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Chapter 1

Functions, Limits, and
Derivatives

1.1 Real Numbers, Inequalities, Absolute Values.

Calculus deals with numerical-valued quantities and, in the beginning, with quan-
tities whose values are real numbers. Some understanding of the basic set R of all
real numbers is therefore essential.

A real number is one that can be written as a decimal: positive or negative or
zero, terminating or nonterminating. Examples are

1, —5, 0, 14,
2 3
2 =0.666666..., = = 0.375,
3 8
V2 =1.4142. ..,
7 =—3.141592. ..,
176355.14233333 ... ..

The most familiar subset of R is the set Z of integers. These are the numbers
o, —3,—2,-1,0,1,2,3,.... (1.1)

Another subset is the set Q of all rational numbers. A real number r is rational if
it can be expressed as the ratio of two integers, more precisely, if r = *, where m
and n are integers and n # 0. Since every integer m can be written 7, it follows
that every integer is also a rational number. A scheme, analogous to (?7?), which

lists all the positive rational numbers is the following:

(1.2)

G0l =
c,o\mxj\m—t\m
c,o\w\j\w—‘\u
COTHD [t [
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Of course there are infinitely many repetitions in this presentation since, for exam-
ple, 2 =42 =25 = ... An unsophisticated guess would be that all real numbers are
rational. There are, however, many famous proofs that this is not so. For example,
a very simple and beautiful argument shows that 1/2 is not rational. (See Problem
77?7 at the end of this section.) It is not hard to prove that a real number is rational
if and only if its decimal expansion beyond some digit consists of a finite sequence

of digits repeated forever. Thus the numbers
1.71349213213213213213.. .. (forever),

1.500000000. . . (forever)

are rational, but
0.101001000100001000001 . . . (etc.)

is not.

The fundamental algebraic operations on real numbers are addition and mul-
tiplication: For any two elements a and b in R, two elements a + b and ab in R
are uniquely determined. These elements, called the sum and product of a and b,
respectively, are defined so that the following six facts are true:

Axiom 1 (Associative Laws).
a+(b+c)=(a+Dd)+e,
a(bc) = (ab)c.
Axiom 2 (Commutative Laws).
a+b=>b+a,

ab = ba.
Axiom 3 (Distributive Law).

(a+b)e=ac+ be.

Axiom 4 (Existence of Identities). R contains two distinct elements 0 and 1 with
the properties that 0 +a =a and 1 -a = a for every a in R.

Axiom 5 (Existence of Subtraction). For every a in R, there is an element in R
denoted by —a such that a + (—a) = 0.

Note. a — b is an abbreviation of a + (—b).

Axiom 6 (Existence of Division). For every a # 0 in R, there is an element in R
denoted by a=' or L such that aa™ = 1.

Note. 7 is an abbreviation of ab 1.

Addition and multiplication are here introduced as binary operations. However,
as a result of the associative law of addition, a + b + ¢ is defined to be the common
value of (a+b) +c and a+ (b+c¢). In a like manner we may define the triple product
abc and, more generally, a; + ...+ a, and a; ... a,. Many theorems of algebra are
consequences of the above six facts, and we shall assume them without proof. They
are, in fact, frequently taken as part of a set of axioms for R.
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Another essential property of the real numbers is that of order. We write a < b
as an abbreviation of the statement that a is less than b. Presumably the reader,
given two decimals, knows how to tell which one is the smaller. The following
four facts simply recall the basic properties governing inequalities. On the other
hand, they may also be taken as axioms for an abstractly defined relation between
elements of R, which we choose to denote by <.

Axiom 7 (Transitive Law). Ifa <b and b < ¢, then a < c.

Axiom 8 (Law of Trichotomy). For every real number a, one and only one of the
following alternatives holds: a =0, or a <0, or 0 < a.

Axiom 9. Ifa <b, thena+c<b+ec.
Axiom 10. If a < b and 0 < ¢, then ac < be.

Note that each of the above Axioms except 7?7 remains true when restricted to
the set Z of integers. Moreover, all the axioms are true for the set Q of rational
numbers. Hence as a set of axioms for R, they fail to distinguish between two very
different sets: R and its subset Q. Later in this section we shall add one more item
to the list, which will complete the algebraic description of R.

A real number a is if positive 0 < a and negative if a < 0. Since the relation
“greater than” is just as useful as “less than,” we adopt a symbol for it, too, and
abbreviate the statement that a is greater than b by writing a > b. Clearly a > b if
and only if b < a. Axiom ?7?, when translated into English, says that the direction of
an inequality is preserved if both sides are multiplied by the same positive number.
Just the opposite happens if the number is negative: The inequality is reversed.
That is,

1.1.1. Ifa < b and c < 0, then ac > bc.
Proof. Since ¢ < 0, Axioms ??, 7?7, and ?? imply
O=c+(—¢) <0+ (—¢c) = —c
So —c is positive. Hence by (z), we get —ac < —bc. By Axiom ?7? again,
—ac+ (bc + ac) < —bc + (be + ac).
Hence bc < ac, and this is equivalent to ac > be. O

Two more abbreviations complete the mathematician’s array of symbols for
writing inequalities:

a<bmeansa<bora=>o,

a>bmeans a > bor a=">.

The geometric interpretation of the set R of all real numbers as a straight line is
familiar to anyone who has ever used a ruler, and it is essential to an understanding
of calculus. To describe the assignment of points to numbers, consider an arbitrary
straight line L, and choose on it two distinct points, one of which we assign to,
or identify with, the number 0, and the other to the number 1. (See Figure ?7.)
The rest is automatic. The scale on L is chosen so that the unit of distance is the
length of the line segment between the points 0 and 1. Every positive number a is



12 CHAPTER 1. FUNCTIONS, LIMITS, AND DERIVATIVES

Figure 1.1: A line L with two distinguished point 0 and 1.

assigned the point on the side of 0 containing 1 which is a units of distance from
0. Every negative number a is assigned the point on the side of 0 not containing 1
which is —a units of distance from 0. Note that if L is oriented so that 1 lies to the
right of 0, then for any two numbers a and b (positive, negative, or zero), a < b if
and only if a lies to the left of b. A line which has been identified with R under a
correspondence such as the one just described is called a real number line. (See
Figure ?77.)

w + gy

Figure 1.2: A real number line.

An interval is a subset I of R with the property that whenever a and ¢ belong
to I and a < b < ¢, then b also belongs to I. Geometrically an interval is a connected
piece of a real number line. A number d is called a lower bound of a set S of real
numbers if d < s for every s in S. It is an upper bound of S if s < d for every
s in S. A given subset of R, and in particular an interval, is called bounded if
it has both an upper and lower bound. There are four different kinds of bounded

intervals:

(a,b), the set of all numbers x such that a < x < b;
[a, b], the set of all numbers z such that a < z < b;
[a,b), the set of all numbers z such that a <z < b;
(a, b], the set of all numbers x such that a < z <b.

In each case the numbers a and b are called the endpoints of the interval. The set
[a, b] contains both its endpoints, whereas (a, b) contains neither one. Clearly [a,b)
contains its left endpoint but not its right one, and an analogous remark holds for
(a,b].

It is important to realize that there is no element oo (infinity) in the set R.
Nevertheless, the symbols co and —oco are commonly used in denoting unbounded
intervals. Thus

(a,0) is the set of all numbers x such that a < x;
[a,00) is the set of all numbers z such that a < z;
(—00,a) is the set of all numbers x such that z < a;
(—00, a] is the set of all numbers z such that x < a;
(—o0

,00) is the entire set R.
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The symbols co and —oo also appear frequently in inequalities although they are
really unnecessary, because, for example,

—o00 < x < a is equivalent to z < a,

a<x < oo isequivalent to a < x,

etc. Since oo is not an element of R, we shall never use the notations [a, 00|, z < oo,
etc. An unbounded interval has either one endpoint or none; in each of the above
cases it is the number a. We call an interval open if it contains none of its endpoints,
and closed if it contains them all. Thus, for example, (a,b) and (—oo,a) are
open, but [a,b] and [a,00) are closed. The intervals [a,b) and (a,b] are neither
open nor closed, although they are sometimes called half-open or half-closed. Since
(—00,00) has no endpoints, it vacuously both does and does not contain them.
Hence (—o00, 00) has the dubious distinction of being both open and closed.

closed

neither

% open

closed

open

Figure 1.3: Types of intervals.

Example 1. Draw the intervals [0, 1], [—1,4), (2, 00), (—o0, —1], (=1, 3), and iden-
tify them as open, closed, neither, or both (see Figure 77).

It is frequently necessary to talk about the size of a real number without regard
to its sign, not caring whether it is positive or negative. This happens often enough
to warrant a definition and special notation: The absolute value of a real number
a is denoted by |a| and defined by

la| = a ifa>0,
Y=Y —a ifa<o.

Thus |3] = 3, |0|] = 0, | — 3| = 3. Obviously, the absolute value of a real number
cannot be negative. Geometrically, |a| is the distance between the points 0 and a
on the real number line. A generalization that is of extreme importance is the fact
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that |a — b| is the distance between the points a and b on the real number line for
any two numbers a and b whatsoever. Probably the best way to convince oneself
that this is true is to look at a few illustrations (see Figure ?7).

; & : & : 3—1]=2=1-3|,
0 1 2 3 4
& | : : & |-1-3]=4,
—1 0 1 2 3
- : i ; % I(=3)—1|=1—-(=-3)=4.
-3 -2 -1 0 1

Figure 1.4: Computing distances with the absolute value.

Example 2. Describe the set I of all real numbers x such that |z — 5| < 3. For
any number z, the number |z — 5| is the distance between x and 5 on a real number
line (see Figure ?7). That distance will be less than 3 if and only if x satisfies the

RNV B

Figure 1.5: An open ball in a one-dimensional space.

inequalities 2 < x < 8. We conclude that I is the open interval (2, 8).

There is an alternative way of writing the definition of the absolute value of
a number a which requires only one equation: We do not have to give separate
definitions for positive and negative a. This definition uses a square root, and before
proceeding to it, we call attention to the following mathematical custom: Although
every positive real number a has two square roots, in this book the expression \/a
always denotes the positive root. Thus the two solutions of the equation 22 = 5 are
V5 and —/5. Note that the two equations

z°=a
and
x=+a

are not equivalent. The second implies the first, but not conversely. On the other
hand,

I =a
and
z| = Va

are equivalent. Having made these remarks, we observe that
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1.1.2.
la| = Va2.

The formulation ?? is a handy one for establishing two of the basic properties
of absolute value. They are

1.1.3.
|ab| = |ab].
1.1.4.
|la+b] < |a] + [b].

Proof. Since (ab)? = a?b? and since the positive square root of a product of two
positive numbers is the product of their positive square roots, we get

lab| = v/(ab)? = Va2b? = Va2 Vb2 = |al|b).

To prove 77, we observe, first of all, that ab < |ab|. Hence
a® 4 2ab + b* < a® + 2|ab| + b* = |a|* + 2|a||b] + |b]*.

Thus,
la+0” = (a+b)* < (|al + [b])*.

By taking the positive square root of each side of the inequality (see Problem ?77),
we get 77. O

As remarked above, our list of Axioms 7?7 through ?? about the set R of real
numbers is incomplete. One important property of real numbers that together with
the others gives a complete characterization is the following:

Axiom 11 (Least Upper Bound Property). Every nonempty subset of R which has
an upper bound has a least upper bound.

Suppose S is a nonempty subset of R which has an upper bound. What Axiom
?7? says is that there is some number b which (1) is an upper bound, i.e., s < b for
every s in S, and (2) if ¢ is any other upper bound of S, then b < ¢. It is hard to see
at first how such a statement can be so significant. Intuitively it says nothing more
than this: If you cannot go on forever, you have to stop somewhere. Note, however,
that the rational numbers do not have this property. The set of all rational numbers
less than the irrational number v/2 certainly has an upper bound. In fact, each of
the numbers 2, 1.5, 1.42, 1.415, 1.4143, and 1.41422 is an upper bound. However,
for every rational upper bound, there will always exist a smaller one. Hence there
is no rational least upper bound.
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Problems

1.

10.
11.

12.

. If a> cand b <0, prove that § <

Draw the following intervals and identify them as bounded or unbounded,
closed or open, or neither: (2,4), [3,5], (—oo, —2], [1.5,2.5), (v/2, ).

Draw each of the following subsets of R. For those that are given in terms of
absolute values write an alternative description that does not use the absolute
value.

Set of all z such that 4 <z <7.5.

Set of all x such that 0 < x < co.

Set of all x such that 5 <z < 8.

Set of all x such that |z| > 2.

Set of all y such that 1 < |y| < 3.

Set of all z such that |z — 2| < 1.

Set of all z such that |x — a| > 0.

Set of all w such that 1 < |u — 1| < 5.

—~ N T~ TS T
Q - o Ao T o
Rat G N NN NSNS N

—~ o~
=

. Prove the following facts about inequalities. [Hint: Use 7?7, 7?7, 72, 77, and

the meanings of > and <. In each problem you will have to consider several
cases separately, e.g. a > 0 and a = 0/]

(a) fa <b,thena+c<b+ec

(b) If a > b, thena+c>b+c.

(c¢) If a < band ¢ > 0, then ac < be.

(d) If a < b and ¢ < 0, then ac > be.

. Prove that a is positive (negative) if and only if % is positive (negative).

.If0<a<b,pr0vethat%<%.

[Salle}

. If a < b < ¢, prove that

< ifa>0,

Qo oo
2l 2l

> ife<O .

. Does the set Z of integers have the Least Upper Bound Property? That is, if

a nonempty subset of Z has an upper bound, does it have a smallest one?

. Show that if 0 < @ < b, then 0 < /a < V/b.

Prove that a = b if and only if a < b and b < a.

Show that the Least Upper Bound Property implies the Greatest Lower Bound
Property. That is, using 77, prove that if a nonempty subset of R has a lower
bound, then it has a greatest lower bound.

Verify the assertion made in the text that if an interval is bounded it must be
one of four types: (a,b), [a,b], (a,b], or [a,b). (Hint: See Problem ?7.)
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13. Prove that v/2 is irrational. (Hint: The proof, which is elegant and famous,
starts by assuming that v/2 = g, where p and ¢ are integers not both even. A
contradiction can then be derived.)
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1.2 Ordered Pairs of Real Numbers, the ry-Plane,
Functions.

The set whose members consist of just the two elements a and b is denoted {a, b}.
The notation is not perfect because it suggests that the members a and b have been
ordered: a is written first and b second. Actually no ordering is present because
{a,b} = {b,a}. Note also that if a = b, then {a,b} = {b,a} = {a}. It can happen,
however, that the ingredient of order is essential. We therefore introduce the notion
of an ordered pair (a,b) whose first member is @ and whose second member is b.
The characteristic property of ordered pairs is

(a,b) = (¢,d) if and only if a = ¢ and b = d.

In particular (a,b) = (b,a) if and only if a = b. In Section ?? we saw that the
set R of all real numbers can be thought of as a straight line. We shall now show
that every ordered pair (a,b) of real numbers a and b can be identified with a point
in a plane. This brings up a notational problem: Is (5,7) the ordered pair of real
numbers or is it the open interval consisting of all  such that 5 < = < 77 The
answer is that it is impossible to tell out of context—just as it is impossible to tell
whether the word “well” is the noun or the adverb.

Consider two distinct real number lines drawn in a plane so that they intersect
at the number 0 on each line. One of the lines is traditionally drawn horizontal and
called the z-axis, and the other is made perpendicular to it and called the y-axis.
The orientation is chosen so that the number 1 on the z-axis lies to the right of 0,
and the number 1 on the y-axis is above 0. It is also customary to use the same
scale of distances on both axes. For every ordered pair (a,b) of real numbers, let
L, be the line parallel to the y-axis that cuts the x-axis at a, and let M} be the line
parallel to the z-axis that cuts the y-axis at b. We assign the point of intersection
of L, and M, to the ordered pair (a,b) (see Figure ?7?7). The numbers a and b are
called the coordinates of the point. a is the z-coordinate (or abscissa) and b is
the y-coordinate (or ordinate).

y-axis
2+
b (a, b)
M,

1 -

a

-2 -1 0 1 2 3 4 X-axis
-1 + L,
Figure 1.6:

If the pairs (a,b) and (¢, d) are not equal, then the points in the plane assigned
to them will be different. In addition, every point in the plane has a number pair
assigned to it: Starting with a point, draw the two lines through it which are parallel
to the z-axis and the y-axis. One line cuts the z-axis at a number a, and the other
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cuts the y-axis at b. The ordered pair (a,b) has the original point assigned to it. It
follows that our assignment
pair — point

is a one-to-one correspondence between the set of all ordered pairs of real numbers,
which we denote by R2, and the set of all points of the plane. It is convenient
simply to identify R? with the plane together with the two axes.

