then (& r) — (& r/|€])
defines a homeomorphism of §(K X R) with K X T. In particular, K is R-
wandering. If O€ K, then let {(£,,r,)} be a net in {({r):¢€K,
rK MK+ @&}. It may be assumed that £, - ¢ in K. If {=0, then (£,,s,)
converges to (0, 0) in C X R/~. Otherwise, we may pass to a subnet which is
bounded away from the origin. This subnet must have a convergent subnet
by the argument above.

It follows that C*(R, C) has continuous trace.

Green gives an example in [9, cf. pp. 95-96] where the action is free and
the orbit space, hence the spectrum, is Hausdorff, but C*(G, §2) does not
have continuous trace.

There are several questions suggested by the results in this paper which I
cannot answer.

Ql: If C*(G, 2) has continuous trace, then do the stability groups
have to vary continuously?

An answer to Q1 would be of interest even in the case when all the
stability groups are abelian.

Since the condition that C*(#’) has continuous trace is rather difficult to
check, it would be convenient to have a theorem giving simpler conditions
which would guarantee this. In particular, one might ask the following.

Q2: If the stability groups vary continuously on 2 and C*(S,) has
continuous trace for each x € £, then does C*(%’) have continuous trace?

A simpler version of Q2, but also interesting, is the following:

Q3: If G is compact and the stability groups vary continuously, then
does C*(.%¥') have continuous trace?
6. THE IMPRIMITIVITY BIMODULE

If one keeps the C*(H) — C*(G, G/H) case in mind (cf. Definition 2.10),
then the following definitions seem quite natural. The imprimitivity bimodule
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will be C.(£2 X G), which will be denoted by X. Of course, through this

section it will be assumed that the stability groups vary continuously.
If f€ C.(¥) and F € X, then the right C.(~)-action is given by

F-f(x,s)= f F(x,st7") dg(t™") 75 (0. (%, 1) dat(2). (18)
SX
If e€ C.(&) and F € X, then the left C.(&)-action is given by
e- F(x,s) =J e(x, r,8) F(x, r~'s) dag(r). (19)
G

Finally if F and G € X, then the C.(%")- and C,(&)-valued inner products
on X are given by

(F.GYy (10 =1, | F*(x,5) Glx,5™'0) dagls) (20)

and

(F,G)e (x,1,5) =J F(x, st) G*(x, t ‘s~ 'r) da (1),
S @1)

where F*(x,s)=A4(s™") F(x,s™")".

To see that the above actions and inner products actually take values in
the appropriate spaces of functions, one may appeal to Lemma 2.5.

The following formulae follow from routine calculations. Let f€ C.(¥),
F,G,HE X, and e € C(&).

(F,G-f); =(F Gy, (22)
(e F,G)g=e*(F,G)g, (23)
(F,G)y- H=F-{(G,H),, (24)
(F,G)% = (G, F)s, (25)
(F, G)¥= (G, F),. (26)

LEMMA 6.1. For each FE€ X, (F,F)_ and (F, F), are positive elements
of C*() and C*(&), respectively.

Proof. Let F, denote the element of C.(G) defined by F,(s)= F(x, s).
Then notice that

(FF)y (6, 1)=(Fy, F)s, (1)
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and

(FyF)a(x,r,5)= <F.\"Fx>(G.G/S\.) (r,5).

By Lemma 2.8, it will suffice to show that M3({F, F),) > 0 for each x € 2
and 71 € Sx. However,

M (F, F) ) =n((F F ),

which is positive by [15, Theorem 4.4].

To show that (F,F), is positive, it will be enough to show that
UX((F, F),) is positive for any x €2 and = € $,. This follows from [15,
Proposition 7.9] in much the same way as above. Q.E.D.

In order to show that X is both a right C.(%)-rigged space and a left
C.(&)rigged space we must show that (X, X), and (X, X), span dense
subsets of C*(.%} and C*(&), respectively. To do this, several lemmas are
needed.

LEMMA 6.2. C.(%) contains an approximate identity for the inductive
limit topology, and hence for either the | - ||,-norm or the C*-norm topology,
of the form (F,,F,)., with F € X.

Proof. Let K be compact in G, and f€ C.(G) identically one on K with
0<f< 1. Since x> [, fda, is continuous on £, it follows that a (K) is
bounded on Q. If F&€ C,(¥) and if the support of F is contained in 4 X K
with K compact in G, then

where M is the supremum of F on % and M, is the supremum of a,(K).
The fact that the inductive limit topology is stronger than the norm
topologies now follows easily.

Let U be a compact neighborhood of the identity in G, and V' a symmetric
neighborhood of the identity such that V>*< U. Let f€ C.(G) be non-
negative with supp f< ¥ and f+ 0. Also, for each C € 2 compact, let v be
an element of C.(f2) such that 0w, <1 and w.=1o0n C.

