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Chapter 1

Functions, Limits, and
Derivatives

1.1 Real Numbers, Inequalities, Absolute Values.

Calculus deals with numerical-valued quantities and, in the beginning, with quan-
tities whose values are real numbers. Some understanding of the basic set R of all
real numbers is therefore essential.

A real number is one that can be written as a decimal: positive or negative or
zero, terminating or nonterminating. Examples are

1, −5, 0, 14,

2

3
= 0.666666 . . . ,

3

8
= 0.375,

√
2 = 1.4142 . . . ,

−π = −3.141592 . . . ,

176355.14233333 . . . .

The most familiar subset of R is the set Z of integers. These are the numbers

. . . ,−3,−2,−1, 0, 1, 2, 3, . . . . (1.1)

Another subset is the set Q of all rational numbers. A real number r is rational if
it can be expressed as the ratio of two integers, more precisely, if r = m

n , where m
and n are integers and n 6= 0. Since every integer m can be written m

1 , it follows
that every integer is also a rational number. A scheme, analogous to (??), which
lists all the positive rational numbers is the following:

1
1 ,

2
1 ,

3
1 ,

4
1 , . . .

1
2 ,

2
2 ,

3
2 ,

4
2 , . . .

1
3 ,

2
3 ,

3
3 ,

4
3 , . . .

...

(1.2)
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Of course there are infinitely many repetitions in this presentation since, for exam-
ple, 2

1 = 4
2 = 6

3 = . . . . An unsophisticated guess would be that all real numbers are
rational. There are, however, many famous proofs that this is not so. For example,
a very simple and beautiful argument shows that

√
2 is not rational. (See Problem

?? at the end of this section.) It is not hard to prove that a real number is rational
if and only if its decimal expansion beyond some digit consists of a finite sequence
of digits repeated forever. Thus the numbers

1.71349213213213213213 . . . (forever),

1.500000000 . . . (forever)

are rational, but
0.101001000100001000001 . . . (etc.)

is not.
The fundamental algebraic operations on real numbers are addition and mul-

tiplication: For any two elements a and b in R, two elements a + b and ab in R
are uniquely determined. These elements, called the sum and product of a and b,
respectively, are defined so that the following six facts are true:

Axiom 1 (Associative Laws).

a+ (b+ c) = (a+ b) + c,

a(bc) = (ab)c.

Axiom 2 (Commutative Laws).

a+ b = b+ a,

ab = ba.

Axiom 3 (Distributive Law).

(a+ b)c = ac+ bc.

Axiom 4 (Existence of Identities). R contains two distinct elements 0 and 1 with
the properties that 0 + a = a and 1 · a = a for every a in R.

Axiom 5 (Existence of Subtraction). For every a in R, there is an element in R
denoted by −a such that a+ (−a) = 0.

Note. a− b is an abbreviation of a+ (−b).

Axiom 6 (Existence of Division). For every a 6= 0 in R, there is an element in R
denoted by a−1 or 1

a such that aa−1 = 1.

Note. a
b is an abbreviation of ab−1.

Addition and multiplication are here introduced as binary operations. However,
as a result of the associative law of addition, a+ b+ c is defined to be the common
value of (a+b)+c and a+(b+c). In a like manner we may define the triple product
abc and, more generally, a1 + . . .+ an and a1 . . . an. Many theorems of algebra are
consequences of the above six facts, and we shall assume them without proof. They
are, in fact, frequently taken as part of a set of axioms for R.
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Another essential property of the real numbers is that of order. We write a < b
as an abbreviation of the statement that a is less than b. Presumably the reader,
given two decimals, knows how to tell which one is the smaller. The following
four facts simply recall the basic properties governing inequalities. On the other
hand, they may also be taken as axioms for an abstractly defined relation between
elements of R, which we choose to denote by <.

Axiom 7 (Transitive Law). If a < b and b < c, then a < c.

Axiom 8 (Law of Trichotomy). For every real number a, one and only one of the
following alternatives holds: a = 0, or a < 0, or 0 < a.

Axiom 9. If a < b, then a+ c < b+ c.

Axiom 10. If a < b and 0 < c, then ac < bc.

Note that each of the above Axioms except ?? remains true when restricted to
the set Z of integers. Moreover, all the axioms are true for the set Q of rational
numbers. Hence as a set of axioms for R, they fail to distinguish between two very
different sets: R and its subset Q. Later in this section we shall add one more item
to the list, which will complete the algebraic description of R.

A real number a is if positive 0 < a and negative if a < 0. Since the relation
“greater than” is just as useful as “less than,” we adopt a symbol for it, too, and
abbreviate the statement that a is greater than b by writing a > b. Clearly a > b if
and only if b < a. Axiom ??, when translated into English, says that the direction of
an inequality is preserved if both sides are multiplied by the same positive number.
Just the opposite happens if the number is negative: The inequality is reversed.
That is,

1.1.1. If a < b and c < 0, then ac > bc.

Proof. Since c < 0, Axioms ??, ??, and ?? imply

0 = c+ (−c) < 0 + (−c) = −c.

So −c is positive. Hence by (x), we get −ac < −bc. By Axiom ?? again,

−ac+ (bc+ ac) < −bc+ (bc+ ac).

Hence bc < ac, and this is equivalent to ac > bc.

Two more abbreviations complete the mathematician’s array of symbols for
writing inequalities:

a ≤ b means a < b or a = b,
a ≥ b means a > b or a = b.
The geometric interpretation of the set R of all real numbers as a straight line is

familiar to anyone who has ever used a ruler, and it is essential to an understanding
of calculus. To describe the assignment of points to numbers, consider an arbitrary
straight line L, and choose on it two distinct points, one of which we assign to,
or identify with, the number 0, and the other to the number 1. (See Figure ??.)
The rest is automatic. The scale on L is chosen so that the unit of distance is the
length of the line segment between the points 0 and 1. Every positive number a is
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Figure 1.1: A line L with two distinguished point 0 and 1.

assigned the point on the side of 0 containing 1 which is a units of distance from
0. Every negative number a is assigned the point on the side of 0 not containing 1
which is −a units of distance from 0. Note that if L is oriented so that 1 lies to the
right of 0, then for any two numbers a and b (positive, negative, or zero), a < b if
and only if a lies to the left of b. A line which has been identified with R under a
correspondence such as the one just described is called a real number line. (See
Figure ??.)

Figure 1.2: A real number line.

An interval is a subset I of R with the property that whenever a and c belong
to I and a ≤ b ≤ c, then b also belongs to I. Geometrically an interval is a connected
piece of a real number line. A number d is called a lower bound of a set S of real
numbers if d ≤ s for every s in S. It is an upper bound of S if s ≤ d for every
s in S. A given subset of R, and in particular an interval, is called bounded if
it has both an upper and lower bound. There are four different kinds of bounded
intervals:

(a, b), the set of all numbers x such that a < x < b;

[a, b], the set of all numbers x such that a ≤ x ≤ b;
[a, b), the set of all numbers x such that a ≤ x < b;

(a, b], the set of all numbers x such that a < x ≤ b.

In each case the numbers a and b are called the endpoints of the interval. The set
[a, b] contains both its endpoints, whereas (a, b) contains neither one. Clearly [a, b)
contains its left endpoint but not its right one, and an analogous remark holds for
(a, b].

It is important to realize that there is no element ∞ (infinity) in the set R.
Nevertheless, the symbols ∞ and −∞ are commonly used in denoting unbounded
intervals. Thus

(a,∞) is the set of all numbers x such that a < x;

[a,∞) is the set of all numbers x such that a ≤ x;

(−∞, a) is the set of all numbers x such that x < a;

(−∞, a] is the set of all numbers x such that x ≤ a;

(−∞,∞) is the entire set R.
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The symbols ∞ and −∞ also appear frequently in inequalities although they are
really unnecessary, because, for example,

−∞ < x < a is equivalent to x < a,

a ≤ x <∞ is equivalent to a ≤ x,

etc. Since∞ is not an element of R, we shall never use the notations [a,∞], x ≤ ∞,
etc. An unbounded interval has either one endpoint or none; in each of the above
cases it is the number a. We call an interval open if it contains none of its endpoints,
and closed if it contains them all. Thus, for example, (a, b) and (−∞, a) are
open, but [a, b] and [a,∞) are closed. The intervals [a, b) and (a, b] are neither
open nor closed, although they are sometimes called half-open or half-closed. Since
(−∞,∞) has no endpoints, it vacuously both does and does not contain them.
Hence (−∞,∞) has the dubious distinction of being both open and closed.

Figure 1.3: Types of intervals.

Example 1. Draw the intervals [0, 1], [−1, 4), (2,∞), (−∞,−1], (−1, 3), and iden-
tify them as open, closed, neither, or both (see Figure ??).

It is frequently necessary to talk about the size of a real number without regard
to its sign, not caring whether it is positive or negative. This happens often enough
to warrant a definition and special notation: The absolute value of a real number
a is denoted by |a| and defined by

|a| =
{

a if a ≥ 0,
−a if a < 0.

Thus |3| = 3, |0| = 0, | − 3| = 3. Obviously, the absolute value of a real number
cannot be negative. Geometrically, |a| is the distance between the points 0 and a
on the real number line. A generalization that is of extreme importance is the fact
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that |a − b| is the distance between the points a and b on the real number line for
any two numbers a and b whatsoever. Probably the best way to convince oneself
that this is true is to look at a few illustrations (see Figure ??).

Figure 1.4: Computing distances with the absolute value.

Example 2. Describe the set I of all real numbers x such that |x − 5| < 3. For
any number x, the number |x−5| is the distance between x and 5 on a real number
line (see Figure ??). That distance will be less than 3 if and only if x satisfies the

Figure 1.5: An open ball in a one-dimensional space.

inequalities 2 < x < 8. We conclude that I is the open interval (2, 8).

There is an alternative way of writing the definition of the absolute value of
a number a which requires only one equation: We do not have to give separate
definitions for positive and negative a. This definition uses a square root, and before
proceeding to it, we call attention to the following mathematical custom: Although
every positive real number a has two square roots, in this book the expression

√
a

always denotes the positive root. Thus the two solutions of the equation x2 = 5 are√
5 and −

√
5. Note that the two equations

x2 = a

and
x =
√
a

are not equivalent. The second implies the first, but not conversely. On the other
hand,

x2 = a

and
|x| =

√
a

are equivalent. Having made these remarks, we observe that
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1.1.2.

|a| =
√
a2.

The formulation ?? is a handy one for establishing two of the basic properties
of absolute value. They are

1.1.3.

|ab| = |a||b|.

1.1.4.

|a+ b| ≤ |a|+ |b|.

Proof. Since (ab)2 = a2b2 and since the positive square root of a product of two
positive numbers is the product of their positive square roots, we get

|ab| =
√

(ab)2 =
√
a2b2 =

√
a2
√
b2 = |a||b|.

To prove ??, we observe, first of all, that ab ≤ |ab|. Hence

a2 + 2ab+ b2 ≤ a2 + 2|ab|+ b2 = |a|2 + 2|a||b|+ |b|2.

Thus,
|a+ b|2 = (a+ b)2 ≤ (|a|+ |b|)2.

By taking the positive square root of each side of the inequality (see Problem ??),
we get ??.

As remarked above, our list of Axioms ?? through ?? about the set R of real
numbers is incomplete. One important property of real numbers that together with
the others gives a complete characterization is the following:

Axiom 11 (Least Upper Bound Property). Every nonempty subset of R which has
an upper bound has a least upper bound.

Suppose S is a nonempty subset of R which has an upper bound. What Axiom
?? says is that there is some number b which (1) is an upper bound, i.e., s ≤ b for
every s in S, and (2) if c is any other upper bound of S, then b ≤ c. It is hard to see
at first how such a statement can be so significant. Intuitively it says nothing more
than this: If you cannot go on forever, you have to stop somewhere. Note, however,
that the rational numbers do not have this property. The set of all rational numbers
less than the irrational number

√
2 certainly has an upper bound. In fact, each of

the numbers 2, 1.5, 1.42, 1.415, 1.4143, and 1.41422 is an upper bound. However,
for every rational upper bound, there will always exist a smaller one. Hence there
is no rational least upper bound.
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Problems

1. Draw the following intervals and identify them as bounded or unbounded,
closed or open, or neither: (2, 4), [3, 5], (−∞,−2], [1.5, 2.5), (

√
2, π).

2. Draw each of the following subsets of R. For those that are given in terms of
absolute values write an alternative description that does not use the absolute
value.

(a) Set of all x such that 4 < x ≤ 7.5.

(b) Set of all x such that 0 < x <∞.

(c) Set of all x such that 5 ≤ x < 8.

(d) Set of all x such that |x| > 2.

(e) Set of all y such that 1 < |y| < 3.

(f) Set of all z such that |z − 2| ≤ 1.

(g) Set of all x such that |x− a| > 0.

(h) Set of all u such that 1 < |u− 1| < 5.

3. Prove the following facts about inequalities. [Hint: Use ??, ??, ??, ??, and
the meanings of ≥ and ≤. In each problem you will have to consider several
cases separately, e.g. a > 0 and a = 0.]

(a) If a ≤ b, then a+ c ≤ b+ c.

(b) If a ≥ b, then a+ c ≥ b+ c.

(c) If a ≤ b and c ≥ 0, then ac ≤ bc.
(d) If a ≤ b and c ≤ 0, then ac ≥ bc.

4. Prove that a is positive (negative) if and only if 1
a is positive (negative).

5. If 0 < a < b, prove that 1
b <

1
a .

6. If a > c and b < 0, prove that a
b <

c
b .

7. If a < b < c, prove that
b
c <

b
a if a > 0 ,

b
c >

b
a if c < 0 .

8. Does the set Z of integers have the Least Upper Bound Property? That is, if
a nonempty subset of Z has an upper bound, does it have a smallest one?

9. Show that if 0 ≤ a ≤ b, then 0 ≤
√
a ≤
√
b.

10. Prove that a = b if and only if a ≤ b and b ≤ a.

11. Show that the Least Upper Bound Property implies the Greatest Lower Bound
Property. That is, using ??, prove that if a nonempty subset of R has a lower
bound, then it has a greatest lower bound.

12. Verify the assertion made in the text that if an interval is bounded it must be
one of four types: (a, b), [a, b], (a, b], or [a, b). (Hint: See Problem ??.)
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13. Prove that
√

2 is irrational. (Hint: The proof, which is elegant and famous,
starts by assuming that

√
2 = p

q , where p and q are integers not both even. A

contradiction can then be derived.)
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1.2 Ordered Pairs of Real Numbers, the xy-Plane,
Functions.

The set whose members consist of just the two elements a and b is denoted {a, b}.
The notation is not perfect because it suggests that the members a and b have been
ordered: a is written first and b second. Actually no ordering is present because
{a, b} = {b, a}. Note also that if a = b, then {a, b} = {b, a} = {a}. It can happen,
however, that the ingredient of order is essential. We therefore introduce the notion
of an ordered pair (a, b) whose first member is a and whose second member is b.
The characteristic property of ordered pairs is

(a, b) = (c, d) if and only if a = c and b = d.

In particular (a, b) = (b, a) if and only if a = b. In Section ?? we saw that the
set R of all real numbers can be thought of as a straight line. We shall now show
that every ordered pair (a, b) of real numbers a and b can be identified with a point
in a plane. This brings up a notational problem: Is (5, 7) the ordered pair of real
numbers or is it the open interval consisting of all x such that 5 < x < 7? The
answer is that it is impossible to tell out of context—just as it is impossible to tell
whether the word “well” is the noun or the adverb.

Consider two distinct real number lines drawn in a plane so that they intersect
at the number 0 on each line. One of the lines is traditionally drawn horizontal and
called the x-axis, and the other is made perpendicular to it and called the y-axis.
The orientation is chosen so that the number 1 on the x-axis lies to the right of 0,
and the number 1 on the y-axis is above 0. It is also customary to use the same
scale of distances on both axes. For every ordered pair (a, b) of real numbers, let
La be the line parallel to the y-axis that cuts the x-axis at a, and let Mb be the line
parallel to the x-axis that cuts the y-axis at b. We assign the point of intersection
of La and Mb to the ordered pair (a, b) (see Figure ??). The numbers a and b are
called the coordinates of the point. a is the x-coordinate (or abscissa) and b is
the y-coordinate (or ordinate).

Figure 1.6:

If the pairs (a, b) and (c, d) are not equal, then the points in the plane assigned
to them will be different. In addition, every point in the plane has a number pair
assigned to it: Starting with a point, draw the two lines through it which are parallel
to the x-axis and the y-axis. One line cuts the x-axis at a number a, and the other
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cuts the y-axis at b. The ordered pair (a, b) has the original point assigned to it. It
follows that our assignment

pair→ point

is a one-to-one correspondence between the set of all ordered pairs of real numbers,
which we denote by R2, and the set of all points of the plane. It is convenient
simply to identify R2 with the plane together with the two axes.

Example 3. Plot the points (1, 2), (−2, 3), (0, 1), (4, 0), (−2,−3), and (2,−3) on
the xy-plane (see Figure ??).

Figure 1.7:

The usefulness of the idea of an ordered pair is by no means limited to pairs of
real numbers. In plane geometry, for example, we may consider the set of all ordered
pairs (T, p) in which T is a triangle and p is the point of intersection of its medians.
In the three-dimensional extension of the xy-plane, the set R3 of all ordered triples
(a, b, c) of real numbers is identified with the set of all points in three-dimensional
space. The definition of an ordered triple can be reduced to that of an ordered pair
by defining (a, b, c) to be ((a, b), c).

Let P = (a, b) and Q = (c, d) be arbitrary elements in the set R2 of all ordered
pairs of real numbers. We define the distance between P and Q by the formula

distance(P,Q) =
√

(a− c)2 + (b− d)2. (1.3)

Three simple corollaries of this definition are:

1.2.1. distance(P,Q) ≥ 0; i.e., distance is never negative.

1.2.2. distance(P,Q) = 0 if and only if P = Q.

1.2.3. distance(P,Q) = distance(Q,P ).

Another consequence of (1) is that it is no longer simply a matter of tradition
and convenience that we draw the y-axis perpendicular to the x-axis. It follows
from consideration of the Pythagorean Theorem and its converse (see Figure ??)
that the above definition of distance between elements of R2 corresponds with our
geometric notion of the distance between points in the Euclidean plane if and only
if the two coordinate axes are perpendicular and the scales are the same on both.
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Figure 1.8:

Figure 1.9:

Example 4. Let C be the subset of the xy-plane consisting of all points whose
distance from (1,1) is equal to 2. Thus C is the circle shown in Figure ??. If
(x, y) is an arbitrary point in the xy-plane, its distance from (1, 1) is equal to√

(x− 1)2 + (y − 1)2. Hence, (x, y) belongs to C if and only if√
(x− 1)2 + (y − 1)2 = 2. (1.4)

Numbers x and y satisfy (2) if and only if they satisfy

(x− 1)2 + (y − 1)2 = 4. (1.5)

Thus C is the set of all ordered pairs (x, y) that satisfy (3)—or that satisfy (2).
Either (2) or (3) is therefore called an equation of the circle C.

The set of all points (x, y) in the plane that satisfy a given equation is called
the graph of the equation. Hence, in the above example, the circle C is the graph
of the equation (x− 1)2 + (y − 1)2 = 4.

Example 5. Let L be the set of all ordered pairs (x, y) such that y = 2x− 3. For
each real number x, there is one and only one number y such that (x, y) belongs to
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x y = 2x− 3
-1 -5
0 -3
1 -1
2 1
3 3

Table 1.1:

y x
0 0
±1 1
±2 4

Table 1.2:

L : y = 2x − 3. To see what L looks like, we plot five of its points (see Table ??).
As shown in Figure ??, all these points lie on a straight line. In Section ?? we shall
justify the natural conjecture that this straight line is the set L.

Figure 1.10:

Example 6. The set of all pairs (x, y) such that y2 = x is the curve shown in
Figure ??. This curve is a parabola, one of the conic sections, which are studied in
greater detail in Chapter ??. At present we shall be satisfied with plotting a few
points and connecting them with a smooth curve (see Table ??).

A function f is any set f of ordered pairs such that whenever (a, b) and (a, c)
belong to f , then b = c. Note that every subset of the xy-plane is a set of ordered
pairs, but not every subset is a function. In particular, the parabola in Example ??
is not, because it contains both (4, 2) and (4,−2). On the other hand, the straight
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Figure 1.11:

line in Example ?? is a function. This condition that a function must never contain
two pairs (a, b) and (a, c) with b 6= c means geometrically that a subset of the xy-
plane is a function if and only if it never intersects a line parallel to the y-axis in
more than one point. Hence it is an easy matter to decide which of the following
sets are functions and which are not:

(i) The set f of all pairs (x, y) such that y = x+ 1.

(ii) The set g of all pairs (x, y) such that x2 + y2 = 1.

(iii) The set F of all pairs (x, y) such that y = x2 + 2x+ 2.

(iv) The set h of all pairs (x, y) such that 2x+ 3y = 1.

(v) The set G of all pairs (x, y) such that y =
√
x+ 2.

(vi) The set H of all pairs (x, y) such that y4 = x.

The sets f , F , h, and G are functions, but g and H are not.
The domain of a function f is the set of all elements a for which there is a

corresponding b such that (a, b) belongs to f . Analogously, the range of f is the
set of all elements b for which there is an a such that (a, b) belongs to f . In (i), the
domain of f is the set R of all real numbers and so is the range. On the other hand,
in (iii), although the domain of F is equal to R, the range is the interval consisting
of all real numbers y ≥ 1, because we can write x2 + 2x+ 2 = (x+ 1)2 + 1 ≥ 1.

If a pair (a, b) belongs to a function f , we call b the value of f at a and write
b = f(a). Note that the meaning of f(a) is unambiguous only because the definition
of a function forbids having (a, b) and (a, c) both belong to f if b 6= c. Therefore
the second member of any ordered pair that belongs to f is determined by the first
member.

Example 7. In (i),

f(x) = x+ 1, f(a) = a+ 1,

f(0) = 1, f(3 + 4) = (3 + 4) + 1 = 8,

f(−1) = −1 + 1 = 0, f(a+ b) = a+ b+ 1.
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In (v),
G(x) =

√
x+ 2, G(2x+ y) =

√
2x+ y + 2,

G(0) =
√

2, G(−2) = 0,

G(2) = 2, G(−3)is not defined.

To each element a in the domain of a function f there corresponds a value f(a)
in the range. This correspondence between domain and range, which is pictured in
Figure ??, is the central idea in the definition of a function. Thus the function f that

Figure 1.12:

consists of all ordered pairs (x, y) such that y = x2 and −1 ≤ x ≤ 2 is interpreted
as the rule of correspondence which assigns to each number in the interval [−1, 2]
its square. We can describe f completely and simply by writing

f(x) = x2, −1 ≤ x ≤ 2.

Examples of other functions are

g(x) =
√
x− 1, −1 ≤ x <∞,

F (x) = x2, −∞ < x <∞,

h(x) =
x

x+ 2
, x 6= −2.

Note that the functions f and F immediately above are not equal, although f is a
subset of F . Two functions are equal if they are one and the same set of ordered
pairs. It follows that

1.2.4. Functions f and g are equal if and only if they have the same domain D and
f(x) = g(x) for every element x in D.

Thus any complete description of a function must include a description of its
domain. Sometimes this information is in fact omitted. We shall adopt the con-
vention that if no explicit description of the domain of a function is given, then
its domain is assumed to be the largest set of real numbers that makes sense. For
example, the domain of the function H defined by

H(x) =
1

x2 − x− 2
=

1

(x+ 1)(x− 2)

is assumed to be the entire set of real numbers with the exception of −1 and 2.
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Figure 1.13: A computing machine.

It is sometimes helpful to think of a function as a computing machine. Imagine
a computing machine, named f , which is provided with an input tape, an output
tape, and a button (see Figure ??). One writes a number x on the input tape and
pushes the button. If x is one of the inputs which the machine will accept, i.e., if x
is in the domain of f , the machine whirs contentedly and prints an output, which
we denote f(x), on the output tape. If x is not in the prescribed domain, either
nothing happens or a red light flashes.

We have already seen that one of the best ways of describing a subset of R2 is
to draw a picture of it. If this subset happens to be a function, we call the picture
the graph of the function. More specifically, if a function f is a subset of R2, its
graph is the set of all points in the plane that correspond to ordered pairs of the
form (x, f(x)). Note that the graph of f depends on the correspondence between
ordered pairs and points; i.e., it depends on the choice of axes. To illustrate this, in
Figure ?? we have drawn the graph of the function f defined by f(x) = x3 for two

Figure 1.14: Two graphs of the function f(x) = x3.

sets of axes. For a single choice of axes, we simply identify ordered pairs and points,
and under this identification a function and its graph become the same thing.

Most of the functions encountered in an introduction to calculus are defined by
means of a single equation; e.g., h(x) = x3 + 3. It is a bad mistake, however, to
assume that this is always true. The function F given by

F (x) =

{
x2 + 1 if x ≥ 0,
−x2 if x < 0,

requires two equations for its definition. The graph of F is shown in Figure ??.
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Another function, which is so wild that it is impossible to draw its graph, is the

Figure 1.15: A function not defined by a simple formula.

following:

g(x) =

{
0 if x is rational,
1 if x is irrational.

The ordered pairs that comprise a function are not necessarily pairs of numbers.
An example is the function, mentioned earlier in this section, which assigns to each
triangle the point of intersection of its medians. It is possible for the domain of
a function to be a set of ordered pairs. Consider the function f consisting of all
ordered pairs ((x, y), z), where x, y, and z are numbers that satisfy x ≥ y and
z = 2x2 + y2. We describe this function simply as follows:

f(x, y) = 2x2 + y2, x ≥ y. (1.6)

As a final example of a function, consider the rule of correspondence that assigns
to each person his or her male parent.

As we have indicated, the definition of a function is appallingly general. One
of our tasks is to delineate properly the kinds of functions studied in calculus. To
begin with, a function f is said to be real-valued if its range is a subset of R, the
set of real numbers. If the domain of f is a subset of R, we call f a function of
a real variable. The function f(x, y) defined in (??) has as its domain a subset
of R2. It is a real-valued function of two real variables. For the most part, a first
course in calculus is a study of real-valued functions of one real variable.
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Problems

1. Plot the following point in the xy-plane: (0,−2), (1, 3), (3, 1), (−4,−4), and
(5, 0).

2. In the xy-plane plot the points (1, 2) and (2, 1), (−3, 2) and (2,−3), (−2,−3)
and (−3,−2). Describe the relative positions of the points (a, b) and (b, a) for
arbitrary a and b.

3. The x-axis and the y-axis divide R2 into four quadrants, as shown in Figure
??. Let (a, b) be a point for which neither a nor b is zero. How can you
recognize instantly which quadrant (a, b) belongs to?

4. Find the distance between (−1, 2) and (3, 4); (2, 3) and (3, 2); (3, 4) and
(−1, 2); (−2, 1) and (2, 1). In each case plot the points in R2.

5. Verify Proposition ??.

6. Plot the subsets of the xy-plane defined in (i) through (vi).

7. In each of the following, plot the subset of R2 that consists of all pairs (x, y)
such that the given equation (or conditions) is satisfied.

(a) 3x+ 2y = 3

(b) x+ y = 1

(c) y = |x|
(d) y =

√
x

(e) x2 + y2 = 4

(f) x2 + 4y2 = 4

(g) x2 + y2 = 1 and y ≥ 0

(h) 4x2 − y2 = 4

(i) y = 2x2 + x− 2

(j) y = |x3|
(k) y = largest integer less than or equal to x

(l) y =

{
2x+ 3, x ≥ 0
x2

2 , x < 0.

8. In Problem ??, which subsets are functions?

9. Let f and g be two functions defined, respectively, by

f(x) = x2 + x+ 1, −∞ < x <∞ ,

g(x) = x+1
x−1 , for every real number x except x = 1 .

Find:

(a) f(2), f(0), f(a), f(a+ b), f(a− b).
(b) g(0), g(−1), g(10), g(5 + t), g(x3).
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10. Give an example of a function f and a function g that satisfy each of the
following conditions.

(a) domain f = domain g, but range f 6= range g.

(b) domain f 6= domain g, but range f = range g.

(c) domain f = domain g and range f = range g, but f 6= g.

(d) f(a) = g(a) for every a that belongs to both domains, but f 6= g.

11. What is the assumed domain of each of the following functions?

(a) f(x) = 5
x−3

(b) f(x) = x2+2
x2−2

(c) g(x) = x+3
x2+x−12

(d) f(x) = 5π

(e) f(t) =
√

1
5−t

(f) F (x) =
√
x2 − 8x− 20

(g) The set of all ordered pairs (x, y) such that

xy − x2

x− 9
= 7.
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1.3 Operations with Functions.

If f and g are two functions, a new function f(g), called the composition of g with
f , is defined by

(f(g))(x) = f(g(x)).

For example, if f(x) = x3 − 1 and g(x) = x+1
x−1 , then

(f(g))(x) = f(g(x)) = (g(x))3 − 1 (1.7)

=

(
x+ 1

x− 1

)3

− 1 =
2(3x2 + 1)

(x− 1)3
. (1.8)

The composition of two functions is the function obtained by applying one after the
other. If f and g are regarded as computing machines, then f(g) is the composite
machine constructed by feeding the output of g into the input of f as indicated in
Figure ??.

Figure 1.16:

In general it is not true that f(g) = g(f). In the above example we have

(g(f))(x) = g(f(x)) =
f(x) + 1

f(x)− 1
(1.9)

=
(x3 − 1) + 1

(x3 − 1)− 1
=

x3

x3 − 2
, (1.10)

and the two functions are certainly not the same. In terms of ordered pairs the
composition f(g) of g with f is formally defined to be the set of all ordered pairs
(a, c) for which there is an element b such that b = g(a) and c = f(b).

If f and g are two real-valued functions, we can perform the usual arithmetic
operations of addition, subtraction, multiplication, and division. Thus for the func-
tions f(x) = x3 − 1 and g(x) = x+1

x−1 , we have

f(x) + g(x) = x3 − 1 +
x+ 1

x− 1
,

f(x)− g(x) = x3 − 1− x+ 1

x− 1
,

f(x)g(x) = (x3 − 1)
x+ 1

x− 1
,

= (x2 + x+ 1)(x+ 1) if x 6= 1,

f(x)/g(x) =
x3 − 1
x+1
x−1

=
(x3 − 1)(x− 1)

x+ 1
.
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x f(x) 2f(x)
0 −2 −4
1 −1 −2
2 0 0
3 1 2

Table 1.3:

Just as with the composition of two functions, each arithmetic operation provides a
method of constructing a new function from the two given functions f and g. The
natural notations for these new functions are f + g, f − g, fg, and f

g . They are
defined by the formulas

(f + g)(x) = f(x) + g(x),

(f − g)(x) = f(x)− g(x),

(fg)(x) = f(x)g(x),

f

g
(x) =

f(x)

g(x)
if g(x) 6= 0.

The product function fg should not be confused with the composite function f(g).
For example, if f(x) = x5 and g(x) = x3, then we have (fg)(x) = f(x)g(x) =
x5 · x3 = x8, whereas

(f(g))(x) = f(g(x)) = (x3)5 = x15.

We may also form the product af of an arbitrary real number a and real-valued
function f . The product function is defined by

(af)(x) = af(x).

Example 8. Let functions f and g be defined by f(x) = x − 2 and g(x) = x2 −
5x + 6. Draw the graphs of f , g, 2f , and f + g. We compute the function values
corresponding to several different numbers x in Tables ?? and ??. The resulting
graphs of f and g are, respectively, the straight line and parabola shown in Figure
??(a). It turns out that the graphs of 2f and f + g are also a straight line and
a parabola. They are drawn in Figure ??(b). To see why the graph of f + g is a
parabola, observe that

(f + g)(x) = f(x) + g(x) = (x− 2) + (x2 − 5x+ 6) = x2 − 4x+ 4

= (x− 2)2.

It follows that f + g is very much like the function defined by y = x2. Instead of
simply squaring a number, f + g first subtracts 2 and then squares. Its graph will
be just like that of y = x2 except that it will be shifted two units to the right.

Up to this point we have used the letters f , g, h, F , G, andH to denote functions,
and the letters x, y, a, b, and c to denote elements of sets—usually real numbers.
However, the letters in the second set are sometimes also used as functions. This
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Figure 1.17:

x g(x)
0 6
5 6
5
2 − 1

4
1 2
4 2

Table 1.4:

occurs, for example, when we speak of x as a real variable. As such, it not only is
the name of a real number but also can take on many different values: 5, or −7,
or π, or . . . . Thus the variable x is a function. Specifically, it is the very simple
function that assigns the value 5 to the number 5, the value −7 to the number −7,
the value π to π, . . . . For every real number a, we have

x(a) = a.

This function is called the identity function.
Suppose, for example, that s is used to denote the distance that a stone falling

freely in space has fallen. The value of s increases as the stone falls and depends on
the length of time t that it has fallen according to the equation s = 1

2gt
2, where g

is the constant gravitational acceleration. (This formula assumes no air resistance,
that the stone was at rest at time t = 0, and that distance is measured from the
starting point.) Thus s has the value 9

2g if t has the value 3, and, more generally,



1.3. OPERATIONS WITH FUNCTIONS. 31

the value 1
2ga

2 when t has the value a. If we consider t to be another name for the
identity function, then s may be regarded as the function whose value is

s(a) =
1

2
ga2 =

1

2
g(t(a))2

for every real number a. The original equation s = 1
2gt

2 then states the relation
between the two functions s and t. The fact that s and t take on different values
is also expressed by referring to them as variables. A variable is simply a name of
a function. In our example s is called a dependent variable, and t an independent
variable, because the values of s depend on those of t according to s = 1

2gt
2. Thus

an independent variable is a name for the identity function, and a dependent
variable is one that is not independent.

A real variable is therefore a name of a real-valued function. Since the arithmetic
operations of addition, subtraction, multiplication, and division have been defined
for real-valued functions, they are automatically defined for real variables.

We shall generally use the letter x to denote an independent variable. This raises
the question: How does one tell whether an occurrence of x denotes a real number
or the identity function? The answer is that the notation alone does not tell, but
the context and the reader’s understanding should. However, a more practical reply
is that it doesn’t really make much difference. We may regard f(x) as either the
value of the function f at the number x or as the composition of f with the variable
x. If x is an independent variable, the function f(x) is then the same thing as f .

Example 9. The conventions that we have adopted concerning the use of vari-
ables give our notations a flexibility that is both consistent and extremely useful.
Consider, for example, the equation

y = 2x2 − 3x.