Example 3. Plot the points (1,2),(-2,3),(0,1),(4,0),(—2,-3), and (2,-3) on
the zy-plane (see Figure 77).

y-axis

(=2,3) (1.2)

©,1)

4,0) X-axis

(=2,-3) 2,-3)
— i

Figure 1.7:

The usefulness of the idea of an ordered pair is by no means limited to pairs of
real numbers. In plane geometry, for example, we may consider the set of all ordered
pairs (T, p) in which T is a triangle and p is the point of intersection of its medians.
In the three-dimensional extension of the zy-plane, the set R? of all ordered triples
(a,b,c) of real numbers is identified with the set of all points in three-dimensional
space. The definition of an ordered triple can be reduced to that of an ordered pair
by defining (a, b, ¢) to be ((a,b),c).

Let P = (a,b) and Q = (c, d) be arbitrary elements in the set R? of all ordered
pairs of real numbers. We define the distance between P and @ by the formula

distance(P, Q) = v/(a — ¢)2 + (b — d)2. (1.3)

Three simple corollaries of this definition are:

1.2.1. distance(P, Q) > 0; i.e., distance is never negative.
1.2.2. distance(P, Q) =0 if and only if P = Q.

1.2.8. distance(P, Q) = distance(Q, P).

Another consequence of (1) is that it is no longer simply a matter of tradition
and convenience that we draw the y-axis perpendicular to the z-axis. It follows
from consideration of the Pythagorean Theorem and its converse (see Figure ?77)
that the above definition of distance between elements of R? corresponds with our
geometric notion of the distance between points in the Euclidean plane if and only
if the two coordinate axes are perpendicular and the scales are the same on both.
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y-axis

g=(c.d)»—

P=(a,b)

| la—c|

x-axis

Figure 1.8:

y-axis

4 x-axis

Figure 1.9:

Example 4. Let C' be the subset of the xy-plane consisting of all points whose
distance from (1,1) is equal to 2. Thus C is the circle shown in Figure ??. If
(z,y) is an arbitrary point in the xy-plane, its distance from (1,1) is equal to
V/(z = 1)2 + (y — 1)2. Hence, (z,y) belongs to C if and only if

Vie-1)2+(@y-1)2=2 (1.4)

Numbers z and y satisfy (2) if and only if they satisfy

(x—1)2+(y-1)?*=4 (1.5)

Thus C is the set of all ordered pairs (z,y) that satisfy (3)—or that satisfy (2).
Either (2) or (3) is therefore called an equation of the circle C.

The set of all points (z,y) in the plane that satisfy a given equation is called
the graph of the equation. Hence, in the above example, the circle C is the graph
of the equation (z —1)? + (y — 1)? = 4.

Example 5. Let L be the set of all ordered pairs (z,y) such that y = 2z — 3. For
each real number x, there is one and only one number y such that (z,y) belongs to
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r|y=2r—3

-1 -5
0 -3
1 -1
2 1
3 3

Table 1.1:

_ylxr
00
+1 |1
+2 | 4

Table 1.2:

L :y=2x— 3. To see what L looks like, we plot five of its points (see Table ?7).
As shown in Figure 77, all these points lie on a straight line. In Section ?? we shall
justify the natural conjecture that this straight line is the set L.

y-axis

x-axis

Figure 1.10:

Example 6. The set of all pairs (z,y) such that y?> = = is the curve shown in
Figure ?7. This curve is a parabola, one of the conic sections, which are studied in
greater detail in Chapter ?7. At present we shall be satisfied with plotting a few
points and connecting them with a smooth curve (see Table ?7).

A function f is any set f of ordered pairs such that whenever (a,b) and (a, ¢)
belong to f, then b = ¢. Note that every subset of the xy-plane is a set of ordered
pairs, but not every subset is a function. In particular, the parabola in Example 7?7
is not, because it contains both (4, 2) and (4, —2). On the other hand, the straight
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y-axis

-1 1 2 3 4 x-axis

Figure 1.11:

line in Example 7?7 is a function. This condition that a function must never contain
two pairs (a,b) and (a,c) with b # ¢ means geometrically that a subset of the xy-
plane is a function if and only if it never intersects a line parallel to the y-axis in
more than one point. Hence it is an easy matter to decide which of the following
sets are functions and which are not:

i) The set f of all pairs (x,y) such that y =z + 1.

ii) The set g of all pairs (z,y) such that 2% + y? = 1.

iii) The set F of all pairs (z,y) such that y = 2 + 2z + 2.
iv) The set h of all pairs (z,y) such that 2z + 3y = 1.

v) The set G of all pairs (z,y) such that y = v/x + 2.

vi) The set H of all pairs (z,y) such that y* = .

(

(

(

(

(

(
The sets f, F, h, and G are functions, but g and H are not.

The domain of a function f is the set of all elements a for which there is a
corresponding b such that (a,b) belongs to f. Analogously, the range of f is the
set of all elements b for which there is an a such that (a, b) belongs to f. In (i), the
domain of f is the set R of all real numbers and so is the range. On the other hand,
in (iii), although the domain of F' is equal to R, the range is the interval consisting
of all real numbers y > 1, because we can write 2% + 2z +2 = (z +1)> +1 > 1.

If a pair (a, b) belongs to a function f, we call b the value of f at a and write
b= f(a). Note that the meaning of f(a) is unambiguous only because the definition
of a function forbids having (a,b) and (a,c) both belong to f if b # ¢. Therefore
the second member of any ordered pair that belongs to f is determined by the first
member.

Example 7. In (i),

f(0) =1, FB+4)=B+4)+1=38,
f(-1)=-1+1=0, fla+b) =a+b+1.
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In (v),

G)=vz+2, GQR2zx+y)=+2rx+y+2,

G(0) = V2, G(—-2) =0,

G(2) =2, G(—3)is not defined.

To each element a in the domain of a function f there corresponds a value f(a)
in the range. This correspondence between domain and range, which is pictured in
Figure 77, is the central idea in the definition of a function. Thus the function f that

f(a)
J®)=1(c)

Sx)

range f

domain f

Figure 1.12:

consists of all ordered pairs (z,y) such that y = 22 and —1 < z < 2 is interpreted
as the rule of correspondence which assigns to each number in the interval [—1, 2]
its square. We can describe f completely and simply by writing

f(z) =22, —1<z<2.
Examples of other functions are
gx)y=vr—1, -1<z<o0,
F(z) =2 —oo<z< o0,
x
= — —2.
272 © #

Note that the functions f and F' immediately above are not equal, although f is a
subset of F'. Two functions are equal if they are one and the same set of ordered
pairs. It follows that

h(z)

1.2.4. Functions f and g are equal if and only if they have the same domain D and
f(x) = g(x) for every element x in D.

Thus any complete description of a function must include a description of its
domain. Sometimes this information is in fact omitted. We shall adopt the con-
vention that if no explicit description of the domain of a function is given, then
its domain is assumed to be the largest set of real numbers that makes sense. For
example, the domain of the function H defined by

1 1
2—x—-2 (z+1)(z-2)

H(x) =

is assumed to be the entire set of real numbers with the exception of —1 and 2.
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button
-

input ss— f {3 output

Figure 1.13: A computing machine.

It is sometimes helpful to think of a function as a computing machine. Imagine
a computing machine, named f, which is provided with an input tape, an output
tape, and a button (see Figure ??). One writes a number x on the input tape and
pushes the button. If x is one of the inputs which the machine will accept, i.e., if =
is in the domain of f, the machine whirs contentedly and prints an output, which
we denote f(x), on the output tape. If z is not in the prescribed domain, either
nothing happens or a red light flashes.

We have already seen that one of the best ways of describing a subset of R? is
to draw a picture of it. If this subset happens to be a function, we call the picture
the graph of the function. More specifically, if a function f is a subset of R2, its
graph is the set of all points in the plane that correspond to ordered pairs of the
form (z, f(x)). Note that the graph of f depends on the correspondence between
ordered pairs and points; i.e., it depends on the choice of axes. To illustrate this, in
Figure ?? we have drawn the graph of the function f defined by f(x) = 23 for two

\ 1
\ L
X |
\\ ;
TS
N
X \
—t —
x77 I\
x” 1 \
- 1 X
f \
\
| X
1 + \
|

Figure 1.14: Two graphs of the function f(z) = x3.

sets of axes. For a single choice of axes, we simply identify ordered pairs and points,
and under this identification a function and its graph become the same thing.

Most of the functions encountered in an introduction to calculus are defined by
means of a single equation; e.g., h(z) = x3 + 3. It is a bad mistake, however, to
assume that this is always true. The function F' given by

2 : >
F(:I:):{ r4+1 ifx>0,

-5 if x <0,

requires two equations for its definition. The graph of F' is shown in Figure 77.
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Another function, which is so wild that it is impossible to draw its graph, is the

y-axis

y=F(x)

x-axis

Figure 1.15: A function not defined by a simple formula.

following:
g(x) =

The ordered pairs that comprise a function are not necessarily pairs of numbers.
An example is the function, mentioned earlier in this section, which assigns to each
triangle the point of intersection of its medians. It is possible for the domain of
a function to be a set of ordered pairs. Consider the function f consisting of all
ordered pairs ((x,y),z), where z,y, and z are numbers that satisfy z > y and
z = 222 + y%. We describe this function simply as follows:

0 if x is rational,
1 if x is irrational.

flzy)=22"+y% x>y (1.6)

As a final example of a function, consider the rule of correspondence that assigns
to each person his or her male parent.

As we have indicated, the definition of a function is appallingly general. One
of our tasks is to delineate properly the kinds of functions studied in calculus. To
begin with, a function f is said to be real-valued if its range is a subset of R, the
set of real numbers. If the domain of f is a subset of R, we call f a function of
a real variable. The function f(x,y) defined in (??) has as its domain a subset
of R2. Tt is a real-valued function of two real variables. For the most part, a first
course in calculus is a study of real-valued functions of one real variable.



26 CHAPTER 1. FUNCTIONS, LIMITS, AND DERIVATIVES

Problems

1. Plot the following point in the zy-plane: (0,—2), (1,3), (3,1), (-4, —4), and

(5,0).

2. In the zy-plane plot the points (1,2) and (2,1), (—3,2) and (2, -3), (—2,-3)
and (—3, —2). Describe the relative positions of the points (a,b) and (b, a) for

arbitrary a and b.

3. The z-axis and the y-axis divide R? into four quadrants, as shown in Figure
??. Let (a,b) be a point for which neither a nor b is zero. How can you
recognize instantly which quadrant (a,b) belongs to?

4. Find the distance between (—1,2) and (3,4);

(2,3) and (3,2); (3,4) and

(=1,2); (=2,1) and (2,1). In each case plot the points in R2.

ot

. Verify Proposition ?7.

6. Plot the subsets of the zy-plane defined in (i) through (vi).

EN|

. In each of the following, plot the subset of R? that consists of all pairs (z,y)

such that the given equation (or conditions) is satisfied.

2
5 z < 0.

20 +3, >0
D y={

8. In Problem 7?7, which subsets are functions?

9. Let f and g be two functions defined, respectively, by

fx)=2>4+2+1, —0<zr<0,

g(z) = i—ﬂ, for every real number x except z =1 .

—~
=
s
—~

)
:—/
~

(0), f(a), fla+b), fla—"0).
(b) 9(0), g(=1), g(10), g(5 + 1), g(z*).
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10. Give an example of a function f and a function g that satisfy each of the
following conditions.

a) f(z) =2

(b) f(z) = 543

(c) g(x) = 12.7-;2%12

(d) f(x) =bm

(e) f(t)=1/55

(f) Plz) = Vo —85 =20

(g) The set of all ordered pairs (z,y) such that

zy — 22

r—9

=1.



28 CHAPTER 1. FUNCTIONS, LIMITS, AND DERIVATIVES

1.3 Operations with Functions.

If f and g are two functions, a new function f(g), called the composition of g with

f, is defined by
(f(g)(x) = f(g(x)).

For example, if f(z) =2 — 1 and g(z) = £, then
(flo)@) = flg(@)) = (9(2))® —1 (1.7)
a+1\° 2(32% + 1
_ <xf1> _1223:—;3)’ (1.8)

The composition of two functions is the function obtained by applying one after the
other. If f and g are regarded as computing machines, then f(g) is the composite
machine constructed by feeding the output of g into the input of f as indicated in
Figure ?77.

r--r———>"""7TT"—>—7>7—7—7—~— a
l |
g(a)

|
L e J
Figure 1.16:

In general it is not true that f(g) = g(f). In the above example we have

@@ = o) = (1.9
_ @-n+t o (1.10)

(3 —1)—1 a3-2’
and the two functions are certainly not the same. In terms of ordered pairs the
composition f(g) of g with f is formally defined to be the set of all ordered pairs
(a, ¢) for which there is an element b such that b = g(a) and ¢ = f(b).

If f and g are two real-valued functions, we can perform the usual arithmetic
operations of addition, subtraction, multiplication, and division. Thus for the func-
tions f(z) = 23 — 1 and g(z) = 2L, we have

r—1"
@) tel) = -1+ 25
f@) ) = @f-1- T
f@e) = @ -1)I

= @4z+)(z+1) ifx#l,
3 —1

f@)/g(x) = —51

z—1
(8 = 1)z~ 1)
z+1
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z | f(z) | 2f(x)
0 -2 —4
1 -1 -2
2 0 0
3 1 2
Table 1.3:

Just as with the composition of two functions, each arithmetic operation provides a
method of constructing a new function from the two given functions f and g. The
natural notations for these new functions are f + g, f — g, fg, and 5. They are
defined by the formulas ‘

(f +9)(x) f(x) +g(z),
(f=9)(z) = f(z)—g(x),
(f9)(@) = f(x)g(z),
! = @ if g(x
;(x) = @ fg(x) #0

The product function fg should not be confused with the composite function f(g).
For example, if f(z) = 2° and g(x) = 2®, then we have (fg)(x) = f(z)g(z) =
2® - 23 = 28, whereas

We may also form the product af of an arbitrary real number a and real-valued
function f. The product function is defined by

(af)(x) = af(x).

Example 8. Let functions f and g be defined by f(z) = x — 2 and g(x) = 2% —
5z + 6. Draw the graphs of f, g, 2f, and f 4+ g. We compute the function values
corresponding to several different numbers x in Tables 77 and ?7?7. The resulting
graphs of f and g are, respectively, the straight line and parabola shown in Figure
?7?(a). It turns out that the graphs of 2f and f 4 g are also a straight line and
a parabola. They are drawn in Figure ??(b). To see why the graph of f + g is a
parabola, observe that

(f+9)(x) = fl@)+g(x)=(x—-2)+*—br+6)=2"—4z+4
= (x—2)2.

It follows that f + g is very much like the function defined by y = z2. Instead of
simply squaring a number, f + ¢ first subtracts 2 and then squares. Its graph will
be just like that of y = 22 except that it will be shifted two units to the right.

Up to this point we have used the letters f, g, h, F', G, and H to denote functions,
and the letters x, y, a, b, and ¢ to denote elements of sets—usually real numbers.
However, the letters in the second set are sometimes also used as functions. This
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y-axis y-axis
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+

x-axis
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Figure 1.17:

‘4; — NloT Ot o‘&‘

Table 1.4:

occurs, for example, when we speak of x as a real variable. As such, it not only is
the name of a real number but also can take on many different values: 5, or —7,

or m, or .... Thus the variable x is a function. Specifically, it is the very simple
function that assigns the value 5 to the number 5, the value —7 to the number —7,
the value 7 to m, .... For every real number a, we have

z(a) = a.

This function is called the identity function.