Now define

Gie.oe ) =Wl A5, O ([ A5, 0 )

Recall that (-, - )_is defined in Definition 2.10. In particular, 8¢ ;, € C.(>)
by Lemma 2.5(ii), and has the proper form. Namely,

Bic.in( ) = (Fie.mys Fiem)s (X 1),
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where

—y2
Feu®9)=ve@” ([ (s, 0 da) 165

Notice that 6. ., has the property that
f Oc,vy(x, ) da (1) =1 for every x € C.
SX

Finally, it must be shown that, for each f€ C.(%), O, *f—~ [ in the
inductive limit topology as C increases to £ and U shrinks to the identity. In
fact, suppose that f has support in C X U. Then 8. ;. * f has support in
Cx U'U. Thus, it will suffice to show uniform convergence. But, using
standard compactness arguments, there is a compact neighborhood of e in G,
V., such that

|f (e r)—f(x8) <
if sr-'€V,.Thenif C'2Cand U SV,

| Occr,um * f0x, £) —f(x, )] <&
Q.ED.

LEMMA 6.3. Given f€ C (&) and € > 0, there is a neighborhood of the
identity V., such that |f(x,r,s)—f(x,u,v)|<e if ur '€V, and vs '€ V,.

Proof. Let 6(4A X K X C) contain the support of f. Let ¥ be a fixed
symmetric compact neighborhood of e. If the lemma were false, then for each
VoV we could find x,€2 and r,, s,, u,, v, €G such that u_r;",
v, 5, €V,, and

a’

| [ (tas 7o So) =S (X, Uy, V) 2 € for every a.

However, we must have (x,,r,,s,) and (x,,u,,v,) in 6(4d X VK X VC), a
compact subset of 2 X G X G/~. From this observation, together with
Lemma 2.12, we may assume that (x,,r,,s,) converges to (x,r,s) in
NXGXG and (x,,u,,v,) converges to (x,u, v). Since u,r;"' and v s’
converge to the identity, # =r and s = v. The continuity of f now provides a
contradiction. Q.E.D.

LEMMA 6.4. C (&) has an approximate identity for the inductive limit
topology, and hence for the C*-norm topology, of the form 37, (F., G.) for
Fl and G! € X.
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Proof. An argument similar to that of Lemma 6.1 shows that the
inductive limit topology is stronger than the norm tppology. More precisely,
recall from |4, Lemma 3.21] that if L is a representation of C*(G, G/H) and
$ € CAG,G/H), then [IL(@)<llgl,, where [¢ll,=[Gll¢(s, Nl dag(s)-
Thus, if f€ C(&) with support contained in o(4 X K X C), we see that
£l < MM, where M is the supremum of f'and M, is an upper bound for
a(K).

The reader will notice the similarity of the construction below with that in
{15, Proposition 7.11].

Let A2 and C< G be compact subsets. Let N be a compact
neighborhood of e in G with M a neighborhood of e such that M? < N. Pick
a partition of unity in G subordinate to the right translates of M (i.e., each
element of the partition is supported in a translate of M). Let b be the
function constructed in Lemma 2.18 for A X C< 2 X G.

Then, multiplying the functions in the partition pointwise by b, we obtain
only a finite number of non-zero functions, F,,..., F, € X, with the properties

Supp F;, SAXM -z some z,€GC

and

n
N Fix,st)da(t)=1  fors€ CH, xEA.

i=17s,

Now take g;€ C.(G) with suppg¥<z,-M and JsgFdus=1. Also, let
w, € C(£2) be identically 1 on 4. We define

Gi(x, 5) = y,(x) 8i(s),

G(A,N.C) = 2_
i=1

(Fi> Gi)e-

Notice that the support of (F;, G,); is contained in 6(4 X N X C) for each i,
so that the support of 8, y.c, is as well. Also,

Ban,oxrs)=0 if r&N

and
j Ouumcrns)dag(r)=1  if s€CH and x € 4.
G

These are precisely the conditions in [15, Proposition 7.10] which imply that
8.4.n.c)(%: + ) is an approximate identity for C(G. G/S,). Thus, as in [15],
the proof that 6, y , forms the required approximate identity, when directed
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by increasing A and C and decreasing N, will be similar to Lemma 3.27 of
(4]

Let f€ C.(£) with support of 8, y.c) *f20(4 X KN X C). It follows that
we need only show that 6, . *f converges uniformly to f on
o(A X KN X C). Let ¢ > 0 and let V, be a compact neighborhood as defined
in Lemma 6.2. Thenif Ne V.,

‘O(A,N,C) *f(x’ r s) _f(x’ r, S)\

[ Bumote b9l (et 175) = f (5,7, 5)] dag()

< EJ O vox 1, 8) dag(t) = e
G
Q.ED.