On the one hand, we may consider the subset of R2, pictured in Fifure ??, that
consists of all ordered pairs (x, y) such that y = 2x2− 3x. This subset is a function
f whose value at an arbitrary real number x is the real number f(x) = 2x2 − 3x.
Alternatively, we may regard x as an independent variable, i.e., the identity function.
The composition of f with x is then the function f(x) = 2x2 − 3x, whose value at
2, for instance, is

(f(x))(2) = f(x(2)) = f(2) = 8− 6 = 2.

A third interpretation is that y is a dependent variable that depends on x according
to the equation y = 2x2 − 3x. That is, y is the name of the function 2x2 − 3x.

Example 10. Let F be the function defined by F (x) = x3 + x+ 1. If u =
√
x− 2,

then

F (u) = u3 + u+ 1

= (x− 2)3/2 + (x− 2)1/2 + 1.

If we denote the function F (x) by w, then

u+ w =
√
x− 2 + x3 + x+ 1,
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Figure 1.18:

uw = (x− 2)1/2(x3 + x+ 1).

On the other hand, we may let G be the function defined by G(x) =
√
x− 2 for every

real number x ≥ 2. Then G+F and GF are the functions defined, respectively, by

(G+ F )(x) = G(x) + F (x)

=
√
x− 2 + x3 + x+ 1,

(GF )(x) = G(x)F (x)

= (x− 2)1/2(x3 + x+ 1).

To say that a is a real constant means first that it is a real number. Second,
it may or may not matter which real number a is, but it is fixed for the duration
of the discussion in which it occurs. Similarly, a constant function is one which
takes on just one value; i.e., its range consists of a single element. For example,
consider the constant function f defined by

f(x) = 5, −∞ < x <∞.

The graph of f is the straight line parallel to the x-axis that intersects the y-axis
in the point (0, 5); see Figure ??. We shall commonly use lower-case letters at the
beginning of the alphabet, e.g., a, b, c,..., to denote both constants and constant
functions.

Example 11. Consider the function ax + b, where a and b are constants, a 6= 0,
and x is an independent variable. The graph of this function is a straight line that
cuts the y-axis at b and the x-axis at − b

a . It is drawn in Figure ??. This function
is the sum of the constant function b and the function which is the product of the
constant function a and the identity function x.
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Figure 1.19:

Figure 1.20:
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Problems

1. Let functions f and g be defined by

f(x) = x3 − 4x2 + 5x− 2 = (x− 2)(x2 − 2x+ 1), g(x) =
1

x
.

Find h(x) if

(a) h = f(g)

(b) h = f + g

(c) h = g(f)

(d) h = fg

(e) h = 5fg2.

2. What is the domain and range of the functions f and g in Problem ??? What
is the domain of each of the functions h?

3. If f(x) = x+ 1 and g(x) = x− 1, plot the graph of the function f
g .

4. Plot the graph of the composite function F (g), where F and g are the functions
defined by g(x) = x− 2 and F (x) = 1

x .

5. If f , g, and h are functions, show that f(g(h)) = (f(g))(h). This is the
Associative Law for the Composition of Functions.

6. If f is a real-valued function, how would you define the functions 3f? How
would you define

√
f?

7. The velocity v of a freely falling body depends on the distance s that it has
fallen according to the equation v =

√
2gs, where g is the constant gravita-

tional acceleration.

(a) Using an s-axis and a v-axis, plot the dependent variable v as a function
of the independent variable s.

(b) If s depends on the time t according to the equation s = 1
2gt

2, how does
v depend on t?

Note that the variable v in ??, which depends on s, is not the same function as
the variable v in ??, which depends on t. Without knowing which is referred
to, the meaning of the value of v at 2 is ambiguous.

8. If w = u2 + u+ 1, u = x2 + 2, and v = x− 1, what is the value of each of the
following functions at an arbitrary real number x?

(a) u+ v

(b) w + v

(c) wu.

9. If F (x) = x3 + x+ 2 and u = x2 + 1 and w = x+1
x , then

(a) (F (u))(x) =



1.3. OPERATIONS WITH FUNCTIONS. 35

(b) F (w(x)) =

(c) (u+ v)(x) =

10. The equation y = 2x + 1 defines y as a function of x. It also defines x as a
function of y. Describe the latter function in two ways.

11. Draw the graph of the function f(x) = ax− 1 for four different values of the
constant a.

12. If f and g are two real-valued functions, give the definitions of the sum f + g
and the product fg in terms of ordered pairs.

13. Let f and g be two real-valued functions. In terms of domain f and domain
g, what are:

(a) domain f(g)?

(b) domain (f + g)?

(c) domain fg?
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1.4 Limits and Continuity.

Consider the function f defined by

f(x) =
x2 − 3x+ 2

x− 2
, x 6= 2.

The domain of f is the set of all real numbers with the exception of the number 2,
which has been excluded because substitution of x = 2 in the expression for f(x)
yields the undefined term 0

0 . On the other hand, x2 − 3x+ 2 = (x− 1)(x− 2) and

(x− 1)(x− 2)

x− 2
= x− 1, provided x 6= 2. (1.11)

The proviso is essential. Without it, (1) is false because, if x = 2, the left side is
undefined and the right side is equal to 1. We therefore obtain

f(x) = x− 1, x 6= 2.

The graph of the function x−1 is a straight line L; so the graph of f is the punctured
line obtained from L by omitting the one point (2, 1) (see Figure ??).

Figure 1.21:

Although the function f is not defined at x = 2, we know its behavior for values
of x near 2. The graph makes it clear that if x is close to 2, then f(x) is close to 1.
In fact, the values f(x) can be brought arbitrarily close to 1 by taking x sufficiently
close to 2. We express this fact by writing

lim
x→2

x2 − 3x+ 2

x− 2
= 1,

which is translated: The limit of x2−3x+2
x−2 is 1 as x approaches 2.

Example 12. Evaluate limx→3

√
x−
√
3

x−3 . The function
√
x−
√
3

x−3 is not defined at
x = 3. The following algebraic manipulation puts the function in a form in which
its behavior close to 3 can be read off easily:

√
x−
√

3

x− 3
=

√
x−
√

3

x− 3

√
x+
√

3
√
x+
√

3
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=
x− 3

x− 3

1
√
x+
√

3

=
1

√
x+
√

3
, if x 6= 3.

Again note the proviso x 6= 3: When x = 3, the last quantity in the preceding
equations is equal to 1√

3+
√
3
, but the first quantity is not defined. However, by

taking values of x close to 3, it is clear that the corresponding values of 1√
x+
√
3

can

be brought as close as we please to 1
2
√
3
. We conclude that

lim
x→3

√
x−
√

3

x− 3
=

1

2
√

3
.

In words: The limit of
√
x−
√
3

x−3 , as x approaches 3, is 1
2
√
3
.

Example 13. If f(x) = 1
x , evaluate limx→0 f(x). The function f is not defined at

0 (i.e., the number 0 is not in the domain of f). From the graph of f and the list
of ordered pairs (x, f(x)) shown in Figure ??, it is clear that there are values of x

Figure 1.22:

arbitrarily close to 0 for which the corresponding values of f(x) are arbitrarily large
in absolute value (see Table ??). We conclude that limx→0

1
x does not exist.

Thus far our examples have been confined to the problem of finding the limit of
a function at a number which happens to lie outside the domain of the function. If
it happens that the number a is in the domain of f , then it is frequently possible
to determine limx→a f(x) at a glance. Consider, for example, the function f(x) =
2x2 − x− 2. As x takes on values closer and closer to 3, the corresponding value of
2x2 approaches 18, the value of −x approaches −3, and the constant −2 does not
change. We conclude that

lim
x→3

(2x2 − x− 2) = 13,
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x f(x) = 1
x

1 1
0.1 10

0.01 100
0.001 1000

0.0001 10000
· · · · · ·
-1 -1

-0.1 -10
-0.01 -100

-0.001 -1000
-0.0001 -10000
· · · · · ·

Table 1.5:

or that, for this particular function, limx→3 f(x) = f(3).

Example 14. It would be incorrect to suppose that if a is in the domain of f , then
it always happens that limx→a f(x) = f(a). Consider the two functions f and g
defined by

f(x) =

{
x2 + 1 if |x| > 0
2 if x = 0

g(x) =

{
x2 + 1 if x ≥ 0,
−x2 − 1 if x < 0.

Both these functions are defined on the whole real line; i.e., domain f = domain
g = R (see Figure ??). Furthermore,

f(0) = 2 and g(0) = 1.

As x approaches 0, however, it is clear that x2 + 1 approaches 1 and not 2. Hence

lim
x→0

f(x) = 1 6= f(0).

[Note that in computing limx→a f(x), we consider values of f(x) for all x arbitrarily
close to a but not equal to a. This point will be made explicit when we give the formal
definition.] Turning to g, we see that the value of g(x) near 0 depends on whether x
is positive or negative. For any small positive number x, the corresponding number
g(x) is close to 1, but if x is small in absolute value and negative, then g(x) is close
to −1. Since there is no reason to prefer numbers of one sign to those of the other,
we conclude that there is no limit. Thus

lim
x→0

g(x) does not exist.

The reader may feel that Example ?? loses force because the functions used to
make the point were in some sense artificial. There is some truth in the objection.
Recall, however, that one of our major objectives is to reduce the class of all func-
tions to those we wish to study in this course. After defining limx→a f(x) precisely,
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x-axis

y-axis

f(0) = 2

f(x) = x  + 1

if  x = 0

2

y-axis

x-axis

g(x) = x  +1,

if x > 0

g(x) = -x  -1,

if x < 0

2

2

Figure 1.23:

we shall turn our point of view around and use this definition as the major tool in
the problem of deciding what does constitute a well-behaved function.

The conceptual problems in trying to give an exact meaning to the expression
limx→a f(x) = b revolve around phrases such as “arbitrarily close,” “sufficiently
near,” and “arbitrarily small.” After all, there is no such thing in any absolute sense
as a small positive real number. The number 0.000001 is small in most contexts,
but in comparison with 0.000000000001 it is huge. However, we can assert that one
number is smaller than another. Moreover, the actual closeness of one number x to
another number a is just the distance between them: It is |x− a|. One way to say
that a function f takes on values arbitrarily close to a number b is to state that, for
any positive real number ε, there are numbers x such that |f(x) − b| < ε. We are
stating that no matter what positive number ε is selected, 1017, or 10−17, or 10−127,
there are numbers x so that the distance between f(x) and b is smaller than ε. Thus
the difficulty inherent in the phrase “arbitrarily close” has been circumvented by
the prefix “for any.” To finish the definition, we want to be able to say that f(x)
is arbitrarily close to b whenever x is sufficiently close, but not equal, to a. What
does “sufficiently close” mean? The answer is this: If an arbitrary ε > 0 is chosen
with which to measure the distance between f(x) and b, then it must be the case
that there is a number δ > 0 such that whenever x is in the domain of f and within
a distance δ of a, but not equal to a, then the distance between f(x) and b is less
than ε. The situation is pictured in Figure ??. First ε > 0 is chosen arbitrarily.
There must then exist a number δ > 0 such that whenever x lies in the interval
(a − δ, a + δ), and x 6= a then the point (x, f(x)) lies in the shaded rectangle.
We summarize by giving the definition: Let f be a real-valued function of a real
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a

b
(a,b)

δ δ

ε

ε

Figure 1.24:

variable. Then the limit as x approaches a of f(x) is b, written

lim
x→a

f(x) = b,

if, for any ε > 0, there exists δ > 0 such that whenever x is in the domain of f
and 0 < |x− a| < δ, then |f(x)− b| < ε. (There is a strong tradition for using the
Greek letters ε and δ in the definition of limit. In fact, the part of calculus that
deals with rigorous proofs of the various properties of limits is sometimes referred
to as “epsilonics.”)

Example 15. The idea behind a formal definition can sometimes be grasped most
easily by looking at an example where the condition is not satisfied. Consider the
function g defined in Example ?? whose graph is drawn in Figure ??(b). We shall
prove that limx→0 g(x) 6= 1. To do this, we must establish the negation of the limit
condition: There is an ε > 0 such that, for any δ > 0, there is a number x in the
domain of g such that 0 < |x| < δ and |g(x) − 1| ≥ ε. There are many possible
choices for ε. To be specific, take ε = 1

2 . We must now show that for every positive
number δ, there is a nonzero number x in the open interval (−δ, δ) such that the
distance between g(x) and 1 is greater than or equal to 1

2 (Figure ??). Take x = − δ2 .
This number is non-zero, lies in (−δ, δ), and furthermore

g(x) = g
(
−δ

2

)
= −δ

2

4
− 1 < −1.

Hence |g(x)− 1| > 2 ≥ 1
2 .

The basic limit theorem is the following:

1.4.1. If limx→a f(x) = b1 and limx→a g(x) = b2, then

(i) limx→a[f(x) + g(x)] = b1 + b2.

(ii) limx→a cf(x) = cb1.

(iii) limx→a f(x)g(x) = b1b2.

(iv) limx→a
f(x)
g(x) = b1

b2
provided b2 6= 0.
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y-axis

x-axis

ε = 1/2

ε

δ δ

(−δ/2, −δ /4 −1)
2

This distance is
greater than 1/2

Figure 1.25:

The proofs are given in Appendix A. They are not difficult, and (i) and (ii) espe-
cially follow directly from the definition of limit and the properties of the absolute
value. Some ingenuity in algebraic manipulation is required for (iii) and (iv). Note
that we have already assumed that this theorem is true. For example, the assertion
that limx→3(2x2 − x− 2) = 13 is a corollary of (i), (ii), and (iii).

If a function f is defined for every x in R and if its graph contains no breaks,
then it is apparent from looking at the graph that limx→a f(x) = f(a). Logically,
however, this intuitive point of view is backward. So far, we have constructed the
graph of a function f by plotting a few isolated points and then joining them with
a smooth curve. In so doing we are assuming that if x is close to a, then f(x) is
close to f(a). That is, we are assuming that limx→a f(x) = f(a). Now that we
have given a formal definition of limit, we shall reverse ourselves and use it to say
precisely what is meant by a function whose graph has no breaks. Sueh a function
is ealled continuous. The definitions are as follows: A real-valued function f of a
real variable is continuous at a if a is in the domain of f and limx→a f(x) = f(a).
The function f is simply said to be continuous if it is continuous at every number
in its domain.

A continuous function whose domain is an interval is one whose graph has no
breaks, but the graph need not be a smooth curve. For example, the function with
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the sawtooth graph shown in Figure ?? is continuous.

y-axis

x-axis

Figure 1.26:

Many functions that are not continuous fail to be so at only a few isolated places.
Thus the function f in Example ??, whose graph is drawn in Figure ??(a), has its
only discontinuity at 0. It is continuous everywhere else. Finally, we emphasize
the fact that there are two conditions in the definition of continuity. Even though

limx→1
x3−1
x−1 = 3, the function x3−1

x−1 is not continuous at x = 1 simply because it is
not defined there.

If two functions f and g are continuous at a, then it is not difficult to prove that
the sum f+g is also continuous at a. To begin with, a is in the domain of f+g since
we have (f + g)(a) = f(a) + g(a). Furthermore, we know that limx→a f(x) = f(a)
and that limx→a g(x) = g(a). It follows by Theorem ??(i) that

lim
x→a

[f(x) + g(x)] = f(a) + g(a).

Since f(x) + g(x) = (f + g)(x), we get

lim
x→a

(f + g)(x) = (f + g)(a),

which proves the continuity of f+g at a. The other parts of the basic limit theorem
?? imply similar results about the products and quotients of continuous functions.
We summarize these in

1.4.2. If two functions f and g are continuous at a, then so are

(i) f+g. (ii) cf, for any constant c. (iii) fg. (iv) f
g , provided g(a) 6= 0.

A real-valued function f of one real variable is called a polynomial if there
exist a nonnegative integer n and real numbers a0, a1, . . . , an such that, for every
real number x,

f(x) = a0 + a1x+ ...+ anx
n.

The following functions are all examples of polynomials:

f(x) = 2− 4x+ 3x2,

f(y) = 117y239 +
3

2
y + π,

f(x) = x,

f(x) = 5,

g(s) = (s2 + 2)(s5 − 1) = s7 + 2s5 − s2 − 2.
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It is equally important to be able to recognize that a given function is not a poly-
nomial. Examples of functions which are not polynomials are

f(x) = |x|,

f(x) =
1

x
,

f(x) = x2 + x+ 3x−2,

f(x) =
√
x,

F (y) = (y2 − 1)3/2.

Algebraically the set of all polynomials is much like the set of integers: The sum,
difference, and product of any two polynomials is again a polynomial, but, in gen-
eral, the quotient of two polynomials is not a polynomial. Moreover, the algebraic
axioms ?? through ?? listed in Section ?? also hold.

Just as a rational number is one which can be expressed as the ratio of two
integers, a rational function is one which can be expressed as the ratio of two
polynomials. Examples are the functions

f(x) =
x3 + 2x+ 2

x4 + 1
,

g(x) = x−3 =
1

x3
,

f(x) = x2 + 2x+ 1 =
x2 + 2x+ 1

1
,

g(x) = π.

The domain of every polynomial is the entire set R of real numbers. Similarly,

the domain of a given rational function p(x)
q(x) , where p(x) and q(x) are polynomials,

is the whole set R with the exception of those numbers x for which q(x) = 0.
Furthermore, we have

1.4.3. Every polynomial is a continuous function, and every rational function p(x)
q(x)

is continuous except at those values of x for which q(x) = 0.

Proof. The identity function x is clearly continuous, and so is every constant func-
tion. Since every polynomial can be constructed from the identity function x and
from constants using only the sums and products of these and the resulting func-
tions, it follows from Theorem ?? that every polynomial is continuous. The assertion
about the continuity of rational functions then follows from part (iv) of Theorem
??.

It is occasionally useful to modify the definition of limx→a f(x) to allow x to
approach a from only one side:

� -

either or

a x x a
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When this is done, we speak of either the limit from the right or the limit from
the left and write either

lim
x→a+

f(x) or lim
x→a−

f(x),

according as the additional condition is x > a or x < a. Thus for the function

f(x) =

{
x− 1, x ≥ 2,
x2 − 1, x < 2,

whose graph is shown in Figure ??, the limit of f(x) as x approaches 2 does not

Figure 1.27:

exist. Nevertheless, we obtain

lim
x→2+

f(x) = 1, lim
x→2−

f(x) = 3.

Similarly, for the function g in Figure ??(b), we have limx→0+ g(x) = 1, limx→0− g(x) =
−1.

The graph of the rational function

f(x) =
x+ 1

x
= 1 +

1

x
, x 6= 0,

together with a list of some of the ordered pairs (x, f(x)) that comprise f is shown
in Figure ??. From both Figure ?? and Table ?? it is clear that as x increases
without bound, f(x) becomes arbitrarily close to 1. We express this fact by writing

lim
x→+∞

x+ 1

x
= 1.

Since f(x) also becomes arbitrarily close to 1 as x decreases without bound, i.e.,
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Figure 1.28:

x f(x)

1 2
10 1.1

100 1.01
1,000 1.001

1,000,000 1.000001
...

Table 1.6:

as −x increases without bound, we write

lim
x→−∞

x+ 1

x
= 1.

The definition is as follows: Let f be a real-valued function of a real variable. Then
the limit of f(x) is b as x increases without bound, written

lim
x→+∞

f(x) = b,

if, for any ε > 0, there exists δ > 0 such that whenever x is in the domain of f
and δ < x, then |f(x) − b| < ε. The analogous definition for limx→−∞ f(x) = b is
obvious.

The symbols +∞ and −∞ can also be used to refer to the behavior of the
values of the function as well as the independent variable. If, as x approaches a, the
corresponding value f(x) of the function increases without bound, we may express
the fact by writing

lim
x→∞

f(x) = +∞.

The reader should be able to attach the correct meanings to the various other
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possibilities:

lim
x→a

f(x) = −∞,

lim
x→−∞

f(x) = +∞,

lim
x→a+

f(x) = −∞, etc.

It is essential to keep in mind that +∞ and −∞ are not numbers. They are not
elements of R. They are used simply as convenient abbreviations for describing the
unbounded characteristics of certain functions. The symbol +∞ (or simply ∞) in
an expression for a bound will always mean that the quantity referred to increases
without limit in the positive direction. Similarly, −∞ always indicates the negative
direction. Thus we shall not say limx→0

1
x =∞. But we do say

lim
x→0+

1

x
= ∞,

lim
x→0−

1

x
= −∞,

lim
x→0

∣∣∣ 1
x

∣∣∣ = ∞.
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Problems

1. Compute the following limits.

(a) limx→1
x3−1
x−1

(b) limx→2
x2−5x+6
x−2

(c) limx→3
x2−5x+6
x−3

(d) limx→1

(
x2

x−1 −
1

x−1

)
(e) limx→0 x

3
2

(f) limx→0

√
x+1−1
x

(g) limx→0 |x|

(h) limh→0

(
1−h2

h2 + 6h2−1
h2

)
(i) limx→0

(a+x)3+2(a+x)−a3−2a
x

(j) limh→0
2(x+h)2−(x+h)−2x2+x

h .

2. For each of the following functions, find those numbers (if any) at which the
function is not continuous.

(a) x3 + 3x− 1

(b) f(x) = |x|

(c) x3+x+1
x2−x−2

(d) g(x) = x3−3x−2
x−2

(e)
√
x+ 3

(f) h(x) = |x|
x

(g) f(x) =

{
|x|, |x| ≤ 1
2− x2, |x| > 1

(h) F (x) =

{
1, if x is rational
0, if x is irrational

(i) f(x) =

{
x2 + 2x+ 1, if x 6= 1
1, if x = 1

3. A function f is said to have a removable discontinuity if it is not continuous
at a, but can be assigned a value f(a) [or possibly reassigned a new value f(a)]
such that it becomes continuous there.

(a) Locate the removable discontinuities in Problem ??.

(b) Show that the only discontinuities a rational function can have are ei-
ther removable or infinite. That is, if r(x) is a rational function that is
not continuous at a, show that either a is a removable discontinuity or
limx→a |r(x)| = +∞.
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4. Using Theorem ??, prove that if limx→a f(x) = b1 and limx→a g(x) = b2, then

lim
x→a

[f(x)− g(x)] = b1 − b2.

5. Show that

(a) limx→+∞ f(x) = b if and only if limt→0+ f
(
1
t

)
= b.

(b) limx→−∞ f(x) = b if and only if limt→0− f
(
1
t

)
= b.

6. Using Problem ??, compute

(a) limx→∞
1

1+x

(b) limx→∞
3x+1
x

(c) limt→−∞
4t2−3t+1

t2

(d) limt→∞
3t3+7t2−2
t3+1 .

7. True or false?

(a) If limx→a f(x) = b, then limx→a+ f(x) = b and limx→a− f(x) = b.

(b) If limx→a+ f(x) = b and limx→a− f(x) = b, then limx→a f(x) = b.

8. Define a function f and draw its graph such that limx→2+ f(x) = 2 and
limx→2− f(x) = 0.

9. Compute

(a) limx→2
1

x2−4x+4

(b) limx→2
x

x2+3x−10

(c) limx→3+
|x|−3
x−3

(d) limx→1

√
x−1
x−1

10. Does the set of rational functions satisfy axioms ?? through ?? of section ???
(Hint: Be careful; note Problem ??.)

11. Give the formal definition in terms of inequalities of limx→a+ f(x) = b.

12. Define a function f and draw its graph such that limx→∞ f(x) 6= limx→−∞ f(x),
although both limits exist.

13. Prove that it is impossible to choose a rational function in Problem ??.

14. Give the formal definition in terms of inequalities and absolute values of

(a) limx→a f(x) =∞
(b) limx→−∞ f(x) = +∞
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1.5 Straight Lines and Their Equations.

We shall define a straight line in R2 to be any subset L consisting of all ordered
pairs (x, y) such that

ax+ by + c = 0, where a2 + b2 > 0. (1.12)

The inequality a2+b2 > 0 simply says that the constants a and b are not both equal
to zero. Of course two different equations can define the same line. For example,
the set of all ordered pairs (x, y) such that 4x− 3y + 5 = 0 is the same line as the
set of pairs for which 28x = 21y − 35. For this reason, we speak of an equation of
a straight line and not the equation.

1.5.1. Suppose that straight lines L1 and L2 are defined, respectioely, by

a1x+ b1y + c1 = 0, a1
2 + b1

2 > 0,

a2x+ b2y + c2 = 0, a2
2 + b2

2 > 0.

Then L1 = L2 if and only if there is a nonzero constant k such that

a2 = ka1,

b2 = kb1,

c2 = kc1.

Proof. If such a k exists, then the two equations are equivalent, and so L1 = L2.
Conversely, suppose that L1 = L2. We may assume without loss of generality that

b1 6= 0. Then the point
(

0,− c1b1
)

lies on L1 since it satisfies the first equation; i.e.,

a1 · 0 + b1

(
−c1
b1

)
+ c1 = 0.

Because the two lines are equal, the point also lies on L2, and so

a2 · 0 + b2

(
−c1
b1

)
+ c2 = 0.

Hence

c2 =
(b2
b1

)
c1.

In addition, the point
(

1,−a1+c1b1

)
lies on L1 because

a1 + b1

(−a1 − c1
b1

)
+ c1 = 0.

This point then also lies on L2, and this fact means that

a2 + b2

(−a1 − c1
b1

)
+ c2 = 0.

Hence

a2 =
b2
b1
a1 +

b2
b1
c1 − c2 =

(b2
b1

)
a1.

Since b2 =
(
b2
b1

)
b1 trivially, we obtain the desired conclusion by setting k = b2

b1
. Note

that k 6= 0, for if it were zero, we would get a2 = b2 = 0, contrary to assumption.
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One consequence of Theorem ?? is that it enables us to recognize at a glance
whether or not different equations define the same straight line. Another corollary
arises in connection with the following definitions: A line L defined by an equation
ax+ by + c = 0 with a2 + b2 > 0 will be called vertical if b = 0 and horizontal if
a = 0. It follows from the theorem that b must equal zero for every such equation
which defines a vertical line and that a must equal zero for every such equation
which defines a horizontal line. Thus the definitions are not dependent on the
particular equation which defines L.

If P = (a, b) and Q = (c, d) are two points in R2 and a 6= c, the slope of the
line segment joining P to Q is, by definition,

m(P,Q) =
d− b
c− a

.

Note that

m(P,Q) =
d− b
c− a

=
b− d
a− c

= m(Q,P ).

The absolute value of m(P,Q) is the ratio of the vertical to horizontal distance
between P and Q (see Figure ??). It is simply a measure of steepness. A segment
with positive slope goes up as it goes to the right; one with negative slope goes
down as it goes to the right (Figure ??). If a = c, the segment is vertical, and the
slope is not defined.

Figure 1.29:

1.5.2. Let L be the straight line defined by the equation ax + by + c = 0, where
b 6= 0. If P and Q are any two distinct points on the line, then m(P,Q) = −ab .

Proof. Let P = (x1, y1) and Q = (x2, y2). An equation equivalent to the original
one is

y = −
(a
b

)
x− c

b
. (1.13)

It follows that x1 6= x2, since, otherwise, substitution in this equation would yield
y1 = y2, which would then imply P = Q. We obtain

m(P,Q) =
y2 − y1
x2 − x1

=
−abx2 −

c
b + a

bx1 + c
b

x2 − x1
= −a

b
,
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and this completes the proof.

Figure 1.30:

As a result of Theorems ?? and ??, we can unambiguously define the slope of
a nonvertical line L, which we shall denote by mL, as follows: For any pair of
distinct points P and Q on L, we define

mL = m(P,Q).

It follows at once that mL depends only on the line L. For if P ′ and Q′ are any
other two distinct points on the line, then

m(P,Q) = −a
b

= m(P ′, Q′).

(Since L is not vertical, b 6= 0.) Furthermore, any other equation defining L can be
written kax + kby + kc = 0 with k 6= 0, and, of course, −kakb = −ab . We note that
the slope of a vertical line is not defined.

Example 16. Find an equation of the straight line L through the point (a, b) and
with slope m. If (x, y) is any other point on the line, then

m =
y − b
x− a

,

which implies
y − b = m(x− a). (1.14)

This is an equation of the line. For suppose L were defined by some equation
a1x+ b1y + c1 = 0. An equivalent equation is

y = −
(a1
b1

)
x− c1

b1
,

or, since m = −a1b1 ,

y = mx− c1
b1
. (1.15)

Since we are given that (a, b) lies on L, we get b = ma− c1
b1

, or

c1
b1

= ma− b.

Substitution in (??) yields y = mx−ma+ b, which is equivalent to (??).
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Suppose that S is an arbitrary subset of R2 with the following three properties:

(i) S contains a point (a, b); i.e., S is a nonempty set.

(ii) The slope m(P,Q) is defined and is equal to the same fixed number m, for
every pair of distinct points P and Q in S.

(iii) S contains every point (x, y) in R2 which is connected to (a, b) by a line
segment of slope m.

These are certainly the geometric properties of a nonvertical straight line. It
follows from (i) and (ii) that the coordinates of every point (x, y) in S satisfy the
equation

y − b = m(x− a). (1.16)

Conversely, it follows from (iii) that, for every pair of real numbers x and y which
satisfy (4), the point (x, y) must lie in S. Thus the set S is the graph of (4), and, as
such, it is a straight line. Since nonvertical straight lines, as we have defined them,
have the above three properties, we conclude that our definition coincides with the
natural geometric one.

We define two lines L1 and L2 to be parallel if they are both vertical or if
they have the same slope. The following fact, which we shall prove later using
trigonometry, can also be deduced from Figure ?? by the methods of plane geometry.

Figure 1.31:

1.5.3. Two nonvertical lines L1 and L2 with slopes m1 and m2, respectively, are
perpendicular if and only if m1m2 = −1.

Example 17. (a) Write an equation of the straight line L1 that passes through
(−2, 4) and (3, 7). (b) Write an equation of the line L2 passing through (5,−2)
and parallel to L1. (c) Write an equation defining the line L3 that passes through
(−1,−3) and is perpendicular to L1.

The slope of the segment joining (−2, 4) and (3, 7) is 7−4
3+2 = 3

5 . An arbitrary
point (x, y) other than (3, 7) belongs to L1 if and only if
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y − 7

x− 3
=

3

5
.

Hence an equation defining L1 is 5(y − 7) = 3(x− 3), or, equivalently,

3x− 5y + 26 = 0.

The line L2 also has slope 5. Since it passes through (5,−2), it is defined by

y + 2

x− 5
=

3

5
if x 6= 5,

or, more generally, by 5(y + 2) = 3(x− 5), which is equivalent to

3x− 5y − 25 = 0.

The slope of the perpendicular is − 5
3 . Hence we obtain the equation

y + 3

x+ 1
= −5

3
, x 6= −1,

or 3y + 9 = −5x− 5, as an equation of L3.

What functions have graphs that are straight lines? The answer is an easy one.
If f is defined by

f(x) = ax+ b, −∞ < x <∞,

then its graph, which is the set of all ordered pairs (x, y) such that y = ax + b, is
certainly a straight line. Conversely, if the graph of an arbitrary function f is a
straight line, then the equation y = f(x) is equivalent to one of the form

a1x+ b1y + c1 = 0, a1
2 + b1

2 > 0. (1.17)

If b1 were zero, both points
(
− c1b1 , 0

)
and

(
− c1b1 , 1

)
would satisfy (5), but the def-

inition of function makes this impossible for the equation y = f(x). We conclude
that b1 6= 0 and that (5) is therefore equivalent to

y = −
(a1
b1

)
x− c1

b1
.

It follows [see Theorem ??] that the functions f(x) and −
(
a1
b1

)
x − c1

b1
are equal.

Thus the functions whose graphs are straight lines are precisely those of the form
ax+ b. These are the polynomials of degree less than 2, the linear functions.
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Problems

1. For each of the following lines, find an equation that defines it.

(a) The line through (2, 3) with slope 1.

(b) The line through (0, 1) with slope 1.

(c) The line through (0, 1) with slope −2.

(d) The line through (−1,−3) with slope − 1
2 .

(e) The line through (−2, 1) and (−1,−1).

(f) The line containing the point (1, 0) and (0, 1).

(g) The line through the origin containing the point (1,−19).

(h) The line with slope 0 that passes through (3, 4).

(i) The line through (2, 5) and (2, 8).

2. Draw the line defined by each of the following equations, and find the slope.

(a) x+ y = 1

(b) x = −y
(c) 2x− 4y = 3

(d) 7x = 3

(e) 7y = 3

(f) 4x+ 3y = 10.

3. Determine whether P , Q, and R lie on a line. If they do, draw the line and
write an equation for it.

(a) P = (0, 0), Q = (−1, 3), R = (3,−4).

(b) P = ( 1
2 ,

3
2 ), Q = ( 5

2 ,−
7
2 ), R = (− 3

2 ,−
13
2 ).

(c) P = (a1, a2), Q = (b1, b2), R = (c1, c2).

4. Draw the set of all ordered pairs (x, y) such that

(a) 4x2 + 4xy + y2 + 12x+ 6y + 9 = (2x+ y + 3)2 = 0.

(b) 5x2 + 7xy + 2y2 + 3x+ 3y = (5x+ 2y + 3)(x+ y) = 0.

5. The x-coordinate of a point where a curve intersects the x-axis is called an
x-intercept of the curve. The definition of a y-intercept is analogous.

(a) Find the x- and y-intercept of the line defined by y− 3x = 10. Draw the
line.

(b) Write an equation for the line with slope m and y-intercept equal to b.

6. For each of the following equations, define the function f(x) whose graph
is the set of ordered pairs that satisfy the equation. Which ones are linear
functions?

(a) 3x− y = 7
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(b) 5y = 3

(c) 2|x|+ 3y = 4

(d) x− y = 1

(e) y2 + 2x+ 3 = 0 (two functions)

(f) x2 − 2xy + y2 = 0

(g) y = 3x2 + 4x+ 2

(h) 5x+ 3y = 1.

7. Among the lines defined by the following equations, which pairs are parallel
and which perpendicular?

(a) 4x+ 2y = 13

(b) 3x− 6y = 0

(c) 3x+ 2y = 6

(d) y = −2x

(e) 4x = 13

(f) 4y = 13.

8. (a) Write an equation of the straight line L1 that contains the points (1, 3)
and (3,−2).

(b) Write an equation of the line with x-intercept 1 that is parallel to L1.

(c) Write an equation of the line perpendicular to L1 that passes through
(1, 3).

9. Prove that the two lines L1 and L2 in Figure ?? are perpendicular. (Hint:
Use congruent right triangles or the converse of the Pythagorean Theorem.)
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1.6 The Derivative.