Suppose, for example, that s is used to denote the distance that a stone falling
freely in space has fallen. The value of s increases as the stone falls and depends on
the length of time ¢ that it has fallen according to the equation s = % gt%, where g
is the constant gravitational acceleration. (This formula assumes no air resistance,
that the stone was at rest at time ¢ = 0, and that distance is measured from the
starting point.) Thus s has the value %g if ¢t has the value 3, and, more generally,
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the value % ga? when t has the value a. If we consider ¢ to be another name for the
identity function, then s may be regarded as the function whose value is

Loy 1 2
s(a) = 29a” = o(t(a)
for every real number a. The original equation s = %th then states the relation
between the two functions s and t. The fact that s and ¢ take on different values
is also expressed by referring to them as variables. A variable is simply a name of
a function. In our example s is called a dependent variable, and ¢ an independent
variable, because the values of s depend on those of ¢ according to s = % gt%. Thus
an independent variable is a name for the identity function, and a dependent
variable is one that is not independent.

A real variable is therefore a name of a real-valued function. Since the arithmetic
operations of addition, subtraction, multiplication, and division have been defined
for real-valued functions, they are automatically defined for real variables.

We shall generally use the letter x to denote an independent variable. This raises
the question: How does one tell whether an occurrence of x denotes a real number
or the identity function? The answer is that the notation alone does not tell, but
the context and the reader’s understanding should. However, a more practical reply
is that it doesn’t really make much difference. We may regard f(x) as either the
value of the function f at the number = or as the composition of f with the variable
z. If z is an independent variable, the function f(x) is then the same thing as f.

Example 9. The conventions that we have adopted concerning the use of vari-
ables give our notations a flexibility that is both consistent and extremely useful.
Consider, for example, the equation

y = 22% — 3.

On the one hand, we may consider the subset of R?, pictured in Fifure ??, that
consists of all ordered pairs (z,y) such that y = 222 — 3z. This subset is a function
f whose value at an arbitrary real number x is the real number f(z) = 222 — 3z.
Alternatively, we may regard x as an independent variable, i.e., the identity function.
The composition of f with x is then the function f(x) = 222 — 3z, whose value at
2, for instance, is

A third interpretation is that y is a dependent variable that depends on x according
to the equation y = 222 — 3z. That is, y is the name of the function 222 — 3z.

Example 10. Let F be the function defined by F(x) = 2> +z+1. If u = /z — 2,
then

Flu) = v*+u+1
= (-2 +(x-2)Y? +1.

If we denote the function F'(x) by w, then

u+w=vVzr—2+2>+x+1,
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y-axis
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-1 1 2 x-axis

Figure 1.18:

uw = (x —2)%(z% + 2 +1).

On the other hand, we may let G be the function defined by G(z) = v/z — 2 for every
real number x > 2. Then G + F and GF are the functions defined, respectively, by

(G+F)z) = Gx)+F(z)
= Vr -2+ +a+1,
(GF)(z) = G(x)F(x)
(x—2)Y2 (2% + . +1).

To say that a is a real constant means first that it is a real number. Second,
it may or may not matter which real number a is, but it is fixed for the duration
of the discussion in which it occurs. Similarly, a constant function is one which
takes on just one value; i.e., its range consists of a single element. For example,
consider the constant function f defined by

f(x) =5, —oco<z<o0.

The graph of f is the straight line parallel to the x-axis that intersects the y-axis
in the point (0, 5); see Figure ??. We shall commonly use lower-case letters at the
beginning of the alphabet, e.g., a, b, c,..., to denote both constants and constant
functions.

Example 11. Consider the function ax + b, where a and b are constants, a # 0,
and z is an independent variable. The graph of this function is a straight line that
cuts the y-axis at b and the z-axis at 73. It is drawn in Figure ??7. This function
is the sum of the constant function b and the function which is the product of the
constant function a and the identity function zx.
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Figure 1.19:
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Problems

1. Let functions f and g be defined by

fl@) =2 —4a® + 5r —2 = (z = 2)(2® — 2c + 1), g(a) = %

(a) h=f(g)
(b) h=f+g
(c) h=g(f)
(d) h=fg

(e) h=5fg>.

. What is the domain and range of the functions f and g in Problem 777 What

is the domain of each of the functions A?

If f(x) =2+ 1 and g(z) = x — 1, plot the graph of the function 5.

. Plot the graph of the composite function F'(g), where F' and g are the functions

defined by g(z) = r — 2 and F(z) = 1.

x

. If f, g, and h are functions, show that f(g(h)) = (f(g))(h). This is the

Associative Law for the Composition of Functions.

. If f is a real-valued function, how would you define the functions 3f7 How

would you define /f?

. The velocity v of a freely falling body depends on the distance s that it has

fallen according to the equation v = 4/2gs, where ¢ is the constant gravita-
tional acceleration.

(a) Using an s-axis and a v-axis, plot the dependent variable v as a function
of the independent variable s.

(b) If s depends on the time ¢ according to the equation s = % gt?, how does
v depend on t?

Note that the variable v in 7?7, which depends on s, is not the same function as
the variable v in ??, which depends on ¢. Without knowing which is referred
to, the meaning of the value of v at 2 is ambiguous.

. Hw=v?+u+1,u=2%+2,and v = z — 1, what is the value of each of the

following functions at an arbitrary real number x?
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(b) Flw()) =
() (u+v)(@) =

The equation y = 2z + 1 defines y as a function of xz. It also defines x as a
function of y. Describe the latter function in two ways.

Draw the graph of the function f(x) = ax — 1 for four different values of the
constant a.

If f and g are two real-valued functions, give the definitions of the sum f + g
and the product fg in terms of ordered pairs.

Let f and g be two real-valued functions. In terms of domain f and domain
g, what are:

(a) domain f(g)?
(b) domain (f + g)?
(¢) domain fg?
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1.4 Limits and Continuity.

Consider the function f defined by

2 —3x+2

fla) = T2

T # 2.

The domain of f is the set of all real numbers with the exception of the number 2,
which has been excluded because substitution of x = 2 in the expression for f(x)
yields the undefined term 8. On the other hand, 2% — 3z +2 = (z — 1)(z — 2) and

(z—=1)(z—-2)

=z —1, provided z # 2. (1.11)
T —2

The proviso is essential. Without it, (1) is false because, if © = 2, the left side is
undefined and the right side is equal to 1. We therefore obtain

fley=ax—-1, x#2.
The graph of the function x—1 is a straight line L; so the graph of f is the punctured
line obtained from L by omitting the one point (2,1) (see Figure 77?).

y-axis
x#2

/ x-axis

Figure 1.21:

Although the function f is not defined at x = 2, we know its behavior for values
of x near 2. The graph makes it clear that if x is close to 2, then f(x) is close to 1.
In fact, the values f(x) can be brought arbitrarily close to 1 by taking x sufficiently
close to 2. We express this fact by writing

. x?—3x+2
lim —— =1,
r—2 x—2
which is translated: The limit of % is 1 as x approaches 2.
Example 12. Evaluate lim, .3 \/f:g/g . The function @%;)/g is not defined at
x = 3. The following algebraic manipulation puts the function in a form in which
its behavior close to 3 can be read off easily:

V-3 -3 /1+V3

z—3 z—3 \/54_\/3
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_ r=3 1
r—3x+3
1

VT + V3
Again note the proviso z # 3: When x = 3, the last quantity in the preceding
equations is equal to ﬁ, but the first quantity is not defined. However, by

taking values of z close to 3, it is clear that the corresponding values of can

1
Vz++/3
be brought as close as we please to 2%/5 We conclude that

lim\f—\/g: 1 .
z—3 T —3 2\/3

: ‘it of YZ=V3 s L
In words: The limit of *~—=, as z approaches 3, is 55

Example 13. If f(z) = 1, evaluate lim,_, f(z). The function f is not defined at
0 (i.e., the number 0 is not in the domain of f). From the graph of f and the list
of ordered pairs (z, f(z)) shown in Figure ??, it is clear that there are values of z

y-axis

x-axis

Figure 1.22:

arbitrarily close to 0 for which the corresponding values of f(x) are arbitrarily large
in absolute value (see Table ??). We conclude that lim,_,q % does not exist.

Thus far our examples have been confined to the problem of finding the limit of
a function at a number which happens to lie outside the domain of the function. If
it happens that the number a is in the domain of f, then it is frequently possible
to determine lim,_,, f(x) at a glance. Consider, for example, the function f(z) =
222 — x — 2. As x takes on values closer and closer to 3, the corresponding value of
222 approaches 18, the value of —z approaches —3, and the constant —2 does not
change. We conclude that

lim (222 — 2 — 2) = 13,

r—3
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x| flx) =1
1|1
0.1 ] 10
0.01 | 100
0.001 | 1000
0.0001 | 10000
-1 -1
-0.1 | -10
-0.01 | -100
-0.001 | -1000
-0.0001 | -10000
Table 1.5:

or that, for this particular function, lim,_ .5 f(x) = f(3).

Example 14. It would be incorrect to suppose that if a is in the domain of f, then
it always happens that lim,_,, f(z) = f(a). Consider the two functions f and ¢

defined by
2241 if|z] >0
ﬂ@{z if 2 =0
(2) = ?+1  ifz>0,
I = =22 -1 ifz<o.

Both these functions are defined on the whole real line; i.e., domain f = domain
g = R (see Figure ?77?). Furthermore,

f(0)=2 and g(0)=1.
As x approaches 0, however, it is clear that x? + 1 approaches 1 and not 2. Hence

lim f(z) = 1# f(0).

[Note that in computing lim,_,, f(x), we consider values of f(z) for all z arbitrarily
close to a but not equal to a. This point will be made explicit when we give the formal
definition.] Turning to g, we see that the value of g(z) near 0 depends on whether z
is positive or negative. For any small positive number z, the corresponding number
g(x) is close to 1, but if = is small in absolute value and negative, then g(x) is close
to —1. Since there is no reason to prefer numbers of one sign to those of the other,
we conclude that there is no limit. Thus

lim g(z) does not exist.
z—0

The reader may feel that Example 77 loses force because the functions used to
make the point were in some sense artificial. There is some truth in the objection.
Recall, however, that one of our major objectives is to reduce the class of all func-
tions to those we wish to study in this course. After defining lim,_,, f(z) precisely,
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y-axs y-axis
/g(x) =x"+1,
ifx>0
f(0)=2 X-axis
g(x)=-x*-1,
ifx<0
fx)=x>+1
if x20
X-axis

Figure 1.23:

we shall turn our point of view around and use this definition as the major tool in
the problem of deciding what does constitute a well-behaved function.

The conceptual problems in trying to give an exact meaning to the expression
lim,_,, f(z) = b revolve around phrases such as “arbitrarily close,” “sufficiently
near,” and “arbitrarily small.” After all, there is no such thing in any absolute sense
as a small positive real number. The number 0.000001 is small in most contexts,
but in comparison with 0.000000000001 it is huge. However, we can assert that one
number is smaller than another. Moreover, the actual closeness of one number = to
another number a is just the distance between them: It is | — a|. One way to say
that a function f takes on values arbitrarily close to a number b is to state that, for
any positive real number e, there are numbers = such that |f(z) — b] < e. We are
stating that no matter what positive number € is selected, 107, or 10717, or 107127,
there are numbers x so that the distance between f(x) and b is smaller than e. Thus
the difficulty inherent in the phrase “arbitrarily close” has been circumvented by
the prefix “for any.” To finish the definition, we want to be able to say that f(z)
is arbitrarily close to b whenever x is sufficiently close, but not equal, to a. What
does “sufficiently close” mean? The answer is this: If an arbitrary ¢ > 0 is chosen
with which to measure the distance between f(x) and b, then it must be the case
that there is a number § > 0 such that whenever zx is in the domain of f and within
a distance § of a, but not equal to a, then the distance between f(x) and b is less
than e. The situation is pictured in Figure ??7. First € > 0 is chosen arbitrarily.
There must then exist a number § > 0 such that whenever z lies in the interval
(a — d,a + ¢), and z # a then the point (z, f(z)) lies in the shaded rectangle.
We summarize by giving the definition: Let f be a real-valued function of a real
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Figure 1.24:

variable. Then the limit as « approaches a of f(x) is b, written

lim f(z) = b,

r—a
if, for any € > 0, there exists 6 > 0 such that whenever x is in the domain of f
and 0 < |z — a| < 0, then |f(z) — b|] < e. (There is a strong tradition for using the
Greek letters € and § in the definition of limit. In fact, the part of calculus that
deals with rigorous proofs of the various properties of limits is sometimes referred
to as “epsilonics.”)

Example 15. The idea behind a formal definition can sometimes be grasped most
easily by looking at an example where the condition is not satisfied. Consider the
function g defined in Example ?? whose graph is drawn in Figure ??(b). We shall
prove that lim, 0 g(z) # 1. To do this, we must establish the negation of the limit
condition: There is an € > 0 such that, for any § > 0, there is a number z in the
domain of ¢g such that 0 < |z| < § and |g(z) — 1] > €. There are many possible
choices for €. To be specific, take e = % We must now show that for every positive
number §, there is a nonzero number z in the open interval (—d,d) such that the
distance between g(z) and 1 is greater than or equal to 3 (Figure ??). Take z = —$.
This number is non-zero, lies in (-4, ), and furthermore

2

g(x) :g(—g) = —% —-1<-1.

Hence |g(z) — 1| > 2 > 1.
The basic limit theorem is the following;:
1.4.1. Iflim, ., f(z) = by and lim,_,, g(x) = by, then
i) lim, ol £(2) + 9(2)] = b1 + ba
i) limg 4 cf (x) = cby.

iil) limy g f(2)g(x) = bybo.

iv) limg_.q J;Ei; l% provided by # 0.

(
(
(
(
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Figure 1.25:

The proofs are given in Appendix A. They are not difficult, and (i) and (ii) espe-
cially follow directly from the definition of limit and the properties of the absolute
value. Some ingenuity in algebraic manipulation is required for (iii) and (iv). Note
that we have already assumed that this theorem is true. For example, the assertion
that lim, _,3(22% — x — 2) = 13 is a corollary of (i), (ii), and (iii).

If a function f is defined for every x in R and if its graph contains no breaks,
then it is apparent from looking at the graph that lim,_,, f(z) = f(a). Logically,
however, this intuitive point of view is backward. So far, we have constructed the
graph of a function f by plotting a few isolated points and then joining them with
a smooth curve. In so doing we are assuming that if = is close to a, then f(x) is
close to f(a). That is, we are assuming that lim,_,, f(z) = f(a). Now that we
have given a formal definition of limit, we shall reverse ourselves and use it to say
precisely what is meant by a function whose graph has no breaks. Sueh a function
is ealled continuous. The definitions are as follows: A real-valued function f of a
real variable is continuous at a if @ is in the domain of f and lim,_,, f(z) = f(a).
The function f is simply said to be continuous if it is continuous at every number
in its domain.

A continuous function whose domain is an interval is one whose graph has no
breaks, but the graph need not be a smooth curve. For example, the function with
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the sawtooth graph shown in Figure 77 is continuous.

y-axis

x-axis

Figure 1.26:

Many functions that are not continuous fail to be so at only a few isolated places.
Thus the function f in Example ??, whose graph is drawn in Figure ??(a), has its
only discontinuity at 0. It is continuous everywhere else. Finally, we emphasize
the fact that there are two conditions in the definition of continuity. Even though

. 3_ . 3_
lim,_,; £=L = 3, the function -

g 11 is not continuous at z = 1 simply because it is
not defined there.

If two functions f and g are continuous at a, then it is not difficult to prove that
the sum f+ g is also continuous at a. To begin with, a is in the domain of f+ g since
we have (f + g)(a) = f(a) + g(a). Furthermore, we know that lim,_,, f(x) = f(a)
and that lim,_,, g(z) = g(a). It follows by Theorem ?7?(i) that

lim [f(z) +g(z)] = f(a) + g(a).

Since f(z) + g(x) = (f + g)(x), we get

lim (f +g)(z) = (f + g)(a),

r—a

which proves the continuity of f+ g at a. The other parts of the basic limit theorem
?? imply similar results about the products and quotients of continuous functions.
We summarize these in

1.4.2. If two functions f and g are continuous at a, then so are

(i) f+g. (ii) cf, for any constant c. (iii) fg. (iv) 5, provided g(a) # 0.