PROPOSITION 6.5. X is an C(&)— C (5 )-imprimitivity bimodule. That
is, X is a right C.(¥)-rigged space and a left C(&)-rigged space with the
Jfollowing additional properties.

() ForF,G,HEX,(F,G);-H=F-{(G,H),.
(b) Forf€CU&E), FEX, (f - F.f- F)y <||fllcew (Fs F)s .
(¢) Forg€CAS), FEX,(F-g F-g)<|igllees (F, Fg.
Proof. 1t follows from Egs. (22), (23), (25), and (26) that (X, X), and
(X, X), are ideals in X. From Lemmas 6.2 and 6.4 it follows that these
ideals are dense. In particular, the statements about rigged spaces have been

demonstrated.
Part (a) is Eq. (24). To prove (b), it suffices, by Lemma 2.8, to show that

P(f - F.f-F),) S \fIF PGF, F)y), 27

where P is a state of C*(¥) of the form P(F) = p(F,) for p a state of C*(S,)
and x € 2. Let f, denote the element of C.(G, G/S*) defined by f,(r,s)=
S(x,r,s). Then the left-hand side of (27) is

p((fx ' Fx’fx : Fx)sx)' (28)

The action of C.(G, G/S,) is as defined in 7.4 of [15]. Then by Proposition
2.6 of [16]

(28) < ”fx”C’(G,G/SX) p({Fys Fx)S,)

(cf. Definition 6.10 of [15]). The desired result now follows.
To show (c), note that it suffices to show that P((F-g F:g)s)<
| gll2. o P(F, F),), where P is a state of C*(&) of the form P(f) = p(/),
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for x € 2, and p is a state of C*(G, G/S,). The proof now proceeds exactly
as in part (b) and depends on the fact C.(G) is a C(S,)— C.(G, G/S,)
imprimitivity bimodule. Q.E.D.

If R is a representation of C*(%’) in V,, then let Ind(R) denote the
representation of C*(£) induced from R via X. Recall from [15] that Ind(R)
acts on the completion of X ®c.,, ¥, with respect to the inner product

<F® é’ G® ’7>: <R(<G’F>/)f’ 77>VR'

Moreover,
IndR)(e)F® & =(e- F)®¢,

where e - F is defined by Eq. (19).
The next lemma together with the previous proposition completes the
proof of Theorem 2.14.

LEMMA 6.6. Let x€ 2 and n a unitary representation of S,. Then
Ind(M3) is unitarily equivalent to U,

Proof. Let V,=V,,, the space of . Then define U from X® V, to
C(G)® V, by sending F® & to F, ® & Since
(FRL&LGR®n) =M (G, F);)n)y,
= <7z(<Gx’ Fx>Sx) é’ ’7>
=(UF®<), UGN,

U extends to a unitary map of the space of Ind(M?}) onto the space of U*. It
is a simple matter to check that U intertwines the appropriate actions.Q.E.D.

Recall that if X is a B— A4 imprimitivity bimodule, then X admits a
seminorm |17, Sect. 3]. Namely,

[0z = 115x, %D fla = [1€6 XD lp-
Thus, we may assume that X is complete.

Proof of Theorem 2.15. Let X be a complete B —A imprimitivity
bimodule and suppose that 4 has continuous trace. Let n € A and let Ind(n)
denote the irreducible representation of B induced from 7 via X. Also, let H
be the space of 7 and V the space of Ind(n).

For each x € X, T, denotes the bounded operator from H to V defined by
T.(&)=x® & Then

TYT, = n({% x)4) (29)
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and

T, T* = Ind()((x, x)p). (30)

In particular, tr(z({x, x),)) = tr(Ind(7)({x, x)5)). Since 7+ Ind(7) defines
a homeomorphism of A onto B [15, Corollary 6.29], it follows that
(x, x)p € m(B)* if (x,x), € m(4)*.

Since Ind(n) is a typical element of B, to show that B has continuous trace
it will suffice to produce a b € m(B) such that Ind(z)(b) # 0 [3, 4.5.2]. But,
since sums of the form D7, (x;, x>, are dense in 4 [17, Theorem 3.1 and
Lemma 3.1}, there is an x € X such that n({x, x),) # 0. Moreover m(4)”*
contains a self-adjoint approximate identity, {e,}, for 4. In particular,
(X ey, X ey, =e{x,x), e, is in m(A)* and converges to (x,x),. Thus,
we may assume that (x, x), € m(4)*. Since z({x, x>,) # 0, Eq. (29) implies
T,.+# 0, and by (30), Ind(m)({x, x)5) # O. Q.E.D.
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