The concept of the line tangent to a curve at a point is an important one in geometry.
However, it is not so simple an idea as it may first appear. Consider the graph of
a function f and a point P = (a, f(a)) on the graph, as illustrated in Figure ??.
Many people who would have little difficulty drawing the line tangent to the graph

Figure 1.32:

at P would not find it easy to give an accurate definition of the tangent line. For
example, to say that the tangent line at P is the line which cuts the graph at the
single point P , although true for some curves, is obviously not correct in general (in
particular, see Figure ??. We shall show that the problem of defining the tangent
line to the graph of f at P can be expressed in purely analytic terms involving the
function f . In fact, the problem leads directly to the definition of the derivative of
a function, the central idea in differential calculus.

Let t be an arbitrary nonzero real number, and consider the point Q(t) = (a+
t, f(a + t)), which, together with P = (a, f(a)), lies on the graph of f (see Figure
??). The slope of the secant line Lt containing P and Q(t) is equal to

Figure 1.33:
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m(P,Q(t)) =
f(a+ t)− f(a)

t
. (1.18)

If t is small in absolute value, then Lt is an approximation to what we shall define
to be the tangent line. The smaller the value of |t|, the better the approximation
will be. In some sense, therefore, we would like to define the tangent line L to be
the limit, as t approaches zero, of the lines Lt. We can do this, for although we
have not defined a limit of lines, we have defined limits for functions, and hence we
can express the limit of the slope of Lt. According to equation 1.6.1, it is given by

lim
t→0

m(P,Q(t)) = lim
t→0

f(a+ t)− f(a)

t
. (1.19)

We shall define the tangent line to the graph of f at P to be the line through P
having this limit as its slope, provided the limit exists.

Leaving the geometric interpretation aside for the moment, we observe that the
value of the limit in (??) depends only on the function f and on the number a.
Hence we give the following definitions: An arbitrary real-valued function f of a
real variable is differentiable at a number a in its domain if

lim
t→0

f(a+ t)− f(a)

t

exists (i.e., is finite). The derivative of f at a, denoted f ′(a), is this limit. Thus

f ′(a) = lim
t→0

f(a+ t)− f(a)

t
.

If f is differentiable at every number in its domain, it is simply called a differen-
tiable function.

Thus the slope of the line tangent to the graph of f at the point (a, f(a)) is
equal to the derivative f ′(a). It follows that an arbitrary point (x, y) lies on this
line if and only if

y − f(a) = f ′(a)(x− a),

and we therefore obtain the following equation of the tangent line:

y = f(a) + f ′(a)(x− a).

Note that the only variables that appear in this equation are x and y, and these
occur with exponent 1. The equation therefore defines y as a linear function of x.

Example 18. Find the derivative of the function f(x) = x2 +2 at x = 2, and write
an equation of the line tangent to the graph of f at the point (2, 6). As we have
seen above, the slope of the tangent line is the derivative f ′(2), and

f ′(2) = lim
t→0

f(2 + t)− f(2)

t
.

We have f(2) = 6, and f(2 + t) = (2 + t)2 + 2 = t2 + 4t+ 6. Hence

f(2 + t)− f(2)

t
=
t2 + 4t

t
= t+ 4, ift 6= 0.
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So
f ′(2) = lim

t→0
(t+ 4) = 4.

The tangent line passes through (2, 6) and has slope 4. Hence (x, y) lies on the
tangent if

y − 6

x− 2
= 4, x 6= 2,

and we therefore obtain

y − 6 = 4(x− 2) or 4x− y − 2 = 0,

as an equation of the line.

Example 19. Consider the function g defined by

g(x) =
1

x+ 2
, x 6= −2.

Compute the derivative g′(3). By definition,

g′(3) = lim
x→0

g(3 + t)− g(3)

t
.

We have g(3) = 1
5 , and g(3 + t) = 1

t+5 .

g(3 + t)− g(3)

t
=

1

t

( 1

t+ 5
− 1

5

)
=

5− (t+ 5)

5t(t+ 5)

= − t

5t(t+ 5)

= − 1

5(t+ 5)
, if t 6= 0.

We conclude that

g′(3) = lim
t→0

(
− 1

5(t+ 5)

)
= − 1

25
.

Example 20. Find F ′(a), where a > 0 and F is the function

F (x) =
1

x
1
2

, 0 < x <∞,

and write an equation of the line tangent to the graph of F at the point (4, 1
2 ). By

the definition of the derivative,

F ′(a) = lim
x→0

F (a+ t)− F (a)

t
.

In this case,
F (a+ t)− F (a)

t
=

1

t

( 1√
a+ t

− 1√
a

)
.
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The problem in computing any derivative from the definition is always the same.

We set up the fraction F (a+t)−F (a)
t and then compute the limit. To begin with, we

are faced with a fraction both the numerator and denominator of which approach
zero. The limit we seek is the relative rate at which numerator and denominator go
to zero. With most examples it is not possible to tell from a cursory glance just what
that relative rate is. So we experiment, performing various algebraic manipulations
that hopefully will finally change the fraction into a form from which we can tell
what the limit is. In the present example the following manipulation will do the
trick:

1

t

( 1√
a+ t

− 1√
a

)
=

1

t

√
a−

√
(a+ t)

√
a
√
a+ t

√
a+
√
a+ t

√
a+
√
a+ t

=
1

t

a− (a+ t)
√
a
√
a+ t(

√
a+
√
a+ t)

=
−1√

a2 + at(
√
a+
√
a+ t)

, if t 6= 0.

It is now possible to see what happens as t→ 0.

F ′(a) = lim
x→0

−1√
a2 + at(

√
a+
√
a+ t)

=
−1

2a
√
a

= − 1

2a3/2
.

Our principal interpretation of the derivative F ′(a) is that it is the slope of the line
tangent to the graph of F at the point (a, F (a)). For this particular function F , an
equation of the tangent line at (4, 12 ) is therefore found by writing

y − 1
2

x− 4
= F ′(4) = − 1

2 · 4 3
2

= − 1

16
.

Hence an equation of the tangent is

y − 1

2
= − 1

16
(x− 4).

The notation f ′(a) for the derivative suggests that we regard f ′ as a new function
whose value at a is the number f ′(a). The domain of f ′ is the set of all real numbers

a for which limt→0
f(a+t)−f(a)

t exists. With this point of view, it is natural to think
of the derivative evaluated not only at an arbitrary, but fixed, number a but also
at a variable x. In so doing, we are admitting the same dual interpretations that
were discussed in Section ??. That is, we can interpret f ′(x) either as the value of
the function f ′ at the number x, whence

f ′(x) = lim
t→0

f(x+ t)− f(x)

t
,

or as the composition of the variable x with the function f ′.

Example 21. If f(x) = x3 − 1, plot the graph of the derived function f ′. For any
real number x,

f ′(x) = lim
t→0

f(x+ t)− f(x)

t
.
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We have

f(x+ t)− f(x) = ((x+ t)3 − 1)− (x3 − 1)

= 3x2t+ 3xt2 + t3,

and so
f(x+ t)− f(x)

t
= 3x2 + 3xt+ t2, if t 6= 0.

Consequently,

f ′(x) = lim
t→0

(3x2 + 3xt+ t2) = 3x2.

The graph of the function f ′(x) = 3x2 is the parabola shown in Figure ??, on which

Figure 1.34:

the graph of the original function f(x) = x3 − 1 has also been drawn.

It is not surprising that there are several common notations for the derivative
of a function. One strong tradition reflects the basic fact that the derivative is the
limit of a ratio by writing it as a ratio. Thus

df

dx
= f ′.

This way of writing the derivative is called the differential notation. Using it, we
denote the derivative of f at a by

df

dx
(a) = f ′(a).
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Example 22. Let f(x) = x3 − 1. It was shown in Example ?? that f ′(x) = 3x2.
Each of the following equations is an example of acceptable notation.

df

dx
(2) = 3 · 22 = 12,

df

dx
(a) = 3a2,

df

dx
= 3x2,

d

dx
(x3 − 1) = 3x2.

One could also write df
dx (x) = f ′(x) = 3x2. There is no need for it, however, since

f ′(x) becomes identified with f ′ when it is regarded as the composition of the
independent variable x with the function f ′.

It should be emphasized that although the notation df
dx suggests a ratio, the

derivative as we have defined it is not a ratio—even though it is the limit of one.
df
dx is simply an abbreviation of f ′.

There are a few variations on the two notations that we have given for the
derivative which we shall also use frequently. If y = f(x), we may write any one of

y′ =
dy

dx
= f ′ =

df

dx

for the derivative. Similarly, for the derivative at a real number a, we have

y′(a) =
dy

dx
(a) = f ′(a) =

df

dx
(a).

Still other notations for the derivative, which we shall seldom use, but which the
reader may encounter in other books are

Df = Dxf = Dy = Dxy = ẏ,

where it is assumed that y = f(x).

Example 23. It follows from the computation in Example ?? that if F (x) = x−1/2,
x > 0, then the derivative is given by F ′(x) = − 1

2x
−3/2. If we write y = x−1/2, x >

0, the derivative is also written

y′ =
dy

dx
= − 1

2x3/2
.

The value of the derivative at 4 is

y′(4) =
dy

dx
(4) = − 1

2 · 43/2
= − 1

16
.

The slope of a straight line is the ratio of a change in y to a change in x. It
therefore measures the rate of change of y per unit change in x for the ordered
pairs (x, y) that make up the line. Consider the two lines defined by y = 10x − 3
and y = x − 3 respectively. The rate of change of y to x is 10 for the first and
1 for the second. For a function whose graph is not a straight line, however, the
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concept of the rate of change of y, or f(x), with respect to x is more profound.
There is the problem that the change in functional values f(x) per unit change in
x will not be constant along the graph. More basic, however, is the question of the
precise meaning or definition of the rate of change. The answer is provided by the
derivative. Since f ′(a) is the slope of the line tangent to the graph of f at the point
(a, f(a)), it measures the rate of change of f(x) with respect to x at that point.
In Example ?? we showed that if f(x) = x2 + 2, then f ′(2) = 4. We interpret
the number 4 not only as the slope of the line tangent to the graph of f at (2, 6)
but also as the rate of change of f(x) with respect to x there. From the picture of
the graph in Figure ?? it is apparent that at (2, 6) a small change in x produces a

Figure 1.35:

corresponding change four times as great in f(x). In Section ?? the idea of limit was
introduced by examples and by exploiting the reader’s intuitive understanding of
continuity and continuous curves. We then gave a formal definition and proceeded
in terms of it to go back and define continuity precisely. We shall do an analogous
thing here and now define the slope of the graph of f at the point (a, f(a)),
or more simply the slope of the curve y = f(x) at (a, f(a)), to be the derivative
f ′(a).

We conclude this section with the theorem

1.6.1. If a function f is differentiable at a, then it is continuous there.

Proof. The hypothesis that

lim
t→0

f(a+ t)− f(a)

t

exists implies tacitly that a is in the domain of f . If a quotient approaches a finite
limit as the denominator approaches zero, then the numerator must also approach
zero. This fact is a consequence of the theorem that the limit of a product is the
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product of the limits [see part (iii) of Theorem ??]. In this case, we have

lim
t→0

[f(a+ t)− f(a)] = lim
t→0

[f(a+ t)− f(a)

t
· t
]

= lim
t→0

[f(a+ t)− f(a)

t

]
· lim
t→0

t

= f ′(a) · 0 = 0.

The equation limt→0 [f(a+ t)− f(a)] = 0 is equivalent to

lim
t→0

f(a+ t) = f(a). (1.20)

If we set x = a+ t, then x approaches a as t approaches 0, and conversely. So (??)
becomes

lim
x→a

f(x) = f(a),

and the proof is complete.
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Problems

1. Let f(x) = 3x2 + 4. Using the definition of the derivative, compute

(a) f ′(1)

(b) f ′(a), for an arbitrary real number a.

2. Write an equation of the line tangent to the graph of the function f ′ in Problem
?? at the point

(a) (1, 7)

(b) (a, f(a)).

3. If F (x) = 3
2x+1 , compute F ′(3) using the definition of the derivative.

4. Using the definition of the derivative, compute f ′(a) for each of the following
functions.

(a) f(x) = x3

(b) f(x) = x2 + 3x+ 5

(c) f(x) = 7

(d) f(x) =
√
x, a > 0

(e) f(x) = x+ 1
x2 , x 6= 0

(f) f(x) = x3 + 3x2 + 3x+ 1

(g) f(x) =
√
x2 + 1

(h) f(x) = 1√
x2+1

(i) f(x) = x
1
3 .

5. Using the results of Problem ??, find an equation of the line tangent to the
graph of f at the point (a, f(a)), where

(a) f(x) = x3 and a = 0.

(b) f(x) = x2 + 3x+ 5 and a = 1.

(c) f(x) = 7 and a is arbitrary.

(d) f(x) = x+ 1
x2 and a is not zero.

6. (a) If F (x) = x2, use the definition of the derivative to find F ′(x).

(b) Plot the graphs of F and F ′ on the same xy-plane.

7. (a) Show that the function |x| is not differentiable at 0 and interpret this
fact geometrically.

(b) Compute the derivative at −1 and at 1 of the function |x|.

8. Show that the function
√
x is not differentiable at 0. Draw the graph and

interpret the nondifferentiability geometrically.

9. Using the results of Problem ??, find

(a) df
dx (−1) if f(x) = x2 + 3x+ 5.
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(b) df
dx (3) if f(x) = x3.

(c) df
dx (b) if f(x) = x3 + 3x2 + 3x+ 1.

(d) d
√
x2+1
dx .

(e) d(x2+3x+5)
dx (a).

(f) d
dx

(
x+ 1

x2

)
.

10. (a) If y = 2x+ 1, find dy
dx (a).

(b) If s = 16t2, find ds
dx (2).

(c) If s = 16t2, find ds
dx .

11. Using the definition of the derivative, prove that if y = ax2 + bx + c, then
dy
dx = 2ax+ b.

12. Give an example of a continuous function that fails to have a derivative at
some point.
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1.7 Derivatives of Polynomials and Rational Func-
tions.

Computing f ′(x) from the definition of the derivative by evaluating

lim
t→0

f(x+ t)− f(x)

t

can be quite a job. In this section we shall develop a set of theorems from which
the derivatives of many functions, including all polynomials and rational functions,
can be found easily and, what is more important, in a completely routine way.

1.7.1. If f and g are differentiable functions, then their sum f + g is differentiable.
Moreover, (f + g)′ = f ′ + g′.

Proof. Let a be a number in the domain of f + g. Recall that by the definition of
the sum of two functions

(f + g)(a) = f(a) + g(a),

(f + g)(a+ t) = f(a+ t) + g(a+ t).

Hence, by the definition of the derivative,

(f + g)′(a) = lim
t→0

(f + g)(a+ t)− (f + g)(a)

t

= lim
t→0

f(a+ t) + g(a+ t)− (f(a) + g(a))

t

= lim
t→0

(f(a+ t)− f(a)

t
+
g(a+ t)− g(a)

t

)
.

It follows from the existence of f ′(a) and g′(a) and the fact that the limit of a sum
is the sum of the limits [see the basic limit theorem ??(i)] that we may continue the
above sequence of equalities, writing

= lim
t→0

f(a+ t)− f(a)

t
+ lim
t→0

g(a+ t)− g(a)

t
= f ′(a) + g′(a)

= (f ′ + g′)(a).

This completes the proof.

1.7.2. If f is a differentiable function and c is a constant, then cf is differentiable
and (cf)′ = cf ′.

Proof. For any number a in the domain of f , we have (cf)(a) = cf(a). Hence

(cf)′(a) = lim
t→0

(cf)(a+ t)− (cf)(a)

t

= lim
t→0

cf(a+ t)− cf(a)

t

= lim
t→0

(
c · f(a+ t)− f(a)

t

)
.
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By the basic limit theorem ??(ii) and the assumed existence of f ′(a), we can con-
tinue the chain of equalities, writing

= c lim
t→0

f(a+ t)− f(a)

t
= cf ′(a)

= (cf ′)(a).

This completes the proof.

By taking c = −1, we get as a corollary of ?? and ?? that

(f − g)′ = f ′ − g′.

1.7.3. The derivative of any constant function is the constant function zero; i.e.,

c′ = 0.

Proof. Recall that we allow ourselves the liberty of denoting a real number and the
constant function whose value is that real number by the same letter. Doing so
here, we have

c(a) = c(a+ t) = c,

for any numbers a and t. Hence

c′(a) = lim
t→0

c(a+ t)− c(a)

t
= lim
t→0

0

t
= 0.

Example 24. Let f(x) = x3, and g(x) =
√
x+ 1 (x ≥ −1), and h(x) = x2 + 3,

and suppose we are given the information that

f ′(x) = 3x2,

g′(x) =
1

2
√
x+ 1

, x > −1,

h′(x) = 2x.

It follows from the three theorems developed so far in this section that the derivatives
of the functions

(a)5x3 − 2
√
x+ 1,

(b)x2,

(c)3x3 + 13x2 + 7,

are, respectively,

(a’) 15x2 − 1√
x+1

,

(b’) 2x,

(c’) 9x2 + 26x.
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For example, to get (b’), we write x2 in the form (x2 + 3)− 3. Then

(x2)′ = (x2 + 3)′ − 3′ = 2x− 0 = 2x.

The others are equally routine.

The next theorem deals with the derivative of the product of two functions
and its conclusion is perhaps unexpected. Note that it does not turn out that the
derivative of a product is the product of the derivatives.

1.7.4. If f and g are differentiable functions, then their product fg is differentiable.
Moreover, (fg)′ = f ′g + g′f .

Proof. Let a be a number in the domain of fg. By the definition of the product of
two functions we have

(fg)(a) = f(a)g(a),

(fg)(a+ t) = f(a+ t)g(a+ t).

Hence

(fg)′(a) = lim
t→0

(fg)(a+ t)− (fg)(a)

t

= lim
t→0

f(a+ t)g(a+ t)− f(a)g(a)

t
.

The following algebraic manipulation will enable us to put the above fraction into
a form in which we can see what the limit is:

f(a+ t)g(a+ t)− f(a)g(a) = f(a+ t)g(a+ t)− f(a)g(a+ t) + f(a)g(a+ t)− f(a)g(a)

= [f(a+ t)− f(a)]g(a+ t) + [g(a+ t)− g(a)]f(a).

Thus

(fg)′(a) = lim
t→0

[f(a+ t)− f(a)

t
g(a+ t) +

g(a+ t)− g(a)

t
f(a)

]
.

The limit of a sum of products is the sum of the products of the limits. [Again,
see the limit theorem ??.] Moreover, f ′(a) and g′(a) exist by hypothesis. Fi-
nally, since g is differentiable at a, it is continuous there [see Theorem ??]; and so
limt→0 g(a+ t) = g(a). We conclude that

(fg)′(a) =
[
lim
t→0

f(a+ t)− f(a)

t

]
lim
t→0

g(a+ t)

+
[
lim
t→0

g(a+ t)− g(a)

t

]
f(a)

= f ′(a)g(a) + g′(a)f(a) = (f ′g + g′f)(a).

This completes the proof of the product rule for differentiation.

Example 25. Suppose we are given the information that the functions f(x) =
(x2 + 2)3 and g(x) = (x2 + 2)5 have derivatives

f ′(x) = 6x(x2 + 2)2,
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g′(x) = 10x(x2 + 2)4.

Find the derivative of f(x)g(x) = (x2 +2)8. Theorem ??, which is sometimes called
Leibnitz’s Rule, states that

(f(x)g(x))′ = f ′(x)g(x) + g′(x)f(x).

Hence

((x2 + 2)8)′ = 6x(x2 + 2)2(x2 + 2)5 + l0x(x2 + 2)4(x2 + 2)3

= 16x(x2 + 2)7.

The graph of the identity function x is the straight line defined by the equation
y = x, which passes through the origin and has constant slope 1. It follows that
the derivative of the identity function is the constant function 1. Thus

x′ = 1. (1.21)

We can apply the product (Leibnitz’s) rule and obtain

(x2)′ = (xx)′ = x′x+ x′x = 1x+ 1x = 2x.

Since x3 = xx2, and we have just found the derivative of each factor, we can use
the product rule again to get

(x3)′ = (xx2)′

= x′x2 + (x2)′x = 1x2 + 2x · x
= 3x2.

Again,

(x4)′ = (xx3)′

= x′x3 + (x3)′x = 1x3 + 3x2 · x
= 4x3.

These results suggest not only the statement of the next theorem, but also how to
prove it.

1.7.5. If x is the identity function and n is a positive integer, then (xn)′ = nxn−1.

Proof. We have already proved the theorem for n = 1. (Actually we have also
proved it for n = 2, 3, and 4, but for the moment this is irrelevant.) Suppose
we had proved it for all positive integers up to and including k. In particular, we
would know that (xk)′ = kxk−1. We could then use the product rule to derive
(xk+1)′ = (xxk)′ = x′xk + (xk)′x = 1xk + kxk−1 · x = (k+ 1)xk. Thus the theorem
is true for n = 1, and if it is true for n = k, it is then also true for n = k + 1. We
conclude that the theorem holds for every positive integer n.

This is an example of a proof by mathematical induction. The reasoning can
be paraphrased like this: Suppose I know that I can get on the bottom rung of a
ladder. Suppose further that, if I am standing on any rung, then I can reach the
next rung. It follows that I can climb the ladder.
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Example 26. Find the derivatives of the polynomials:

f(x) = x3 − 2,

g(x) = 3x2 + 7x− 13,

y = 4x4 + 3x3 + 2x2 + x,

s =
1

2
gt2 (g is a constant, and t is an independent variable).

The answers are immediate:

f ′(x) = 3x2,

g′(x) = 6x+ 7,

y′ = 16x3 + 9x2 + 4x+ 1,

s′ = gt.

It should be clear that, as a result of the rules developed so far, the derivative of
any polynomial function can be computed immediately and in a purely mechanical
way. We turn next to the derivative of a ratio.

1.7.6. If f and g are differerentiable functions, then the quotient f
g is differentiable

[if g(a) = 0, then
(
f
g

)
(a) is not defined]. Moreover,(f

g

)′
=
gf ′ − fg′

g2
.

Proof. We first prove that the function 1
g is differentiable at a number a in its

domain provided g(a) 6= 0. By definition,

(1

g

)′
(a) = lim

t→0

(
1
g

)
(a+ t)−

(
1
g

)
(a)

t

= lim
t→0

1
g(a+t) −

1
g(a)

t
.

Note that since g is continuous at a [see Theorem (6.1)] and g(a) 6= 0, we know that
g(a+ t) 6= 0 for sufficiently small values of t. Since

1
g(a+t) −

1
g(a)

t
=

(g(a)− g(a+ t)

tg(a)g(a+ 1)

= −
( 1

g(a)g(a+ t)

)(g(a+ t)− g(a)

t

)
,

we have (1

g

)′
(a) = lim

t→0

[
−
( 1

g(a)g(a+ t)

)(g(a+ t)− g(a)

t

)]
.

The derivative g′(a) exists by hypothesis, and limt→0 g(a+ t) = g(a) 6= 0. The basic
limit theorem (4.1) therefore implies that(1

g

)′
(a) = −

( 1

g(a) limt→0 g(a+ t)

)(
lim
t→0

g(a+ t)− g(a)

t

)
= − 1

(g(a))2
g′(a) = − g′(a)

(g(a))2
.
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This proves the differentiability of the function − 1
g and also establishes the following

special case of the quotient rule: (1

g

)′
= − g

′

g2
. (1.22)

The general form of (7.6) can now be obtained using the product rule:(f
g

)′
=

(
f · 1

g

)′
= f ′ · 1

g
+ f ·

(1

g

)′
=

f ′

g
− f · g

′

g2
=
gf ′ − fg′

g2
.

This completes the proof.

Example 27. Find the derivatives of the following rational functions:

f(x) =
x2 + 1

x
,

g(y) =
y2 − 3y + 1

y3 − 1
,

h(s) =
1

s3

w =
u− a
u− b

(a and b are constants and u is an independent variable).

Applying our six rules, we get

f ′(x) =
x · 2x− (x2 + 1) · 1

x2
=
x2 − 1

x2
,

g′(y) =
(y3 − 1)(2y − 3)− (y2 − 3y + 1)3y2

(y3 − 1)2
=
−y4 + 6y3 − 3y2 − 2y + 3

(y3 − 1)2
,

h′(s) =
−3s2

s6
= − 3

s4
,

w′ =
(u− b) · 1− (u− a) · 1

(u− b)2
=

a− b
(u− b)2

.

It is important to realize that the symmetry present in the product rule is missing
in the quotient rule. For the former, order is immaterial: The prime appears once
on one factor and once on the other, and that is all there is to remember. This is
not so for the quotient rule, however, where the wrong order will result in the wrong
sign in the answer. There is no help for it but to memorize the formula precisely.

The formula for the derivative of xn has been proved only if n is a non-negative
integer. (It holds for n = 0 because x0 = 1.) The next theorem enlarges the scope
of the formula to include all integers.

1.7.7. If x is the identity function and n is an integer (positive, negative, or zero),
then (xn)′ = nxn−1.
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Proof. We shall assume that n is a negative integer, since the theorem is known to
be true otherwise. Then m = −n is a positive integer, and xn = 1

xm . Using (2) and
(7.5), we get

(xn)′ =
( 1

xm

)′
= − (xm)′

x2m
= −mx

m−1

x2m

= (−m)x−m−1 = nxn−1.

This completes the proof.

Thus, for example, if f(x) = x−7, then f ′(x) = −7x−8. In Section ?? we shall
show that the formula is actually valid, not only for integers, but for any rational
number n. Finally, in Chapter ?? we shall prove that (xa)′ = axa−1, for any real
number a.

Let us summarize in a single list the theorems that we have developed for find-
ing derivatives. To provide practice, we shall this time employ the alternative d

dx
notation. Let u and v be differentiable functions of x, and c a constant. Then

1.7.8. (i) d(u+v)
dx = du

dx + dv
dx ,

(ii) d(cu)
dx = cdudx ,

(iii) dc
dx = 0,

(iv) d(uv)
dx = u dvdx + v dudx ,

(v) dxn

dx = nxn−1, where n is any integer,

(vi) d
dx

(
u
v

)
=

v dudx−u
dv
dx

v2 .

Note that we have proved these theorems for arbitrary differentiable functions
u and v, not just for polynomials and rational functions.

Example 28. Let

y = 2x3 + 7x+ 1,

u = x7 +
1

x5
,

s =
3t2 + 2t+ 1

t− 4
.

Then

dy

dx
= 6x2 + 7,

du

dx
= 7x6 − 5

x6
,

ds

dt
=

(t− 4)(6t+ 2)− (3t2 + 2t+ 1) · 1
(t− 4)2

=
3t2 − 24t− 9

(t− 4)2
.



1.7. DERIVATIVES OF POLYNOMIALS AND RATIONAL FUNCTIONS. 73

We have seen in this section that the derivative of a polynomial is another
polynomial, and the derivative of a rational function is a new rational function.
Once we have found the derivative f ′ of any function f , we can go on and find the
derivative of f ′. The new function, denoted f ′′, is called the second derivative of
f . Clearly,

f ′′(a) = lim
t→0

f ′(a+ t)− f ′(a)

t
.

The third derivative, written f ′′′, is the derivative of the second derivative, and,
in principle, we can go on forever and form derivatives of as high order as we like.
It would obviously be absurd to write the seventeenth derivative with seventeen
primes, so we adopt the alternative rotation f (n) for the nth derivative of f .

The differential notation for the higher derivatives is based on the idea that d
dx is

a function, sometimes called an operator, which assigns to a function its derivative
with respect to x. Hence we write

d

dx

( df
dx

)
=

d2y

dx2
= f ′′,

d

dx

(d2f
dx2

)
=

d3y

dx3
= f ′′′,

dnf

dxn
= f (n),

d2f

dx2
(a) = f ′′(a), etc.

In addition, if a variable is used to denote a function, for example, if y = f(x),
we also use the expressions

d2y

dx2
= y′′ = f ′′,

dny

dxn
= y(n) = f (n), etc.

Example 29. Let f(x) = x3 + 3x2 + 1. Then

f ′(x) = 3x2 + 6x,

f ′′(x) = 6x+ 6,

f ′′′(x) = 6,

f (n)(x) = 0, if n > 3.

As another example, let y = 1
x+1 . Then

dy

dx
= − 1

(x+ 1)2
,

d2y

dx2
=

1

(x+ 1)3
,

...
dyn

dxn
=

(−1)nn!

(x+ 1)n+1
, n! = 1 · 2 · 3 · · ·n.
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Problems

1. With the aid of the rules for differentiation given in this section, compute
f ′ = df

dx for each of the following functions.

(a) f(x) = 3x2 + 4x+ 1

(b) f(x) = x2(x+ 1)

(c) f(x) = x3(x+ 2)2

(d) f(x) = (x2 − 4)(x2 + 2x+ 3)

(e) f(x) = 2x2 + 1
3x3

(f) f(x) = 2x
2−x

(g) f(x) = 2x
(2−x)2

(h) f(x) = x3

x5+1

(i) f(x) =
(

3−x
3+x

)2
(j) f(x) = (x2 + 1)3

(k) f(x) = 2x+1
x2+x

(l) f(x) = (x2 + 1)−1

(m) f(x) = (x+ x−1)2

(n) f(x) = (x− a)(x− b)(x− c)

2. Determine an equation of the line tangent to the parabola y = x2 − 4x+ 5 at
the point (1, 2). Draw the parabola and the tangent line.

3. The parabola y = ax2 + bx + c passes through (0, 4) and is tangent to the
line 2x + y = 2 at the point (1, 0), Find the coefficients a, b, and c for the
parabola.

4. Show that if f , g, and h are differentiable functions, then

(fgh)′ = f ′gh+ fg′h+ fgh′.

5. What is the correct product rule for differentiation, analogous to the one in
Problem ??, for (a) four factors, (b) n factors?

6. Obtain an equation of the tangent line to the graph of the function f(x) =
x3

x2+1 at the point where x = 2.

7. (a) If f(z) = 2z2 + 2 + 2
z2 , then f ′(2) = · · ·.

(b) If f(z) = 2z2 + 2 + 2
z2 , then f ′(x) = · · ·.

(c) If y = x+1
x−1 , then dy

dx = · · ·.

(d) If y = 1
x , then dy

dx (2) = · · ·.

(e) If f(x) = x2+1
x2 , then df

dx (a) = · · ·.

(f) If w = 3u2 + 4u+ 2, then dw
du = · · ·.
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8. The parabola y = ax2 + bx+ c is tangent to the line y = 4x+ 7 at the point
(−1, 3). In addition, dy

dx (−2) = 0. Find the coefficients a, b, and c.

9. For each of the following functions f , compute the derivative f ′ and the second
derivative f ′′.

(a) f(x) = 3x2 + 2x+ 1

(b) f(x) = 5x+ 1

(c) f(x) = x4

12 + x3

6 + x2

2 + x+ 1

(d) f(t) = t3(t2 − 1)

(e) f(x) = x3 + 1
x2

(f) f(s) = s2−1
s2+1 .

10. The line y = 3x−1 is tangent to the graph of the function f(x) = ax3+bx2+c

at the point (1, 2). Furthermore, d2f
dx2 (1) = 0. Compute a, b, and c.

11. (a) If f(x) = x3 − x2 + x− 1, then d2f
dx2 = · · ·.

(b) If y = x−1
x+1 , then d2y

dx2 = · · ·.

(c) If s = at3 + bt2 + ct+ d, where a, b, c, and d are constants, compute d3s
dt3 .

(d) If y = 1
x2 , then d3y

dx3 (a) = · · ·.

12. Find all the points on the graph of the function x3

3 − x
2 at which the tangent

line is perpendicular to the tangent line at (1,− 2
3 ).

13. There are many examples of a function f and a number a such that f(a) is
defined (a is in the domain of f) but f ′(a) does not exist. Another way of
saying the same thing is that the domain of f ′ can be a proper subset of the
domain of f . It is equally possible for f ′(a) to be defined and f ′′(a) not to
be. Let f be the function defined by

f(x) =

{
x2

2 if x ≥ 0,

−x
2

2 if x ≤ 0.

(a) Compute f ′.

(b) Is f a differentiable function? [That is, does f ′(a) exist for every real
number a?]

(c) Show that f ′′(0) does not exist, and compute f ′′(x) for x 6= 0.

14. Same as Problem ?? except that f(x) = x
4
3 .

15. (a) Draw the graph of the function g defined by

g(x) =

{
x2, x ≤ 1,
2x− 1, x > 1.

(b) Compute g′ and g′′.

(c) Are g and g′ differentiable functions?
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1.8 The Chain Rule.

The theorems in Section ?? were concerned with finding the derivatives of func-
tions that were constructed from other functions using the algebraic operations of
addition, multiplication by a constant, multiplication, and division. In this section
we shall derive a similar formula, called the Chain Rule, for the derivative of the
composition f(g) of a differentiable function g with a differentiable function f . Be-
fore giving the theorem, we remark that an alternative way of writing the definition
of the derivative of a function f is

f ′(a) = lim
x→a

f(x)− f(a)

x− a
. (1.23)

The substitution x = a + t will transform (??) into the expression that we have
heretofore used for the derivative. An equation equivalent to (??) is

lim
x→a

[f(x)− f(a)

x− a
− f ′(a)

]
= 0.

We next define a function r (dependent on both f and a) by

r(x) =

{
f(x)−f(a)

x−a − f ′(a), if x 6= a,

0, if x = a.
(1.24)

Note that the two functions f and r have the same domain. Furthermore, as a
result of (??), we have

lim
x→a

r(x) = 0 = r(a),

i.e., the function r is continuous at a. From the definition of r, we obtain the
equation

f(x)− f(a) = [f ′(a) + r(x)](x− a), (1.25)

which is true for every x in the domain of f . We now prove:

1.8.1 (The Chain Rule). If f and g are differentiable functions, then so is the
composite function f(g). Moreover, [f(g)]′ = f ′(g)g′.

Proof. Let a be a number in the domain of g such that g(a) is in the domain of f .
By definition

[f(g)]′(a) = lim
x→a

(f(g))(x)− (f(g))(a)

x− a

= lim
x→a

f(g(x))− f(g(a))

x− a
.

The intuitive idea behind the Chain Rule can be seen by writing

[f(g)]′(a) = lim
x→a

[f(g(x))− f(g(a))

g(x)− g(a)

g(x)− g(a)

x− a

]
=

[
lim
x→a

f(g(x))− f(g(a))

g(x)− g(a)

][
lim
x→a

g(x)− g(a)

x− a

]
.