A real-valued function f of one real variable is called a polynomial if there
exist a nonnegative integer n and real numbers ag, a1, ..., a, such that, for every
real number z,

fl@)=ao+ a1z + ... + apz™.

The following functions are all examples of polynomials:

flx) = 2—4dx+ 327
fly) = 11> + %y +,
f(l‘) =
flz) = 5,

)

= (5°4+2)(s°—1)=5"+25° — s — 2.
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It is equally important to be able to recognize that a given function is not a poly-
nomial. Examples of functions which are not polynomials are

flz) = |=|,

f@) = o

flz) = 2*+a+3277%
flz) =

Fly) = (-1

Algebraically the set of all polynomials is much like the set of integers: The sum,
difference, and product of any two polynomials is again a polynomial, but, in gen-
eral, the quotient of two polynomials is not a polynomial. Moreover, the algebraic
axioms ?7? through 77 listed in Section 77 also hold.

Just as a rational number is one which can be expressed as the ratio of two
integers, a rational function is one which can be expressed as the ratio of two
polynomials. Examples are the functions

23 4+ 22+ 2
fo) =
1
— -3 _
g(x) = E)
24941
fl@) = 2?+20+1="1 +1z+ ;
glz) = 7

The domain of every polynomial is the entire set R of real numbers. Similarly,

the domain of a given rational function %, where p(z) and ¢g(z) are polynomials,

is the whole set R with the exception of those numbers z for which ¢(z) = 0.
Furthermore, we have
p(x)

1.4.3. FEvery polynomial is a continuous function, and every rational function @)

is continuous except at those values of x for which q(x) = 0.

Proof. The identity function x is clearly continuous, and so is every constant func-
tion. Since every polynomial can be constructed from the identity function x and
from constants using only the sums and products of these and the resulting func-
tions, it follows from Theorem 77 that every polynomial is continuous. The assertion
about the continuity of rational functions then follows from part (iv) of Theorem
77, O

It is occasionally useful to modify the definition of lim,_,, f(x) to allow x to
approach a from only one side:

either l or l
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When this is done, we speak of either the limit from the right or the limit from
the left and write either

lim f(z) or lim f(x),

T—a+ T—a—

according as the additional condition is x > a or z < a. Thus for the function

r—1, x2>2,

f(m):{ 22 —1, <2,
whose graph is shown in Figure 7?7, the limit of f(z) as = approaches 2 does not
y-axis
T (2v3)

y=x—-1, x>2

L
y=x*-1, x<2 @0

x-axis

Figure 1.27:

exist. Nevertheless, we obtain

Similarly, for the function ¢ in Figure ??(b), we have lim,_,o4 g(z) = 1, lim,_,o_ g(z) =
—1.
The graph of the rational function

e A )

xT

together with a list of some of the ordered pairs (z, f(z)) that comprise f is shown
in Figure ??. From both Figure 77 and Table 77 it is clear that as x increases
without bound, f(z) becomes arbitrarily close to 1. We express this fact by writing

. r+1
lim =

r——+o0 €T

1.

Since f(x) also becomes arbitrarily close to 1 as x decreases without bound, i.e.,
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y-axis
sm=21
—t—t —

Figure 1.28:

z | f(x)

112

10 | 1.1

100 | 1.01
1,000 | 1.001

1,000,000 | 1.000001

Table 1.6:

as —x increases without bound, we write

. r+1
lim =

T——00 I

1.

The definition is as follows: Let f be a real-valued function of a real variable. Then
the limit of f(z) is b as = increases without bound, written

S @) =5,
if, for any € > 0, there exists 6 > 0 such that whenever x is in the domain of f
and § < z, then |f(z) — b| < e. The analogous definition for lim, , . f(z) = b is
obvious.

The symbols 400 and —oo can also be used to refer to the behavior of the
values of the function as well as the independent variable. If, as x approaches a, the
corresponding value f(z) of the function increases without bound, we may express
the fact by writing

lim f(z) = +o0.

T—0o0

The reader should be able to attach the correct meanings to the various other
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possibilities:
:lll)r}l f(x) = 9,
lim f(z) = oo,
T——00
11351+f(x) = —o0, etc.

It is essential to keep in mind that +o00 and —oo are not numbers. They are not
elements of R. They are used simply as convenient abbreviations for describing the
unbounded characteristics of certain functions. The symbol +oco (or simply oo) in
an expression for a bound will always mean that the quantity referred to increases
without limit in the positive direction. Similarly, —oc always indicates the negative
direction. Thus we shall not say lim,_,q % = 00. But we do say

lim — = o0,
x—0+ T
. 1
lim — = —o0,
z—0— o
. 1
lim |—-| = o
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Problems

1. Compute the following limits.

(a)
(b)
(c)
(d)
(e)
(f)
(8)
(h)
(i)
()

z3—1
z—1
z2—5x46
r—2

limg_,; %

1imm~>2

z2—52+6
x—3

2
i zZ 1
limg 1 (m—l r—l)
. 3
lim,_,qx?2
Vr+1—1
x

hmz—)i’)

limm’*}O

1im$_>0 |$|

. 1—h? 6h%—1
hmh—>0( "2 + "2 )

(a+2)3+2(a+x)—a®—2a

limz—)O T

2(z+h)?—(z+h)—2z%4x
T .

limy, .o

47

2. For each of the following functions, find those numbers (if any) at which the
function is not continuous.

(a
(b
(¢
(d

[§]

—_ — D D T

(
(

_ =l 7] <1
f($)—{2 2, |(E|>1

2242241, ifz#£l
f@){L ifz=1

1, if z is rational
O, if x is irrational

3. A function f is said to have a removable discontinuity if it is not continuous
at a, but can be assigned a value f(a) [or possibly reassigned a new value f(a)]

such that it becomes continuous there.

(a) Locate the removable discontinuities in Problem ?7.

(b) Show that the only discontinuities a rational function can have are ei-
ther removable or infinite. That is, if r(z) is a rational function that is
not continuous at a, show that either a is a removable discontinuity or

limg ., |7(2)| = +o00.
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10.

11.
12.

13.
14.

CHAPTER 1. FUNCTIONS, LIMITS, AND DERIVATIVES

Using Theorem ??, prove that if lim,_,, f(z) = b; and lim, 4 g(z) = ba, then

lim [f(x) — g(z)] = by — ba.

r—a
Show that

(a) limgy 400 f(x) =0 if and only if lim;_, o4 f ( ) =b.
(b) limg— oo f(x) = b if and only if lims—,g_ f ( ) b

= o=

Using Problem 7?7, compute
. 1
(a) limg_ oo e
3z+1
xT
4t —3t+1
t2

)
(b) limge
(c) lims—y_ oo
(d)
True or false?

(a) If lim, 4 f(x) = b, then lim, 4 f(z) = b and lim,_,,— f(z) = b.
(b) If limg ey f(x) =b and lim,_,,— f(z) = b, then lim,_,, f(z) = b.

3t347t%2—2

hmt%oo 31

Define a function f and draw its graph such that lim, .oy f(x) = 2 and
lim, o f(z) = 0.

Compute

a) lim,_,o

(
(b
(c

(d) limg—4

1
2 —4x+4

limg o 72 T32—10

3

. jal -
1My 34 T—

\/ z—1
-1

)
)
)
)

Does the set of rational functions satisfy axioms ?? through 77 of section 77?77
(Hint: Be careful; note Problem ?77.)

Give the formal definition in terms of inequalities of lim, 4+ f(z) = b.

Define a function f and draw its graph such that lim, o f(z) # lim, o f(),
although both limits exist.

Prove that it is impossible to choose a rational function in Problem ?7.
Give the formal definition in terms of inequalities and absolute values of

(a) limg_, f(z) = 00
(b) limg—_ f(z) = 400
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1.5 Straight Lines and Their Equations.

We shall define a straight line in R? to be any subset L consisting of all ordered
pairs (x,y) such that
ax +by+c=0, where a®+b*>0. (1.12)

The inequality a®+b% > 0 simply says that the constants a and b are not both equal
to zero. Of course two different equations can define the same line. For example,
the set of all ordered pairs (z,y) such that 4z — 3y + 5 = 0 is the same line as the
set of pairs for which 28z = 21y — 35. For this reason, we speak of an equation of
a straight line and not the equation.

1.5.1. Suppose that straight lines L1 and Lo are defined, respectioely, by
a1x+biy+c1 =0, a12—|—b12 > 0,
a2z+b2y+02 :O, a22+b22 > 0.

Then Ly = Lo if and only if there is a nonzero constant k such that

ag = kal,
b2 = kb17
Cy = kCl.

Proof. If such a k exists, then the two equations are equivalent, and so L1 = Ls.
Conversely, suppose that L1 = Ly. We may assume without loss of generality that

b1 # 0. Then the point (07 —l%) lies on L since it satisfies the first equation; i.e.,

a1 O—Fbl(—ﬂ) +c1 =0.
b1
Because the two lines are equal, the point also lies on Ly, and so
a9 O+b2<*cf1> + co =0.
b1

Hence

In addition, the point (1, —%) lies on Lq because

a1 +51(M) + =0.
by
This point then also lies on Lo, and this fact means that
—a; —c¢
a2 +b2(#) +co = 0.
by
Hence
ba ba

as = —ay + c—c—(b—z)a
2—b11 b11 2 = by 1

Since by = (Z—f) by trivially, we obtain the desired conclusion by setting k = 2—?. Note

that k #£ 0, for if it were zero, we would get ag = bs = 0, contrary to assumption. [
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One consequence of Theorem 77 is that it enables us to recognize at a glance
whether or not different equations define the same straight line. Another corollary
arises in connection with the following definitions: A line L defined by an equation
azx + by + ¢ = 0 with a? + % > 0 will be called vertical if b = 0 and horizontal if
a = 0. It follows from the theorem that b must equal zero for every such equation
which defines a vertical line and that a must equal zero for every such equation
which defines a horizontal line. Thus the definitions are not dependent on the
particular equation which defines L.

If P = (a,b) and Q = (c,d) are two points in R? and a # c, the slope of the
line segment joining P to @ is, by definition,

d—b

c—a’

m(P,Q) =

Note that

m(P,Q) = d-b_b-d =m(Q, P).

c—a a—cC

The absolute value of m(P,Q) is the ratio of the vertical to horizontal distance
between P and @ (see Figure 7?). It is simply a measure of steepness. A segment
with positive slope goes up as it goes to the right; one with negative slope goes
down as it goes to the right (Figure ??). If a = ¢, the segment is vertical, and the
slope is not defined.

y-axis

- P=(a,b)

l-————-|c-—a|—>
l | | 1

x-axis

Figure 1.29:

1.5.2. Let L be the straight line defined by the equation ax + by + ¢ = 0, where
b#0. If P and Q are any two distinct points on the line, then m(P,Q) = —¢.

Proof. Let P = (x1,y1) and @ = (22,y2). An equation equivalent to the original

one is
yz—(%)x—g. (1.13)

It follows that x; # xo, since, otherwise, substitution in this equation would yield
y1 = Yo, which would then imply P = (). We obtain

Y2—y1 _ —pT2— it a
m(P,Q) = = S b=

To — X1 T2 — T1 b
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and this completes the proof. O

positive slope negative slope

Figure 1.30:

As a result of Theorems 7?7 and 7?7, we can unambiguously define the slope of
a nonvertical line L, which we shall denote by mp, as follows: For any pair of
distinct points P and @ on L, we define

myp = m(P7Q)

It follows at once that mj depends only on the line L. For if P’ and @’ are any
other two distinct points on the line, then

m(P.Q) = —3 =m(P'.Q).

(Since L is not vertical, b # 0.) Furthermore, any other equation defining L can be
written kax 4+ kby 4+ kc = 0 with k£ # 0, and, of course, —% = —%. We note that
the slope of a vertical line is not defined.

Example 16. Find an equation of the straight line L through the point (a,b) and
with slope m. If (z,y) is any other point on the line, then

y—>b
m= ,
T —a
which implies
y—b=m(z—a). (1.14)

This is an equation of the line. For suppose L were defined by some equation
a1z + b1y + ¢ = 0. An equivalent equation is

(@), 2
Y= by by
y:mx—c—l. (1.15)
by
c

Since we are given that (a,b) lies on L, we get b =ma — -, or

or, since m = —3+,
1

z—izma—b.

Substitution in (??) yields y = max — ma + b, which is equivalent to (?7).
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Suppose that S is an arbitrary subset of R? with the following three properties:
(i) S contains a point (a,b); i.e., S is a nonempty set.

(ii) The slope m(P, Q) is defined and is equal to the same fixed number m, for
every pair of distinct points P and @ in S.

(iii) S contains every point (z,y) in R? which is connected to (a,b) by a line
segment of slope m.

These are certainly the geometric properties of a nonvertical straight line. It
follows from (i) and (ii) that the coordinates of every point (x,y) in S satisfy the
equation

y—b=m(z —a). (1.16)

Conversely, it follows from (iii) that, for every pair of real numbers 2 and y which
satisfy (4), the point (z,y) must lie in S. Thus the set S is the graph of (4), and, as
such, it is a straight line. Since nonvertical straight lines, as we have defined them,
have the above three properties, we conclude that our definition coincides with the
natural geometric one.

We define two lines L; and Ly to be parallel if they are both vertical or if
they have the same slope. The following fact, which we shall prove later using
trigonometry, can also be deduced from Figure ?? by the methods of plane geometry.

y-axis

L,

fit

Lz (_ba a)

Xx-axis

Figure 1.31:

1.5.3. Two nonvertical lines L1 and Lo with slopes my1 and ms, respectively, are
perpendicular if and only if mime = —1.

Example 17. (a) Write an equation of the straight line L; that passes through
(—=2,4) and (3, 7). (b) Write an equation of the line Lo passing through (5, —2)
and parallel to Ly. (c) Write an equation defining the line L3 that passes through
(=1, -3) and is perpendicular to L.

The slope of the segment joining (—2,4) and (3, 7) is % = 2. An arbitrary
point (z,y) other than (3, 7) belongs to Ly if and only if
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y—17

3
r—3 5
Hence an equation defining L; is 5(y — 7) = 3(z — 3), or, equivalently,

3z — 5y + 26 = 0.
The line Ly also has slope 5. Since it passes through (5, —2), it is defined by

y+2 3
=2 if
-5 5 LeF5

or, more generally, by 5(y + 2) = 3(z — 5), which is equivalent to
3x — 5y — 25 =0.
The slope of the perpendicular is f% Hence we obtain the equation

y+3 5
== ~1
o] 3 7L

or 3y +9 = —5x — 5, as an equation of Ls.
What functions have graphs that are straight lines? The answer is an easy one.
If f is defined by

flx)=azx+0b, —o0o<uz< o0,

then its graph, which is the set of all ordered pairs (z,y) such that y = ax + b, is
certainly a straight line. Conversely, if the graph of an arbitrary function f is a
straight line, then the equation y = f(z) is equivalent to one of the form

amz+biy+e =0, a’>+b%>0. (1.17)

If b; were zero, both points (—%,O) and (_%’ 1) would satisfy (5), but the def-

inition of function makes this impossible for the equation y = f(z). We conclude
that by # 0 and that (5) is therefore equivalent to

It follows [see Theorem ?7?] that the functions f(z) and f(b—ll)z — 3 are equal.

Thus the functions whose graphs are straight lines are precisely those of the form
ax + b. These are the polynomials of degree less than 2, the linear functions.
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Problems

1. For each of the following lines, find an equation that defines it.

—
&

The line through (2, 3) with slope 1.

The line through (0,1) with slope 1.

The line through (0,1) with slope —2.

The line through (-1, —3) with slope —3.
The line through (—2,1) and (-1, —1).

The line containing the point (1,0) and (0, 1).

—
o o

~ o~
[N

—_
—

The line through the origin containing the point (1, —19).
The line with slope 0 that passes through (3,4).
The line through (2,5) and (2, 8).

D OS] @
N N NI N N N N

~
- =

2. Draw the line defined by each of the following equations, and find the slope.

(@) z+y=
(b) z=—y
(c) 2z — 4y =
(d) 72 =3

)

(
(f) 4z + 3y = 10.

3. Determine whether P, @), and R lie on a line. If they do, draw the line and
write an equation for it.

(a) P=1(0,0), Q@ =(-1,3), R=(3,—4).
) P=(38), Q= (-1 R=(-3.- ).
(¢) P=(a1,a2), Q@ = (b1,b2), R=(c1,ca).
4. Draw the set of all ordered pairs (z,y) such that
(a) 42 +day +y> + 122+ 6y + 9= (2r +y + 3)? = 0.
(b) 522 + Tay +2y* + 32 + 3y = (bx + 2y + 3)(x + y) = 0.

5. The z-coordinate of a point where a curve intersects the z-axis is called an
z-intercept of the curve. The definition of a y-intercept is analogous.

(a) Find the z- and y-intercept of the line defined by y — 32 = 10. Draw the
line.
(b) Write an equation for the line with slope m and y-intercept equal to b.
6. For each of the following equations, define the function f(x) whose graph

is the set of ordered pairs that satisfy the equation. Which ones are linear
functions?

(a) 3x —y =17
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7. Among the lines defined by the following equations, which pairs are parallel
and which perpendicular?

(a) 4z +2y =13
(b) 3z —6y =0
(c) 3r+2y=6
(d) y=—22
(e) 4z =13
(f) 4y =13

8. (a) Write an equation of the straight line L; that contains the points (1,3)
and (3, —2).
(b) Write an equation of the line with z-intercept 1 that is parallel to L;.
(c) Write an equation of the line perpendicular to L; that passes through
(1,3).

9. Prove that the two lines L; and Ly in Figure ?? are perpendicular. (Hint:
Use congruent right triangles or the converse of the Pythagorean Theorem.)
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1.6 The Derivative.

The concept of the line tangent to a curve at a point is an important one in geometry.
However, it is not so simple an idea as it may first appear. Consider the graph of
a function f and a point P = (a, f(a)) on the graph, as illustrated in Figure ??.
Many people who would have little difficulty drawing the line tangent to the graph

y-axis

P=(a,f(a))

a X-axis

Figure 1.32:

at P would not find it easy to give an accurate definition of the tangent line. For
example, to say that the tangent line at P is the line which cuts the graph at the
single point P, although true for some curves, is obviously not correct in general (in
particular, see Figure 77. We shall show that the problem of defining the tangent
line to the graph of f at P can be expressed in purely analytic terms involving the
function f. In fact, the problem leads directly to the definition of the derivative of
a function, the central idea in differential calculus.

Let ¢ be an arbitrary nonzero real number, and consider the point Q(¢) = (a +
t, f(a +t)), which, together with P = (a, f(a)), lies on the graph of f (see Figure
??). The slope of the secant line L; containing P and Q(t) is equal to

y-axis

L,

Q()y=(a+1t f(a+1))

N\

y=/x) P=(a,f(a))

a a+t x-axis

Figure 1.33:
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m(P,Q(t)) = (1.18)
If t is small in absolute value, then L; is an approximation to what we shall define
to be the tangent line. The smaller the value of |¢|, the better the approximation
will be. In some sense, therefore, we would like to define the tangent line L to be
the limit, as ¢ approaches zero, of the lines L;. We can do this, for although we
have not defined a limit of lines, we have defined limits for functions, and hence we
can express the limit of the slope of L;. According to equation 1.6.1, it is given by

th_fg%m(Pa Q(t)) = lim M.

50 t (1.19)

We shall define the tangent line to the graph of f at P to be the line through P
having this limit as its slope, provided the limit exists.

Leaving the geometric interpretation aside for the moment, we observe that the
value of the limit in (??) depends only on the function f and on the number a.
Hence we give the following definitions: An arbitrary real-valued function f of a
real variable is differentiable at a number a in its domain if

o S0~ f(@)
t—0 t

exists (i.e., is finite). The derivative of f at a, denoted f’(a), is this limit. Thus

f/(a) — lim f(a+t) _f(&).

t—0 t

If f is differentiable at every number in its domain, it is simply called a differen-
tiable function.

Thus the slope of the line tangent to the graph of f at the point (a, f(a)) is
equal to the derivative f’(a). It follows that an arbitrary point (z,y) lies on this
line if and only if

y — fla) = f'(a)(z —a),
and we therefore obtain the following equation of the tangent line:

y = f(a) + f(a)(z - a).

Note that the only variables that appear in this equation are x and y, and these
occur with exponent 1. The equation therefore defines y as a linear function of x.

Example 18. Find the derivative of the function f(z) = 2% +2 at = 2, and write
an equation of the line tangent to the graph of f at the point (2,6). As we have
seen above, the slope of the tangent line is the derivative f’(2), and

t—0 t

We have f(2) =6, and f(2+1t) = (2+t)2 +2 = t2 + 4¢ + 6. Hence

fR+H)—f(2) £+4

: —t+4, ift#0.
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So
J'(2) = lim(t +4) = 4.

The tangent line passes through (2, 6) and has slope 4. Hence (x,y) lies on the
tangent if

and we therefore obtain
y—6=4(x—-2) or dx—y—2=0,
as an equation of the line.

Example 19. Consider the function g defined by

9(z) = T # =2

x+2’

Compute the derivative ¢’(3). By definition,

93+1)—g(3)

oy 1
9'(3) = limy t
We have g(3) = £, and g(3+1) = 15 .
w00 as) 11y
t t\t+5 5
_ 5049
5t(t+ 5)
-t
= T 5t(t+5)
1
= —_ 'ft 0~
+5) L7

We conclude that ) )
@ -ns) -
g(3) = lim 5(t+5) 25

Example 20. Find F’(a), where a > 0 and F is the function

F(z)=—, 0<z<o0,

8
=]

and write an equation of the line tangent to the graph of F at the point (4, %) By
the definition of the derivative,

F(ath)fF(a).

/ T
Fi(a) = lim t
In this case,
F(a+t)fF(a)71< 1 7i)
t S t\Va+t al
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The problem in computing any derivative from the definition is always the same.
We set up the fraction w and then compute the limit. To begin with, we
are faced with a fraction both the numerator and denominator of which approach
zero. The limit we seek is the relative rate at which numerator and denominator go
to zero. With most examples it is not possible to tell from a cursory glance just what
that relative rate is. So we experiment, performing various algebraic manipulations
that hopefully will finally change the fraction into a form from which we can tell
what the limit is. In the present example the following manipulation will do the
trick:

1( 1 _L>  1va—/(a+t)Va+att

t\Vatrt +a t Java+t Jat+vati

_ 1 a—(a+1t)

t Vava+it(va+Va+t)
1 .

= , ift#0.

Va2 ¥ at(va + Va+t)
It is now possible to see what happens as t — 0.

-1 -1 1

F'(a) = lim — - _ .
O Ve aivat vatD) 2ava 27

Our principal interpretation of the derivative F’(a) is that it is the slope of the line
tangent to the graph of F' at the point (a, F'(a)). For this particular function F', an

equation of the tangent line at (4, 3) is therefore found by writing

The notation f’(a) for the derivative suggests that we regard f’ as a new function
whose value at a is the number f’(a). The domain of f” is the set of all real numbers
a for which lim;_,q M exists. With this point of view, it is natural to think
of the derivative evaluated not only at an arbitrary, but fixed, number a but also
at a variable x. In so doing, we are admitting the same dual interpretations that
were discussed in Section ??. That is, we can interpret f’(z) either as the value of
the function f’ at the number x, whence

or as the composition of the variable z with the function f’.

Example 21. If f(z) = 2% — 1, plot the graph of the derived function f’. For any

real number z,
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We have
fe+t) = f@) = (@+°-1)-@"-1)
= 302+ 3at® + 47,
and so
t —
M =3a% + 3ut + 12, ift#£0.
Consequently,

fl(x) = }i_r>r(1)(3x2 + 3t + t2) = 322

The graph of the function f/(z) = 322 is the parabola shown in Figure ??, on which

x 3x2 | x*—1 y-axis
0 0 -1
1 3 0 T
2 12 7 f'(x)=3x? T
-1 3 -2 T
-2 12 -9 T

x-axis

fx)=x*-1

Figure 1.34:

the graph of the original function f(x) = 2 — 1 has also been drawn.

It is not surprising that there are several common notations for the derivative
of a function. One strong tradition reflects the basic fact that the derivative is the
limit of a ratio by writing it as a ratio. Thus

a5 _
@ 1

This way of writing the derivative is called the differential notation. Using it, we
denote the derivative of f at a by

4

(@) = £
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Example 22. Let f(z) = 2® — 1. It was shown in Example ?? that f/(x) = 322.
Each of the following equations is an example of acceptable notation.

L

y (2) = 3-22=12,
X
d
Ty = s,
df 2
“ = 3
dx o
d
%(zg’—l) = 327

One could also write %(x) = f'(z) = 322. There is no need for it, however, since
f'(x) becomes identified with f’ when it is regarded as the composition of the
independent variable x with the function f’.

It should be emphasized that although the notation % suggests a ratio, the

derivative as we have defined it is not a ratio—even though it is the limit of one.
% is simply an abbreviation of f’.
There are a few variations on the two notations that we have given for the

derivative which we shall also use frequently. If y = f(z), we may write any one of

dy df
A
y_dx / dx

for the derivative. Similarly, for the derivative at a real number a, we have

_ %

via) = L) = @)= T

= (a).

Still other notations for the derivative, which we shall seldom use, but which the
reader may encounter in other books are

Df =D.f =Dy = Dzy =9,
where it is assumed that y = f(x).

Example 23. Tt follows from the computation in Example ?? that if F'(z) = x /2
2 > 0, then the derivative is given by F'(x) = —%153/2. If we write y = 2~ /2,2 >
0, the derivative is also written

yI:@:— 1
dx 213/2"

The value of the derivative at 4 is

, dy 1 1
yW=5W="35r""1%

The slope of a straight line is the ratio of a change in y to a change in x. It
therefore measures the rate of change of y per unit change in = for the ordered
pairs (z,y) that make up the line. Consider the two lines defined by y = 10z — 3
and y = = — 3 respectively. The rate of change of y to = is 10 for the first and
1 for the second. For a function whose graph is not a straight line, however, the
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concept of the rate of change of y, or f(x), with respect to = is more profound.
There is the problem that the change in functional values f(z) per unit change in
x will not be constant along the graph. More basic, however, is the question of the
precise meaning or definition of the rate of change. The answer is provided by the
derivative. Since f’(a) is the slope of the line tangent to the graph of f at the point
(a, f(a)), it measures the rate of change of f(x) with respect to z at that point.
In Example ?? we showed that if f(z) = 22 + 2, then f/(2) = 4. We interpret
the number 4 not only as the slope of the line tangent to the graph of f at (2,6)
but also as the rate of change of f(z) with respect to x there. From the picture of
the graph in Figure 77 it is apparent that at (2,6) a small change in = produces a

y-axis

2 x-axis

Figure 1.35:

corresponding change four times as great in f(z). In Section ?? the idea of limit was
introduced by examples and by exploiting the reader’s intuitive understanding of
continuity and continuous curves. We then gave a formal definition and proceeded
in terms of it to go back and define continuity precisely. We shall do an analogous
thing here and now define the slope of the graph of f at the point (a, f(a)),
or more simply the slope of the curve y = f(z) at (a, f(a)), to be the derivative
f'(a).

We conclude this section with the theorem
1.6.1. If a function f is differentiable at a, then it is continuous there.

Proof. The hypothesis that

L flatt) — (o)
t—0 t

exists implies tacitly that a is in the domain of f. If a quotient approaches a finite
limit as the denominator approaches zero, then the numerator must also approach
zero. This fact is a consequence of the theorem that the limit of a product is the
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product of the limits [see part (iii) of Theorem ?7?]. In this case, we have

fla+t) — fla) ]
t
[f(a+t1—f(a)}

lim[f(a+t) — f(a)] = nm[

t—0 t—0

-lim ¢
t—0

= lim
t—0

= f'(a)-0=0.
The equation lim;_,o [f(a +t) — f(a)] = 0 is equivalent to

}i_r}r(l) fla+t) = f(a). (1.20)

If we set x = a +t, then x approaches a as ¢ approaches 0, and conversely. So (?7)
becomes

lim f(z) = f(a),

T—a

and the proof is complete. O
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Problems
1. Let f(z) = 322 + 4. Using the definition of the derivative, compute
(a) f(1)
(b) f'(a), for an arbitrary real number a.
2. Write an equation of the line tangent to the graph of the function f” in Problem
77 at the point
(a) (1,7)
(b) (a, f(a)).
3. If F(x) = zxgﬁv compute F’(3) using the definition of the derivative.
4. Using the definition of the derivative, compute f’(a) for each of the following
functions.
(a) f(z)=2a?
(b) f(z) =a®+32+5
(c) flz)=7
(d) f(z) =Vr,a>0
(e) fl)=z+ 5, z#0
(f) flz)=23+32%>+3z+1
(g) flz) =vaz+1
_ 1
() f() = A=
(i) flo)=as
5. Using the results of Problem 7?7, find an equation of the line tangent to the

Ne]

graph of f at the point (a, f(a)), where

(a) f(z) =23 and a = 0.

(b) f(z) =2*+3z+5 and a = 1.

(¢) f(x) =7 and a is arbitrary.

(d) f(z) =z + % and a is not zero.

(a) If F(z) = 22, use the definition of the derivative to find F’(z).

(b) Plot the graphs of F' and F’ on the same zy-plane.

(a) Show that the function |z| is not differentiable at 0 and interpret this

fact geometrically.

(b) Compute the derivative at —1 and at 1 of the function |x|.

Show that the function /x is not differentiable at 0. Draw the graph and
interpret the nondifferentiability geometrically.

Using the results of Problem ?7?, find

(a) L(-1)if f(z) =2+ 3z +5.
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(b) 4(3) if f(z) = ®.

(c) %(b if f(z) =23+ 322+ 3z + 1.
(d)

(e) L) (),

(f) & (@+ %)

(a) f y =2z +1, find %(a).
(b) If s = 162, find 2(2).
(c) If s = 162, find 4.

10.

11. Using the definition of the derivative, prove that if y = az?® + bz + ¢, then

%:aner.

12. Give an example of a continuous function that fails to have a derivative at
some point.
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1.7 Derivatives of Polynomials and Rational Func-
tions.

Computing f/(x) from the definition of the derivative by evaluating
o fE )~ (@)
t—0 t

can be quite a job. In this section we shall develop a set of theorems from which
the derivatives of many functions, including all polynomials and rational functions,
can be found easily and, what is more important, in a completely routine way.

1.7.1. If f and g are differentiable functions, then their sum f + g is differentiable.
Moreover, (f +9) =f'+4¢.

Proof. Let a be a number in the domain of f + g. Recall that by the definition of
the sum of two functions

(f+9)a) = fla)+g(a),
(f+g)a+t) = fla+t)+gla+t).

Hence, by the definition of the derivative,

(f+9)a+t) = (f+9)(a)

(f+9)(a) = tlg% )
_ iy et tglatt) — (fa) +9(a))

t—0 t
_(fla+t)—f(a)  gla+t)—g(a)
= g (R0 gler D gta)y

It follows from the existence of f'(a) and ¢'(a) and the fact that the limit of a sum
is the sum of the limits [see the basic limit theorem ?7?(i)] that we may continue the
above sequence of equalities, writing

lim fla+ ti —fla) | lim g(a+ ti —g(a)
= f(a) +d'(a)
= (f'+9)a).
This completes the proof. O

1.7.2. If f is a differentiable function and c is a constant, then cf is differentiable
and (cf) =cf’.

Proof. For any number a in the domain of f, we have (c¢f)(a) = cf(a). Hence

o D@+ 1)~ (e)(@)

t—0 t

(cf)(a) =

g et )~ cf(@)
t—0 t

o fla+t)— f(a)

- e St =S
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By the basic limit theorem ??(ii) and the assumed existence of f’(a), we can con-
tinue the chain of equalities, writing

fla+t) - f(a)

= clim

t—0 t
= cf'(a)
= (cf')(a).
This completes the proof. O
By taking ¢ = —1, we get as a corollary of 7?7 and 7?7 that
(f-9)'=f-4"

1.7.3. The derivative of any constant function is the constant function zero; i.e.,
¢ =0.

Proof. Recall that we allow ourselves the liberty of denoting a real number and the
constant function whose value is that real number by the same letter. Doing so
here, we have

cla) =cla+1)=c,

for any numbers a and t. Hence

t) —
d(a) = lim clatt)=cla) = lim9 =0.
t—0 t t—0 t

O

Example 24. Let f(z) = 23, and g(z) = Vo +1 (x > —1), and h(z) = 2% + 3,
and suppose we are given the information that

() = 322
1
() = ——) x>,
g'(x) Wi
W(z) = 2.