1.8. THE CHAIN RULE. 77

Setting y = g(x) and b = g(a) and noting that y approaches b as x approaches a,
we have

[f(g)]′(a) = lim
y→b

f(y)− f(b)

y − b
limx→a

g(x)− g(a)

x− a
= f ′(b)g′(a)

= (f ′(g(a))g′(a)

= (f ′(g)g′)(a),

which is the desired result.
This argument fails to be a rigorous proof because there is no reason to suppose

that g(x)− g(a) 6= 0 for all x sufficiently close to a. To overcome this difficulty, we
use equation (??). With a typical element in the domain of f denoted by y instead
of x and with the derivative evaluated at b, equation (??) implies that

f(y)− f(b) = [f ′(b) + r(y)](y − b),

Moreover, limy→b r(y) = 0. Substituting y = g(x) and b = g(a), we get

f(g(x))− f(g(x)) = [f ′(g(a)) + r(g(x))][g(x)− g(a)].

Hence
f(g(x))− f(g(a))

x− a
= [f ′(g(a)) + r(g(x))]

g(x)− g(a)

x− a
.

We know that limx→a
g(x)−g(a)
x−a = g′(a). In addition, since g is differentiable at

a, it is continuous there [see Theorem ??], and so limx→a g(x) = g(a) = b. Since
limy→b r(y) = 0, it follows that |r(y)| can be made arbitrarily small by taking y
sufficiently close to b. Because limx→a g(x) = b, we may therefore conclude that
limx→a r(g(x)) = 0. The basic limit theorem ?? asserts that the limit of a sum or
product is the sum or product, respectively, of the limits. Hence

[f(g)]′(a) = lim
x→a

f(g(x))− f(g(a))

x− a

=
[

lim
x→a

f ′(g(a)) + lim
x→a

r(g(x))
]

lim
x→a

g(x)− g(a)

x− a
= [f ′(g(a)) + 0]g′(a) = f ′(g(a))g′(a)

= (f ′(g)g′)(a),

and the proof of the Chain Rule is complete.

Example 30. If F (x) = (x2 + 2)3, compute F ′(x). One way to do this problem is
to expand (x2 + 2)3 and use the differentiation formulas developed in Section ??.

F (x) = (x2 + 2)3 = x6 + 6x4 + 12x2 + 8,

F ′(x) = 6x5 + 24x3 + 24x.

Another method uses the Chain Rule. Let g and f be the functions defined, respec-
tively, by g(x) = x2 + 2 and f(y) = y3. Then

f(g(x)) = (x2 + 2)3 = F (x),
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and, according to the Chain Rule,

F ′(x) = [f(g(x))]′ = f ′(g(x))g′(x).

Since g′(x) = 2x and f ′(y) = 3y2, we get f ′(g(x)) = 3(x2 + 2)2 and

F ′(x) = 3(x2 + 2)2(2x)

= 6x(x4 + 4x2 + 4),

which agrees with the alternative solution above.

Example 31. Find the derivative of the function (3x7 + 2x)128. In principle, we
could expand by the binomial theorem, but with the Chain Rule at our disposal
that would be absurd. Let g(x) = 3x7 + 2x and f(y) = y128. Then g′(x) = 21x6 + 2
and f ′(y) = 128y127. Setting y = 3x7 + 2x, we get

((3x7 + 2x)128)′ = [f(g(x))]′ = f ′(g(x))g′(x)

= 128(3x7 + 2x)127(21x6 + 2).

The above two examples are instances of the following corollary of the Chain
Rule: If f is a differentiable function, then

(fn)′ = nfn−1f ′, for any integer n.

To prove it, let F (y) = yn. Then F (f) = fn, and we know that F ′(y) = nyn−1.
Consequently, (fn)′ = [F (f)]′ = F ′(f)f ′ = nfn−1f ′. A significant generalization of
this result is

1.8.2. If f is a positive differentiable function and r is any rational number, then
(fr)′ = rfr−1f ′.

The requirement that f is positive assures that fr is defined. A nonpositive
number cannot be raised to an arbitrary rational power. However, as we shall show
later (see ??, the requirement that r be a rational number is unnecessary. Theorem
?? is actually true for any real number r.

Proof. Let r = m
n , where m and n are integers, and set h = fr = fm/n. Then

hn = (fm/n)n = fm, which implies that (hn)′ = (fm)′. Using the above formula
for the derivative of an integral power of a function, we get

nhn−1h′ = mfm−1f ′.

Solving for h′, we obtain

h′ =
m

n
h1−nfm−1f ′

=
m

n
(fr)1−nfm−1f ′

= rfr−rn+m−1f ′

= rfr−1f ′.

This completes the proof—almost. Note that we have in the argument tacitly
assumed that h, the function whose derivative we are seeking, is differentiable. Is it?



1.8. THE CHAIN RULE. 79

If it is, how do we know it? The answer to the first question is yes, but the answer
to the second is not so easy. The problem can be reduced to a simpler one: If n is
a positive integer and g is the function defined by g(x) = x1/n, for x > 0, then g is
differentiable. If we know this fact, we are out of the difficulty because the Chain
Rule tells us that the composition of two differentiable functions is differentiable.
Hence g(f) is differentiable, and g(f) = f1/n. From this it follows that (f1/n)m

is differentiable, and (f1/n)m = fm/n. (When we express r as a ratio m
n , we can

certainly take n to be positive.) A proof that x1/n is differentiable, if x > 0, is most
easily given as an application of the Inverse Function Theorem ??, ??. However, the
intuitive reason is simple: If y = x1/n and x > 0, then yn = x, and by interchanging
x and y we obtain the equation xn = y. The latter equation defines a smooth curve
whose slope at every point is given by the derivative dy

dx = nxn−1. Interchanging x
and y amounts geometrically to a reflection about the line y = x. We conclude that
the original curve y = x1/n, x > 0, has the same intrinsic shape and smoothness as
that defined by y = xn, y > 0. It therefore must have a tangent line at every point,
which means that x1/n is differentiable.

Example 32. If y = x1/n, then

dy

dx
=

1

n
x(1/n)−1 =

1

nx1−1/n
, x > 0.

Example 33. Find the derivative of the function F (x) = (3x2 + 5x+ 1)5/3. If we
let f(x) = 3x2 + 5x+ 1, then Theorem (8.2) implies that

F ′(x) =
5

3
f(x)2/3f ′(x)

=
5

3
(3x2 + 5x+ 1)2/3(6x+ 5).

With the d
dx notation for the derivative, the Chain Rule can be written in a

form that is impossible to forget. Let f and g be two differentiable functions.
The formation of the composite function f(g) is suggested by writing u = g(x) and
y = f(u). Thus x is transformed by g into u, and the resulting u is then transformed
by f into y = f(u) = f(g(x)). We have

du

dx
= g′(x),

dy

du
= f ′(u),

dy

dx
= [f(g(x))]′.

By the Chain Rule, [f(g(x))]′ = f ′(g(x))g′(x) = f ′(u)g′(x), and so

dy

dx
=
dy

du

du

dx
. (1.26)

The idea that one can simply cancel out du in (??) is very appealing and accounts
for the popularity of the notation. It is important to realize that the cancellation
is valid because the Chain Rule is true, and not vice versa. Thus far, du is simply
a part of the notation for the derivative and means nothing by itself. Note also
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that (??) is incomplete in the sense that it does not say explicitly at what points
to evaluate the derivatives. We can add this information by writing

dy

dx
(a) =

dy

du
(u(a))

du

dx
(a).

Example 34. If w = z2 + 2z + 3 and z = 1
x , find dw

dx (2). By the Chain Rule,

dw

dx
=

dw

dz

dz

dx

= (2z + 2)
(
− 1

x2

)
.

When x = 2, we have z = 1
2 . Hence

dw

dx
(2) = (2 · 1

2
+ 2)(−1

4
) = −3

4
.

Example 35. Two functions, which we shall define in Chapter ??, are the hy-
perbolic sine and the hyperbolic cosine, denoted by sinhx and coshx respectively.
These functions are differentiable and have the interesting property that

d

dx
sinhx = coshx,

d

dx
coshx = sinhx.

Furthermore, sinh(0) = 0 and cosh(0) = 1. Compute the derivatives at x = 0 of

(a) (coshx)2,

(b) the composite function sinh(sinhx).

By ??, we obtain for (a)

d

dx
(coshx)2 = 2 coshx

d

dx
coshx = 2 coshx sinhx,

and so
d

dx
(coshx)2(0) = 2 cosh 0 sinh 0 = 0.

Part (b) requires the full force of the Chain Rule: Setting u = sinhx, we obtain

d

dx
sinhu =

d

du
sinhu

du

dx
= coshu coshx,

or
d

dx
sinh(sinhx) = cosh(sinhx) coshx.

Hence

d

dx
sinh(sinhx)(0) = cosh(sinh 0) cosh 0

= cosh 0 cosh 0 = 1.
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Problems

1. In each of the following problems find [f(g)]′(x).

(a) f(y) = y5 and g(x) = x2 + 1.

(b) f(y) = y2 + 2y and g(x) = x2 − 2x+ 2.

(c) f(y) = y3 and g(x) = x
x2+1 .

(d) f(u) = u
u+1 and g(x) = x2.

(e) f(x) = x−2 and g(x) = x
1
3 .

(f) f(x) = x4 and g(t) = t2−1
t2+1 .

(g) f(x) = g(x) = x2 + 3x+ 2.

2. Find f ′ given that

(a) f(x) = (1 + x2)10

(b) f(x) = (x4 + 3x3 + 2x2 + x+ 4)6

(c) f(x) = (t2 + 1)4(2t2 − 3)3

(d) f(x) =
√
x3 − 1

(e) f(x) =
(
x−1
x+1

)3
(f) f(s) = 1√

s2+1

(g) f(y) = y2

(y2+1)
3
2

(h) f(u) = 5(
u+ 1√

u

)4 .

3. If f(y) = y−2 and g(x) = x
1
2√

5x3+6x2+4x
, compute the derivative of the com-

posite function f(g) in two ways:

(a) By finding f(g(x)) first and then taking its derivative.

(b) By the Chain Rule.

4. If z = 5y7 + 2y2 + 1 and y = 2x2 − 6, find dz
dx and dz

dx (2).

5. If y = x3 and x = 1√
t2+5

, compute dy
dt and dy

dt (2) using the Chain Rule.

6. Let y = x2 + 3x+ 2 and x = t−1
t+1 . Compute dy

dt (2) in two ways:

(a) By evaluating the composite function y(t) and then by taking its deriva-
tive.

(b) By the Chain Rule.

7. Prove directly by induction on n without using the Chain Rule that if f is a
differentiable function and n is a positive integer, then (fn)′ = nfn−1f ′.

8. Prove as a corollary of the Chain Rule that

[f(g(h))]′ = f ′(g(h))g′(h)h′.
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9. Using Problem ??, show that if w = f(z) and z = g(y) and y = h(x), then

dw

dx
=
dw

dz

dz

dy

dy

dx
.

10. Let w = z − 1
z , z =

√
y3 + 1, and y = 2x3 − x+ 1. Find dw

dx (1).

11. Using Example ??, compute

(a) d
dx (sinhx)2

(b) d2

dx2 sinhx

(c) d2

dx2 coshx(0)

(d) d
dx sinh(coshx).

12. If z = f(y) and y = g(x), show that d2z
dx2 = d2z

dy2

(
dy
dx

)2
+ dz

dy
d2y
dx2 .

13. If z = 2y3 − 3y + 1 and y = x2 − 1, compute d2z
dx2 (2) in two ways:

(a) By evaluating the composite function z(x) and finding z′′(2).

(b) Using the result of Problem ??.

14. Let f(x) be a differentiable function with the property that f ′(x) = 1
x . If g(x)

is a differentiable function with the property that its composition with f is
the identity function, i.e., f(g(x)) = x, prove that g′ = g.
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1.9 Implicit Differentiation.

The subset C of the xy-plane consisting of all ordered pairs (x, y) that satisfy the
equation

x2

9
− y2

4
= 1 (1.27)

is the hyperbola shown in Figure ??. It is apparent from the figure that the whole
set C is not a function, since it is easy to find instances of ordered pairs (a, b)
and (a, c) in C with b 6= C. For example, both (6, 2

√
3) and (6,−2

√
3) lie on the

curve. On the other hand, many subsets of C are functions. For instance, the set
of all ordered pairs (x, y) in C for which x > 3 and y > 0, which is drawn with a
heavy curve in Figure ??, is a function f(x). Central to the ideas that follow is the
fact that since the points (x, f(x)) that comprise f belong to C, they satisfy the
equation of the hyperbola. That is,

x2

9
− (f(x))2

4
= 1, (1.28)

for every x > 3. We say that the function f is defined implicitly by (1).
It is geometrically obvious that the hyperbola has a tangent line at every point,

and we therefore conclude that the function f(x) is differentiable except at x = 3,
where the tangent is vertical. We can compute f ′(x) most easily by observing that
since (2) holds for every x in the domain of f , it is an y-axis equality between two

functions. Specifically, the composite function x2

9 −
(f(4))2

4 is equal to the constant
function 1. Equal functions have equal derivatives. Hence

Figure 1.36:

[x2
9
− (f(x))2

4

]′
= 1′.

The rules of differentiation yield

2x

9
− 2

4
f(x)f ′(x) = 0,
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and solving for f ′(x), we obtain

f ′(x) =
4x

9f(x)
. (1.29)

In particular, if x = 6, then f(x) = 2
√

3, and

f ′(6) =
4 · 6

9 · 2
√

3
=

4

3
√

3
.

It is important to realize that there is no single function f defined implicitly by
equation (??). The set of all points (x, y) of C for which y < 0 is another such
function, and it includes the point (6,−2

√
3). Note that if this were the function

that we denoted by f , we would still obtain equations (2) and (3). For thief,
however, we have f(6) = −2

√
3. Hence, this time,

f ′(6) =
4 · 6

9(−2
√

3)
= − 4

3
√

3
.

Example 36. The set of all points (x, y) that satisfy the equation

5x2 − 6xy + 5y2 = 8 (1.30)

Figure 1.37:

can be shown to be the ellipse shown in Figure ??. What is the slope of the line

tangent to the ellipse at (0, 2
√

2
5 )? It is clear from the figure that the set y-axis of

all pairs (x, y) on the ellipse for which y > 0 and y > x (drawn with a heavy curve
in the figure) is a differentiable function f(x). This function is implicitly defined
by equation (??). Thus

5x2 − 6xf(x) + 5(f(x))2 = 8,

for every x in the domain of f . Since this is an equality between two functions
we obtain by differentiating both sides,

10x− 6f(x)− 6xf ′(x) + 10f(x)f ′(x) = 0.
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Solving for f ′(x), we get

f ′(x) =
3f(x)− 5x

5f(x)− 3x
.

This problem deals with an implicitly defined function whose graph passes

through the point (0, 2
√

2
5 ). Hence f(0) = 2

√
2
5 and therefore f ′(0) = 3

5 , which is

the slope of the desired tangent line.

The definition, which we have thus far illustrated with two equations, is the
following: A function f(x) is defined implicitly by an equation F (x, y) = c,
where c is a constant, if F (x, f(x)) = c for every x in the domain of f . We emphasize
that, in general, an equation in x and y defines y as a function of x in many ways.
The most we can hope for in the way of uniqueness is that, for a given point (a, b)
such that F (a, b) = c, we can choose an open interval containing a which is the
domain of precisely one continuous function f(x) defined implicitly by F (x, y) = c
with f(a) = b.

Note that in both our examples the derivative f ′ of the implicitly defined func-
tion was computed without solving the original equation for f . The fact that this
is always possible is almost too good to be true—especially for an equation where
first solving for y in terms of x is either impractical or even impossible (except by
numerical techniques). This method of finding the derivative of an implicitly de-
fined function by differentiating both sides of the equation that defines the function
is called implicit differentiation.

Example 37. The point (2, 1) lies on the curve defined by the equation

x3y + xy3 = 10.

Assuming that this equation implicitly defines a differentiable function f(x)
whose graph passes through (2, 1), compute f ′(2). Letting y stand for f(x), we
obtain by implicit differentiation

3x2y + x3
dy

dx
+ y3 + x3y2

dy

xd
= 0.

Hence

dy

dx
= −3x2y + y3

3xy2 + x3
.

At the point x = 2, y = 1, we therefore get

dy

dx

∣∣∣ x = 2
y = 1

= −13

14
.

Example 38. The set of all pairs (x, y) that satisfy the equation

y3 + yx2 + ax2 − 3ay2 = 0 (1.31)

is the curve, called a trisectrix, shown in Figure ??. Find dy
dx when x = a.

So stated, the problem is impossible. There are three distinct points on the y-axis
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curve with x-coordinate equal to a, which may be found by substituting a = x in
equation (??) and then solving for y. The points are (a, a), (a, (1 +

√
2)a), and

(a, (1 −
√

2)a). As shown in the figure, we may select a small interval about a
to serve as the domain of three different implicitly defined functions. To find the
derivative of each one at x = a, we proceed by implicit differentiation:

Figure 1.38:

3y2
dy

dx
+ x2

dy

dx
+ 2xy + 2ax− 6ay

dy

dx
= 0.

Hence

dy

dx
=

2xy + 2ax

6ay − x2 − 3y2
.

Thus the derivatives at a of the three differentiable functions defined implicitly
by equation (??) are, respectively,

dy

dx

∣∣∣ x = a
y = a

= 2,

dy

dx

∣∣∣ x = a

y = a(1 +
√

2)

= −1−
√

2

2
,

dy

dx

∣∣∣ x = a

y = a(1−
√

2)

= −1 +

√
2

2
.

The reader should note that in each of the above examples of implicit differen-
tiation the existence of an implicitly defined differentiable function has either been
assumed outright or just)fied geometrically from a picture. The problem of giving
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analytic conditions which ensure that an equation F (x, y) = c implicitly defines y
as a differentiable function of x in the neighborhood of a point (a, b) is the subject
of the Implicit Function Theorem. A discussion and proof of this famous theorem
may be found in any standard text in advanced calculus.
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Problems

1. The equation (x2 + y2)2 = 2(x2 − y2) (see Figure ??) implicitly defines a

differentiable function f(x) whose graph passes through the point
(√

3
2 ,

1
2

)
.

Compute f ′
(√

3
2

)
.

2. Compute the slope of the tangent line to the circle x2 + y2 = 4 at the point
(1,
√

3) and at the point (1,−
√

3).

3. (a) The equation x3 + y3 − 6xy = 0 (see Figure ??) implicitly defines a
differentiable function f(x) whose graph passes through (3, 3). Compute
f ′(3).

(b) How many differentiable functions f(x) having a small interval about the
number 3 as a common domain are implicitly defined by the equation in
???

(c) Compute f ′(3) for each of them.

4. For each of the following equations calculate dy
dx at the point specified.

(a) 4x2 + y2 = 8, at the point (1, 2).

(b) y2 = x, at the point (4, 2).

(c) y2 = x5, at one point (1, 1).

(d) y2 = x−1
x+1 , at the point (a, b).

(e) y2 = x2−1
x2+1 , at the point (a, b).

(f) x2y + xy2 = 6, at the point (1, 2).

(g) x2 + 2xy = 3y2, at the point (1, 1).

(h) 5y2 = x2y + 2
xy2 , at the point (2, 1).

(i) x
3
2 + y

3
2 = 2, at the point (1, 1).

(j) x5 + 3x2y3 + 3x3y2 + y5 = 8, at the point (1, 1).

5. What is the slope of the line tangent to the graph of y3x2 = 4 at the point
(2, 1)? Calculate y′′(2).

6. Each of the following equations implicitly defines y as a differentiable function

of x in the vicinity of the point (a, b). Compute dy
dx (a) and d2y

dx2 (a).

(a) x2 − y2 = 1, (a, b) = (
√

2, 1).

(b) y2 = 1− xy, (a, b) = (0, 1).

(c) xy2 = 8, (a, b) = (2,−2).

(d) x2y3 = 1, (a, b) = (−1, 1).



Chapter 2

Applications of the
Derivative

2.1 Curve Sketching.

The slope of the tangent line to the graph of a function is one interpretation of
the derivative, and the rate of change of y with respect to x is another. Both
interpretations aid us in the sketching of graphs. A little practice will show that
we need plot relatively few points for a sketch if we know the slope of the graph at
each of these points. Let us consider the function f defined by

f(x) =
1

3
x3 − 4x2 + 12x− 5.

Its domain is R, and, for each real value of x, we find the corresponding value f(x).
To help us make the sketch, we look at the derivative:

f ′(x) = x2 − 8x+ 12 = (x− 2)(x− 6).

If x < 2, each of the factors of f ′(x) is negative, and hence their product is
positive. Thus the first derivative is positive for each value of x less than 2. With
the rate-of-change interpretation, this means that the rate of change of f with
respect to x is positive or that f(x) increases whenever x does. Thus, as x increases
from −∞ to 2, f(x) increases. The graph goes up as one moves to the right until
x = 2.

If x = 2, then f ′(x) = 0, and the tangent, having a slope of 0, is horizontal. If
2 < x < 6, the first factor of f ′(x) is positive, the second factor is negative, and
their product is negative. With a negative rate of change, f(x) must decrease as x
increases. Thus, as x increases from 2 to 6, f(x) decreases. The graph goes down
as one moves to the right from x = 2 to x = 6.

If x = 6, then f ′(x) = 0, and the tangent to the graph is again horizontal.
If x > 6, both factors of f ′(x) are positive, and hence their product is positive.

Thus f(x) increases as one goes to the right beyond x = 6. Since f(2) = 1
3 · 8− 4 ·

4 + 12 · 2− 5 = 5 2
3 and f(6) = 1

3 · 216− 4 · 36 + 12 · 6− 5 = 5 2
3 , we plot the points

(2, 5 2
3 ) and (6,−5). At each of these points we sketch a horizontal line segment. An

89
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additional point may be found by inspection: Since f(0) = −5, the point (0,−5) is
also plotted on Figure ??.

We now know that the graph comes up from lower left through (0,−5) to (2, 5 2
3 ),

goes down from (2, 5 2
3 ) to (6,−5), and then goes up to the right from (6,−5). But

we do not know its shape. Further information on this may be obtained from the
second derivative:

f ′′(x) = 2x− 8 = 2(x− 4).

Figure 2.1:

If x < 4, then f ′′(x) is negative. Since f ′′ is the rate of change of f ′ with
respect to x, this means that f ′ is decreasing as x is increasing from −∞ to 4. If
we interpret f ′ as the slope of the tangent, then this means that the slope of the
tangent decreases as x increases. We can get some idea of shape here if we plot three
points on Figure ??(a), the middle one the highest and with a horizontal tangent
drawn through it. Note that the tangent through the middle point has slope less
than that of the tangent through the left point and that the tangent through the
right point has a slope which is still less. The slopes of tangents at intermediate
points will take on intermediate values, and thus a curve passing through these
three points with these three tangents must be concave downward or must “bend”
down. Whenever f ′′(x) < 0, the graph of f(x) will be bending down. The part of
the curve through the three points of Figure ??(a) with the appropriate tangents is
drawn in Figure ??(b).

If x = 4, then f ′′(x) = 0, and the rate of change of f ′ with respect to x is 0.
Thus the slope of the tangent has ceased decreasing.

If x > 4, then f ′′(x) > 0, and f ′ increases as x increases. Thus the slope of the
tangent increases as x increases. Again we plot three points, the middle one the
lowest and with a horizontal tangent drawn through it. These are shown in Figure
??(a). Since the slope increases as x increases, the tangent through the middle point
has slope greater than that of the tangent through the left point, and the tangent
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Figure 2.2:

through the right point has a slope which is still greater. The slopes of tangents at
intermediate points take on intermediate values, and thus a curve passing through
these three points with these tangents must be concave upward or must “bend” up.
Whenever f ′′(x) > 0, the graph of f(x) will be bending up. The part of the curve
through the three points of Figure ??(a) with the appropriate tangents is drawn in
Figure ??(b).

Figure 2.3:

After finding that f(4) = 1
3 · 64− 4 · 16 + 12 · 4− 5 = 1

3 , we are ready to sketch
the graph in Figure ??. The graph is concave downward from the far left through
(0,−5) to a high point at (2, 5 2

3 ) and on to (4, 13 ). It is then concave upward from
(4, 13 ) to a low point at (6,−5) and on upward to the right. The graph is, of course,
incomplete, since it continues indefinitely both downward to the left and upward
to the right. The point (2, 5 2

3 ), being higher than any nearby point on the graph,
is called a local, or relative, maximum point. It is certainly not the highest point
on the graph, hence the word “local,” or “relative.” Similarly, the point (6,−5) is
a local, or relative, minimum.

In summary, the graph of a function is concave downward when the second
derivative of the function is negative and concave upward when the second deriva-
tive of the function is positive. The graph has horizontal tangents when the first
derivative is 0. The points where the tangent is horizontal may be local maximum
points or local minimum points or, as we shall see in Example 1, points of horizontal
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Figure 2.4:

inflection.
It is important to understand clearly the definitions of the various expressions

used in sketching graphs. The ordered pair (a, f(a)) is a local maximum point
or a local minimum point of the function f if there is an open interval of the
x-axis containing a such that, for every number x in that interval,

f(a) ≥ f(x) or f(a) ≤ f(x),

respectively. As we have indicated, the words relative maximum and relative mini-
mum are also used. On the other hand, the pair (a, f(a)) is an absolute maximum
point if, for every x in the domain of f ,

f(a) ≥ f(x),

and an absolute minimum point if

f(a) ≤ f(x).

An extreme point is one that is either a maximum or minimum point (local or
absolute). If (a, f(a)) is an extreme point, we shall call f(a) the extreme value
of the function and shall say that the function has the extreme value at a. For
example, we say that the function f in Figure ?? has a local minimum value of
−5 which occurs at x = 6. However, this function has no absolute maximum or
minimum points.

Any point (a, f(a)), where f ′(a) = 0, is called a critical point of f .
A point of inflection is a point where the concavity changes sign. Thus (a, f(a))

is a point of inflection of the function f if there is an open interval on thex-axis
containing a such that, for any numbers x1 and x2 in that interval,

f ′′(x1)f ′′(x2) < 0 (2.1)
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whenever x1 < a and x2 > a. The inequality (1) simply says that f ′′(x1) and
f ′′(x2) are of opposite sign. A characteristic of a point of inflection of a function is
that its tangent line crosses the graph of the function at that point. The different
possibilities are illustrated in Figure ??. Of the points P,Q, and R, only R is a
point of inflection. If a function has a point of inflection (a, f(a)) and the second
derivative f ′′(a) exists, then f ′′(a) = 0. However, it is possible to have a point of
inflection at a point where there is no second derivative (see Problem 10 at the end
of this section).

Figure 2.5:

Example 39. Sketch the graph of f(x) = (x+ 1)3(x − 1). We first compute the
derivatives:

f ′(x) = (x+ 1)3 + (x− 1)3(x+ 1)2 = (x+ 1)2(4x− 2),

f ′′(x) = (x+ 1)24 + (4x− 2)2(x+ 1) = 12x(x+ 1).

Setting f ′(x) = 0, we obtain x = −1 and x = 1
2 . Thus (−1, 0) and ( 1

2 ,−
27
16 )

are critical points and the tangents through these points are horizontal. Setting
f ′′(x) = 0, we get solutions x = −1 and x = 0. Thus, if there are any points of
inflection, they must occur at these two places. It is easy to see that the sign of the
second derivative for values of x along the x-axis follows the pattern

positive positivenegative

-1 0 x-axis

We conclude that (−1, 0) and (0,−1) are in fact points of inflection. The point
(−1, 0), being both a critical point and a point of inflection, is a point of horizontal
inflection. The graph is shown in Figure ??. Note that the graph crosses the
tangent at the point of horizontal inflection and that the slope of the tangent line
does not change sign at that point. The first derivative (hence the slope of the
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tangent) increases to zero, as we go from the left to x = −1 and then decreases
again through negative values, from x = −1 to x = 0. The point ( 1

2 ,−
27
16 ), being the

lowest point on the graph, is not only a local minimum point but also an absolute
minimum point. − 27

16 is the absolute minimum value of this function.

Figure 2.6:

In the plotting of graphs of polynomial functions, we are frequently helped by
knowing that a straight line can cut the graph of a polynomial function of the nth
degree in at most n points. This is a consequence of the algebraic fact that, if p(x)
is a polynomial function of degree n, then the equa tion p(x) = 0 can have at most
n distinct real roots. The function in Example 1 may be expanded to show that it
is a polynomial of degree 4. It is possible to draw a straight line which will cut its
graph in four points, but no straight line which will cut it in as many as five points.

Example 40. Sketch the graph of f(x) = 1− x2/3. As before, we find derivatives:

f ′(x) = −2

3
x−1/3,

f ′′(x) =
2

9
x−4/3.

For no values of x will we have f ′(x) = 0, and so there are no critical points. On
the other hand, f ′(0) is not defined and the graph has a vertical tangent at (0, 1).
The first derivative is defined for all other values of x and is positive for x < 0 and
negative for x > 0. Thus, at each point on the graph to the left of the vertical
axis, the slope of the tangent is positive, increasing without limit as x → 0−. At
each point on the graph to the right of the vertical axis, the slope of the tangent
is negative, increasing from negative numbers large in absolute value as x increases
from 0. The second derivative f ′′(x) is positive for all values of x except for x = 0,
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Figure 2.7:

where it is not defined. It follows that there are no points of inflection. The graph
is nowhere concave downward.

Note in Figure ?? that the portion of the graph which lies to the right of the
vertical axis is the “mirror reflection” across that axis of the portion which lies to
the left of the vertical axis. Note also that f(−x) = f(x). Such a function, where
f(−x) = f(x), is called an even function and its graph will always contain two
halves which can be brought into coincidence with each other by folding the graph
along the vertical axis (Figure ??). The problem of graphing an even function is
simplified by graphing it for positive values of x and drawing, for negative values of
x, a reflection over the vertical axis of the right half of the graph.

Figure 2.8:

Example 41. Sketch the graph of f(x) = x+ 4
x . The derivatives are

f ′(x) = 1− 4

x2
,

f ′′(x) =
8

x3

The first derivative vanishes forx = 2 and x = −2, and thus we see that (2, 4) and
(−2,−4) are critical points. The second derivative is negative when x is negative,
so the curve is bending down at (−2,−4) and that point must be a local maximum
point. Similarly, f ′′(2) > 0 and (2, 4) is a local minimum point. f(0) is unclefined
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and |f(x)| increases as x → 0. Behavior for large values of |x| can be seen, since
f(x) approaches x as x increases or decreases without bound.

Figure 2.9:

From Figure ??, one can see the graph approaching the vertical axis as x → 0
from either side, and also approaching the graph of the equation y = x as |x|
increases without bound. Note that the two parts of the graph are reflections of
each other across the origin, and also that f(−x) = −f(x). Any function f for
which f(−x) = −f(x) is called an odd function. The graph of an odd function
may be obtained by first drawing the graph of f(x), where x > 0 (see Figure ??).
We may then obtain the remainder of the y-axis graph by first reflecting this positive
part about the y-axis and then about the x-axis. The result of reflecting first about
one axis and then about the other we shall call reflection about the origin.

Figure 2.10:

Summarizing the techniques of curve sketching, we find the first and second
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derivatives of the function with respect to x, we find the points where either deriva-
tive vanishes, and we determine critical points and points of inflection. Points of
general use in graphing f(x) include:

1. The tangent is horizontal if f ′(x) = 0.

2. The curve is concave downward if f ′′(x) is negative, concave upward if f ′′(x)
is positive.

3. (a, f(a)) is a local maximum point if f ′(a) = 0 and f ′′(a) < 0, a local minimum
point if f ′(a) = 0 and f ′′(a) > 0.

4. (a, f(a)) is a point of inflection if f ′′(x) changes sign as x increases through
a.

5. Even and odd functions need be investigated carefully only for x ≥ 0. The
rest of the graph of an even function is found by reflection across the vertical
axis, of an odd function by reflection about the origin.
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Problems

1. Sketch the graph of each of the following functions, carefully labeling all ex-
treme points and all points of inflection. Classify each extreme point as to
type.

(a) x2 − 5x+ 6

(b) 3− 2x− x2

(c) 2x2 − 3x− 1

(d) 5− 2x2

(e) x3 − 3x

(f) (x+ 1)(x3 − x2 − 5x+ 13)

(g) x+2
x

(h) 16
x + x2

(i) x3 − x
(j) x4 − x

(k) (a
2
3 − x 2

3 )
3
2

(l) |x|
(m) |x− 7|
(n) 3 + 6

x−2

(o) x4 − 8x2 + 3

(p) x2−5x+4
8x

(q) (x− 1)(x− 2)(x− 3)

(r) 1 + 6x− 1
2x

3.

2. Show that a polynomial function of x which consists only of even powers of x
is an even function.

3. Show that a polynomial function of x which consists only of odd powers of x
is an odd function.

4. (a) Show that the graph of the function ax2 + bx + c, a 6= 0, always has an
absolute extreme point.

(b) Which of the constants a, b, and c determines the type of extreme point
of the graph?

(c) What is the extreme value of ax2 + bx+ c?

(d) Write ax2 + bx + c as a
(
x2 + b

ax
)

+ c, complete the square on x2 + b
ax

without changing the function, and find the result of ?? algebraically.

5. Show that the graph of x3 − 12x has a local maximum point but no absolute
maximum point and that it also has a local maximum point which is strictly
local.

6. Sketch the graph of f(x), if f(0) = 3 and f ′(x) = −1 for all real values of x.
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7. Sketch the graph of f(x), if f(−1) = 2 and f ′(x) = 1
2 for all real values of x.

8. Sketch the graph of f(x), if f(0) = 0 and f ′(x) = x for all real values of x.

9. Construct a function which has a local maximum point, with local maximum
point defined as in this section, but would not have a local maximum if the
definition were changed to demand f(a) > f(x), x 6= a, instead of f(a) ≥ f(x).

10. Graph the function x
1
3 and show that it has a point of inflection where neither

the first nor the second derivative exists.
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2.2 Maximum and Minimum Problems.

In sketching the graph of a function, we spent some time looking for maximum and
minimum points, both local and absolute. This idea suggests that we can use the
same technique to find that value (or those values) of a variable which maximize or
minimize a length, an area, or a profit. For example, what should be the dimensions
of the rectangular field which can be enclosed with a fixed length of fencing but has
the greatest area? Or, what are the dimensions of the quart can which can be made
from the least amount of tin? Or, if the telephone company were to reduce the
rate per instrument for each new instrument over a certain number, what number
of telephones would give them the greatest profit?

These are all problems which can be solved by calculus and, more specifically,
by the technique developed in Section 1. However, before we tackle them, we shall
consider the theorems which justify the methods which we shall use in solving them.

2.2.1. If a belongs to an open interval in the domain of f , if f ′(a) exists, and if
(a, f(a)) is a local extreme point (either a maximum or a minimum), then f ′(a) = 0.

Proof. Geometrically this theorem is obvious. We shall prove it, only in the case
that (a, f(a)) is a local maximum point, since a similar proof (with the inequalities
reversed) is valid for a local minimum point. Since (a, f(a)) is a local maximum
point, f(a+ t) ≤ f(a) for all t in some open interval containing 0. Thus f(a+ t)−
f(a) ≤ 0. If t is negative, f(a+t)−f(a)t ≥ 0 and

lim
t→0−

f(a+ t)− f(a)

t
≥ 0.

If t is positive,

f(a+ t)− f(a)

t
≤ 0 and

lim
t→0+

f(a+ t)− f(a)

t
≤ 0.

Since f ′(a) exists, the two limits above must have a common value which is f ′(a).
Thus f ′(a) is both greater than or equal to zero and also less than or equal to zero.
The only number which satisfies both of these conditions is zero, hence f ′(a) = 0.
This completes the proof.

In our sketches we found points where the first derivative vanished. If the curve
was concave downward at that point, we identified a local maximum point; if the
curve was concave upward at that point, we identified a local minimum point. We
summarize this result in the following theorem.

2.2.2. Let f be a function with a continuous second derivative and with f ′(a) = 0.
Then (a, f(a)) is a local maximum point if f ′′(a) < 0 and is a local minimum point
if f ′′(a) > 0.

This theorem is easily proved when we have more mathematics at our command.
Specifically, it follows quickly from Taylor’s Formula with the Remainder (see Prob-
lem 13, page 540). For the work at hand, it will be sufficient to understand the
theorem and to be able to use it.



2.2. MAXIMUM AND MINIMUM PROBLEMS. 101

If the domain of f is restricted to a closed interval, we may find an absolute
extreme point which lies on the boundary of the interval. Consider the function
graphed in Figure ??. This function is defined on the closed interval [a, d] and has
a local minimum point at(c, f(c)). However, there are several points in [a, d] which
are lower than (c, f(c)), and the absolute minimum point is (a, f(a)). Similarly,
(b, f(b)) is a local maximum point but (d, f(d)) is the absolute maximum point.
This suggests the following theorem.

Figure 2.11:

2.2.3. Let f be a differentiable function whose domain is restricted to a closed
interval containing a. If (a, f(a)) is an extreme point then f ′(a) = 0 or a is an
endpoint of the interval.

Proof. This theorem is an immediate corollary of Theorem (2.1). Let the domain
be [c, d]. If a 6= c and a 6= d, then a lies in the open interval (c, d) and, by Theorem
(2.1), f ′(a) = 0. If a = c or a = d, then a is an endpoint of the interval.

For many functions, Theorem (2.3) has the virtue of reducing an apparently im-
possible problem to a simple one. In principle, the problem of finding the maximum
values of a function over a closed interval involves the examination of f(x) for every
x in the interval, i.e., for an infinite number of points. This theorem tells us that
we need look only at those values of x at which the first derivative vanishes and
those which are endpoints. For most functions there is only a small finite number
of such points.

Theorem (2.3) tells us where to look for the extreme points of a differentiable
function defined on a closed interval, but it does not guarantee the existence of any.
To complete the theory, we add a statement of the following fundamental existence
theorem.

2.2.4. Every real-valued continuous function whose domain is a closed bounded
interval has at least one absolufe maximum point and at least one absolute minimum
point.

We omit the proof. The result sounds perfectly obvious, of course, and it is
obvious in the sense that if continuity means what we want it to mean, then (2.4)
must be true. To see whether it, in fact, follows logically from our definitions, of
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course, requires proof. Further insight into the theorem may be found in Problems
21 and 22, where it is shown that functions that do not satisfy the hypotheses of
(2.4) can fail to have absolute extreme points.

Let us now look at the problems suggested at the beginning of the section.

Example 42. What are the dimensions of the largest rectangular field which can
be enclosed with 200 feet of fencing? Should it be long and narrow, short and wide,
or somewhere in between? If we let x be the number of feet in the length, then
100− x will represent the width, and we can write the area A as a function of x:

A(x) = x(100− x) = 100x− x2

Figure 2.12:

(see Figure ??). Note that the domain of A is the interval consisting of all x such
that 0 < x < 100. We want to find that value of x which will give a maximum value
of A. Taking derivatives, we obtain A′(x) = 100− 2x and A′′(x) = −2. Setting A′

equal to zero, we find x = 50. Since A′(50) = 0 and A′′(50) = −2 < 0, we know
that 50 is that value of x which maximizes A. Thus the field, which is 50 feet long
and 100− 50 = 50 feet wide, is the largest rectangular field which can be enclosed
with 200 feet of fencing.

The problem of solving a maximum or minimum problem consists of setting
up the function to be maximized or minimized and then taking derivatives. The
theorems of this section tell how to proceed from there.

Example 43. What are the dimensions of the cylindrical quart can which can be
made from the least amount of tin? This problem is important to the manufacturer
who produces tin cans and is more concerned with the amount of tin used than with
the shape of the can. Should he make tall cans with a small radius or short cans
with a large radius? We shall ignore seams and assume that tin cans are perfect
cylinders. The volume of a cylinder is πr2h and a quart contains 57 3

4 cubic inches.
Thus if r is the radius of the can in inches and h is the height in inches, πr2h = 57 3

4
or 231

4 (see Figure ??). The area is the sum of the lateral surface area and the area
of the bottom and the top: A = 2πrh+ 2πr2. The area depends on r and h, but we
can use our volume equation to find h as a function of r : h = 231

4πr2 , and then write

A(r) = 2πr
( 231

4πr2
)

+ 2πr2 =
231

2r
+ 2πr2.
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Figure 2.13:

The domain of A is the set of positive real numbers. Taking derivatives, we have
A′(r) = − 231

2r2 +4πr and A′′(r) = 231
r2 +4π. Setting A′ equal to zero, we have 8πr3 =

231, or r = 1
2

3

√
231
π = 2.10 (approximately). Since A′(2.10) = 0 and A′′(2.10) > 0,

2.10 gives a minimum value to A. h = 231
4π(2.10)2 = 4.20 (approximately). The

desired can will look square in profile, 2.10 inches in radius and 4.20 inches high.

This problem could also have been solved by writing r as a function of h : r =
√

231
4πh

and then writing A(h) = 2π
√

231
4πhh + 2π · 231

4πh , although this area function is not

as nice as A(r). Another method involves thinking of h as a function of r, writing
A(r) containing both h and r, and differentiating implicity. Thus we write

πr2h =
231

4
and A(r) = 2πrh+ 2πr2.

Differentiating with respect to r, we obtain

πr2
dh

dr
+ πh · 2r = 0 and A′(r) = 2πr

dh

dr
+ 2πh+ 2π · 2r.

From the first, dh
dr = − 2πrh

πr2 = − 2h
r . Substituting this in the second, we find

A′(r) = 2πr
(
− 2h

r

)
+ 2πh+ 4πr = 4πr − 2πh. Setting A′(r) = 0, we get

h = 2r.

Substitution in the volume equation yields πr2(2r) = 231
4 , or 8πr3 = 231, as in the

other solution. This same method could have been used with differentiation with
respect to h.

In each of the preceding examples, the domain of the function was an interval of
positive real numbers. However, if a problem involves the number of objects which
will maximize or minimize a particular function, it will have a domain of positive
integers. In this case, we may still do the problem as if it were one with the entire
set of real numbers as the domain of the function, and then consider those positive
integers which lie on either side of the x-coordinate of the critical point of this
function.
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Example 44. A telephone company which serves a small community makes an
annual profit of $12 per subscriber if it has 725 subscribers or fewer. They decide
to reduce the rate by a fixed sum for each subscriber over 725, thereby reducing
the profit I cent per subscriber. Thus there will be a profit of $11.99 on each of 726
subscribers, $11.98 on each of 727, etc. What is the number of subscribers which
will give them the greatest profit?

If we let x be the number of subscribers over 725, there will then be 725 + x
subscribers and the profit per subscriber will be 1200 − x cents. The total profit
will be P (x) = (725 + x)(1200− x) = 870, 000 + 475x− x2. The domain of P is the
set of positive integers, but let us treat the problem as if the domain were R. The
derivatives are P ′(x) = 475− 2x and P ′′(x) = −2. The value of x which makes P ′

zero is 237 1
2 , and it also makes P ′′ negative, thereby ensuring a maximum for P .

We find P (237) = 926, 406 and P (238) = 926, 406. Thus the profit is the same for
725 + 237 = 962 subscribers and for 725 + 238 = 963 subscribers. If we visualize
the graph of P , we see a parabola concave downward with its maximum point at
(237 1

2 , 926, 406 1
4 ). If we delete all points which do not have integral coefficients, then

the points (237, 926,406) and (238, 926,406) are maximum points equally spaced
on either side of the high point of the parabola and just lower than the high point.
The profit of the telephone company will increase with each new subscriber until
they have 962 subscribers. The addition of one more subscriber will not alter the
profit, but it will then decrease with each new subscriber after the 963rd one.

Example 45. Consider the function f defined by

f(x) =
x3

3
− x2 +

2

3
, −2 ≤ x ≤ 3.

The domain of f is the closed interval [−2, 3]. Find the maximum and minimum
values. The derivatives are f ′(x) = x2−2x = x(x−2) and f ′′(x) = 2x−2 = 2(x−1).
Setting f ′(x) = 0, we find solutions x = 0 and x = 2. By Theorem (2.3) we need
evaluate f(x) only where x = 0 and x = 2 [where f ′(x) = 0] and at the endpoints
of the interval, x = −2 and x = 3. These values are

f(−2) = −6,

f(0) =
2

3
,

f(2) = −2

3
,

f(3) =
2

3
.

Thus the maximum value of f is 2
3 , and the minimum value is −6. Note that

the maximum value of the function occurs at two points, one of which is a local
maximum and the other the right endpoint of the interval. The minimum value, on
the other hand, does not occur at a local minimum point, but at the Ieft endpoint.
The graph of the function is shown in Figure ??.

We summarize the techniques for solving maximum and minimum problems as
follows:
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Figure 2.14:

1. Set up the function to be maximized or minimized. If it can easily be set up
as a function of one variable, it should be. If it cannot easily be set up as
a function of one variable, it should be accompanied by an equation relating
the two variables.

2. Take first and second derivatives of the function. Set the first derivative equal
to zero and solve the resulting equation. Evaluate the second derivative at
those values of x for which the first derivative equals zero.

3. If the function is a “nice” function defined on an open interval, its maximum
will occur where f ′(x) = 0 and f ′′(x) < 0 and its minimum will occur where
f ′(x) = 0 and f ′′(x) > 0.

4. If the function has a closed interval for its domain, evaluate the function at
both endpoints to see if maximum or minimum values occur there.

5. If the function has a domain restricted to integers, evaluate the function at
integers near the values which give a maximum or a minimum value to the
continuous function.

Sometimes the geometric or physical properties of the problem make it obvious
that a critical point is of the desired type, i.e., a maximum or a minimum. If this
happens, it is not necessary to compute the second derivative, although it may still
be used as a check. The complete behavior of the function whose extreme points
are desired can always be found by carefully plotting its graph.
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Problems

1. Generalize on Example ?? to show that the largest rectangle with a fixed
perimeter p is a square with side p

4 .

2. A field is bounded on one side by a stone wall. A rectangular plot of ground
is to be fenced off, using the stone wall as one boundary and 200 yards of
fencing for the other three sides. What are the dimensions of the largest such
plot?

3. Find the positive number which is such that the sum of the number and its
reciprocal is a minimum.

4. List all local extreme points and all absolute extreme points for each of the
following functions, noting carefully its domain of definition. Classify each
extreme point by type.

(a) 3x5 − 5x3 + 7; domain: all real numbers.

(b) 4x3 + 3x2 − 6x+ 5; domain: all real numbers.

(c) x+ a2

x ; domain: all nonzero numbers.

(d) 2x3 − 21x2 + 60x− 25; domain: all nonnegative real numbers.

(e) x2

x−1 ; domain: all real numbers except 1.

(f) 3x4 − 20x3 − 36x2 + 54; domain: all nonpositive real numbers.

(g) (x− 1)2(x+ 1)3; domain: all nonnegative real numbers no greater than
2.

(h) 2− (x+ 4)
2
3 ; domain: all real numbers.

(i) (x− 1)2(x− 4); domain: all nonnegative real numbers.

5. Generalize on Example ?? to show that the right circular cylinder with a fixed
volume and the least total surface area has a diameter equal to its height.

6. Show that f(x) = x4 has an extreme point where the second derivative is
neither positive nor negative. What type of extreme point is it? Explain why
this is not a contradiction of Theorem ??.

7. A line has positive intercepts on both axes and their sum is 8. Write an
equation of the line if it cuts off in the first quadrant a triangle with area as
large as possible.

8. Find two nonnegative numbers, x and y, such that x + y = 6 and x2y is as
large as possible.

9. Find all ordered pairs, (x, y), such that xy = 9 and
√
x2 + y2 is a minimum.

Interpret your result geometrically.

10. (a) Graph the set of ordered pairs (x, y) such that 4x2 + y2 = 8. The graph
is called an ellipse.

(b) Find all ordered pairs (x, y), such that 4x2 + y2 = 8 and 4xy is a maxi-
mum.
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(c) Find the dimensions of the largest (in area) rectangle which has sides
parallel to the x-axis and the y-axis and is inscribed in the ellipse of ??.

11. Find the dimensions of the largest rectangle which has its upper two vertices
on the x-axis and the other two on the graph of y = x2 − 27.

12. Find the dimensions of the rectangle which has its upper two vertices on the
x-axis and the other two on the graph of y = x2−27 and which has maximum
perimeter.

13. A box without a top is to be made by cutting equal squares from the corners
of a rectangular piece of tin 30 inches by 48 inches and bending up the sides.
What size should the squares be is the volume of the box is to be a maximum?
[H int: If x is the side of a square, V (x) = x(30− 2x)(48− 2x).]

14. (a) A box without a top is to be made by cutting equal squares from the
corners of a square piece of tin, 18 inches on a side, and bending up the
sides. How large should the squares be if the volume of the box is to be
as large as possible?

(b) Generalize ?? to the largest open-topped box which can be made from a
square piece of tin, s inches on a side.

15. (a) Where should a wire 20 inches long be cut if one piece is to be bent into
a circle, the other piece is to be bent into a square, and the two plane
figures are to have areas the sum of which is a maximum?

(b) Where should the cut be if the sum of areas is to be a minimum?

16. A man in a canoe is 6 miles from the nearest point of the shore of the lake.
The shoreline is approximately a straight line and the man wants to reach a
point on the shore 5 miles from the nearest point. If his rate of paddling is 4
miles per hour and he can run 5 miles per hour along the shore, where should
he land to reach his destination in the shortest possible time?

17. Prove that the largest isosceles triangle which can be inscribed in a given circle
is also equilateral.

18. Prove that the smallest isosceles triangle which can be circumscribed about a
given circle is also equilateral.

19. What is the smallest positive number that can be written as the sum of two
positive numbers x and y so that 1

x + 2
y = 1?

20. An excursion train is to be run for a lodge outing. The railroad company
sets the rate at $10 per person if less that 200 tickets are sold. They agree to
lower the rate per person by 2 cents for each ticket sold above the 200 mark,
but the train will only hold 450 people. What number of tickets will give the
company the greatest income?

21. Consider the continuous real-valued function f(x) = x with domain 0 < x < 1.
Does this function have an absolute maximum point or an absolute minimum
point? Why is this function not a counterexample to Theorem ???
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22. Let

f(x) =

 1
x , for

{
−1 ≤ x < 0,
0 < x ≤ 1,

0, for x = 0.

This real-valued function is defined on the closed interval [−1, 1]. Draw the
graph of f(x) and explain why this function has neither absolute maximum
nor absolute minimum points.
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2.3 Rates of Change with respect to Time.

The values of many physical quantities depend on time and change with time. In
a mathematical formulation such a quantity is usually denoted by a variable which
is a function of time. In this section we are concerned with the instantaneous rates
of change of time-dependent variables. Let u be a real-valued function of a real
variable t, where we identify t with time. The rate of change of u with respect to
time at a given instant t = a can be determined by considering the derivative of u.
We have already observed in Chapter 1 that the derivative f ′(a) of a function f at
a particular number a is the rate of change of the value f(x) of the function f with
respect to x at a. It follows that the instantaneous rate of change of u with respect
to time, when t = a, is equal to the derivative:

u′(a) =
du

dt
(a) = lim

d→0

u(a+ d)− u(a)

d
.

In a physical application the variable u might denote the number of gallons of
water in a tank at time t, where t is measured in minutes. Then, d

du (a) is equal
to the rate at which water is flowing in or out of the tank at time t = a and is
measured in gallons per minute. If d

du (a) is positive, then the quantity of water in
the tank is increasing when t = a and water is flowing into the tank. On the other
hand, if d

du (a) is negative, then the amount of water is decreasing at that moment

and water is draining out. Finally, if d
du (a) = 0, then the amount is not changing

at t = a.
An important example of rate of change with respect to time is velocity. For

example, consider a car in motion on a straight road. To formulate the situation
mathematically, we identify the road with a real number line, the car with a point
on the line, and the location of the car at time t with the coordinate s(t) of the point
on the line. Thus, s is a real-valued function of the real variable t. The average
velocity during the time interval from t = a to t = a+ d is equal to the change in
position divided by the change in time. Denoting this quantity by vav, we have

vav =
s(a+ d)− s(a)

d
.

If we graph s(t) on a time-position graph, as in Figure ??, we see that the average
velocity is the slope of the line segment connecting the point (a, s(a)) to the point
(a+ d, s(a+ d)). If, keeping a fixed, we consider average velocities over successively
shorter and shorter intervals of time, we obtain values nearer and nearer to the rate
of change of s at t = a. We take this limit as d approaches zero as the definition of
velocity at a and use the symbol v(a) for it. Thus

v(a) = lim
d→0

vav = lim
d→0

s(a+ d)− s(a)

d
= s′(a).

Hence velocity is the derivative of position with respect to time, and we write
v(t) = s′(t), or simply v = s′. Geometrically, the velocity at a is the slope of the
tangent line to the graph of the function s at the point (a, s(a)).

For a particle moving on a real number line, a positive value of v(t) means that
the motion at time t is in the direction of increasing numerical values, which is called
the positive direction (i.e., if the line is the x-axis, then the particle is moving to
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Figure 2.15:

the right). If v(t) is negative, then the particle is moving in the opposite direction.
Finally, zero velocity indicates that the particle is at rest. The speed at time t is
defined to be the absolute value |v(t)| of the velocity. Obviously, the speed measures
how fast the particle is moving without regard to its direction.

Velocity depends on time, and its rate of change with respect to time will tell us
even more about the motion of a particle. This rate of change is called acceleration
and is defined to be the derivative of velocity with respect to time. Denoted by a,
it is the second derivative of position with respect to time:

a(t) = v′(t) = s′′(t).

The acceleration is the rate of change of velocity with respect to time. It may be
positive, indicating that the velocity is increasing; zero, telling us that the velocity
is constant; or negative, indicating that the velocity is decreasing. For motion of a
particle on a horizontal number line (or the x-axis) we have several possibilities. If
the velocity is positive and the aceeleration is positive, the motion is to the right and
the speed of the particle is increasing. If the velocity is positive and the aeeeleration
is negative, the motion is still to the right but the particle is slowing down. If the
acceleration is zero, the velocity is momentarily not changing. If the velocity is
negative, the particle is moving to the left and it is slowing down or speeding up,
depending on whether the acceleration is, respectively, positive or negative.

Example 46. A particle moves on the x-axis and its coordinate, as a function of
time, is given by x(t) = 2t3 − 21t2 + 60t − 14, where t is measured in seconds.
Describe its motion. We first take derivatives to find velocity and acceleration:
v(t) = 6t2−42t+60 = 6(t2−7t+10) = 6(t−2)(t−5) and a(t) = 12t−42 = 6(2t−7).
At zero time the particle is at x = −14, moving to the right with a velocity of 60
units per second. At that moment, acceleration is −42, and the particle is slowing
down. At time t = 2, the particle is at rest (v = 0) at x = 38, and the acceleration
is still negative: a = −18. For the next 1 1

2 seconds the particle moves to the left
until, at t = 7

2 it is at x = 241
2 , moving to the left with a speed of 13 1

2 units per
second. At that moment, however, the acceleration is zero and, in the next instant,
the velocity will begin to increase to the right and the particle begin to slow down.
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The particle continues to move to the left for the next 1 1
2 seconds, until t = 5. At

that time, the particle is at rest at x = 11 and the acceleration is positive. From
that time on, the particle will move to the right with ever-increasing velocity. Its
motion is indicated in Figure ??.

Figure 2.16:

Example 47. In a first course in physics, one encounters the formula for straight-
line motion with constant acceleration, s = s0 + v0t+ 1

2at
2, where s is the distance

from some fixed point, s0 the initial distance, v0 the initial velocity, and a the accel-
eration. Find v and a, thereby verifying another formula which usually accompanies
the distance formula and also verifying that the acceleration is constant. Taking
derivatives with respect to time, we obtain v = s′ = v0 + 1

2a(2t) = v0 + at and
a = v′ = a. Thus we see that the derivative definitions do produce the familiar
formulas.

If a particle is constrained to move in the xy-plane on a circle of radius 5,
then the point where it is at any time has coordinates which satisfy the equation
x2 + y2 = 25. Each of the coordinates, however, is a function of time and we
may write [x(t)]2 + [y(t)]2 = 25. Here we have an equation which states that two
functions of t, [x(t)]2 + y(t)]2 and the constant function 25, are equal to each other.
If the two functions are equal, they will change with respect to t at the same rate.
Taking derivatives to find the common rate of change, we have

d

dt
(x2 + y2) =

d

dt
25,

which implies

2x
dx

dt
+ 2y

dy

dt
= 0.

We interpret dx
dt as the rate of change of the abscissa of the particle with respect

to time, or as the velocity in the horizontal direction. Similarly, we interpret dy
dt as

the velocity in the vertical direction. We use the symbols v = x for dx
dt and vy for

dy
dt . Another interpretation of vx and vy, is that they are horizontal and vertical
components, respectively, of the velocity of the particle. Using this notation, we
write xvx + yvy = 0 or vx = − yxvy. These equations relate two rates of change, and
problems of this type are called related rate problems.

Example 48. A particle moves on the circle with equation x2 + y2 = 10. As it
passes through the point (−1,−3) the horizontal component of its velocity is 6 units
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per second. Find the vertical component. We first take derivatives with respect to
time, d

dt (x
2 + y2) = d

dt10, to get 2xvx + 2yvy = 0. We are given that vx = 6
when x = −1 and y = −3. Substituting these values in the last equation, we have
2(−1)(6)+2(−3)vy = 0. Hence −12−6vy = 0, or vy = −2. The vertical component
of velocity is −2 units per second, indicating that the motion is, at that moment,
downward and to the right, since vx is given positive. It is, of course, obvious that
a particle which is constrained to move on the circle must be moving downward if
it is moving to the right in the third quadrant.

Example 49. A spherical balloon is being blown up, and its volume is increasing at
a rate of 4 cubic inches per second. At what rate is its radius increasing? The volume
of a sphere is given by the equation, V = 4

3πr
3. Since V and 4

3πr
3 are both functions

of t, their derivatives with respect to t are equal. Thus dV
dt = 3

4π · 3r
2 dr
dt = 4πr2 drdt .

Replacing dV
dt by 4 and solving for dr

dt , we have dr
dt = 1

πr2 . The rate at which
the radius is increasing is not constant, but depends on the radius at a particular
moment. When the radius is 2 inches, it is increasing 1

4π inches per second; when
it is 5 inches, it is increasing 1

25π inches per second, etc.

Most related rate problems are solved by first finding an equation relating the
variables. Then we may take derivatives to find an equation relating their rates of
change with respect to time. Finally, we substitute those simultaneous values of the
variables and rates which are given to us in the problem.
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Problems

1. A ball is thrown upward with an initial velocity of 80 feet per second. Its
distance above the ground t seconds later is given by s = 80t− 16t2.

(a) Show that it reaches its highest point when it has zero velocity.

(b) Show that its acceleration is constant.

(c) For how many seconds is it going up?

(d) How high does it go?

(e) Show that it strikes the ground with a speed of 80 feet per second.

2. A particle moves on the x-axis and its position t seconds after it starts is given
by x(t) = 4t3 − 42t2 + 135t− 100. Describe its motion.

3. A particle moves on the y-axis and its position t seconds after it starts is given
by y(t) = 144t− 288− 16t2. Describe its motion.

4. A particle moves on the x-axis and its position t seconds after it starts is given
by x(t) = t3 − 3t2 + 5. Describe its motion.

5. A particle moves on the y-axis and its position t seconds after it starts is given
by y(t) = 3t3 − 9t+ 10. Describe its motion.

6. A particle moves on the ellipse with equation 4x2 + 9y2 = 36. When it is
passing through the point (−3, 0), what is the horizontal component of its
velocity?

7. A particle moves on the circle with equation x2 + y2 = 16. Show that
vy
vx

at
(a, b) is equal to the slope of the tangent to the circle at (a, b).

8. Two ships leave the same dock at noon, one traveling due north at 15 knots
(nautical miles per hour) and the other due east at 20 knots. At what rate it
the distance between them increasing at 2 p.m.?

9. Water is pouring into a conical funnel and, although it is also running out of
the bottom, the amount of water in the funnel is increasing at the rate of 3
cubic inches per minute. If the conical part of the funnel is 5 inches deep and
the mouth of the funnel is 6 inches in diameter, how fast is the water rising
when it is 2 inches deep?

10. (a) Show that, at any instant, the ratio of the rate at which the area of a
circle is changing to the rate at which the radius is changing is equal to
the circumference of the circle.

(b) Show that, at any instant, the ratio of the rate at which the volume of
a sphere is changing to the rate at which the radius is changing is equal
to the surface area of the sphere.

11. A man 6 feet tall walks away from a lamppost 15 feet tall at a rate of 4 miles
per hour. How fast is his shadow lengthening when he is 12 feet from the
pole? How fast is the distance from the foot of the lamppost to the tip of his
shadow lengthening?
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12. At 3 p.m. a ship which is sailing due south at 12 knots is 5 miles west of a
west-bound hip which is making 16 knots.

(a) At what rate is the distance between the ships changing at 3 p.m.?

(b) At what time does the distance between the ships stop decreasing and
start increasing?

(c) What is the shortest distance between the ships?

13. A ladder 20 feet long leans against a vertical wall. The bottom of the ladder
slides away from the wall at a constant rate of 1 foot per second. At what
rate is the top coming down the wall when it it 12 feet from the ground?

14. A particle moves on the parabola with equation y = x2. The horizontal
component of the velocity at each point is equal to twice the abscissa of the
point. Show that the vertical component of the velocity at each point is equal
to four times the ordinate of the point.

15. Sand is being poured on the ground at a rate of 4 cubic feet per minute. At
each moment, it forms a conical point with the height of the cone 7

3 of the
radius of the base. How fast is the height of the pile rising when 21π cubic
feet of sand is in the pile?
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2.4 Approximate Values.

If we can find the values of a function and its derivative at some particular number
a, then there is a useful method for obtaining an approximation to the value of the
function at any number near a. For example, knowing that

√
9 = 3, we can easily

obtain a good approximation to
√

9.1. Similarly, we can use this method to find
simple approximations to such numbers as 1

4.02 , 3
√

26.8, and (32.1)1/5.

To obtain the approximation for
√

9.1, we consider the graph of the function f
defined by f(x) =

√
x and drawn in Figure 17. The tangent line to the curve at

the point (9, 3) touches the curve at that point and is not very far away from it for
values of x near 9. Although it is tedious to find a decimal approximation for the
ordinate of the point on the curve y =

√
x with an abscissa of 9.1, it is relatively

easy to find one for the point on the tangent line with that abscissa, and the two
points are not very far apart. Since d

dx

√
x = 1

2
√
x

, the tangent line has a slope of
1

2
√
9

= 1
6 and has an equation

Figure 2.17:

y − 3 =
1

6
(x− 9).

If x = 9.1, y = 3 + 1
6 (0.1) = 3 1

60 , or 3.017. Thus 3.017 is our approximation for√
9.1. That it is a good approximation may be seen by checking a table of square

roots to find
√

9.1 = 3.016621. The same tangent line may be used to approximate√
10, but the accuracy will not be as good. If x = 10, y = 3 + 1

6 = 3.167. The

tables give 3.162278 for
√

10.
The technique used in the problem above is the computation of an approximate

value of f(x) under the assumption that the difference x − a is small in absolute
value and that both f(a) and f ′(a) are known, or can be easily evaluated. We write
an equation of the tangent line to the graph of the function f at (a, f(a)) and take
the ordinate of the point on the line with abscissa x as the approximation tof(x).
The tangent line has equation y − f(a) = f ′(a)(x− a), or, equivalently,

y = f(a) + f ′(a)(x− a).

The function f(a) + f ′(a)(x − a) is a linear function of x, and is the linear
function which best approximates f(x) for values of x near a. The approximation
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consists of simply replacing the true value f(x) by the corresponding value of the
linear function. The result is summarized in the formula

f(x) ≈ f(a) + f ′(a)(x− a), (2.2)

in which it is assumed that |x−a| is small and the symbol ≈ indicates approximate
equality.

Example 50. Find an approximate value of 1
4.02 . If we define f(x) = 1

x , then
f(4) = 1

4 = 0.25 is easily evaluated. Moreover, f ′(4) = − 1
42 = − 1

16 = −0.0625, and
0.02, the difference between 4.02 and 4, is small. Thus 1

4.02 is approximately equal
to 1

4 −
1
16 (4.02− 4) = 0.25− (0.0625)(0.02) = 0.24875.

Example 51. Compute 3
√

26.8 approximately. If we let f(x) = x1/3, then f(27) =
3. Since f ′(x) = 1

3x
−2/3, we obtain f ′(27) = 1

3 (27)−2/3 = 1
27 . The difference

|26.8 − 27| = 0.2 is small. Thus we approximate 3
√

26.8 by 3 + 1
27 (26.8 − 27) =

3 + 1
27 (−0.2) = 2.9926. A table of cube roots gives a more exact value of 2.992574,

but the linear approximation gives fourdecimal accuracy.

An alternative point of view is obtained if we substitute x = a + t in (1). The
left side of the formula becomes f(a+ t) and the right side is then f(a) +f ′(a)((a+
t)− a) = f(a) + tf ′(a). Hence, we obtain the equivalent formula

f(a+ t) ≈ f(a) + tf ′(a), (2.3)

which gives an approximate value of f(a + t) in terms of the known quantities
f(a), f ′(a), and t. The same result can also be obtained easily from the definition
of the derivative of the function f at a,

f ′(a) = lim
t→0

f(a+ t)− f(a)

t
.

It follows that if t is nonzero and small in absolute value, then f ′(a) is given ap-
proximately by

f ′(a) ≈ f(a+ t)− f(a)

t
,

which immediately implies (2).
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Problems

1. Give three-decimal approximations for each of the following numbers.

(a)
√

3.97

(b) 3
√

64.2

(c) 5
√

31.85

(d) 1
(0.98)3

(e)
√

16.6

(f) 4
√

16.6

(g) 1
(4.02)2

(h) (63.7)
5
6

(i) (0.95)3.

2. If f(x) = 1
x+5 , find an approximation for f(4.92).

3. If f(x) =
√
x− 2, find an approximation for f(27.3).

4. If f(x) =
√

7x2 − 3, find an approximation for f(1.9).

5. (a) Find the volume of a sphere with a radius of 3 inches.

(b) Find the approximate volume of a sphere with a radius of 3.1 inches.

6. (a) Find the volume of a cube 6 inches on an edge.

(b) Find the approximate volume of a cube 5.9 inches on an edge.

7. Find an approximate value of 1.97 3
√

(1.97)2 + 4.

8. Find an approximate value of the product (63.2)
1
3 (63.2)

1
2 .

9. (a) Find the area of an equilateral triangle 4 inches on a side.

(b) Find an approximation for the area of an equilateral triangle 4.08 inches
on a side.

10. The point P = (2, 1) lies on the curve defined by the equation x3y+xy3 = 10.
Find an approximation to the y-coordinate of the point on the curve near P
with x-coordinate equal to 2.14.
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2.5 Rolle’s Theorem and Its Consequences.

There are certain theoretical properties of differentiable functions which we are in
a position to prove and which will aid us in our future work. Two of them express
ideas which are geometrically obvious but, nevertheless, require proof. The first,
due to the French mathematician Rolle and named for him, is illustrated in Figure
??. The assertion is that a differentiable function which has a graph crossing the
x-axis at a and also at b must have on its graph at least one point between the
crossing points where its tangent line is parallel to the x-axis.

2.5.1 (Rolle’s Theorem). Assume that a < b and that the function f is continuous
on the closed interval [a, b] and differentiable on the open interval (a, b). If f(a) =
f(b) = 0, then there exists a real number c such that a < c < b and f ′(c) = 0.

Figure 2.18:

Proof. If f(x) = 0 for every x in [a, b], there is nothing to prove because f is then
a constant function and f ′(x) = 0 for every x in the interval. So we assume that f
is not constant on [a, b]. By Theorem (2.4) a function which is continuous at every
point of a closed bounded interval has at least one absolute maximum point and at
least one absolute minimum point. Since f(x) does not equal zero for all x in the
closed interval and since f(a) = f(b) = 0, the function f must have one of these
extremes in the open interval. Let the abscissa of this point be c, and it follows by
Theorem (2.3) that f ′(c) = 0. This completes the proof.

The reader should try to construct functions which do not satisfy all the condi-
tions of the theorem to see why the conclusion will not then hold, and hence why
all the conditions are essential to the theorem. One such example was graphed in
Figure ??.

The second theorem tells us that a function which has a smooth graph between
(a, f(a)) and (b, f(b)) has a point in between these two where the tangent to the
graph is parallel to the line segment connecting these points (see Figure ??). Be-
cause the point lies between the other two and the tangent at this “in-between”
point is parallel, this theorem is called the Mean Value Theorem.
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Figure 2.19:

2.5.2 Theorem (Mean Value Theorem). Assume that a < b and tha the function
f is continuous on the closed interval [a, b] and differentiable on the open interval
(a, b). Then there exists a real number c such that a < c < b and

f ′(c) =
f(b)− f(a)

b− a
,

or, equivalently, such that f(b)− f(a) = f ′(c)(b− a).

Proof. This theorem is proved as a corollary to Rolle’s Theorem by constructing a
function which satisfies the conditions of Rolle’s Theorem and gives the same result
as if we had tilted the graph of Figure ?? and dropped it down. Such a function is

F (x) = (x− a)f(b) + (a− b)f(x) + (b− x)f(a).