It follows from the three theorems developed so far in this section that the derivatives
of the functions

(a)bz® — 2v/x +1,
(b)a?,
(c)3z3 + 1322 + 7,

are, respectively,

) 2 1
(a’) 152° — NS
(b 22,

(c)) 922 + 26z.
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For example, to get (b’), we write 22 in the form (22 + 3) — 3. Then
(%) = (2 +3) =3 =22 — 0= 2.
The others are equally routine.

The next theorem deals with the derivative of the product of two functions
and its conclusion is perhaps unexpected. Note that it does not turn out that the
derivative of a product is the product of the derivatives.

1.7.4. If f and g are differentiable functions, then their product fg is differentiable.
Moreover, (fg) = f'g+4'f.

Proof. Let a be a number in the domain of fg. By the definition of the product of
two functions we have

(f9)(a) = f(a)g(a),
(fg)la+t)= fla+t)gla+1).

Hence
(f9)(a) = lim (fg)(a-f—t])f—(fg)(a)
_ oy Slattgla+t) — fla)g(a)
t—0 t

The following algebraic manipulation will enable us to put the above fraction into
a form in which we can see what the limit is:

fla+tigla+1) = fla)gla) = flat+t)gla+t)—fla)g(a+1)+ fla)gla+t) - fla)g(a)
[fla+1t) = fla)lgla+1t) +[g(a +t) — g(a)lf(a).

e flat1) - f(@) (a+1) - o0
a+t)— fla gla+1t)—gla
S g0+ )+ T =T f ()
The limit of a sum of products is the sum of the products of the limits. [Again,
see the limit theorem ??.] Moreover, f’(a) and ¢’(a) exist by hypothesis. Fi-
nally, since g is differentiable at a, it is continuous there [see Theorem ?7?]; and so

lim;_,0 g(a +t) = g(a). We conclude that

f(a+t)—f(a)}
t

(f9)'(a) = lim|

t—0

(f9)'(@) = |lim

i+

. glatt)—g(a)
+ Lh_% t }f (a)

= f'(a)g(a) +¢'(a)f(a) = (f'g+g'f)(a).
This completes the proof of the product rule for differentiation. O

Example 25. Suppose we are given the information that the functions f(x) =
(22 +2)% and g(z) = (22 + 2)° have derivatives

f(x) = 6x(a® +2)?,
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g (z) = 10z(2* + 2)*.

Find the derivative of f(z)g(x) = (22 +2)%. Theorem ??, which is sometimes called
Leibnitz’s Rule, states that

(f(x)g(2)) = f'(x)g(x) + ¢’ () f (x).
Hence
(x2+2)%) = 6x(z? +2)%(2? +2)° +10x(2® + 2)*(2? + 2)®
= 16x(z* +2)".

The graph of the identity function x is the straight line defined by the equation
y = x, which passes through the origin and has constant slope 1. It follows that
the derivative of the identity function is the constant function 1. Thus

¥ =1 (1.21)
We can apply the product (Leibnitz’s) rule and obtain
(2?) = (zx) =2’z + 2’z = 1z + 1z = 2.

Since 22 = z2?, and we have just found the derivative of each factor, we can use

the product rule again to get
(1?3), _ (IEI’2)/
vt + (%) e =12+ 22w

3a2.

Again,

(.%'4)/ _ (:L‘CE?’)I
= 223+ (%) 2 =123 +327 2

= 423

These results suggest not only the statement of the next theorem, but also how to
prove it.

1.7.5. If x is the identity function and n is a positive integer, then (") = naz" 1.
Proof. We have already proved the theorem for n = 1. (Actually we have also
proved it for n = 2, 3, and 4, but for the moment this is irrelevant.) Suppose
we had proved it for all positive integers up to and including k. In particular, we
would know that (z¥)" = kaz*~!. We could then use the product rule to derive
(k1) = (22%) = 2'2% + (2F) 'z = 12% + kz*~1 - 2 = (k + 1)2*. Thus the theorem
is true for n = 1, and if it is true for n = k, it is then also true for n = k 4+ 1. We
conclude that the theorem holds for every positive integer n. O

This is an example of a proof by mathematical induction. The reasoning can
be paraphrased like this: Suppose I know that I can get on the bottom rung of a
ladder. Suppose further that, if I am standing on any rung, then I can reach the
next rung. It follows that I can climb the ladder.
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Example 26. Find the derivatives of the polynomials:

flz) = 2%-2,
g(z) = 32+ 7x—13,
y = dat 43234222 + 2,
1
s = §Qt2 (g is a constant, and ¢ is an independent variable).
The answers are immediate:
fl@) = 322,
g'(x) = 62+7,
y = 162° +92° +4a + 1,
s = gt

It should be clear that, as a result of the rules developed so far, the derivative of
any polynomial function can be computed immediately and in a purely mechanical
way. We turn next to the derivative of a ratio.

1.7.6. If f and g are differerentiable functions, then the quotient 5 is differentiable

[if g(a) =0, then (5) (a) is not defined]. Moreover,

Y _9f' =14
(-5

9
Proof. We first prove that the function % is differentiable at a number a in its
domain provided g(a) # 0. By definition,

/ % (a+t)* % (CL)
(Y = gy Ber0=C)

lim

— lim glatt) — g(a)
t—0 t ’

Note that since g is continuous at a [see Theorem (6.1)] and g(a) # 0, we know that
g(a +t) # 0 for sufficiently small values of ¢. Since

1 1

gatn g _  (9la) —gla+t)
t tg(a)g(a+1)
_ 1 gla+t) —gla)
N (g(a)g(a—I—t))( t )’

we have

()@=t - Gragrs) (2]

The derivative ¢'(a) exists by hypothesis, and lim;_, g(a+t) = g(a) # 0. The basic
limit theorem (4.1) therefore implies that

(é)/(a) B (g(a)limtjog(a—l—t))(%g%g(amg(a))
g'(a)

1 , _
= e YT e
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This proves the differentiability of the function —é and also establishes the following
special case of the quotient rule:

/

G)/ - _57' (1.22)

The general form of (7.6) can now be obtained using the product rule:

(5) = (g =r+r(3)
fi’_f.g’ gf' —tg'
g

9 9
This completes the proof. O

Example 27. Find the derivatives of the following rational functions:

241

f((E) - T ’

(W) = y>—3y+1

g y - y3 . 1 9
1

h(s) = 3

w o= 2= Z (a and b are constants and u is an independent variable).

w—

Applying our six rules, we get

- 2r— (22 +1)-1 2%2-1

fe) = 22 T T2
gy = (v* D)2y —3)— (» =3y +1)3y> _ —y* +6y° —3y° — 2y +3
(y3—1)2 (3 —1)2 )
342 3
h/(s) = i — _574,
A T R
w = _ '
(u—1b)? (u—b)?

It is important to realize that the symmetry present in the product rule is missing
in the quotient rule. For the former, order is immaterial: The prime appears once
on one factor and once on the other, and that is all there is to remember. This is
not so for the quotient rule, however, where the wrong order will result in the wrong
sign in the answer. There is no help for it but to memorize the formula precisely.

The formula for the derivative of ™ has been proved only if n is a non-negative
integer. (It holds for n = 0 because 2 = 1.) The next theorem enlarges the scope
of the formula to include all integers.

1.7.7. If x is the identity function and n is an integer (positive, negative, or zero),
then ()" = na™ 1.
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Proof. We shall assume that n is a negative integer, since the theorem is known to

be true otherwise. Then m = —n is a positive integer, and z" = —-. Using (2) and
(7.5), we get
1y (z™) ma™ !
ny/ Y - _
(@) = (xm) x2m x2m
= (—m)z™™ "t =npg"!

This completes the proof. O

Thus, for example, if f(x) = 277, then f’(z) = —7278. In Section ?? we shall

show that the formula is actually valid, not only for integers, but for any rational
number n. Finally, in Chapter ?? we shall prove that (z%) = ax®~!, for any real
number a.

Let us summarize in a single list the theorems that we have developed for find-
ing derivatives. To provide practice, we shall this time employ the alternative %

notation. Let u and v be differentiable functions of x, and ¢ a constant. Then

. d(u+v u v
1.7.8. (i) detv) _ du g dv
(ii) Hew) — du

(i) 2 0,

. d(uv) _ dv du
(IV) dx _udx+vdx’

n . .
(v) = =na"=!,  where n is any integer,

du __, dv
(Vi) %(%> - UdeQUdm :

Note that we have proved these theorems for arbitrary differentiable functions
u and v, not just for polynomials and rational functions.

Example 28. Let

y = 234 Tr+1,
1
_ 7
u = +ﬁ’
. - 32+ 2t 41
t—4
Then
dy 2
= = 6 7
dx S
du 5
= = s =
dx T
ds (t—4)(6t+2) — (3t2+2t+1)-1  3t>2—24t—9

dt (t —4)2 o (t—4)2
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We have seen in this section that the derivative of a polynomial is another
polynomial, and the derivative of a rational function is a new rational function.
Once we have found the derivative f’ of any function f, we can go on and find the
derivative of f’. The new function, denoted f”, is called the second derivative of
f. Clearly,

) — i LD = F(0)
t—0 t

The third derivative, written f’”, is the derivative of the second derivative, and,
in principle, we can go on forever and form derivatives of as high order as we like.
It would obviously be absurd to write the seventeenth derivative with seventeen
primes, so we adopt the alternative rotation f() for the nth derivative of f.

The differential notation for the higher derivatives is based on the idea that % is
a function, sometimes called an operator, which assigns to a function its derivative
with respect to x. Hence we write

d(df) _ Py L,

dx ;ix ?_ ’
L
%(a) — f"(a), etc.

In addition, if a variable is used to denote a function, for example, if y = f(z),
we also use the expressions

d2y " " dny ( (
2=y =1 dx—n—yn)—fn), etc.

Example 29. Let f(x) = 23 + 322 + 1. Then

f'(x) = 32%+ 62,
f’(x) = 6x+6,
(@) =6,
() 0, if n>3.
As another example, let y = I%H Then

dy _ 1

de ~—  (z+1)2’

d*y _ 1

de?2 (z+1)3

dy" (=1)"n!

den (x4 1)t
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Problems

1. With the aid of the rules for differentiation given in this section, compute

dx

(a) f(z) =322 +4x+1

(b) f(z)=2*(z+1)

(¢) fz) =2°(z+2)?

(d) f(x) = (2® —4)(2® + 22+ 3)
(e) f(x)=22"+ 555

(f) fz) =2

(8) f(z)= (2—2)2

(h) f(x) =355

0) fx) = (2)°

() flz) = (2*+1)°

(k) f(z) =355

V) flx)=(a?+1)7"
(m) f(z)=(z+a")?

(m) f(z) = (z—a)(z —b)(z—0)

2. Determine an equation of the line tangent to the parabola y = 22 — 4z +5 at
the point (1,2). Draw the parabola and the tangent line.

3. The parabola y = az? + bx + ¢ passes through (0,4) and is tangent to the
line 22 + y = 2 at the point (1,0), Find the coefficients a, b, and ¢ for the
parabola.

4. Show that if f, g, and h are differentiable functions, then
(fgh)' = f'gh+ fg'h + fgh'.

5. What is the correct product rule for differentiation, analogous to the one in
Problem ??, for (a) four factors, (b) n factors?

6. Obtain an equation of the tangent line to the graph of the function f(z) =
w%”*j_l at the point where z = 2.

7. (a) If f(2) =222 + 2+ 2, then f/(2) = -
(b) If f(2) = 222 + 2+ 2, then f'(z) = - --
) Ify =2t then & = ...

)

)

)

( T— dx
(d) Ify =1, then &(2) =
e) If f(z) = 4L, then L(a) =---

(
(

f) If w = 3u® + 4u + 2, then 42 = ...
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8. The parabola y = ax? + bx + ¢ is tangent to the line y = 4x + 7 at the point
(=1, 3). In addition, %(—2) = 0. Find the coefficients a, b, and c.

9. For each of the following functions f, compute the derivative f’ and the second
derivative f”.

(a) f(z) =322 +2z+1

(b) f(z)=5b5z+1

(€ fl@) =5 +2 +Z fat1
(d) ft) =t3(t* - 1)

(e) flz) =2+ %

() f(s) = ii;}.

10. The line y = 3z —1 is tangent to the graph of the function f(z) = az®+bx?+c
at the point (1,2). Furthermore, %(1) = 0. Compute a, b, and c.

11. (a) If f(z) = 2% — 2% + 2 — 1, then Cf

(a) S
(b) Ify =271, then T¥ = ...
(c)

)

(d) If y = %, then ﬂ(a) =

dx3

If s = at® + bt? 4+ ct + d, where a, b, ¢, and d are constants, compute %.

12. Find all the points on the graph of the function % — 2 at which the tangent

line is perpendicular to the tangent line at (1, —%)

13. There are many examples of a function f and a number a such that f(a) is
defined (a is in the domain of f) but f/(a) does not exist. Another way of
saying the same thing is that the domain of f’ can be a proper subset of the
domain of f. It is equally possible for f/(a) to be defined and f”(a) not to
be. Let f be the function defined by

2
2 >
f<w>={ PR
5 I r sV
(a) Compute f'.

(b) Is f a differentiable function? [That is, does f’(a) exist for every real
number a?]

(¢) Show that f”(0) does not exist, and compute f”(z) for x # 0.
14. Same as Problem ?? except that f(z) = z3.

15. (a) Draw the graph of the function g defined by

() = 1’2, r <1,
IO = 22 -1, =>1.

(b) Compute ¢’ and ¢”.
(¢) Are g and ¢’ differentiable functions?
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1.8 The Chain Rule.

The theorems in Section 7?7 were concerned with finding the derivatives of func-
tions that were constructed from other functions using the algebraic operations of
addition, multiplication by a constant, multiplication, and division. In this section
we shall derive a similar formula, called the Chain Rule, for the derivative of the
composition f(g) of a differentiable function g with a differentiable function f. Be-
fore giving the theorem, we remark that an alternative way of writing the definition
of the derivative of a function f is

f'(a) = lim @) = fla) (1.23)

T—a T —a

The substitution = a + ¢t will transform (?7?) into the expression that we have
heretofore used for the derivative. An equation equivalent to (?7?) is

{f(x) — f(a)

r—a

- f'(a)| = 0.

lim
r—a

We next define a function r (dependent on both f and a) by

fx)=f(a) _ g ;
r(z) = rEa HONE 7_'5 a, (1.24)
0, if z=a.

Note that the two functions f and r have the same domain. Furthermore, as a

result of (?7?), we have

g}lgér(x) =0=r(a),

i.e., the function r is continuous at a. From the definition of r, we obtain the
equation

f@) = f(a) = [f'(a) + r(2)](z - a), (1.25)
which is true for every x in the domain of f. We now prove:

1.8.1 (The Chain Rule). If f and g are differentiable functions, then so is the
composite function f(g). Moreover, [f(g)] = f'(9)g’.

Proof. Let a be a number in the domain of g such that g(a) is in the domain of f.
By definition

Fo(@) = tm L@@ =)0

o J0@) — Flela)

The intuitive idea behind the Chain Rule can be seen by writing

F@) @) = lm[]
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Setting y = g(x) and b = g(a) and noting that y approaches b as x approaches a,
we have

g(x) — g(a)

r—a

limg_q

o)) = iy TS0
- /)
— (F/(g(a))
= (f'(9)d)

)
g'(a)
(a),

which is the desired result.