Since f is continuous on the closed interval and differentiable on the open interval,
it follows that F is, too. We also observe that

F (a) = 0 + (a− b)f(a) + (b− a)f(a) = 0.

F (b) = (b− a)f(b) + (a− b)f(b) + 0 = 0.

Thus the function F satisfies all the conditions of Rolle’s Theorem, and hence there
is a real number c strictly between a and b such that F ′(c) = 0. The derivative of
F is given by

F ′(x) = f(b) + (a− b)f ′(x)− f(a).

It follows that
F ′(c) = f(b) + (a− b)f ′(c)− f(a) = 0,

which implies that f(b)− f(a) = (b− a)f ′(c). This completes the proof.

Here again it is a good idea to try various examples to see why all the hypotheses
of the theorem are necessary. Note that the equation which forms the conclusion of
the Mean Value Theorem is equivalent to the one obtained by interchanging a and
b. Thus, if b < a, the Theorem remains true with [a, b] and (a, b) replaced by [b, a]
and (b, a), respectively, and the inequalities a < c < b replaced by b < c < a.

One of the most important consequences of the Mean Value Theorem is that a
function which has a zero derivative on an interval must be a constant function on
that interval.
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2.5.3. If f ′(x) = 0 for euery x in an interval, then there exists a constant k such
that f(x) = k for every x in the interval.

Proof. Pick an arbitrary point a in the interval, and set k = f(a). Let b be any
other point in the interval. We shall show that f(b) = k also, and this will complete
the proof. To be specific, let us assume that a < b; an exactly analogous argument
can be made if b < a. By the Mean Value Theorem we know that f(b) = f(a) +
(b− a)f ′(c) for some number c in the open interval (a, b), which is a subinterval of
the larger interval referred to above. It follows from the hypothesis that f ′(c) = 0.
Since f(a) = k, we get f(b) = k + (b− a) · 0 = k, and the result is proved.

The preceding theorem has an important corollary—that two functions with the
same derivative over an interval differ by a constant.

2.5.4. If f ′ = g′ on an interval, then f and g differ by a constant function on the
interval.

Proof. Since f ′ = g′, we have (f − g)′(x) = f ′(x) − g′(x) = 0 for every x in the
interval. By (5.3) there exists a number k such that k = (f − g)(x) = f(x) − g(x)
for every x in the interval. This completes the proof.

The significance of Theorem (5.4), which will be fully exploited in the study of
integration in Chapter 4, is that it gives a way of describing the set of all functions
which have a given function as derivative. Specifically, let f be a function whose
domain contains an interval I. Suppose that in one way or another we can find a
function F with the property that F ′(x) = f(x), for every x in I. Then the set
F of all functions whose derivatives equal f on I consists of all functions which
on I differ from F by a constant. To prove this assertion, we first observe that,
for every real number c, the function defined by F (x) + c has derivative equal to
F ′(x) + 0 = f(x), for each x in I. Hence every function F + c belongs to the set
F . Conversely, if G is any function in the set F , then by definition G′ = f = F ′

on I. It follows by (5.4) that there exists a real number c (a constant) such that
G(x) − F (x) = c, for every x in I. Thus on I the function G differs from F by a
constant, and so the assertion is proved.

Example 52. If f is the function defined by f(x) = x2 + 2x, find the set of all
functions with derivative equal to f . In this case the interval I is the set of all real

numbers, and it is easy to see that one function in the set is x3

3 + x2, since

d

dx

(x3
3

+ x2
)

= x2 + 2x = f(x).

Hence each function G in the set is defined by

G(x) =
x3

3
+ x2 + c,

for some real number c. As c takes on all real number values, we get all members
of the set. There are no other possibilities.
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Problems

1. For each of the following functions find those values of x for which f(x) or
f ′(x) vanish and use them to verify Rolle’s Theorem.

(a) f(x) = x2 − 7x− 8

(b) f(x) = 12x− x3

(c) f(x) = (x+ 4)(x+ 1)(x− 2)

(d) f(x) = x2(x2 − 16)

(e) f(x) = x− 4
x

(f) f(x) = (9− x2)2.

2. For each of the following functions and the specified values of a and b, find a
number c such that a < c < b and f(b) = f(a) + (b− a)f ′(c).

(a) f(x) = x2 − 6x+ 5, a = 1, b = 4

(b) f(x) = x3, a = 0, b = 1

(c) f(x) = − 1
x , a = 1, b = 3

(d) f(x) = 8
x2 , a = 1, b = 2.

3. Consider the function f(x) = 1 − |x| defined on the closed interval from −1
to 1. Which hypotheses of Rolle’s Theorem does this function satisfy and
which does it not satisfy? Does this function satisfy the conclusion of Rolle’s
Theorem?

4. Consider the function f defined on the closed interval [4, 7] by{
f(x) = 0, x = 4,
f(x) = 7− x, 4 < x ≤ 7.

Show where this function fails to satisfy the conditions of Rolle’s Theorem,
and that is does not satisfy the conclusion.

5. For each of the following functions f , find the set of all functions with deriva-
tive equal to f .

(a) f(x) = 4x

(b) f(x) = 4x3 + x2 + 2

(c) f(x) = 1
x2

(d) f(x) = 2x
(x2+1)3 .

6. Prove that, if on an automobile trip the average velocity was 45 miles per hour,
then at some instant during the trip the speedometer registered precisely 45.
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2.6 The Differential.

If y = f(x), we have denoted the derivative of f by f ′, or df
dx , or dy

dx . The value of

the derivative at a number a is written f ′(a), or df
dx (a), or dy

dx (a). Up to this point,
the expressions df , dy, and dx by themselves have had no meaning other than as
parts of notations for the derivative. However, the cancellation suggested by the
Chain Rule

dy

dx
=
dy

du

du

dx

indicates that the derivative behaves like a ratio and suggests that it may be possible
to sensibly regard it as such. In this section we shall define a mathematical object
called the differential of a function, examples of which are df , dy, and dx. The ratio
of df , or dy, to dx will be equal to the derivative.

Figure 2.20:

If f is a function having a derivative at a, we define its differential at a, denoted
by daf , to be the linear function whose value for any number t is

(daf)(t) = f ′(a)t.

For example, if f(x) = x2− 2x, then the differential daf is the function of t defined
by f ′(a)t = (2a− 2)t. In particular,

(d3f)(t) = [2 · 3− 2]t = 4t.

The value of the differential for a typical function f is illustrated in Figure ??.

By simply df we mean the rule (or function) that assigns the linear function dxf
to each number x in the domain of f ′.

2.6.1. If f and u are differentiablefunctions, then

df(u) = f ′(u)du. (2.4)

Proof. This formula is an abbreviation of the equation

dxf(u) = f ′(u(x))dxu. (2.5)
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The proof is an application of the Chain Rule. We first write down the two linear
functions dxf(u) and dxu. By the definition of the differential they are

(dxu)(t) = u′(x)t,

(dxf(u))(t) = [[f(u)]′(x)]t.

The Chain Rule says that [f(u)]′(x) = f ′(u(x))u′(x). Hence

(dxf(u))(t) = [f ′(u(x))u′(x)]t

= f ′(u(x))(dxu)(t).

Thus (2) appears as an equality between linear functions, and the proof is complete.

If u is the independent variable x, then (6.1) reduces to the formula

df(x) = f ′(x)dx. (2.6)

Example 53. Evaluate the following differentials:

(a) d(x2 + 2),

(b) d
√
x2 + 3,

(c) d(2x2 − x)7.

Using formula (3), we get immediately

(a’) d(x2 + 2) = 2xdx

(b’) d
√
x2 + 3 = x(x2 + 3)−1/2dx

(c’) d(2x2 − x)7 = 7(2x2 − x)6(4x− 1)dx.

It is worthwhile learning to use the stronger formula (1). In problem (b), let f be
the function f(u) =

√
u. If we set u = x2 + 3, then du = 2xdx and

d
√
x2 + 3 = df(u) = f ′(u)du

=
1

2
u−1/2du

=
1

2
(x2 + 3)−1/22xdx.

Let us also do problem (c) using (1), but without explicitly making the substitution
u = 2x2 − x. We get

d(2x2 − x)7 = 7(2x2 − x)6d(2x2 − x)

= 7(2x2 − x)6(4x− 1)dx.

Formula (3) establishes the fact that the ratio of df to dx is equal to the derivative
f ′. We can see this in greater detail by going back to the definitions:
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(daf)(t) = f ′(a)t,

(dax)(t) = x′(a)t.

Since x is the identity function, its derivative is the constant function 1. Hence
(dax)(t) = t. The ratio of the two linear functions daf and dax is thus the constant
function

daf

dax
=
f ′(a)t

t
= f ′(a).

Having proved this formula for every a in the domain of f ′, we can write it simply
as

df

dx
(a) = f ′(a) or

df

dx
= f ′.

If f and g are differentiable functions, then it is easy to show that da(f + g) =
daf + dag. The proof involves only the definition of the differential plus the fact
that the derivative of a sum is the sum of the derivatives. In detail:

[da(f + g)](t) = [(f + g)′(a)]t = [f ′(a) + g′(a)]t

= f ′(a)t+ g′(a)t = (daf)(t) + (dag)(t)

= [daf + dag](t).

The result is simply the equation

d(f + g) = df + dg.

An analogous argument using the Product Rule for differentiation shows that da(fg) =
f(a)dag + g(a)daf , or, more simply,

d(fg) = fdg + gdf.

For each one of the six differentiation rules ?? proved in Section ?? of Chapter ??,
there is an analogous rule in terms of differentials: Let u and v be differentiable
functions, and c a constant. Then

2.6.2. (i) d(u+ v) = du+ dv,

(ii) d(cu) = cdu,

(iii) dc = 0,

(iv) d(uv) = udv + vdu,

(v) dur = rur−1du, where r is any rational number,

(vi) d

(
u
v

)
= vdu−udv

v2 .

Note that we have replaced the analogue of (v) in the list in Section ?? of Chapter
?? by the formula corresponding to the more powerful theorem ?? of Chapter ??.
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Example 54. Find the differential d(x3+
√
x2 + 2x)7. Applying the above formulas

successively, we get

d(x3 +
√
x2 + 2x)7 = 7(x3 +

√
x2 + 2x)6d(x3 +

√
x2 + 2x) by (v)

= 7(x3 +
√
x2 + 2x)6(dx3 + d

√
x2 + 2x) by (i)

= 7(x3 +
√
x2 + 2x)6[3x2dx+

1

2
(x2 + 2x)−1/2d(x2 + 2x)]

by (v)

= 7(x3 +
√
x2 + 2x)6[3x2dx+

1

2
(x2 + 2x)−1/2(2xdx+ 2dx)]

by (i) and (ii)

= 7(x3 +
√
x2 + 2x)6

(
3x2 +

x+ 1√
x2 + 2x

)
dx.

The derivative is therefore given by

d(x3 +
√
x2 + 2x)7

dx
= 7(x3 +

√
x2 + 2x)6

(
3x2 +

x+ 1√
x2 + 2x

)
.

The task of computing the differential of a complicated function of x amounts to
successively working the differential operator d through the given expression from
left to right. At each stage one uses the correct one of formulas (i) through (vi), or
formula (1), until one finally reaches dx, and the process stops. The derivative can
then be obtained by dividing the resulting equation by dx. Note that an equation
of the form df(x) = ... will always contain the symbol d on the right side. Equations
such as dx5 = 5x4 are not only false; they are nonsense. (Correct version: dx5 =
5x4dx.)

Example 55. Consider the functions

(a) y = (4x3 + 3x2 + 1)2,

(b) y = x2−1
x2+1

(c) z = 3y5/3.

Find the differential of each:

(a’) dy = 2(4x3 + 3x2 + 1)d(4x3 + 3x2 + 1)

= 2(4x3 + 3x2 + 1)(12x2dx+ 6xdx)

= 12x(4x3 + 3x2 + 1)(2x+ 1)dx,

(b’) dy =
(x2 + 1)d(x2 − 1)− (x2 − 1)d(x2 + 1)

(x2 + 1)2

=
(x2 + 1)2xdx− (x2 − 1)2xdx

(x2 + 1)2
=

4xdx

(x2 + 1)2
,

(c’) dz = (3)(
5

3
)y2/3dy = 5y2/3dy.
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If we consider the composition of the function y in (b) with the function z in (c),
we get for the differential of the composition

dz = 5y2/3
4xdx

(x2 + 1)2
= 5

(
x2 − 1

x2 + 1

)2/3
4x

(x2 + 1)2
dx.

One traditional interpretation of the differential, which is especially useful in
physics, is that of an “infinitesimal.” If y = f(x), we know that dy = f ′(x)dx. Now
dx is the function that assigns to every real number a the linear function defined by
(dax)(t) = x′(a)t = t; i.e., it assigns the identity function. Hence we can interpret
dx as simply another independent variable. Then dy is the variable whose value
for a given x and dx is shown in Figure ??. (Compare this illustration with Figure
??.) The difference between the value of f at x and at x + dx is denoted by ∆y
in the figure. If dx is chosen y-axis very small, then the difference between dy and
∆y is relatively negligible. Hence dy measures the resulting change in the value of
y = f(x) corresponding to an infinitesimal change dx in the variable x.

Figure 2.21:

Example 56. The height h of a square pyramid is found to be 100 feet, and the
length x of one edge of its base is measured to be 160 feet. The volume V of the
pyramid is given by the formula V = 1

3hx
2. What error in the computed volume

will result from an error of 4 inches in the measurement of x? If we consider h as
fixed, and V as a function of x, then

dV =
1

3
hdx2 =

2

3
hxdx.

Since 4 inches is small compared with 160 feet, we set dx = 4 inches = 1
3 foot. The

resulting change in volume is then approximately

dV =
2

3
(100)(160)

1

3
=

32

9
1000 = 3555 feet3.

The percentage error in volume is

dV

V
=

2
3hxdx
1
3hx

2
= 2

dx

x
.

We compute dx
x =

1
3

160 = 0.0021 = 0.21%, and so the percentage error in volume is
only 0.42%.
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Problems

1. Find the following differentials.

(a) d(x2 + x+ 1) = · · ·
(b) d(7x+ 2) = · · ·
(c) d(x3 + 1)(5x− 1)3 = · · ·

(d) d
(
x−1
x+1

)
= · · ·

(e) du7 = · · ·

(f) d
(
u2

v2

)
= · · ·

(g) d(az2 + bz + c) = · · · (a, b, and c are constants)

(h) d
√

1 +
√

1 + x = · · ·
(i) dx = · · ·
(j) d(u2 + 2)(v3 − 1) = · · ·

2. If y = 7x3 + 2x+ 1 and w = 1
y , compute the differential of the composition of

y with w. That is, compute dw in terms of x and dx.

3. If x = 16t2 + 2t and y = 1
x and z = y2 + 1, compute dz in terms of t and dt.

4. Using Leibnitz’s Rule (the Product Rule), prove that da(fg) = f(a)dag +
g(a)daf , thereby establishing rule ??.

5. Using Theorem ??, prove that daf
r = rf(a)r−1daf , thereby establishing rule

??.

6. What is the approximate change in the volume of a sphere of radius 10 feet
resulting from a change in the radius of 1 inch?

7. A metal cylinder is found by measurement to be 3 feet in diameter and 10 feet
long. What will be the error in the computed volume of the cylinder resulting
from an error of

(a) 1 inch in the diameter?

(b) 0.5 inch in the length?

(c) both the errors in ?? and ?? combined?

8. If f(x) = kx, in what sense is f its own differential?
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2.7 L’Hôpital’s Rule.

This section contains a number of theorems which provide an important technique
for finding the limit of the quotient of two functions. These theorems are usually
referred to collectively as L’Hôpital’s Rule. Two examples of problems which are
readily solved by this technique are the computations of the limits:

lim
x→2

√
x−
√

2
3
√
x− 3
√

2
and lim

x→∞

3
√
x+ 1

x+ 4
.

Properly speaking, this section is a continuation of Section 5, since all the results
are corollaries of Rolle’s Theorem and of the Mean Value Theorem.

The following proposition, known as the Generalized Mean Value Theorem, is
the basic lemma used in proving the theorems which make up L’Hôpital’s Rule. (A
lemma is a theorem included as a reference in proving other theorems.)

2.7.1. GENERALIZED MEAN VALUE THEOREM. Assume that a < b,
and let f and g be functions which are continuous on the closed interval [a, b] and
differentiable on the open interval (a, b). If g′(x) 6= 0 for everyx in (a, b), then there
exists a real number c in (a, b) such that

f(b)− f(a)

g(b)− g(a)
=
f ′(c)

g′(c)
.

Note that g(b)− g(a) 6= 0. For otherwise the Mean Value Theorem would imply
that g′(x) = 0 for some x in (a, b), which is contrary to hypothesis.

Proof. Let h be the function defined by

h(x) = f(x)− f(a)− f(b)− f(a)

g(b)− g(a)
(g(x)− g(a)),

for every x in [a, b]. The function h is continuous on [a, b], differentiable on (a, b),
and, in addition, h(a) = h(b) = 0. Hence, by Rolle’s Theorem, there exists a real
number c in (a, b) such that h′(c) = 0. Since

h′(x) = f ′(x)− f(b)− f(a)

g(b)− g(a)
g′(x),

we obtain

0 = f ′(c)− f(b)− f(a)

g(b)− g(a)
g′(c),

and from this equation the conclusion of the theorem follows at once.

We first present L’Hôpital’s Rule as a theorem about one-sided limits.

2.7.2. L’HÔPITAL’S RULE I. Let f and g be functions which are differentiable
on a nonempty open interval (a, b) with g′(x) 6= 0 for every x in (a, b). If, in
addition,

(i) limx→a+ f(x) = limx→a+ g(x) = 0,

(ii) limx→a+
f ′(x)
g′(x) = L,
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then

lim
x→a+

f(x)

g(x)
= L.

Proof. We may assume that f(a) = g(a) = 0. (If this is not the case to begin
with, we simply define, or redefine, the values of f and g to be zero at a.) Thus we
ensure that f and g are continuous on [a, b). Let x be an arbitrary number in (a, b).
Then f and g are continuous on [a, x] (recall that differentiability at a point implies
continuity) and are differentiable on (a, x). Moreover, the derivative g′ does not
take on the value zero in (a, x). Hence, by the Generalized Mean Value Theorem
and the fact that f(a) = g(a) = 0, we obtain

f ′(y)

g′(y)
=
f(x)− 0

g(x)− 0
=
f(x)

g(x)
,

for some number y in (a, x). As x approaches a from the right, so also does y, and

hence limx→a+
f(x)
g(x) = limy→a+

f ′(y)
g′(x) = L. This completes the proof.

Example 57. Compute limx→2+

√
x−
√
2√

x−2 . Let f(x) =
√
x−
√

2 and g(x) =
√
x− 2.

Obviously, limx→2+ f(x) = limx→2+ g(x) = 0, and, since

f ′(x) =
1

2
√
x

and g′(x) =
1

2
√
x− 2

,

f and g are differentiable, and g′ does not take on the value zero on any open
interval with left endpoint equal to 2. We obtain

lim
x→2+

f ′(x)

g′(x)
= lim

x→2+

1
2
√
x

1
2
√
x−2

= lim
x→2+

√
x− 2√
x

=
0√
2

= 0.

And it follows by L’Hôpital’s Rule that limx→2+

√
x−
√
2√

x−2 = 0.

It is a simple matter to verify that Theorem (7.2) remains true if (a, b) is replaced
throughout by (b, a), and limx→a+ is replaced throughout by limx→a−. This fact,
significant in itself, also implies the following two-sided form of L’Hôpital’s Rule.

2.7.3. L’HÔPITAL’S RULE II. Consider an open interval containing the num-
ber a, and let f and g be functions differentiable and with g′(x) 6= 0 at every point
of the interval except possibly at a. If

(i) limx→a f(x) = limx→a g(x) = 0,

(ii) limx→a
f ′(x)
g′(x) = L,

then

lim
x→a

f(x)

g(x)
= L.

The hypotheses of (7.3) have been taken as weak as possible. If, as frequently
happens, the functions f and g are also continuous at a, then (i) can be replaced by
the simpler condition f(a) = g(a) = 0.
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Example 58. Evaluate limx→a
x1/2−a1/2
x1/3−a1/3 , where a > 0. If f(x) = x1/2−a1/2 and if

g(x) = x1/3−a1/3, then the derivatives are given by f ′(x) = 1
2x1/2 and g′(x) = 1

3x2/3 ,
and it is clear that f and g are differentiable (and hence continuous) and g′ is not
zero on an open interval containing a. Moreover, f(a) = g(a) = 0. Hence, by
L’Hôpital’s Rule,

lim
x→a

x1/2 − a1/2

x1/3 − a1/3
= lim
x→a

1
2x1/2

1
3x2/3

=
3a2/3

2a1/2
=

3

2
a1/6.

Example 59. Compute limx→a
x−a
x2−a2 where a 6= 0. Doing this problem by L’Hôpital’s

Rule is somewhat akin to smashing a peanut with a sledgehammer. The fact that

x− a
x2 − a2

=
x− a

(x− a)(x+ a)
=

1

x+ a
if x 6= a,

immediately implies that

lim
x→a

x− a
x2 − a2

= lim
x→a

1

x+ a
=

1

2a
.

Of course, the same answer is obtained by L’Hôpital’s Rule. If we let f(x) = x− a
and g(x) = x2 − a2, then f(a) = g(a) = 0 and f ′(x) = 1 and g′(x) = 2x. Hence

lim
x→a

x− a
x2 − a2

= lim
x→a

1

2x
=

1

2a
.

It is important to realize that L’Hôpital’s Rule II can be applied only if the

function f(x)
g(x) is unclefined at x = a and if limx→a f(x) = limx→a g(x) = 0. For

example, if f(x) = x2 + 3x− 10 and g(x) = 3x, then

lim
x→2

f(x)

g(x)
= lim
x→2

x2 + 3x− 10

3x
=

0

6
= 0,

but

lim
x→2

f ′(x)

g′(x)
= lim
x→2

2x+ 3

3
=

7

3
.

If the hypotheses of Theorem (7.3) are satisfied for the functions f ′ and g′, that
is, for the derivatives of f and g, respectively, then we can conclude that

lim
x→a

f ′(x)

g′(x)
= lim
x→a

f ′′(x)

g′′(x)
.

This fact suggests the possibility of applying L’Hôpital’s Rule more than once, and
in some problems it is necessary to take second or higher derivatives to find the
limit.

Example 60. Evaluate limx→1
3x1/3−x−2
3x2−6x+3 . Let f(x) = 3x1/3 − x − 2 and g(x) =

3x2−6x+3. Then f(1) = g(1) = 0, and the derivatives are given by f ′(x) = x−2/3−1
and g′(x) = 6x− 6. However, the value of
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lim
x→1

f ′(x)

g′(x)
= lim
x→1

x−2/3 − 1

6x− 6

is not obvious because f ′(1) = g′(1) = 0. Taking derivatives again, we get f ′′(x) =
− 2

3x
−5/3 and g′′(x) = 6, and it follows that

lim
x→1

f ′′(x)

g′′(x)
= lim
x→1

− 2
3x
−5/3

6
= −1

9
.

Thus two applications of L’Hôpital’s Rule yield

lim
x→1

f(x)

g(x)
= lim
x→1

f ′(x)

g′(x)
= lim
x→1

f ′′(x)

g′′(x)
= −1

9
.

A variation of (7.2), not difficult to prove, is the following:

2.7.4. L’HÔPITAL’S RULE III. Let f and g be differentiable on an open in-
terval (a,∞) with g′(x) 6= 0 for x > a. If

(i) limx→∞ f(x) = limx→∞ g(x) = 0,

(ii) limx→∞
f ′(x)
g′(x) = L,

then

lim
x→∞

f(x)

g(x)
= L.

An analogous theorem holds if (a,∞) is replaced by (−∞, a) and if limx→∞ is
replaced throughout by limx→−∞.

Proof. The result is a corollary of (7.2) and the Chain Rule. Let t = 1
x , and set

F (t) = f
(

1
t

)
= f(x) and G(t) = g

(
1
t

)
= g(x). Since t approaches 0 from the right

if and only if x increases without bound,

lim
t→0+

F (t) = lim
t→0+

f
(1

t

)
= lim
x→∞

f(x) = 0,

lim
t→0+

G(t) = lim
t→0+

g
(1

t

)
= lim
x→∞

g(x) = 0.

By the Chain Rule, F ′(t) = f ′
(

1
t

)(
− 1
t2

)
and G′(t) = g′

(
1
t

)(
− 1
t2

)
. Hence

lim
t→0+

F ′(t)

G′(t)
= lim
t→0+

f ′
(

1
t

)(
− 1
t2

)
g′
(

1
t

)(
− 1
t2

) = lim
t→0+

f ′
(

1
t

)
g′
(

1
t

) .
The last limit exists and is equal to L since

lim
t→0+

f ′
(

1
t

)
g′
(

1
t

) = lim
x→∞

f ′(x)

g′(x)
= L.
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By L’Hô pital’s Rule I it follows that limt→0+
F (t)
G(t) = L. Hence

lim
x→∞

f(x)

g(x)
= lim
t→0+

F (t)

G(t)
= L,

and the proof is complete.

An important observation is that all the forms of L’Hôpital’s Rule developed so
far are valid whether L is finite or not. This fact requires no new proof and has
really already been established. The reason is that the basic conclusion of Theorem
(7.2) is the equation

lim
x→a+

f(x)

g(x)
= lim
x→a+

f ′(x)

g′(x)
,

and this holds good whether or not limx→a+
f ′(x)
g′(x) is finite or infinite.

There is another significant variation of L’Hôpital’s Rule, whose proof, although
requiring only the Generalized Mean Value Theorem, cannot (as far as we know)
be obtained from (7.2) by a simple substitution. It states that the several forms
of condition (i), lim f(x) = lim g(x) = 0, can be replaced by lim |g(x)| = ∞. The
specific statement which we prove is the following:

2.7.5. L’HÔPITAL’S RULE IV. Let f and g be functions which are differ-
entiable on a nonempty open interval (a, b) with g′(x) 6= 0 for every x in (a, b).
If

(i) limt→a+ |g(x)| =∞,

(ii) limt→a+
f ′(x)
g′(x) = L,

then

lim
t→a+

f(x)

g(x)
= L,

Proof. Let ε be an arbitrary positive number. By hypothesis (ii), there exists a real
number c in (a, b) such that∣∣∣f ′(x)

g′(x)
− L

∣∣∣ < ε, for every x in (a, c).

By hypothesis (i) there exists a real number d in (a, b), which we shall for conve-
nience assume to be in (a, c), such that, for every x in (a, d), the following three
inequalities hold:

g(x) 6= 0,
∣∣∣ f(c)

g(x)

∣∣∣ < ε,
∣∣∣ g(c)

g(x)

∣∣∣ < ε

(see Figure ??). It is a consequence of the last inequality that∣∣∣1− g(c)

g(x)

∣∣∣ < 1 + ε, for every x in (a, d).
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Figure 2.22:

Now let x be an arbitrary real number in (a, d). By the Generalized Mean Value
Theorem, there exists a real number y in (x, c) such that

f(x)− f(c)

g(x)− g(c)
=
f ′(y)

g′(y)
.

Hence

f(x) =
f ′(y)

g′(y)
(g(x)− g(c)) + f(c).

Dividing by g(x), which cannot be zero, we get

f(x)

g(x)
=
f ′(y)

g′(y)

(
1− g(c)

g(x)

)
+
f(c)

g(x)
.

An equivalent equation is

f(x)

g(x)
− L =

(
f ′(y)

g′(y)
− L

)(
1− g(c)

g(x)

)
− L g(c)

g(x)
+
f(c)

g(x)
.

From the general properties of the absolute value [see specifically (1.3) and (1.4),
page 7], it follows that∣∣∣f(x)

g(x)
− L

∣∣∣ ≤ ∣∣∣f ′(x)

g′(x)
− L

∣∣∣∣∣∣1− g(c)

g(x)

∣∣∣+ |L|
∣∣∣ g(c)

g(x)

∣∣∣+
∣∣∣ f(c)

g(x)

∣∣∣.
Hence, the inequalities established in the first paragraph of the proof imply that∣∣∣f(x)

g(x)
− L

∣∣∣ ≤ ε(1 + ε) + |L|ε+ ε.

Since the right side of this inequality can be made arbitrarily small by taking ε

sufficiently small, it follows that limt→a+
f(x)
g(x) = L, and the proof is complete.

It is not difficult to derive variations of the preceding theorem analogous to the
modified versions of (7.2) described above. Thus, with the obvious changes in the
hypotheses, this last form of L’Hôpital’s Rule also holds for two-sided limits and
with a or L (or both) replaced by ±∞.

Example 61. Compute limt→∞
3
√
x+1
x+4 . Let f and g be the functions defined by

f(x) = 3
√
x+ 1 and g(x) = x+4, respectively. Since f ′(x) = 1

3(x+1)2/3
and g′(x) = 1,

we see that f and g are differentiable on the interval (1,∞) and that g′(x) 6= 0.
Moreover, limt→∞ |g(x)| = limt→∞ |x+ 4| =∞, and



134 CHAPTER 2. APPLICATIONS OF THE DERIVATIVE

lim
x→∞

f ′(x)

g′(x)
= lim
x→∞

1
3(x+1)2/3

1
= 0.

It follows by L’Hôpital’s Rule that

lim
x→∞

3
√
x+ 1

x+ 4
= lim
x→∞

f(x)

g(x)
= 0.

The several forms of L’Hôpital’s Rule which we have derived in this section
fall naturally into two types, symbolically denoted as the 0

0 type and the ∗
∞ type.

Theorems (7.2), (7.3), and (7.4) are all examples of the first type, whereas the
harder Theorem (7.5) is the prototype of the second type. The full power of the
∗
∞ forms will be realized later in the book in conjunction with the logarithmic,
exponential, and trigonometric functions.



2.7. L’HÔPITAL’S RULE. 135

Problems

1. Evaluate each of the following limits without using L’Hôpital’s Rule.

(a) limx→3
x2−9

x2−5x+6

(b) limx→−2
x3+8
x5+32

(c) limx→2
x3−6x+4
x2+4

(d) limx→∞
2x2+x−1
3x2−2x+1

(e) limx→1
x2−1
x3−1

(f) limx→3

√
x−
√
3

x−3

(g) limt→2
t2+t+6
t3−2t+4

(h) limt→0
t√

1+t−1 .

2. Evaluate each of the limits in Problem ?? using an appropriate for of L’Hôpital’s
Rule, if it is applicable.

3. Evaluate each of the following limits.

(a) limx→4
x−4
xn−4n , n is a positive integer

(b) limx→1+
x

3
2−1√
x3−1

(c) limx→2+
x2−4x+2√

x2−4

(d) limx→1
x

1
2−x

1
3

x−1

(e) limx→1
x3−x2−x+1
2x3−3x2+1

(f) limt→0
3t2

3(1+t)
1
3−t−3

.

4. Compute

(a) limx→∞
√
x+1
x+2

(b) limx→∞
(x2+1)

1
3

2x2−3

(c) limx→∞
x

1
3 +2

x
1
2−2

(d) limx→∞
x

1
3 +2x+1

x
1
2 +3x−2

.

5. Compute each of the following limits directly using the ∗∞ form of L’Hôpital’s
Rule. Verify the result by writing the quotient in a different form and using
either the 0

0 form of the rule or some other method.

(a) limx→0+

√
1
x+1

1
x+2

(b) limx→0

1
x2

+5

( 1
x2
−1)

1
3

.
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6. Suppose that F is a function differentiable on the open interval (0,∞) and
such that F ′(x) = 1

x , for every x > 0. Show that

(a) limx→∞
F (x)
x = 0

(b) limx→∞
F (x)
x2 = 0

(c) limx→∞
F (x)
xn = 0, for every positive integer n.



Chapter 3

Conic Sections

We shall now consider a certain type of curve called a conic section. Each of
these curves is the curve of intersection of a plane with a right circular cone and
each is also the curve defined by a second-degree equation. It is also true that any
second-degree equation in x and y defines one of these curves or a degenerate form
of one of them. We encounter all of them—the circle, the parabola, the ellipse, and
the hyperbola—frequently in mathematics and also in the physical world.

3.1 The Circle.

We looked at a circle in Chapter 1 and have a definition from a first course in plane
geometry. This is still the definition: A circle is the locus of points in a plane at a
given distance from a fixed point. The given distance is called the radius and the
fixed point is called the center.

If the center of the circle is at (h, k), the distance from the center to a variable
point (x, y) is, by the distance formula,

√
(x− h)2 + (y − k)2. If the radius is r, we

have an equation of the circle given by√
(x− h)2 + (y − k)2 = r. (3.1)

An equivalent equation which is more commonly used is

(x− h)2 + (y − k)2 = r2. (3.2)

It is easy to see that, not only do all points at a distance r from (h, k) lie on the
graph of (2), but also all points on the graph of (2) are at a distance r from (h, k).

Example 62. (a) Write an equation of the circle with center at the origin and
radius 3. (b) Write an equation of the circle with center at (−1, 2) and radius 5.

(a) By the distance formula, the first circle has equation√
(x− 0)2 + (y − 0)2 = 3, or x2 + y2 = 9.

137
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(b) By the distance formula, an equation for the second circle is√
[x− (−1)]2 + (y − 2)2 = 5. Equivalent equations are

(x+ 1)2 + (y − 2)2 = 25,

x2 + y2 + 2x− 4y = 20.

As the following examples will show, any equation of the form ax2 + ay2 + bx+
cy+d = 0 is, loosely speaking, an equation of a circle. The words “loosely speaking”
are inserted to cover possible degenerate cases. For example, if a = 0 and b and c are
not both zero, the equation becomes an equation of a line. In another degenerate
case “the circle” may be just a point (if its radius is zero), and in another there
may be no locus at all.

Example 63. Describe the graph of each of the following equations:

(a) x2 + y2 − 6x+ 8y − 75 = 0,

(b) x2 + y2 + 12x− 2y + 37 = 0,

(c) x2 + y2 − 4x− 5y + 12 = 0,

(d) 3x2 + 3y2 − 9x+ 10y − 71
12 = 0.

The technique of completing the square is useful in problems of this type. In (a),
we write equations equivalent to the given equation until we recognize the form.

x2 − 6x+ y2 + 8y = 75,

x2 − 6x+ 9 + y2 + 8y + 16 = 75 + 9 + 16,

(x− 3)2 + (y + 4)2 = 100.

The graph is a circle with center at (3,−4) and radius 10.
Applying the same technique to (b), we have

x2 + 12x+ y2 − 2y = −37,

x2 + 12x+ 36 + y2 − 2y + 1 = −37 + 36 + 1,

(x+ 6)2 + (y − 1)2 = 0.