This argument fails to be a rigorous proof because there is no reason to suppose
that g(z) — g(a) # 0 for all z sufficiently close to a. To overcome this difficulty, we
use equation (?7?). With a typical element in the domain of f denoted by y instead
of z and with the derivative evaluated at b, equation (??) implies that

fly) = £(b) = [f'(0) + r(m)](y — b),

Moreover, lim,_,; 7(y) = 0. Substituting y = g(z) and b = g(a), we get

fg(x)) = flg(2) = [f'(9(a)) + r(g(=)]lg(x) - g(a)].

Hence

flg(@)) - flg(a)) _ 7 (9(a)) +r(g(x))]g(x) —9(a)

Tr—a xr—a

We know that lim,_,q g(mi Z(a) g'(a). In addition, since g is differentiable at
a, it is continuous there [see Theorcm ??], and so lim,_,, g(z) = g(a) = b. Since
lim,_,, r(y) = 0, it follows that |r(y)| can be made arbitrarily small by taking y
sufficiently close to b. Because lim,_,, g(z) = b, we may therefore conclude that
lim, o 7(g(z)) = 0. The basic limit theorem ?? asserts that the limit of a sum or

product is the sum or product, respectively, of the limits. Hence

Flo) (@) = lim L@ =19(0))

T—a T —a

= [lim 7(g(@) + Jim r(gf@)] Jim 9(z) — g(a)

= [f'(g(a)) +0]g'(a) = f'(g(a))g'(a)
= (f'(9)9')(a),

and the proof of the Chain Rule is complete. O

Example 30. If F(x) = (2% + 2), compute F'(x). One way to do this problem is
to expand (z2 + 2)% and use the differentiation formulas developed in Section ??.
F(x) (2% +2)* = 2% + 62* + 1227 + 8,
F'(z) = 62°+242° + 24x.

Another method uses the Chain Rule. Let g and f be the functions defined, respec-
tively, by g(x) = 22 + 2 and f(y) = y>. Then

flg()) = (2% +2)° = F(a),
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and, according to the Chain Rule,

F'(z) = [f(9(2))) = f'(9(x))g' (x)-
Since ¢'(z) = 2z and f’(y) = 3y?, we get f'(g(z)) = 3(2% + 2)? and
F'(z) = 3(z*+2)*(22)
6x(x* + 422 + 4),
which agrees with the alternative solution above.

Example 31. Find the derivative of the function (32" + 2x)12%. In principle, we
could expand by the binomial theorem, but with the Chain Rule at our disposal
that would be absurd. Let g(z) = 327 +2x and f(y) = y'?%. Then ¢'(x) = 212° +2
and f'(y) = 128y%7. Setting y = 327 + 2, we get

(32" +22)'%)" = [f(g(2))] = f'(9(2))d (x)
= 128(327 + 2x)'%7(212° + 2).

The above two examples are instances of the following corollary of the Chain
Rule: If f is a differentiable function, then

(f™) =nfrtf for any integer n.

To prove it, let F(y) =
Consequently, (f*) = [F
this result is

y". Then F(f) = f", and we know that F’(y) = ny"~ L.
(A =F'(f)f =nfrLf. A significant generalization of

1.8.2. If f is a positive differentiable function and r is any rational number, then
(f) =rfry

The requirement that f is positive assures that f" is defined. A nonpositive
number cannot be raised to an arbitrary rational power. However, as we shall show
later (see 77, the requirement that r be a rational number is unnecessary. Theorem
77?7 is actually true for any real number r.

Proof. Let r = " where m and n are integers, and set h = f" = f™/m. Then
R = (f™/™)" = f™ which implies that (h") = (f™)’. Using the above formula
for the derivative of an integral power of a function, we get

nhn—lh/ _ mfm_lf'.
Solving for k', we obtain
m
h/ _ 7h1—n m—1 p/
gty
m —n pm—
= —(Mrmty
n
— rfr—rn-l—m—lf/

— rfrflf/.

This completes the proof—almost. Note that we have in the argument tacitly
assumed that h, the function whose derivative we are seeking, is differentiable. Is it?
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If it is, how do we know it? The answer to the first question is yes, but the answer
to the second is not so easy. The problem can be reduced to a simpler one: If n is
a positive integer and g is the function defined by g(x) = ™, for x> 0, then g is
differentiable. If we know this fact, we are out of the difficulty because the Chain
Rule tells us that the composition of two differentiable functions is differentiable.
Hence g(f) is differentiable, and g(f) = f'/™. From this it follows that (f/™)™
is differentiable, and (f%/™)™ = f™/". (When we express r as a ratio oL we can
certainly take n to be positive.) A proof that z'/™ is differentiable, if 2 > 0, is most
easily given as an application of the Inverse Function Theorem 77?7, ??7. However, the
intuitive reason is simple: If y = /™ and x > 0, then y” = z, and by interchanging
x and y we obtain the equation ™ = y. The latter equation defines a smooth curve
whose slope at every point is given by the derivative % = nz™ 1. Interchanging x
and y amounts geometrically to a reflection about the line y = . We conclude that
the original curve y = '/, > 0, has the same intrinsic shape and smoothness as
that defined by y = =™,y > 0. It therefore must have a tangent line at every point,
which means that z'/" is differentiable. O

Example 32. If y = 2'/", then

dy 1 1
W _La/m-1

dr n nzi—1/m ¥ > 0.

Example 33. Find the derivative of the function F(z) = (322 4 5z + 1)%/3. If we
let f(z) = 322 + 52 + 1, then Theorem (8.2) implies that

Fle) = [P @)

5
= g(3302 + 52 +1)%/3(62 + 5).

With the % notation for the derivative, the Chain Rule can be written in a
form that is impossible to forget. Let f and g be two differentiable functions.
The formation of the composite function f(g) is suggested by writing © = g(x) and

y = f(u). Thus z is transformed by g into u, and the resulting w is then transformed
by f into y = f(u) = f(g(x)). We have

du
% - g(.T),
dy o /
W ),
dy

L))

By the Chain Rule, [f(g(x)))' = f'(9(2))g'(z) = f'(u)g'(x), and s0

dy _ dydu (1.26)
dr dudx
The idea that one can simply cancel out du in (??) is very appealing and accounts
for the popularity of the notation. It is important to realize that the cancellation
is valid because the Chain Rule is true, and not vice versa. Thus far, du is simply
a part of the notation for the derivative and means nothing by itself. Note also
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that (?7?) is incomplete in the sense that it does not say explicitly at what points
to evaluate the derivatives. We can add this information by writing

dy dy du
2 (a) = % (w(a) S (@)

Example 34. If w = 2% + 2z + 3 and z = 1, find 42(2). By the Chain Rule,

dv _ duds
dx dz dx

1
When x = 2, we have z = % Hence

dw 1 1 3
%(2) =(2- 5t 2)(*1) e

Example 35. Two functions, which we shall define in Chapter 7?7, are the hy-
perbolic sine and the hyperbolic cosine, denoted by sinh x and cosh x respectively.
These functions are differentiable and have the interesting property that

d

—sinhz = coshz,
dx

d .
—coshx = sinhx.
dzx

Furthermore, sinh(0) = 0 and cosh(0) = 1. Compute the derivatives at x = 0 of
(a) (coshz)?,

(b) the composite function sinh(sinh z).
By 7?7, we obtain for (a)
2 d :
—(coshz)® = 2 coshz— coshz = 2 cosh z sinh z,
dz dz

and so

d
@(cosh 2)%(0) = 2cosh 0sinh 0 = 0.

Part (b) requires the full force of the Chain Rule: Setting v = sinh z, we obtain

du
2 sinhu = < sinhu—=
5 Sinhu 7, Sinhu—
= coshucoshz,
or y
e sinh(sinh ) = cosh(sinh ) cosh x.
x
Hence

cosh(sinh 0) cosh 0
= coshOcosh0 = 1.

d
o sinh(sinh z)(0)
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Problems
1. In each of the following problems find [f(g)]' ().

(a) f(y) =y° and g(z) = 2% + 1.

(b) f(y) =y* +2y and g(z) = 2° — 2z + 2.
(c) fly) =y’ and g(z) = 5.

(d) f(uw) o1 and g(z) = 22,

(©) () =+ and g(z) = o

(f) f(x) =2%and g(t) = ill

(g) f(x) =g(z) =2 +3z+2

2. Find f’ given that

(a) f(z)=(1+2%)"
() f(z) = (2* + 323 + 222 + z +4)8
(c) fla) = (£ +1)"(2t* - 3)°
(d) f(z) =va® -1
3
(0) () = (24)
(1) £(s) =
(&) flv) = 203
h u) = 5
() f(u) (i)

1
3. If fly) =y~ 2 and g(x) = ﬁ, compute the derivative of the com-
posite function f(g) in two ways:
(a) By finding f(g(z)) first and then taking its derivative.
(b) By the Chain Rule.
4, If z = 5y" + 2y?> + 1 and y = 222 — 6, find g—i and %(2).

5. Ify=2%and z = \/ﬁ, compute %% and %(2) using the Chain Rule.

6. Let y =22 +3zx+2and z = Z—i Compute %(2) in two ways:

(a) By evaluating the composite function y(¢) and then by taking its deriva-
tive.
(b) By the Chain Rule.

7. Prove directly by induction on n without using the Chain Rule that if f is a
differentiable function and n is a positive integer, then (f") =nf"~1f".

8. Prove as a corollary of the Chain Rule that
[f(g(h)]" = f'(g(h)g' (R)H.
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10.
11.

12.

13.

14.
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Using Problem ?7?, show that if w = f(z) and z = g(y) and y = h(z), then
dw dwdzdy

dr ~ dz dy dz’

Letw=z2—21 2=/ +1,and y = 22° — z + 1. Find 22(1).

Using Example 77, compute

(a) % (sinh z)?

(b) % sinh

(c) % cosh z(0)
(d) - sinh(coshz).

2
If 2= f(y) and y = g(z), show that 3273 = giyg (%) + %dz—y.

dx?
If z=2y3 — 3y + 1 and y = 22 — 1, compute %(2) in two ways:

(a) By evaluating the composite function z(z) and finding 2" (2).
(b) Using the result of Problem ?77.

Let f(z) be a differentiable function with the property that f'(z) = 1. If g(z)
is a differentiable function with the property that its composition with f is
the identity function, i.e., f(g(z)) = x, prove that ¢’ = g.



1.9. IMPLICIT DIFFERENTIATION. 83

1.9 Implicit Differentiation.

The subset C of the xy-plane consisting of all ordered pairs (z,y) that satisfy the
equation

no
[

€ Yy

5 1= 1 (1.27)
is the hyperbola shown in Figure ?7. It is apparent from the figure that the whole
set C' is not a function, since it is easy to find instances of ordered pairs (a,b)
and (a,c) in C with b # C. For example, both (6,2v/3) and (6, —2+/3) lie on the
curve. On the other hand, many subsets of C' are functions. For instance, the set
of all ordered pairs (x,y) in C for which > 3 and y > 0, which is drawn with a
heavy curve in Figure 77, is a function f(z). Central to the ideas that follow is the
fact that since the points (z, f(z)) that comprise f belong to C, they satisfy the
equation of the hyperbola. That is,

w2 (f(2))?
9 1

for every x > 3. We say that the function f is defined implicitly by (1).

It is geometrically obvious that the hyperbola has a tangent line at every point,
and we therefore conclude that the function f(z) is differentiable except at © = 3,
where the tangent is vertical. We can compute f/(z) most easily by observing that

since (2) holds for every z in the domain of f, it is an y-axis equality between two

2
functions. Specifically, the composite function % — % is equal to the constant

function 1. Equal functions have equal derivatives. Hence

=1, (1.28)

y-axis
1 It 1 } { 1 : : { x-aXiS
<\f>
Figure 1.36:

2 (@Y
9 4 '
The rules of differentiation yield

2r 2

- @f @ =0,
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and solving for f/(z), we obtain

R
fi(z) = 9@ (1.29)
In particular, if z = 6, then f(x) = 2v/3, and
rey . 4604

It is important to realize that there is no single function f defined implicitly by
equation (?7?). The set of all points (z,y) of C for which y < 0 is another such
function, and it includes the point (6, —2v/3). Note that if this were the function
that we denoted by f, we would still obtain equations (2) and (3). For thief,
however, we have f(6) = —24/3. Hence, this time,

4-6 4
"(6) = =— .
TR RN
Example 36. The set of all points (x,y) that satisfy the equation
522 — 6xy + 5y? = 8 (1.30)
y-axis

©0,2V%)

x-axis

Figure 1.37:

can be shown to be the ellipse shown in Figure 7?7. What is the slope of the line
tangent to the ellipse at (0, 2\/%)? It is clear from the figure that the set y-axis of
all pairs (x,y) on the ellipse for which y > 0 and y > x (drawn with a heavy curve

in the figure) is a differentiable function f(z). This function is implicitly defined
by equation (??). Thus
b1? — 6z f(x) +5(f(2))* =8,

for every z in the domain of f. Since this is an equality between two functions
we obtain by differentiating both sides,

10z — 6f(z) — 6z f'(x) + 10f(z) f'(x) = 0.
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Solving for f'(x), we get
_ 3f(x) — 5z

5f(x) — 3z

This problem deals with an implicitly defined function whose graph passes
through the point (0,2\/2). Hence f(0) = 2\/% and therefore f/(0) = £, which is
the slope of the desired tangent line.

f'(x)

The definition, which we have thus far illustrated with two equations, is the
following: A function f(z) is defined implicitly by an equation F(z,y) = c,
where ¢ is a constant, if F(z, f(z)) = ¢ for every z in the domain of f. We emphasize
that, in general, an equation in x and y defines y as a function of x in many ways.
The most we can hope for in the way of uniqueness is that, for a given point (a,b)
such that F'(a,b) = ¢, we can choose an open interval containing a which is the
domain of precisely one continuous function f(x) defined implicitly by F(z,y) = ¢
with f(a) =b.

Note that in both our examples the derivative f’ of the implicitly defined func-
tion was computed without solving the original equation for f. The fact that this
is always possible is almost too good to be true—especially for an equation where
first solving for y in terms of x is either impractical or even impossible (except by
numerical techniques). This method of finding the derivative of an implicitly de-
fined function by differentiating both sides of the equation that defines the function
is called implicit differentiation.

Example 37. The point (2, 1) lies on the curve defined by the equation

23y + zy® = 10.

Assuming that this equation implicitly defines a differentiable function f(x)

whose graph passes through (2, 1), compute f/(2). Letting y stand for f(x), we
obtain by implicit differentiation

dy

d
3x2y+x3—y+y3+x3y2—

=0.
dx xd

Hence
dy 32’y +y°
de  3xy?+ a3’
At the point © = 2,y = 1, we therefore get
dy 13

del =2 7 14
y=1

Example 38. The set of all pairs (z,y) that satisfy the equation

v +ya® + ax? — 3ay® =0 (1.31)

is the curve, called a trisectrix, shown in Figure ??. Find Z—‘Z when z = a.
So stated, the problem is impossible. There are three distinct points on the y-axis
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curve with z-coordinate equal to a, which may be found by substituting a = z in
equation (??) and then solving for y. The points are (a,a), (a, (1 4+ v/2)a), and
(a,(1 — v/2)a). As shown in the figure, we may select a small interval about a
to serve as the domain of three different implicitly defined functions. To find the
derivative of each one at x = a, we proceed by implicit differentiation:

y-axis
trisectrix
y3+yxi+ax?—3ay*=0 !
\\;\ (@ (1 +v2)a)
2a + } |
o
I
I
|
a 1 : (a,a)
( |
l 2a
| ' ~a W x-axis
: \
i
y=-a -
Figure 1.38:
d d d
3y2—y + x2—y + 22y + 2ax — 6ay—y =0.
dx dx dx
Hence
dy  2xy+2azx

dr  6ay — x2 — 3y2’

Thus the derivatives at a of the three differentiable functions defined implicitly
by equation (??) are, respectively,

dy
del T=a 2,
y=a
dy V2
dz| T=a N 27

y=a(l+2)
dy /2

del T=a 2

y=a(l-V2)

The reader should note that in each of the above examples of implicit differen-
tiation the existence of an implicitly defined differentiable function has either been
assumed outright or just)fied geometrically from a picture. The problem of giving
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analytic conditions which ensure that an equation F(x,y) = ¢ implicitly defines y
as a differentiable function of x in the neighborhood of a point (a,b) is the subject
of the Implicit Function Theorem. A discussion and proof of this famous theorem
may be found in any standard text in advanced calculus.
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Problems

1. The equation (22 + 3?)? = 2(2? — y?) (see Figure ?7?) implicitly defines a

differentiable function f(z) whose graph passes through the point (\/g l).

202
V3
Compute f' (7>
2. Compute the slope of the tangent line to the circle 22 4+ 32 = 4 at the point
(1,4/3) and at the point (1, —+/3).

3. (a) The equation z3 + y® — 62y = 0 (see Figure ??) implicitly defines a
differentiable function f(x) whose graph passes through (3,3). Compute

f(3).
(b) How many differentiable functions f(x) having a small interval about the
number 3 as a common domain are implicitly defined by the equation in

777
(¢) Compute f'(3) for each of them.

4. For each of the following equations calculate g—g at the point specified.

= 2%, at one point (1, 1).

[\
M

1 at the point (a,b).

— r —
 x2410

|

2y + 2y? = 6, at the point (1,2).
).
1

5y% = x2y + ﬁ, at the point (2, 1).

Y
Y

=zl he poi b
y* = 777, at the point (a,b).
Y
x
x

,2)
2 4 22y = 392, at the point (1,1
(

5. What is the slope of the line tangent to the graph of y3z? = 4 at the point
(2,1)? Calculate y”(2).

6. Each of the following equations implicitly defines y as a differentiable function
2
of = in the vicinity of the point (a,b). Compute %(a) and %(a).



Chapter 2

Applications of the
Derivative

2.1 Curve Sketching.

The slope of the tangent line to the graph of a function is one interpretation of
the derivative, and the rate of change of y with respect to x is another. Both
interpretations aid us in the sketching of graphs. A little practice will show that
we need plot relatively few points for a sketch if we know the slope of the graph at
each of these points. Let us consider the function f defined by

1
flx) = §x3 — 42 + 122 — 5.
Its domain is R, and, for each real value of =, we find the corresponding value f(z).
To help us make the sketch, we look at the derivative:

fl(x) =2* -8z +12 = (z — 2)(z — 6).

If # < 2, each of the factors of f’(z) is negative, and hence their product is
positive. Thus the first derivative is positive for each value of x less than 2. With
the rate-of-change interpretation, this means that the rate of change of f with
respect to x is positive or that f(z) increases whenever x does. Thus, as = increases
from —oco to 2, f(z) increases. The graph goes up as one moves to the right until
T =2

If © = 2, then f’(x) = 0, and the tangent, having a slope of 0, is horizontal. If
2 < x < 6, the first factor of f’(x) is positive, the second factor is negative, and
their product is negative. With a negative rate of change, f(x) must decrease as x
increases. Thus, as x increases from 2 to 6, f(x) decreases. The graph goes down
as one moves to the right from x = 2 to x = 6.

If x = 6, then f/(x) =0, and the tangent to the graph is again horizontal.

If > 6, both factors of f'(x) are positive, and hence their product is positive.
Thus f(x) increases as one goes to the right beyond & = 6. Since f(2) =% -8 —4-
4412-2-5=52 and f(6) = £-216 —4-36+12-6 — 5 =52, we plot the points
(2,52) and (6, —5). At each of these points we sketch a horizontal line segment. An

89
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additional point may be found by inspection: Since f(0) = —5, the point (0, —5) is
also plotted on Figure 77.

We now know that the graph comes up from lower left through (0, —5) to (2, 5%),
goes down from (2,5%) to (6,—5), and then goes up to the right from (6, —5). But
we do not know its shape. Further information on this may be obtained from the
second derivative:

f(x) =2z —-8=2(x—4).

y-axis
1
2,59
T ;7 | T T T T T T T x_axis
T 6,-5)
©0,-5)¢ ——
Figure 2.1:

If z < 4, then f”(z) is negative. Since f” is the rate of change of f’ with
respect to z, this means that f’ is decreasing as x is increasing from —oo to 4. If
we interpret f’ as the slope of the tangent, then this means that the slope of the
tangent decreases as x increases. We can get some idea of shape here if we plot three
points on Figure ??(a), the middle one the highest and with a horizontal tangent
drawn through it. Note that the tangent through the middle point has slope less
than that of the tangent through the left point and that the tangent through the
right point has a slope which is still less. The slopes of tangents at intermediate
points will take on intermediate values, and thus a curve passing through these
three points with these three tangents must be concave downward or must “bend”
down. Whenever f”(z) < 0, the graph of f(x) will be bending down. The part of
the curve through the three points of Figure ?7(a) with the appropriate tangents is
drawn in Figure ??(b).

If x = 4, then f”(x) = 0, and the rate of change of f’ with respect to x is 0.
Thus the slope of the tangent has ceased decreasing.

If 2 > 4, then f”(x) > 0, and f’ increases as = increases. Thus the slope of the
tangent increases as = increases. Again we plot three points, the middle one the
lowest and with a horizontal tangent drawn through it. These are shown in Figure
??(a). Since the slope increases as x increases, the tangent through the middle point
has slope greater than that of the tangent through the left point, and the tangent
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y-axis y-axis
—_——

fx)

x-axis x-axis

() ©®)

Figure 2.2:

through the right point has a slope which is still greater. The slopes of tangents at
intermediate points take on intermediate values, and thus a curve passing through
these three points with these tangents must be concave upward or must “bend” up.
Whenever f”(x) > 0, the graph of f(z) will be bending up. The part of the curve
through the three points of Figure ??(a) with the appropriate tangents is drawn in
Figure ?7(b).

y-axis y-axis

fx)

—_————
x-axis x-axis

(@) ®)

Figure 2.3:

After finding that f(4) = % -64—-4-164+12-4—-5= %, we are ready to sketch
the graph in Figure ??. The graph is concave downward from the far left through
(0, —5) to a high point at (2, 5%) and on to (4, %) It is then concave upward from
(4, %) to a low point at (6, —5) and on upward to the right. The graph is, of course,
incomplete, since it continues indefinitely both downward to the left and upward
to the right. The point (2, 5%), being higher than any nearby point on the graph,
is called a local, or relative, maximum point. It is certainly not the highest point
on the graph, hence the word “local,” or “relative.” Similarly, the point (6, —5) is
a local, or relative, minimum.

In summary, the graph of a function is concave downward when the second
derivative of the function is negative and concave upward when the second deriva-
tive of the function is positive. The graph has horizontal tangents when the first
derivative is 0. The points where the tangent is horizontal may be local maximum
points or local minimum points or, as we shall see in Example 1, points of horizontal
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y-axis
f(x) =4ix*—4x2+12x-5

T 2.5%

x-axis

40,-5)
(6,=5)

Figure 2.4:

inflection.

It is important to understand clearly the definitions of the various expressions
used in sketching graphs. The ordered pair (a, f(a)) is a local maximum point
or a local minimum point of the function f if there is an open interval of the
z-axis containing a such that, for every number z in that interval,

fla) = f(z) or f(a) < f(x),

respectively. As we have indicated, the words relative maximum and relative mini-
mum are also used. On the other hand, the pair (a, f(a)) is an absolute maximum
point if, for every z in the domain of f,

fla) = f(=),

and an absolute minimum point if

fla) < f(x).

An extreme point is one that is either a maximum or minimum point (local or
absolute). If (a, f(a)) is an extreme point, we shall call f(a) the extreme value
of the function and shall say that the function has the extreme value at a. For
example, we say that the function f in Figure 7?7 has a local minimum value of
—5 which occurs at x = 6. However, this function has no absolute maximum or
minimum points.

Any point (a, f(a)), where f’(a) =0, is called a critical point of f.

A point of inflection is a point where the concavity changes sign. Thus (a, f(a))
is a point of inflection of the function f if there is an open interval on thez-axis
containing a such that, for any numbers x; and x5 in that interval,

f”(:vl)f”(acQ) <0 (21)
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whenever x; < a and zo > a. The inequality (1) simply says that f”(z1) and
f"(x2) are of opposite sign. A characteristic of a point of inflection of a function is
that its tangent line crosses the graph of the function at that point. The different
possibilities are illustrated in Figure ??. Of the points P, @, and R, only R is a
point of inflection. If a function has a point of inflection (a, f(a)) and the second
derivative f"(a) exists, then f”(a) = 0. However, it is possible to have a point of
inflection at a point where there is no second derivative (see Problem 10 at the end
of this section).

y-axis y-axis y-axis
f(x)
f(x)
P= N =
@/@) 0= @@ A s
A / A
x-axis x-axis x-axis

Figure 2.5:

Example 39. Sketch the graph of f(x) = (z + 1)3(x — 1). We first compute the
derivatives:

fllz) = (@+1)°+(@-13(x+1)°=(z+1)*(4z —2),

"(x) = (x+1)%44 (4o —2)2(x +1) = 122(x + 1).
Setting f/(z) = 0, we obtain # = —1 and = 3. Thus (—1,0) and (3, —2I)
are critical points and the tangents through these points are horizontal. Setting
f"(x) = 0, we get solutions x = —1 and x = 0. Thus, if there are any points of
inflection, they must occur at these two places. It is easy to see that the sign of the
second derivative for values of x along the x-axis follows the pattern

positive ‘ negative | positive

-1 0 X-axis

We conclude that (—1,0) and (0, —1) are in fact points of inflection. The point
(—1,0), being both a critical point and a point of inflection, is a point of horizontal
inflection. The graph is shown in Figure ??7. Note that the graph crosses the
tangent at the point of horizontal inflection and that the slope of the tangent line
does not change sign at that point. The first derivative (hence the slope of the
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tangent) increases to zero, as we go from the left to z = —1 and then decreases
again through negative values, from £ = —1 to z = 0. The point (%, —%—g), being the
lowest point on the graph, is not only a local minimum point but also an absolute
minimum point. —f—g is the absolute minimum value of this function.
y-axis
fx)=(x+1)(x—1)
(=1,0) 1,0) ‘
' " Xx-axis
©0,-1)
%! _%76')
Figure 2.6:

In the plotting of graphs of polynomial functions, we are frequently helped by
knowing that a straight line can cut the graph of a polynomial function of the nth
degree in at most n points. This is a consequence of the algebraic fact that, if p(z)
is a polynomial function of degree n, then the equa tion p(x) = 0 can have at most
n distinct real roots. The function in Example 1 may be expanded to show that it
is a polynomial of degree 4. It is possible to draw a straight line which will cut its
graph in four points, but no straight line which will cut it in as many as five points.

Example 40. Sketch the graph of f(z) = 1 — 22/3. As before, we find derivatives:

2
f/(JU) = —53371/3,
f”(l‘) — 31‘74/3.

For no values of x will we have f’(x) = 0, and so there are no critical points. On
the other hand, f'(0) is not defined and the graph has a vertical tangent at (0, 1).
The first derivative is defined for all other values of z and is positive for z < 0 and
negative for x > 0. Thus, at each point on the graph to the left of the vertical
axis, the slope of the tangent is positive, increasing without limit as z — 0—. At
each point on the graph to the right of the vertical axis, the slope of the tangent
is negative, increasing from negative numbers large in absolute value as x increases
from 0. The second derivative f”(z) is positive for all values of x except for z = 0,
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y-axis

f)=1-x"

_ 2ﬁ/—l i\ﬁ x-axis

Figure 2.7:

where it is not defined. It follows that there are no points of inflection. The graph
is nowhere concave downward.

Note in Figure 7?7 that the portion of the graph which lies to the right of the
vertical axis is the “mirror reflection” across that axis of the portion which lies to
the left of the vertical axis. Note also that f(—z) = f(x). Such a function, where
f(=z) = f(x), is called an even function and its graph will always contain two
halves which can be brought into coincidence with each other by folding the graph
along the vertical axis (Figure ??). The problem of graphing an even function is
simplified by graphing it for positive values of z and drawing, for negative values of
x, a reflection over the vertical axis of the right half of the graph.

y-axis

even function

N e

" NS x-axis

Figure 2.8:

Example 41. Sketch the graph of f(z) = z + 2. The derivatives are

4
/ —
8
" _
fx) = ey
The first derivative vanishes forz = 2 and # = —2, and thus we see that (2, 4) and

(=2, —4) are critical points. The second derivative is negative when z is negative,
so the curve is bending down at (—2, —4) and that point must be a local maximum
point. Similarly, f”(2) > 0 and (2, 4) is a local minimum point. f(0) is unclefined
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and |f(z)| increases as x — 0. Behavior for large values of |x| can be seen, since
f(x) approaches z as x increases or decreases without bound.

y-axis

/ x-axis

Figure 2.9:

From Figure ?7?, one can see the graph approaching the vertical axis as x — 0
from either side, and also approaching the graph of the equation y = z as |z
increases without bound. Note that the two parts of the graph are reflections of
each other across the origin, and also that f(—z) = —f(x). Any function f for
which f(—z) = —f(z) is called an odd function. The graph of an odd function
may be obtained by first drawing the graph of f(z), where z > 0 (see Figure ?7).
We may then obtain the remainder of the y-axis graph by first reflecting this positive
part about the y-axis and then about the z-axis. The result of reflecting first about
one axis and then about the other we shall call reflection about the origin.

y-axis

\ odd function

S~ 1
SN N ,I \\ /
\,
NN Ny
A ~

Figure 2.10:

Summarizing the techniques of curve sketching, we find the first and second
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derivatives of the function with respect to x, we find the points where either deriva-
tive vanishes, and we determine critical points and points of inflection. Points of
general use in graphing f(x) include:

1. The tangent is horizontal if f'(z) = 0.

2. The curve is concave downward if f”/(z) is negative, concave upward if f”(x)
is positive.

3. (a, f(a)) is alocal maximum point if f'(a) = 0 and f”’(a) < 0, a local minimum
point if f'(a) =0 and f”(a) > 0.

4. (a, f(a)) is a point of inflection if f”(x) changes sign as x increases through
a.

5. Even and odd functions need be investigated carefully only for > 0. The
rest of the graph of an even function is found by reflection across the vertical
axis, of an odd function by reflection about the origin.



98

CHAPTER 2. APPLICATIONS OF THE DERIVATIVE

Problems

1. Sketch the graph of each of the following functions, carefully labeling all ex-

treme points and all points of inflection. Classify each extreme point as to
type.

(a) 22 — 52 +6
(b) 3 -2z — 22
(c) 222 —3x —1
(d) 5— 222

e) z° — 3z

(

() (x+1)(z®— 22 -5z +13)
(g) =2
(h) 18 4 42
N3

G) 2* — =

1) |zl
(m) |z 7]
(n) 3+ %
(o) * — 822 +3
fl:z_ T
(p) L=t
(@) (z—1)(z—2)(z—3)
(r) 1+ 6x— L3

. Show that a polynomial function of  which consists only of even powers of x

is an even function.

. Show that a polynomial function of x which consists only of odd powers of x

is an odd function.
(a) Show that the graph of the function az? + bx + ¢, a # 0, always has an
absolute extreme point.

(b) Which of the constants a, b, and ¢ determines the type of extreme point
of the graph?

(c) What is the extreme value of ax? + bx + ¢?

(d) Write az? + bz + ¢ as a (22 + 22) + ¢, complete the square on 2% + Lz
without changing the function, and find the result of ?? algebraically.

. Show that the graph of 23 — 12z has a local maximum point but no absolute

maximum point and that it also has a local maximum point which is strictly
local.

. Sketch the graph of f(z), if f(0) =3 and f'(z) = —1 for all real values of z.
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. Sketch the graph of f(z), if f(—1) =2 and f’(z) = 3 for all real values of .
. Sketch the graph of f(z), if f(0) =0 and f’(z) = z for all real values of x.

. Construct a function which has a local maximum point, with local maximum

point defined as in this section, but would not have a local maximum if the
definition were changed to demand f(a) > f(x),x # a, instead of f(a) > f(z).

Graph the function 25 and show that it has a point of inflection where neither
the first nor the second derivative exists.
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2.2 Maximum and Minimum Problems.

In sketching the graph of a function, we spent some time looking for maximum and
minimum points, both local and absolute. This idea suggests that we can use the
same technique to find that value (or those values) of a variable which maximize or
minimize a length, an area, or a profit. For example, what should be th