The graph is a circle with center at (−6, 1) and radius 0; i.e., it is just the point
(−6, 1). We may say that the graph consists of the single point, although we
sometimes describe it as a point circle.

The equation of (c) gives different results:

x2 − 4x+ y2 − 5y = −12,

x2 − 4x+ 4 + y2 − 5y +
25

4
= −12 + 4 +

25

4
,

(x− 2)2 + (y − 5

2
)2 = −7

4
.
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For any two real numbers x and y, the numbers (x−2)2 and (y− 5
2 )2 must both

be nonnegative, while − 4
7 is certainly negative. Hence there are no points in the

plane satisfying this equation. However, the form of the last of the three equivalent
equations is that of the equation of a circle, and we sometimes say that the graph
is an imaginary circle with center at (2, 52 ) and radius 1

2

√
−7.

Equation (d) requires a bit more manipulation:

3x2 − 9x+ 3y2 + 10y =
71

12
,

x2 − 3x+ y2 +
10

3
y =

71

36
,

x2 − 3x+
9

4
+ y2 +

10

3
y +

29

5
=

71

36
+

9

4
+

25

9
,

(x− 3

2
)2 + (y +

5

3
)2 = 7.

The graph is a circle with center at ( 3
2 ,−

5
3 ) and radius

√
7.

By completing the square, as in the above examples, one can show that any
equation of the form

ax2 + ay2 + bx+ cy + d = 0

is an equation of a circle of positive radius if and only if a 6= 0 and b2 + c2 > 4ad.
The circle is also the intersection of a right circular cone with a plane perpen-

dicular to the axis of the cone. If the plane passes through the vertex of the cone,
the intersection is a point.

We can use the techniques of the calculus, as well as our knowledge of Euclidean
geometry, to write an equation for a circle or for a line tangent to a circle, from
given geometric conditions.

Example 64. Write an equation of the line which is tangent to the graph of (x+
3)2 + (y − 4)2 = 25 at (1, 7). We may find the slope by use of the derivative,
differentiating implicitly and remembering that one interpretation of the derivative
is the slope of the tangent: 2(x + 3) + 2(y − 4)y′ = 0; hence y′ = −x+3

y−4 . The

slope Or the tangent is − 1+3
7−4 = − 4

3 . We may also find the slope of the tangent by

noting first that the radius to (1, 7) has slope 7−4
1−(−3) = 3

4 and then by remembering

that the tangent is perpendicular to the radius and hence has slope − 4
3 . Thus the

tangent line has equation y − 7 = − 4
3 (x− 1) or 4x+ 3y = 25.
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Problems

1. Write an equation for each of the following.

(a) A circle with center at the origin and radius 3.

(b) A circle with center at the origin and radius 10
3 .

(c) A circle with center at (−2, 2) and radius 5.

(d) A circle with center at (3, 0) and radius 3.

(e) A circle with center at (0,−7) and radius 7.

(f) A circle with center at (−3,−3) and radius 3
√

2.

(g) A circle with center in the first quadrant, radius 4, and tangent to both
axes.

(h) A circle with center on the y-axis, radius 5
2 , and tangent to the x-axis

(there are two such circles).

(i) A circle with radius 2 and tangent to the x-axis and to the line defined
by the equation x = 5 (there are four such circles).

2. For each of the following equations, describe the curve defined by it.

(a) x2 + y2 = 64

(b) x2 + y2 = 32

(c) x2 + (y − 4)2 = 9

(d) (x+ 2)2 + y2 = 16

(e) (x− 2)2 + (y + 7)2 = 19

(f) (2x− 3)2 + (2y − 5)2 = 25
4

(g) x2 + y2 − 8x− 12y + 27 = 0

(h) x2 + y2 − 5x− 7y + 5
2 = 0

(i) 9x2 + 9y2 − 12x+ 30y = 71

(j) 5x2 + 5y2 − 6x+ 8y = 31.

3. Show that, if b2 +c2 > 4ad and a 6= 0, the equation ax2 +ay2 +bx+cy+d = 0
defines a circle with center at(

− b

2a
,− c

2a

)
and radius

√
b2 + c2 − 4ad

4a2
.

4. Show that the tangents from a point (x1, y1) outside the circle defined by
(x− h)2 + (y − k)2 = r2 to the circle are of length√

(x1 − h)2 + (y1 − k)2 − r2.

5. Show that the line tangent to the circle defined by

ax2 + ay2 + bx+ cy + d = 0at (x1, y1) has the equation

ax1x+ ay1y +
b

2
(x+ x1) +

c

2
(y + y1) + d = 0.
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6. Write an equation of the line which is tangent to

(a) the circle defined by x2 + y2 = 25 at (−3, 4).

(b) the circle defined by x2 + y2 = 9 at (0, 3).

(c) the circle defined by (x− 2)2 + (y + 8)2 = 169 at (7, 4).

(d) the circle defined by x2 + y2 − 10y = 33 at (7, 2).

7. Write an equation of the line containing the common chord of circles defined
by x2 + y2 − 8x− 12y = 48 and x2 + y2 − 4x+ 6y = 23.

8. Given a circle and a line tangent to it, the segment of the line between a given
point and the point of tangency is commonly called the tangent from the point
to the circle. Show that the locus of points from which the tangents to two
unequal externally tangent circles have equal length is the common internal
tangent line.

9. Write an equation for the circle which passes through

(a) (3, 4), (−4, 3), and (5, 0).

(b) (7, 1), (6, 2), and (−1,−5).

(c) (4, 16), (−6,−8), and (11, 9).

10. Use the results of Problems ?? and ?? to show that a line tangent to a circle
is perpendicular to the radius drawn to the point of tangency.
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3.2 The Parabola.

A second conic section, which appears in a great many physical applications, is the
parabola. In this section we shall derive its equation and study its properties.

By definition, a parabola is the locus of points in a plane equidistant from a
given line and a given point not on the line. The line is called the directrix, and
the point is called the focus. A simple equation for a parabola is found if a point
on the x-axis is used for the focus and a line perpendicular to the x-axis and on the
opposite side of the origin from the focus is used as the directrix. In Figure ??, the
focus is at (a, 0) and an equation of the directrix is x = −a.

The distance from an arbitrary point (x, y) to the focus (a, 0) is, by the dis-
tance formula,

√
(x− a)2 + (y − 0)2. The perpendicular from (x, y) to the direc-

trix intersects that line at (−a, y), and so the distance from the point to the line is√
(x+ a)2 + (y − y)2 = |x+ a|. The point (x, y) lies on the parabola if and only if

the two distances are equal. Hence an equation of the parabola is√
(x− a)2 + y2 = |x+ a|.

An equivalent equation, which is simpler, is obtained by squaring both sides. We
get

x2 − 2ax+ a2 + y2 = x2 + 2ax+ a2,

or

y2 = 4ax.

This equation has been derived in such a way that its graph contains all points and
only those points equidistant from the focus and the directrix.

Figure 3.1:

The point on a parabola nearest its directrix is called the vertex. For the
parabola defined by y2 = 4ax, the vertex is the origin, and there are no points on



3.2. THE PARABOLA. 143

the curve to the left of the vertex. Since |y| increases indefinitely as x increases,
the graph is not a closed curve but opens to the right. We cannot, of course, draw
the entire curve, but the incomplete graph in Figure ?? is sufficient to describe the
entire curve for us. Note that the graph is symmetric with respect to the x-axis.

If we had chosen (−a, 0) for the focus and the line x = a for the directrix, we
would have a parabola with equation y2 = −4ax. This parabola would also have its
vertex at the origin, also be symmetric with respect to the x-axis, but would open
to the left.

With a horizontal directrix and the focus on the y-axis, the equation would be
x2 = 4ay or x2 = −4ay, opening upward or downward, respectively.

Thus the graphs of y2 = kx and x2 = ky are parabolas with their vertices at the
origin. The line through the vertex and the focus is called the axis of the parabola.
The graph of y2 = kx has the x-axis for its axis and opens to the right or left,
depending on the sign of k. The graph of x2 = ky has the y-axis for its axis and
opens upward or downward, depending on the sign of k. The absolute value of k
determipes the shape of the parabola. If k = 0, the two equations reduce to y2 = 0
and x2 = 0, whose graphs are the x-axis and the y-axis respectively. Thus a straight
line may be regarded as a degenerate parabola.

Example 65. Find the coordinates of the focus and an equation of the directrix of
x2 = −7y, and sketch its graph. An equivalent form of the equation is x2 = −4( 7

4 )y,
from which it follows that the focus is (0,− 7

4 ), that the directrix is y = 7
4 , and that

the graph opens downward. It is shown in Figure ??.

Figure 3.2:

Example 66. Write an equation of the parabola with focus at (−3, 0) and directrix
x = 3. Sketch its graph. An equation may be found by use of the definition or by
use of the formulas, either method giving y2 = −12x as the simplest equation. The
graph is shown in Figure ??.

In every case considered so far, the parabola has one of the coordinate axes
for its axis and the focus and directrix are equally spaced on opposite sides of the



144 CHAPTER 3. CONIC SECTIONS

origin. The equations are somewhat more involved if other vertical or horizontal
lines are chosen as axes, and even more involved if the parabolas have axes which
are not parallel to one of the coordinate axes.

Figure 3.3:

Example 67. Write an equation of the parabola with focus at (2, 5) and directrix
x = −6. Sketch the graph (see Figure ??). From the definition of the parabola,

|x+ 6| =
√

(x− 2)2 + (y − 5)2,

x2 + 12x+ 36 = x2 − 4x+ 4 + (y − 5)2,

16x+ 32 = (y − 5)2,

(y − 5)2 = 16(x+ 2).

Note the similarity of this form to the y2 = 4ax form. The x-coordinate of the
vertex, which is located halfway along the perpendicular from the focus to the
directrix, is equal to −2. That is, it is found by setting x+ 2 equal to zero. Hence
the y-coordinate of the vertex is found by setting y − 5 equal to zero. Thus the
vertex is the point (−2, 5).

Let us now write a general equation of an arbitrary parabola with a horizontal
directrix (see Figure ??). Consider the perpendicular from the focus to the directrix,
and denote the midpoint of this line segment by (h, k). This is the vertex, the point
on the parabola nearest the directrix. Let the focus be the point (h, k + a). Then
the length of the segment is |2a| and the directrix is the line y = k− a. By algebra
similar to that in Example 3, we go from

|y − (k − a)| =
√

(x− h)2 + [y − (k + a)]2

to
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Figure 3.4:

(x− h)2 = 4a(y − k). (3.3)

This parabola will have the same shape and the same orientation (opening upward
or downward) as x2 = 4ay, but will have its vertex at (h, k).

Similarly, (y−k)2 = 4a(x−h) will have the same shape and the same orientation
as y2 = 4ax, but will have its vertex at (h, k).

Example 68. Write an equation of the parabola with focus at (−3, 2) and directrix
y = 6. The midpoint of the segment connecting focus and directrix and perpen-
dicular to the directrix is at (−3, 4) and the segment is of length 4. With directrix
above the focus, the parabola opens downward and has the equation

(x+ 3)2 = −8(y − 4).

Example 69. Describe the graph of y2 + 2x− 3y+ 7 = 0. We first write y2− 3y =
−2x− 7 and, completing the square, add 9

4 to each side of the equation:

y2 − 3y +
9

4
= −2x− 7 +

9

4
,

(y − 3

2
)2 = −2(x+

19

8
).

The graph is a parabola with vertex at (− 19
8 ,

3
2 ), focus at (− 23

8 ,
3
2 ), and directrix

x = − 15
8 . It opens to the left and has the same shape and orientation as the graph

of y2 = −2x.

The graph of any function f defined by an equation f(x) = ax2 + bx + c, where
a 6= 0, is a parabola. The defining equation may be written
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Figure 3.5:

f(x) = a
(
x2 +

b

a
x+

b2

4a2

)
+ c− b2

4a
,

or

f(x) = a
(
x+

b

2a

)2
+

4ac− b2

4a
.

Hence the graph of the function, which is the graph of the equation y = f(x), is

the graph of y = a
(
x+ b

2a

)2
+ 4ac−b2

4a , or, equivalently, of(
x+

b

2a

)2
=

1

a

(
y − 4ac− b2

4a

)
.

Comparing this equation with (1), we see that the graph is a parabola with a vertical

axis and its vertex at
(
− b

2a ,
4ac−b2

4a

)
.
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Problems

1. Write an equation for each of the following.

(a) The parabola with focus at (−2, 0) and directrix x = 2.

(b) The parabola with focus at (0, 3) and directrix y = −3.

(c) The parabola with focus at (0,−1) and directrix y = 1.

(d) The parabola with focus at (4, 0) and vertex at the origin.

(e) The parabola with focus at (0,−2) and vertex at (0, 2).

(f) The parabola with vertex at (−5, 0) and directrix x+ 1 = 0.

2. Sketch the graph of each of the parabolas in Problem ??.

3. Sketch on the same set of axes the graph of each of the following equations.
Compare and contrast the graphs, noting common features and differences.

(a) y2 = 1
2x

(b) y2 = x

(c) y2 = 2x

(d) y2 = 3x

4. Sketch on the same set of axes the graph of each of the following equations.
Compare and contrast the graphs, noting common features and differences.

(a) y2 = 2x

(b) y2 = −2x

(c) x2 = 2y

(d) x2 = −2y.

5. Consider a point (x1, y1) on the graph of y2 = 4ax.

(a) Find the slope of the tangent to the graph at (x1, y1).

(b) Write an equation of the tangent line in ??.

(c) Show that yy1 = 2a(x+ x1) is an equation of the tangent line.

6. Consider a point (x1, y1) on the graph of x2 = 4ay. Show that xx1 = 2a(y+y1)
is an equation of the line tangent to the graph at (x1, y1).

7. If (x1, y1) lies on the graph of y = ax2 + bx + c, show that 1
2 (y + y1) =

axx1 + 1
2b(x + x1) + c is an equation of the line tangent to the graph at

(x1, y1).

8. Write an equation of a line which passes through the point (8, 7) and is a
tangent to the graph of y2 = 6x.

9. (a) Find the point where the tangent to y2 = 4ax at the point (x1, y1) cuts
the x-axis. Assume that a 6= 0.

(b) Show that the segment of the tangent line between (x1, y1) and the point
found in ?? is bisected by the y-axis.
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10. Write an equation for each of the following:

(a) The parabola with vertex (1, 1) and directrix x = −1.

(b) The parabola with vertex (1, 1) and directrix y = 0.

(c) The parabola with vertex (4, 3) and directrix x = −2.

(d) The parabola with vertex (−1, 2) and directrix y = 4.

11. Find the focus of each of the parabolas in Problem ??.

12. Do Problem ?? with each occurence of the word “vertex” replaced by “focus.”

13. Find the focus, vertex, and directrix of the parabola which is the graph of
each of the following equations or functions. Sketch the graph.

(a) y = x2

(b) y = x2 − 2x

(c) f(x) = x2 − 6x+ 1

(d) y2 + 2y + 2x = 0

(e) g(y) = −y2 − 4y + 4

(f) x2 + x+ y = 0.
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3.3 The Ellipse.

A third conic section, quite fashionable these days as astronauts circle the earth in
elliptical orbits, is the ellipse. In this section we shall derive its equation and study
its properties.

By definition, an ellipse is the locus of points in a plane the sum of whose
distances from two given points is a constant. The constant, of course, must be
greater than the distance between the two given points. The two points are called
the foci of the ellipse. A simple equation for an ellipse is found if the points (−c, 0)
and (c, 0) are used for foci and 2a for the constant sum of distances. The foci and
the arbitrary point (x, y) are shown in Figure ??. The distance from (x, y) to (−c, 0)
is
√

(x+ c)2 + (y − 0)2, and that from (x, y) to (c, 0) is
√

(x− c)2 + (y − 0)2. The
point (x, y) lies on the ellipse if and only if the sum of these two distances is equal
to 2a. Hence an equation of the ellipse is

Figure 3.6:

√
(x+ c)2 + y2 +

√
(x− c)2 + y2 = 2a.

Simpler equivalent equations are found by subtracting
√

(x− c)2 + y2 from both
sides of the equation √

(x+ c)2 + y2 = 2a−
√

(x− c)2 + y2,

squaring both sides of the equation and simplifying

x2 + 2cx+ c2 + y2 = 4a2 − 4a
√

(x− c)2 + y2 + x2 − 2cx+ c2 + y2,

4a
√

(x− c)2 + y2 = 4a2 − 4cx,

dividing by 4 and squaring again

a2(x2 − 2cx+ c2 + y2) = a4 − 2a2cx+ c2x2,

and simplifying again,

x2(a2 − c2) + a2y2 = a2(a2 − c2).

Finally, dividing by a2(a2 − c2) we have

x2

a2
+

y2

a2 − c2
= 1.
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Since a > c, it follows that a2 > c2, and we replace a2− c2 by b2. We then have the
canonical form of an equation for the ellipse,

x2

a2
+
y2

b2
= 1.

This equation is derived in such a way that its graph contains all points which
satisfy the locus condition. One of the problems at the end of the section will be to
show that the graph contains only those points.

Figure 3.7:

By placing y equal to 0, we obtain x = ±a. The graph therefore cuts the x-axis
at (−a, 0) and at (a, 0), and the numbers a and −a are the x intercepts of the graph.
The line segment between (−a, 0) and (a, 0) is called the major axis of the ellipse.
Similarly, the graph cuts the y-axis at (0,−b) and at (0, b), and the numbers b and
−b are the y-intercepts of the graph. The line segment between (0,−b) and (0, b)
is called the minor axis of the ellipse. It is not difficult to see that there are no
points on the graph for which |x| > a or for |y| > b. Symmetry across both axes
and across the origin can be seen by noting that (−p, q), (p,−q), and (−p,−q) all
lie on the graph if (p, q) does. The complete curve is shown in Figure ??.

There is a simple method of constructing an ellipse by placing thumbtacks at
the foci and looping around them a string of length 2a + 2c. If a pencil is placed
in the loop so as to hold it taut and moved in a complete turn around the foci, the
curve traced is an ellipse. This is readily seen from the definition.

Example 70. Describe the graph of 4x2 + 25y2 = 100 and draw it. An equivalent

form of the equation is x2

25 + y2

4 = 1, from which it is apparent that the graph is
an ellipse with x-intercepts of −5 and 5, major axis of length 10, y-intercepts of
−2 and 2, and minor axis of length 4. The intersection of these axes, in this case
the origin, is called the center of the ellipse. Using a2 = 25, a2 − c2 = 4, we have
c2 = 21. Thus the foci are at (−

√
21, 0) and (

√
21, 0). The graph is drawn in Figure

??.
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Figure 3.8:

If the foci are located on the y-axis at (0, c) and (0,−c), an analogous derivation
gives the equation

x2

a2 − c2
+
y2

a2
= 1

and its equivalent form
x2

b2
+
y2

a2
= 1.

In this case, the major axis is the line segment between (0,−a) and (0, a), and the
minor axis that between (−b, 0) and (b, 0).

Example 71. Describe and draw the graph of 4x2 + y2 = 36. An equivalent form

of the equation is x2

9 + y2

36 = 1, from which we see that the positive y-intercept is
larger than the positive x-intercept and therefore that the foci are on the y-axis.
The x-intercepts are 3 and −3, the y-intercepts are 6 and −6, and the foci are at
(0,
√

36− 9) and (0,−3
√

3). The graph is drawn in Figure ??.

Examples 1 and 2 were each for an ellipse with its center at the origin. In a
manner similar to that used in the last section, we can write an equation for an
ellipse with center at (h, k) and foci at (h − c, k) and (h + c, k). The equation is
then

(x− h)2

a2
+

(y − k)2

b2
= 1.

If the center is at (h, k) and the foci at (h, k − c) and (h, k + c), an equation is

(y − k)2

a2
+

(x− h)2

b2
= 1.

Example 72. Describe and sketch the graph of (x+4)2

9 + (y−7)2
25 = 1. The graph

is an ellipse with center at (−4, 7). The foci are above and below the center;, the
distance being

√
25− 9 = 4. Thus the foci are at (−4, 3) and (−4, 11). The ends of
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Figure 3.9:

the major axis are (−4, 7 − 5) or (−4, 2) and (−4, 7 + 5) or (−4, 12). The ends of
the minor axis are (−4 − 3, 7) or (−7, 7) and (−4 + 3, 7) or (−1, 7). The graph is
drawn in Figure ??.

There is an alternative definition of the ellipse, one analogous to the definition
of a parabola. It may be seen in considering the distance from a point (x, y) to the
focus (c, 0). This distance is

√
(x− c)2 + y2. If the point lies on the ellipse, then

x2

a2 + y2

a2−c2 = 1, or y2 = a2 − x2 − c2 + x2c2

a2 . Thus the distance from the point to
the focus is √

x2 − 2cx+ c2 +
(
a2 − x2 − c2 +

x2c2

a2

)
,

or √
x2c2

a2
− 2cx+ a2,

or ∣∣∣xc
a
− a
∣∣∣.

This latter expression may be written c
a

∣∣∣x− a2

c

∣∣∣. But
∣∣∣x− a2

c

∣∣∣ is the distance from

the point (x, y) to the line x = a2

c . Thus the distance from the point to the focus

(c, 0) is times the distance from the point to the line x = a2

c . This result could also
be stated by noting that the ratio of the two distances (that to the focus and that
to the line) is a constant for all points on the ellipse. The line is called a directrix
for the ellipse and the constant ratio, c

a , is called the eccentricity of the ellipse.
The eccentricity is less than 1. For all points on a parabola, the ratio of the two
distances (that to the focus and that to the directrix) is also a constant, namely 1.
A parabola is said to have eccentricity 1. Even as the ellipse has two foci, it also

has two directrices. The other is the line x = −a
2

c , and the ratio of the distance
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Figure 3.10:

between a point on the ellipse and the focus (−c, 0) to the distance from the same

point to the directrix x = −a
2

c is the same constantc c
a .

Not all equations for ellipses are in canonical form, but equivalent equations in
canonical form can be found by factoring and completing the square.

Example 73. Describe and draw the graph of 16x2 + 25y2−64x+ 150y−111 = 0.
Equations equivalent to this one are

16(x2 − 4x) + 25(y2 + 6y) = 111,

16(x2 − 4x+ 4) + 25(y2 + 6y + 9) = 111 + 16 · 4 + 25 · 9,
16(x− 2)2 + 25(y + 3)2 = 400,

(x− 2)2

25
+

(y + 3)2

16
= 1.

From the last equation we can see that the graph is an ellipse with center at (2,−3),
horizontal major axis of length 10, vertical minor axis of length 8, and c =

√
25− 16.

Thus the foci are at (−1,−3) and (5,−3). The graph is shown in Figure ??.

As Example 4 illustrates, almost every equation of the type ax2 + by2 + cx +
dy + e = 0 with ab > 0 has an ellipse for its graph. The reason for the “almost”
can be seen as we write equivalent equations

a
(
x2 +

c

a
x
)

+ b
(
y2 +

d

b
y
)

= −e,

a
(
x2 +

c

a
x+

c2

4a2

)
+ b
(
y2 +

d

b
y +

d2

4b2

)
=

c2

4a
+
d2

4b
− e,

a
(
x+

c

2a

)2
+ b
(
y +

d

2b

)2
=

c2

4a
+
d2

4b
− e.
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If the expression on the right side of the last equation has the same sign as a (and
hence b), then the graph is an ellipse. If the expression on the right side is equal to

zero, the graph is the single point
(
− c

2a ,−
d
2b

)
. If the expression on the right side

has sign opposite to that of a, there is no graph, although the equation is said to
have an imaginary ellipse for its graph. If a = b, the foci coincide and the graph is
a circle.

Figure 3.11:
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Problems

1. Describe and sketch the graph of each of the following equations. Label the
foci and endpoints of the major and minor axes.

(a) x2

4 + y2

9 = 1

(b) x2

9 + y2

4 = 1

(c) x2

169 + y2

144 = 1

(d) x2

100 + y2

64 = 1

(e) x2

17 + y2

16 = 1.

2. Write an equation for the ellipse satisfying the given conditions.

(a) Foci at (−5, 0) and (5, 0). Minor axis of length 24.

(b) Center at the origin. Major axis horizontal and of length 14, minor axis
vertical and of length 8.

(c) Center at the origin. Minor axis vertical and of length 4. Passing though
(3, 1).

(d) Foci at (−4, 0) and (4, 0). Endpoints of major axis at (−5, 0) and (5, 0).

(e) The locus of points the sum of whose distances from (0, 2) and (0,−2) is
7.

3. It has been shown that the distance between a point on the ellipse

x2

a2
+

y2

a2 − c2
= 1

and the focus (c, 0) is
∣∣xc
a − a

∣∣.
(a) Show that this distance is a− xc

a for |x| ≤ a.

(b) Show that the distance between a point on the ellipse and the focus
(−c, 0) is

∣∣xc
a + a

∣∣ and that the distance is a+ xc
a .

(c) Show that the sum of the distances from a point on the ellipse to the

foci is 2a and hence that the graph of x
2

a2 + y2

a2−c2 = 1 contains only those
points which satisfy the locus definition.

4. Describe and sketch the graph of each of the following equations.

(a) (x−2)2
25 + (y−4)2

9 = 1

(b) (x+3)2

16 + (y−2)2
25 = 1

(c) (x+5)2

169 + (y+2)2

144 = 4

(d) 25x2 + 9(y + 3)2 = 225

(e) 9x2 + 4y2 + 36x− 24y + 36 = 0.

5. The line segment which passes though a focus, is perpendicular to the major
axis, and has its endpoints on the ellipse is called a latus rectum.
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(a) Find the length of a latus rectum of the ellipse 4x2 + 9y2 = 36.

(b) Find the length of a latus rectum of the ellipse b2x2 + a2y2 = a2b2.
(Assume that b < a.)

(c) Show that both latera recta of an ellipse are the same length.

6. Write equations of the directrices and find the eccentricity of each of the
following ellipses.

(a) 4x2 + 9y2 = 36

(b) 9x2 + 4y2 = 144.

7. Assume that 0 < c < a.

(a) Find the distance between (x, y) and (−c, 0).

(b) Find the distance between (x, y) and the line x = −a
2

c .

(c) Find the locus of points (x, y) such that the ratio between the distance
in ?? and the distance in ?? is a constant c

a .

8. Show that an ellipse becomes more nearly circular as its foci get closer and
closer together.

9. Consider a point (x1, y1) on the graph of b2x2 + a2y2 = a2b2.

(a) Find the slope of the tangent to the graph at (x1, y1).

(b) Write an equation of the tangent line in ??.

(c) Show that b2xx1 + a2yy1 = a2b2 is an equation of the tangent line.

10. Assume that the constants a, b, c, d, and e are such that ax2+by2+cx+dy+e =
0 is an equation of an ellipse. Consider a point (x1, y1) on this ellipse.

(a) Find the slope of the tangent to the graph at (x1, y1).

(b) Write an equation of the tangent line in ??.

(c) Show that axx1 + byy1 + 1
2c(x+ x1) + 1

2d(y + y1) + e = 0 is an equation
of the tangent line.

11. Write an equation of the ellipse with horizontal and vertical axes satisfying
the given data.

(a) Foci at (−3, 2) and (5, 2). Eccentricity is 2
3 .

(b) Center at (2,−1). One focus at (2, 2). Point (2, 4) lies on ellipse.

(c) Ends of major axis at (2, 4) and (12, 4). Ends of minor axis at (7, 2) and
(7, 6).

12. In the definition of the ellipse, we asserted that the constant must be greater
than the distance between the foci. What is the locus of points in the plane
the sum of whose distances from (−c, 0) and (c, 0) is the constant 2c?

13. What must be the relation between a and b for the major axis of the ellipse
x2

a2 + y2

b2 = 1 to be horizontal? Vertical?
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3.4 The Hyperbola.

The fourth and last conic section is the hyperbola. By definition a hyperbola is
the locus of points in a plane the absolute value of the difference of whose distances
from two given points is a positive constant. The constant must be less than the
distance between the two points, since the length of one side of a triangle must be
greater than the absolute value of the difference between the lengths of the other
two sides. The two given points are called the foci of the hyperbola.

If we select (−c, 0) and (c, 0) as foci and 2a as the difference of distances, the
point (x, y) will lie on the hyperbola if and only if

|
√

(x− c)2 + y2 −
√

(x+ c)2 + y2| = 2a.

This equation is an abbreviation for the two equations

√
(x− c)2 + y2 −

√
(x+ c)2 + y2 = 2a,√

(x+ c)2 + y2 −
√

(x− c)2 + y2 = 2a.

We shall simplify the first of these two equations and leave as Problem 1 at the
end of the section the proof that a similar simplification of the second results in the
same equation.

The steps are similar to those for the simplification of the defining equation of
an ellipse:

√
(x− c)2 + y2 = 2a+

√
(x+ c)2 + y2,

x2 − 2cx+ y2 = 4a2 + 4a
√

(x+ c)2 + y2 + x2 + 2cx+ c2 + y2,

−4cx− 4a2 = 4a
√

(x+ c)2 + y2,

c2x2 + 2a2cx+ a4 = a2(x2 + 2cx+ c2 + y2),

(c2 − a2)x2 − a2y2 = a2(c2 − a2),

and finally

x2

a2
− y2

c2 − a2
= 1.

This last equation is closely akin to the equation of an ellipse; however, the second

term is y2

c2−a2 instead of y2

a2−c2 . For the hyperbola, it is the case that 2a < 2c and

so a < c, and therefore c2 − a2 > 0. Thus it is c2 − a2 which we replace by b2 to
obtain the canonical equation for the hyperbola

x2

a2
− y2

b2
= 1.

We know, from the derivation, that the graph of this equation contains all points
(x, y) such that the distance between (c, 0) and (x, y) is 2a more than the distance
between (−c, 0) and (x, y). In Problem 1 you will be asked to show that the graph
also contains all points (x, y) such that the distance between (−c, 0) and (x, y) is 2a
more than the distance between (c, 0) and (x, y). In Problem 3 you will be asked
to show that the graph contains only those points.
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By setting y equal to 0, we see that the graph cuts the x-axis at (−a, 0) and (a, 0).
These points are called the vertices of the hyperbola and the line segment joining

them the transverse axis. By writing the equivalent equation y2 = b2

a2 (x2 − a2),
we see that there are no points on the graph for |x| < a. Hence the graph cannot
cut the y-axis. The curve is infinite in extent, since there are points on the graph
for all x such that |x| > a, and |y| increases indefinitely as |x| increases. The curve
is symmetric with respect to both axes and to the origin, since (−p, q), (p,−q), and
(−p,−q) all lie on the graph whenever (p, q) does. Although the graph is infinite
in extent, the central portion of it is sketched in Figure ??. When we ask for the
sketch of a hyperbola, it is the central part which is to be drawn.

Figure 3.12:

The graph of y = b
a

√
x2 − a2 is the upper half of the right branch of the hyper-

bola for x ≥ a and the upper half of the left branch for x ≤ −a. In each case, since
|x| >

√
x2 − a2, it is true that b

a |x| >
b
a

√
x2 − a2. However, the difference between

the two functions b
a |x| and b

a

√
x2 − a2 gets less and less as |x| increases. Thus the

upper half of the hyperbola lies below the graph of y = b
a |x| but gets closer to it as

|x| increases. Similarly, the graph of y = − b
a

√
x2 − a2 is the lower half of the hyper-

bola and it lies above the graph of y = − b
a |x|, but gets closer to it as |x| increases.

The union of the two graphs, those of y = b
a |x| and y = − b

a |x|, is also the union

of the graphs of the straight lines y = − b
ax and y = − b

ax. These lines, approached
by the hyperbola, are called the asymptotes of the hyperbola. They are of use in
sketching the graph of a hyperbola, giving guidelines approached by the hyperbola.
They are easily drawn as the diagonals of the rectangle with vertical sides passing
through the vertices of the hyperbola and horizontal sides passing through (0,−b)
and (0, b).

Example 74. Describe and sketch the graph of x2

16 −
y2

9 = 1. Here we have a = 4,
b = 3, and c = 5. The transverse axis is of length 8, the x-intercepts are −4 and
4, the foci are at (−5, 0) and (5, 0), and the asymptotes are the lines y = 3

4x and
y = − 3

4x. A very useful device for remembering equations of the asymptotes is
obtained by replacing the ”1” in the equation of the hyperbola by ”0”:

x2

16
− y2

9
= 0,
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which is equivalent to (x
4

+
y

3

)(x
4
− y

3

)
= 0.

Figure 3.13:

The graph of this equation is the union of the graphs of x
4 + y

3 = 0 and x
4 −

y
3 = 0,

equations of the asymptotes. The graph is sketched in Figure ??.
If the foci of the hyperbola are on the y-axis, at (0,−c) and (0, c) the equation

will be y2

a2 −
x2

b2 = 1. The graph will have branches opening upward and downward
instead of to the right and left. The lines y = a

bx and y = −abx will be asymptotes.

Example 75. Describe and sketch the graph of 4y2 − 5x2 = 20. An equivalent

equation is y2

5 −
x2

4 = 1, from which we see that the vertices are at (0,−
√

5) and

(0,
√

5). The transverse axis is vertical and of length 2
√

5. The foci are at (0,−3)
and (0, 3) and the lines y = − 1

2

√
5x and y = 1

2

√
5x are the asymptotes. The

branches open upward and downward, as can be seen in Figure ??.

The equations x2

a2 −
y2

b2 = 1 and y2

b2 −
x2

a2 = 1 have the same asymptotes, the

lines y = − b
ax and y = − b

ax, and they are called conjugate hyperbola. The first
mentioned has its foci at (−c, 0) and (c, 0) and the latter has its foci at (0,−c) and
(0, c), where c =

√
a2 + b2. The transverse axis of each is called the conjugate

axis of the other.
Examples 1 and 2 have each been a hyperbola with its center at the origin.

The foci, however, may be anywhere in the plane and the midpoint of the segment
joining them will be the center. If they are on a line parallel to one of the axes, an
equation analogous to that of the ellipse can be written. In particular, if the foci

are at (h− c, k) and (h+ c, k), an equation of the hyperbola is (x−h)2
a2 − (y−k)2

b2 = 1,

and an equation for the asymptotes is (x2−h2)
a2 − (y−k2)

b2 = 0. The latter equation is

equivalent to the separate equations, y − k = b
a (x − h) and y − k = − b

a (x − h). If
the foci are at (h, k − c) and (h, k + c), an equation for the hyperbola is
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Figure 3.14:

(y − k)2

a2
− (x− h)2

b2
= 1.

Figure 3.15:

Example 76. Describe and sketch the graph of (x+2)2

9 − (y−1)2
16 = 1. The center

of the hyperbola is at (−2, 1), the foci are at (−7, 1) and (3, 1), and the transverse
axis is horizontal and of length 6. The asymptotes have equations y− 1 = 4

3 (x+ 2)
and y − 1 = − 4

3 (x+ 2). The graph is sketched in Figure ??.
There is a focus-directrix definition of the hyperbola, analogous to those for the
parabola and the ellipse. The distance from a point (x, y) to the focus (c, 0) is
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√
(x− c)2 + y2. The point lies on the hyperbola if and only if x2

a2 −
y2

c2−a2 = 1, or

y2 = a2 − c2 − x2 + c2

a2x
2. Thus the distance from a point on the hyperbola to the

focus is

√
x2 − 2cx+ c2 +

(
a2 − c2 − x2 +

c2

a2
x2
)

=

√
c2

a2
x2 − 2cx+ a2

=

√( c
a
x− a

)2
=

∣∣∣ c
a
x− a

∣∣∣.
As with the ellipse, this distance is equal to c

a

∣∣∣x− a2

c

∣∣∣, or c
a times the distance to the

line x = a2

c . This line is again called the directrix, and the ratio c
a the eccentric-

ity. However, for the hyperbola the eccentricity is greater than 1. The hyperbola
can therefore also be defined as the locus of points the ratio of whose distances to
the focus and to the directrix is a constant greater than 1. Corresponding to the

focus (−c, 0) is a second directrix x = −a
2

c .
Not all hyperbolas with horizontal or vertical axes appear with equations in

canonical form. But canonical equations can be found for them by factoring and
completing the square.

Example 77. Describe and sketch the graph of 16x2 − 9y2 − 32x− 54y− 641 = 0.
Equations equivalent to the given equations are

16(x2 − 2x)9(y2 + 6y) = 641,

16(x2 − 2x+ 1)9(y2 + 6y + 9) = 641 + 16 · 1− 9 · 9,
16(x− 1)2 − 9(y + 3)2 = 576,

(x− 1)2

36
− (y + 3)2

64
= 1.

The hyperbola, opening to the right and left, has its center at (1,−3), its vertices at
(−5,−3) and (7,−3), its foci at (−9,−3) and (11,−3), and the lines y+3 = 4

3 (x−1)
and y + 3 = − 4

3 (x− 1) for asymptotes. The graph is sketched in Figure ??.

The method of Example 4 can be used to show that every equation of the type
ax2 − by2 + cx + dy + e = 0 with ab > 0 has for its graph either a hyperbola or a
pair of intersecting straight lines. Equivalent to the given equation are

a
(
x2 +

c

a
x
)
− b
(
y2 − d

b
y
)

= −e,

a
(
x2 +

c

a
x+

c2

4a2

)
− b
(
y2 − d

b
y +

d2

4b2

)
=

c2

4a
− d2

4b
− e,

a
(
x+

c

2a

)2
− b
(
y − d

2b

)2
=

c2

4a
− d2

4b
− e.

If the expression on the right side of the equation has the same sign as a and b, the

graph is a hyperbola centered at
(
− c

2a ,
d
2b

)
opening to the right and to the left. If
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Figure 3.16:

the expression has sign opposite to a and b, the graph is a hyperbola centered at(
− c

2a ,
d
2b

)
but opening upward and downward. If the expression is zero, the graph

consists of the two straight lines

y − d

2b
=

√
a

b

(
x+

c

2a

)
and y − d

2b
= −

√
a

b

(
x+

c

2a

)
.

One particular type of hyperbola with its axes neither horizontal nor vertical
has a simple equation and appears frequently in mathematics. It is the hyperbola
with foci at (−a,−a) and (a, a) and the difference of distances equal to 2a. By
definition, a point lies on this hyperbola if and only if

|
√

(x− a)2 + (y − a)2 −
√

(x+ a)2 + (y + a)2| = 2a.

Squarings and simplifications yield the equation

xy =
1

2
a2.

This hyperbola has the coordinate axes for its asymptotes and is drawn in Figure

??. Its vertices are at
(
−a2
√

2,−a2
√

2
)

and
(
a
2

√
2, a2
√

2
)

.

With foci at (−a, a) and (a,−a), the equation is xy = − 1
2a

2 and the two branches lie
in the second and fourth quadrants. This type of hyperbola is called equilateral,

as are the hyperbolas x2

a2 −
y2

b2 = 1 and y2

a2 −
x2

b2 = 1 with a2 = b2.
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Figure 3.17:
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Problems

1. Simplify
√

(x+ c)2 + y2 −
√

(x− c)2 + y2 = 2a and show that it results in

the equation x2

z2 −
y2

c2−a2 = 1.

2. Describe and sketch the graph of each of the following equations. Label the
foci and vertices and sketch the asymptotes.

(a) x2

9 −
y2

16 = 1

(b) x2

18 −
y2

7 = 1

(c) x2

25 −
y2

144 = 1

(d) x2

225 −
y2

64 = 1

(e) 25y2 − 9x2 = 225

(f) xy = 8

(g) xy = −6.

3. It has been shown that the distance between a point on the hyperbola x2

a2 −
y2

c2−a2 = 1 and the focus (c, 0) is
∣∣ c
ax− a

∣∣. Call this distance d1.

(a) Show that the distance d2 between a point on the hyperbola and the
focus (−c, 0) is

∣∣ c
ax+ a

∣∣.
(b) Show that x ≥ a for a point on the right branch of the hyperbola and

that for such a point d1 = c
ax− a and d2 = c

ax+ a.

(c) Show that x ≤ −a for a point on the left branch of the hyperbola and
that for such a point d1 = − c

ax+ a and d2 = − c
ax− a.

(d) Hence show that the graph of x2

a2 −
y2

c2−a2 = 1 contains only those points
which satisfy the locus definition of hyperbola.

4. Write an equation for the hyperbola with horizontal and vertical axes satisfy-
ing the given conditions.

(a) Foci at (−5, 0) and (5, 0). Transverse axis of length 6.

(b) Center at the origin. Transverse axis horizontal and of length 4, conju-
gate axis vertical and of length 12.

(c) Center at the origin. Transverse axis vertical and of length 6. Passing
through (1, 2

√
3).

(d) Center at the origin. Passing through (1, 5) and (2, 7).

5. (a) Show that the graph of (x − 3)(y + 2) = 10 is an equilateral hyperbola
with center at (3,−2) and asymptotes x = 3 and y = −2.

(b) Sketch the graph described in ??.

6. Describe and sketch the graph of each of the following equations. Label the
foci and vertices and sketch the asymptotes.

(a) (x−1)2
16 − (y+3)2

9 = 1
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(b) (y+3)2

9 − (x−1)2
16 = 1

(c) (x− 1)(y + 3) = −12

(d) 144(x+ 4)2 − 25(y + 2)2 = 3600

(e) 2xy − 4x− 4y − 17 = 0

(f) x2 − y2 − 2x+ 2y − 2 = 0

(g) y2 − 4x2 + 4y − 16x− 28 = 0.

7. Hyperbolas with the same pair of foci are said to be confocal. Show that
the following equations have confocal hyperbolas for their graphs and sketch
them all on the same set of axes.

(a) x2 − y2

24 = 1

(b) x2

9 −
y2

16 = 1

(c) x2

16 −
y2

9 = 1

(d) x2

24 − y
2 = 1.

8. The line segment which passes through a focus, is perpendicular to the trans-
verse axis extended, and has its endpoints on the hyperbola is called a latus
rectum.

(a) Find the length of a latus rectum of the hyperbola 9x2 − 16y2 = 144.

(b) Find the length of a latus rectum of the hyperbola b2x2 − a2y2 = a2b2.

(c) Show that both latera recta of a hyperbola are the same length.

9. Write equations of the directrices and find the eccentricity of each of the
following hyperbolas.

(a) 9x2 − 16y2 = 144

(b) 144y2 − 25x2 = 3600.

10. Assume that 0 < a < c.

(a) Find the distance between (x, y) and (−c, 0).

(b) Find the distance between (x, y) and the line x = −a
2

c .

(c) Find the locus of points (x, y) such that the ratio between the distance
in ?? and the distance in ?? is a constant c

a .

11. Consider points of the upper right branch of the hyperbola x2 − y2 = 16
and on its asymptote x = y. Find the y-coordinates of the points on each
for x = 10, 100, 1000, 10, 000, and show that the vertical distance between
corresponding points is decreasing as x increases.

12. Consider a point (x1, y1) on the graph of b2x2 − a2y2 = a2b2.

(a) Find the slope of the tangent to the graph at (x1, y1).

(b) Write an equation of the tangent line in ??.

(c) Show that b2xx1 − a2yy1 = a2b2 is an equation of the tangent line.
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13. Consider a point (x1, y1) on the hyperbola ax2 − by2 + cx+ dy + e = 0 with
ab > 0.

(a) Find the slope of the tangent to the graph at (x1, y1).

(b) Write an equation of the tangent line in ??.

(c) Show that axx1 − byy1 + 1
2c(x+ x1) + 1

2d(y + y1) + e = 0 is an equation
of the tangent line.

14. Show that the product of the distances of a point on the hyperbola xy = −12
to its asymptotes is a constant.

15. If the difference of the distances of the point (x, y) from two foci is zero, show
that the locus of (x, y) is the perpendicular bisector of the line segment joining
the foci.

16. Describe and sketch the graph of each of the following equations. If the graph
is a circle, give its center and focus. If the graph is a parabola, give its focus,
directrix, vertex, and axis. If the graph is an ellipse, give its center, foci,
directrices, eccentricity, and length of major and minor axes. If the graph
is an hyperbola, give its center, foci, directrices, eccentricity, asymptotes,
vertices, and length of transverse axis.

(a) x2 + y2 + 6x+ 4y = 12

(b) x2 + 4y2 + 6x+ 4y + 6 = 0

(c) x2 + 6x+ 4y + 2 = 0

(d) x2 − 4y2 + 6x+ 4y + 4 = 0

(e) 4y2 + 6x+ 4y + 13 = 0

(f) xy + 6x+ 4y = 3

(g) 3x2 + 3y2 + 6x− 18y = 162

(h) 4y2 + x2 + 6x+ 4y = 11

(i) y2 = 9x2 + 2y + 8

(j) y2 = 2y − 9x2 + 8



Chapter 4

Integration

There are two major topics in calculus, differentiation and integration. The theory
of integration at first appears to have little connection with differentiation. However,
we shall see that the two processes are indeed closely related.

Differentiation deals with derivatives of real-valued functions, integration with
integrals of real-valued functions defined on closed intervals. In this chapter we shall
define and study the definite integral from a to b of a real-valued function f , which

is denoted by
∫ b
a
f . The integral has countless applications both in mathematics

and the sciences. One of the most important enables us to find the area of a region
more involved than those studied in plane geometry. If f(x) ≥ 0 for every x in [a, b],

then we shall see that
∫ b
a
f is equal to the area of the region lying above the x-axis,

below the graph of f , and between the vertical lines x = a and x = b (see Figure
??). Thus the areas of many irregularly shaped regions can be found by integration.

Figure 4.1:

Another interesting application enables us to find the distance traveled by a
particle which moves in a straight line. If the particle moves with a velocity equal
to v(t) at time t, then the distance travelbed during the interval of time from t = a

to t = b is given by the integral
∫ b
a
|v|.

It will be useful to recall some of the elementary ideas and notations of set
theory. In particular, the union of two sets P and Q, denoted by P ∪Q, is the set
of elements that belong either to P , or to Q, or to both. The intersection of P
and Q, denoted by P ∩ Q, is the set of elements that belong to both P and Q. If
P and Q have no points in common, they are said to be disjoint. The set which

167
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contains no elements is called the empty set and will be denoted by φ. Thus P
and Q are disjoint if and only if P ∩Q = φ. Finally, the difference, P −Q, is the
set of all elements of P which do not belong to Q.

4.1 The Definite Integral.

In defining the definite integral, we shall use the concepts of bounded sets discussed
in Section 1 of Chapter 1. Recall that a number u is said to be an upper bound
of a set S of real numbers if the inequality x ≤ u is satisfied for every number x in
S. Thus the numbers 100, 5, and 1 are all upper bounds of the closed interval [0, 1].
The Least Upper Bound Property (see page 7) states that every nonempty set of
real numbers which has an upper bound has a least upper bound. For example, the
number 1 is obviously the least upper bound of the interval [0,1]. Note that 1 is
also the least upper bound of the open interval (0, 1).

In the same way, a number l is called a lower bound of S provided l ≤ x
for every x in S. The Greatest Lower Bound Property (see Problem 11, page 9)
similarly asserts that if S is nonempty and has a lower bound, then it has a greatest
lower bound. Finally, a set is simply said to be bounded if it has both an upper
bound and a lower bound.

The notion of boundedness can be applied to functions. Specifically, a real-
valued function f of a real variable is said to be bounded on an interval I if the
following two conditions are satisfied:

(i) I is a subset of the domain of f .

(ii) There exists a real number k such that |f(x)| ≤ k, for every x in I.

The reader should be able to supply the straightforward argument which shows that
condition (ii) is equivalent to the assertion that the set S of all real numbers f(x)
for which x is in I is a bounded set. To illustrate the terminology, consider the two
functions f and g defined by f(x) = x2 and g(x) = 1

x . The former is bounded on
both the closed interval [0, 1] and the x open interval (0, 1), whereas the latter is
bounded on neither.

Let [a, b] be a closed interval, and let σ = {x0, ..., xn} be a finite subset of [a, b]
which contains the endpoints a and b. The set σ subdivides, or partitions, the
interval into subintervals, and, for this reason, we shall call it a partition of [a, b].

Let f be a function which is bounded on the closed interval [a, b], and let σ =
{x0, ..., xn} be a partition of [a, b] in which

a = x0 ≤ x1 ≤ ... ≤ xn−1 ≤ xn = b.

Since f is bounded on the entire interval [a, b], it is certainly bounded on each
subinterval [xi−1, xi], for i = 1, ..., n. Hence the set S consisting of all numbers f(x)
with x in [xi−1, xi] has a least upper bound, which we denote by Mi. Similarly,
of course, the set S has a greatest lower bound, which we denote by mi. These
numbers are illustrated for a typical subinterval in Figure ??. We now define two
numbers Uσ and Lσ called, respectively, the upper sum and the lower sum of f
relative to the partition σ by the formulas
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Figure 4.2:

Uσ = M1(x1 − x0) +M2(x2 − x1) + ...+Mn(xn − xn−1),

Lσ = m1(x1 − x0) +m2(x2 − x1) + ...+mn(xn − xn−1).
(4.1)

Since Mi ≥ mi and since (xi − xi−1 ≥ 0, for each i = 1, ..., n, it follows that

Uσ−Lσ = (M1−m1)(x1−x0)+(M2−m2)(x2−x1)+...+(Mn−mn)(xn−xn−1) ≥ 0.

Hence, we conclude that

Lσ ≤ Uσ. (4.2)

Example 78. Let f be the function defined by f(x) = 1
x , let [a, b] = [1, 3], and

consider the partition σ = {1, 23 , 2,
2
5 , 3}. There are four subintervals, [1, 32 ], [ 32 , 2],

[2, 52 ], and [ 52 , 3], and each one is of length 1
2 . It is clear from Figure ?? that

the maximum value of f on each subinterval occurs at the left endpoint, and the
minimum value occurs at the right endpoint. Hence

M1 = f(1) = 1, m1 = f( 3
2 ) = 2

3 ,

M2 = f( 3
2 ) = 2

3 , m2 = f(2) = 1
2 ,

M3 = f(2) = 1
2 , m3 = f( 5

2 ) = 2
5 ,

M4 = f( 5
2 ) = 2

5 , m4 = f(3) = 1
3 .

It follows that

Uσ = 1 · 1

2
+

2

3
· 1

2
+

1

2
· 1

2
+

2

5
· 1

2
,

Lσ =
2

3
· 1

2
+

1

2
· 1

2
+

2

5
· 1

2
+

1

3
· 1

2
.
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Figure 4.3:

Continuing the computation, we obtain

Uσ =
1

2

(
1 +

2

3
+

1

2
+

2

5

)
=

1

2

30 + 20 + 15 + 12

30
=

77

60
,

Lσ =
1

2

(2

3
+

1

2
+

2

5
+

1

3

)
=

1

2

20 + 15 + 12 + 10

30
=

57

60
,

for the values of the upper and lower sums of f relative to σ.

In the paragraph preceding Example 1, it is proved that, for a given partition
σ, the lower sum is less than or equal to the upper sum. We shall now prove the
much stronger fact that all the lower sums are less than or equal to all the upper
sums More precisely,

4.1.1. Let f be bounded on [a, b]. If σ and τ are any two partitions if [a, b], then
Lσ ≤ Uτ .

Proof. The argument will be divided into three parts.

(i) If τ is obtained from σ by adjoining just one new number y, then Lσ ≤ Lτ ≤
Uτ ≤ Uσ.

Let σ = {x0, ...xn} and a = x0 ≤ x1 ≤ ... ≤ xn = b, and let the upper and lower
sums Uσ and Lσ be defined as in (1), page 165. We shall assume that y lies in the
kth subinterval [xk−1, xk]. Then

τ = {x0, ..., xk−1, y, xk, ..., xn}

and

σ = x0 ≤ ... ≤ xk−1 ≤ y ≤ xk ≤ ... ≤ xn = b.
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Abbreviating the expressions least upper bound and greatest lower bound by l.u.b.
and g.l.b., respectively, let

M ′k = l.u.b. of the set of all numbers f(x) with xk−1 ≤ x ≤ y,
M ′′k = l.u.b. of the set of all numbers f(x) with y ≤ x ≤ xk,
m′k = g.l.b. of the set of all numbers f(x) with xk−1 ≤ x ≤ y,
m′′k = g.l.b. of the set of all numbers f(x) with y ≤ x ≤ xk.

These numbers are illustrated in Figure ??. The key idea in the entire proof is the

Figure 4.4:

fact that the least upper bound of f on any set S is greater than or equal to its
least upper bound on any subset of S, and, similarly, the greatest lower bound of f
on S is less than or equal to its greatest lower bound on a subset of S. This means
that

Mk ≥M ′k and Mk ≥M ′′k ,
mk ≤ m′k and mk ≤ m′′k ,

as is borne out by Figure ??. Hence

Mk(xk − xk−1) = Mk(xk − y) +Mk(y − xk−1)

≥ M ′′k (xk − y) +M ′k(y − xk−1),

mk(xk − xk−1) = mk(xk − y) +mk(y − xk−1)

≤ m′′k(xk − y) +m′k(y − xk−1).

But the other terms in the upper and lower sums are the same for the two partitions.
We conclude that Uσ ≥ Uτ and that Lσ ≤ Lτ . Since it follows from (2) that
Lτ ≤ Uτ , we obtain

Lσ ≤ Lτ ≤ Uτ ≤ Uσ. (4.3)

(ii) If σ is a subset of τ , then the preceding inequalities (3) are still satisfied.

This follows by repeated applications of part (i), since the partition τ can be
obtained from σ by adjoining one number at a time.
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(iii) If σ and τ are any two partitions, then Lσ ≤ Uτ

Both σ and τ are subsets of the partition σ∪ τ consisting of their union. Hence,
one application of part (ii) gives Lσ ≤ Lσ∪τ , and another application yields Uσ∪τ ≤
Uτ . Combining these inequalities with Lσ∪τ ≤ Uσ∪τ , we obtain

Lσ ≤ Lσ∪τ ≤ Uσ∪τ ≤ Uτ ,

and the proof of (1.1) is complete.

Theorem (1.1) states that, for a given function f bounded on an interval [a, b],
if we consider all partitions of [a, b], then every lower sum is less than or equal to
every upper sum. It is instructive to picture the relative positions of these numbers
on the real line. If we indicate each lower sum by a right hand parenthesis, “)”,
and each upper sum by a left-hand parenthesis, “(”, the situation looks as shown in
Figure ?? (except that in general there are infinitely many sums of both kinds). The
question naturally arises as to the existence of numbers in between the two sets, and
this brings us to the definitions of integrability and of the definite integral: Let the
function f be bounded on the closed interval [a, b]. Then f is said to be integrable
over [a, b] if there exists one and only one number J such that

Lσ ≤ J ≤ Uτ , (4.4)

Figure 4.5:

for any two partitions σ and τ of [a, b]. If f is integrable over [a, b], then the uniqbue
number J is called the definite integral of f from a to b, and is denoted by∫ b
a
f . That is,

J =

∫ b

a

f.

Almost all the functions encountered in a first course in calculus are integrable
over the closed intervals on which they are bounded. The reason is that for these
functions the differences between the upper and lower sums can be made arbitrarily
small by taking partitions which subdivide the interval into smaller and smaller
subintervals. Many conditions which ensure that a function is integrable are known.
Among these, we shall consider two [see Theorems (3.3) and (5.1)]. The second
condition is continuity. We shall see that if f is continuous at every point of a
closed interval [a, b], then f is integrable over [a, b].

If f is a function bounded on [a, b], there are, according to the definition, two
conditions which must be satisfied for f to be integrable over [a, b]. The first is that
there must exist a number J such that the inequalities (4) hold for all partitions σ
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and τ of the interval. The second is that there must be only one such number. It
is not hard to prove that the first condition is always satisfied (see Problem 9 at
the end of this section). It is the second which may fail, as the following example
illustrates. Let f be the function defined by

f(x) =

{
0 if x is rational,
1 if x is irrational.

This function is bounded on the interval [0, 1]. However, if a is any partition
whatever of [0,1], it is easy to see that Uσ = 1 and Lσ = 0. This means that every
number J between, and including, 0 and 1 will satisfy (4). The function is therefore
not integrable because J is not unique.

Example 79. Assuming that the function f defined by f(x) = 1
x is integrable over

the interval [1, 3], prove that

57

60
≤
∫ 3

1

f ≤ 77

60
.

This is the function and interval described in Example 1. For the partition σ =
{1, 32 , 2,

5
2 , 3}, we saw that Lσ = 57

60 and Uσ = 77
60 ; hence the integral is bounded by

these two numbers.

Example 80. Consider the function f defined by f(x) = x2. Assumingthat f is
integrable over the interval [0, 1], show that

6

25
≤
∫ 1

0

f ≤ 11

25
.

We use the partition σ = {0, 15 ,
2
5 ,

3
5 ,

4
5 , 1} and compute the upper and lower sums

Uσ and Lσ. The points of the partition are given by xi = i
5 , for i = 0, ..., 5. Hence

xi − xi−1 =
1

5
, for i = 1, ..., 5.

Since in this case the subintervals are all of length 1
5 , equations (1) can be simplified

to read

Uσ =
1

5
(M1 + ...+M5),

Lσ =
1

5
(m1 + ...+m5).

It is clear from Figure ?? that the maximum value of f on each subinterval [xi−1, xi]
occurs at the right endpoint, and the minimum value occurs at the left endpoint.
Hence Mi = f(xi) and mi = f(xi−1). Since f(x) = x2, we have

Mi = x2i = i2

25

mi = x2i−1 = (i−1)2
25

}i = 1, ..., 5.

Thus
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Figure 4.6:

Uσ =
1

5

(12

25
+

22

25
+

32

25
+

42

25
+

52

25

)
,

Lσ =
1

5

(02

25
+

12

25
+

22

25
+

32

25
+

42

25

)
.

Since 12 + 22 + 32 + 42 + 52 = 55 and 02 + 12 + 22 + 32 + 42 = 30, it follows that

Uσ =
1

5

55

25
=

11

25
,

Lσ =
1

5

30

25
=

6

25
.

This establishes the desired bounds, since Lσ ≤
∫ 1

0
f ≤ Uσ.

An alternativbe notation for the integral, which we shall use interchangeably

with
∫ b
a
f , is

∫ b
a
f(x)dx. This is the traditional way of writing the integral, and its

usefulness will become increasingly apparent as we go on. In a later section we shall
show how the dx which appears to the right of the integral sign may be interpreted
as a differential. At present, however, it is important to realize that dx is only a

part of the notation for the integral. The variable x which occurs in ia
∫ b
a
f(x)dx is

often called a dummy variable. This name serves as a reminder of the fact that
the value of the integral depends only on the function f and the numbers a and b.
Its value is not determined by giving a value of x. Thus∫ b

a

f =

∫ b

a

f(x)dx =

∫ b

a

f(y)dy =

∫ b

a

f(t)dt = etc.,

and x, y, and t each occurs as a dummy variable. Thus the inequalities established
in Examples 2 and 3 can alternatively be written

57

60
≤
∫ 3

1

1

x
dx ≤ 77

60
,

6

25
≤
∫ 1

0

x2dx ≤ 11

25
.
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Figure 4.7:

Although we shall not give a definition of area in this book, the basic properties
of area can be used to establish its connection with the definite integral. Let the
area of a set P be denoted by area(P ). Two basic properties are:

4.1.2. The area of a set is never negative: area(P ) ≥ 0.

4.1.3. If P is a subset of Q, then area(P ) ≤ area(Q).

In addition, we shall assume the elementary facts about the areas of rectangles.
Let f be a function which is integrable over the interval [a, b], and which also

satisfies the inequality f(x) ≥ 0 for every x in [a, b]. Let P be the region under the
curve. That is, P is the set of all points (x, y) in the plane such that a ≤ x ≤ b
and 0 ≤ y ≤ f(x) (see Figure ??). Next, consider two partitions σ and τ of [a, b].
The lower sum Lσ is the area of the union of rectangles contained in P ; hence, by
(1.3) we conclude that Lσ < area(P ). Conversely, P is a subset of the union of
rectangles the sum of whose area is the upper sum Uτ . Hence area(P ) ≤ Uτ , and
we have shown that

Lσ ≤ area(P ) ≤ Uτ ,
for any two partitions σ and τ . But the integrability of f asserts that the definite

integral
∫ b
a
f(x)dx is the only number with this property. Thus we have proved

4.1.4. ∫ b

a

f(x)dx = area(P ), if f(x) ≥ 0 for every x in [a, b].

Example 81. Assuming the formula for the area of a circle and the integrability
of the function

√
1− x2 over the interval [0, 1], compute∫ 1

0

√
1− x2dx.

The graph of the function
√

1− x2 is the upper half of the circle x2 + y2 = 1 shown
in Figure ??. It follows from (1.4) that the integral in question is equal y-axis to
one fourth of the area of the circle. Hence∫ 1

0

√
1− x2dx =

π

4
.
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Figure 4.8:
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Problems

1. Draw the graph of the function f defined by f(x) = 1
x , and answer the fol-

lowing questions.

(a) Is f bounded on the closed interval [2, 5]?

(b) Is f bounded on the open interval (2, 5)?

(c) Does f have an upper bound on the interval (0, 2)? If so, give one.

(d) Does f have a lower bound on the interval (0, 2)? If so, give one.

2. If the number M is the least upper bound of the set of all numbers f(x) for
x lying in an interval I, we say simply that M is the least upper bound of f
on I. A similar remark holds for the greatest lower bound. Draw the graph
of the function f defined by f(x) = 1

x−1 , and answer the following questions.

(a) What is the least upper bound of f on the closed interval [2, 3]?

(b) What is the greatest lower bound of f on [2, 3]?

(c) What are the least upper bound and greatest lower bound of f on the
open interval (2, 3)?

(d) What is the greatest lower bound of f on the interval (1, 2)?

3. Compute the upper and lower sums Uσ and Lσ in each of the following exam-
ples.

(a) f(x) = 1
x , [a, b] = [1, 4], and σ = {1, 2, 3, 4}.

(b) f(x) = x
2 , [a, b] = [0, 2], and σ = {0, 13 ,

2
3 , 1,

4
3 ,

5
3 , 2}.

(c) g(x) = x2 + 1, [a, b] = [0, 1], and σ = {x0, x1, x2, x3, x4, x5}, where
xi = i

5 , i = 0, . . . , 5.

(d) g(x) = x3, [a, b] = [−1, 1], and σ = {−1,− 1
2 , 0,

1
2 , 1}.

4. True or false, and give your reason: If a function f is continuous at every x
is a closed interval [a, b], then f has both a least upper bound and a greatest
lower bound on [a, b].

5. Assume that the function f defined by f(x) = x2 + 1 is integrable over the
interval [0, 1]. Using the partition σ = {0, 15 ,

2
5 ,

3
5 ,

4
5 , 1}, show that

31

25
≤
∫ 1

0

f ≤ 36

25
.

6. Assuming that the function g defined by g(x) = 2x is integrable over the
interval [0, 2], use the partition σ = {0, 12 , 1,

3
2 , 2} to show that

3 ≤
∫ 2

0

2x dx ≤ 5.

7. Assume that the function x2 is integrable over the interval [0, 1]. Using the
partition σ = {x0, . . . , xn}, where n = 10 and xi = i

10 , for 0, . . . , 10, prove
that

57

200
≤
∫ 1

0

x2 dx ≤ 77

200
.
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8. Compute the definite integral
∫ b
a
f =

∫ b
a
f(x) dx =

∫ b
a
f(t) dt in each of the

following examples. Assume that f is integrable, and use Theorem ?? and
the standard formulas for the areas of simple plane figures. In each case, draw
the graph of f and shade the region P .

(a)
∫ 1

−1 f , where f(x) =
√

1− x2.

(b)
∫ 2

1
f(t) dt, where f(t) = t− 1.

(c)
∫ 2

0
2x dx

(d)
∫ 1

0
(5− 2x) dx

(e)
∫ 1

−1 |x| dx.

9. It is stated in this section that the first condition for integrability is always
satisfied: If f is bounded on [a, b], then there exists a real number J such that
Lσ ≤ J ≤ Uτ for any two partitions σ and τ of [a, b].

(a) Show that one such number is the least upper bound of all the lower
sums Lσ. (This number is called the lower integral of f from a to b.)

(b) Show that another possibility is the greatest lower bound of all the upper
sums Uτ . (This number is the upper integral of f from a to b.)

(c) Show that f is integrable over [a, b] if and only if the lower integral from
a to b equals the upper integral, and that if the lower integral equals the

upper then their common value is
∫ b
a
f .



4.2. SEQUENCES AND SUMMATIONS. 179

4.2 Sequences and Summations.

We shall return to the definite integral in Section 3. The purpose of the present
digression is to develop some techniques, applicable not only to the study of the
integral but also to many other parts of mathematics.

Most of the functions studied in this book have as domains intervals on the
real line, or unions of intervals; e.g., the domain of the function 1

x is the union
(−∞, 0)∪(0,∞). In this section, on the other hand, we are concerned with functions
whose domains are sets of integers. An example is the function a defined by a(n) =√
n− 2, for every integer greater than 1. If a is a function whose domain is a subset

of the integers, it is common practice to denote its value at n by an. Thus

an = a(n).

A simple example in which the domain is a finite set of integers is a partition of an
interval in which we have indexed the points of the partition as x0, ..., xn. In this
case,

xi = x(i), for i = 0, ..., n.

We come next to the definition of a sequence, which is a special case of a function
defined on a set of integers. We shall accept the intuitive idea of a sequence to be
that of a list (in mathematics, most likely, a list of numbers). With this in mind,
we define a sequence to be a function whose domain D is a set of integers such
that

(i) D is a set of consecutive integers; i.e., if i and j are in D, then every integer
between i and j is also in D.

(ii) D contains a least element.

If s is a sequence and if l is the least, or smallest, integer in its domain, then
s(l) = sl is the first member of the sequence, s(l+ 1) = sl+1 is the second member,
and so on. In the most common applications l is either 0 or 1, and so the values of
the sequence appear as either s0, s1, s2, ... or as s1, s2, ....

A sequence is finite or infinite according as its domain D is finite or infinite.
Note that the range of an infinite sequence need not contain infinitely many num-
bers. The function a defined, for every positive integer n, by

an = a(n) =

{
0, if n is even,
1, if n is odd,

(4.5)

is the infinite sequence 1, 0, 1, 0, 1, 0, 1, .... An even simpler example of an infinite
sequence is the constant function b defined by

bn = 1, for every positive integer n.

A common notation for a sequence s, whether finite or infinite, is {sn}. When a
sequence is written in this way, the letter n is called an index. Like the variable
of integration in a definite integral, it is a dummy symbol. Any letter can be used,
although n,m, i, j, and k are the most common. Thus

s = {sn} = {sm} = {si} = etc.
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Of course, a finite sequence can be described by simply enumerating its terms, e.g.,
s1, ..., sn, or a3, a4, ..., a10.

We shall study two major topics in this section. The first is the limit of an
infinite sequence. This is actually just an application of the idea of the limit of a
function which we defined and studied in Chapter 1. As an example, let s be the
infinite sequence defined by

sn =
2n2 + n− 1

3n2 − 2n+ 2
, for every positive integer n.

We ask for the limit of {sn} as n increases without bound, which we denote by
limn→∞ sn. Dividing both numerator and denominator of the above expression by
n2, we obtain

sn =
2 + 1

n −
1
n2

3− 2
n + 2

n2

.

If n is very large, it is clear that 2 + 1
n −

1
n2 is nearly equal to 2, and that 3− 2

n + 2
n2

is nearly equal to 3. We conclude that the number which the values of the sequence
are approaching, i.e., the limit, is 2

3 . Thus we write

lim
n→∞

Sn = lim
n→∞

2n2 + n− 1

3n2 − 2n+ 2
=

2

3
.

Example 82. Let {sn} and {am} be two infinite sequences defined, respectively,
by

sn =
√
2n−5√
5n−2 , for n = 3, 4, 5, ...,

am = m2+1
m , for m = 1, 2, 3, ....

Find limn→∞ sn and limm→∞ am. For the sequence s, we divide numerator and
denominator by

√
n, getting

sn =

1√
n

√
2n− 5

1√
n

√
5n− 2

=

√
2− 5

n√
5− 2

n

.

Both 5
n and 2

n obviously approach 0 as a limit as n increases without bound. We
conclude that

lim
n→∞

sn = lim
n→∞

√
2n− 5√
5n− 2

=

√
2

5
.

For the sequence {am} we have

am =
m2 + 1

m
= m+

1

m
.

It is obvious that, as m increases without bound, so does m + 1
m . Hence no limit

exists. On the other hand, we can unambiguously express the fact that the values
of the sequence are increasing without bound by writing

lim
m→∞

am = lim
m→∞

m2 + 1

m
=∞.
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As we have remarked, the definition of the limit of a sequence is included in the
definition of the limit of a function. For emphasis, however, we shall give it in this
special case. Let s be an infinite sequence of real numbers. Then the limit as n
increases without bound of sn is equal to b, written

lim
n→∞

sn = b,

if, for ε > 0, there exists an integer m in the domain of s such that whenever n > m,
then |sn− b| < ε. The definition can be phrased geometrically as follows: The limit
of {sn} is b if, given an arbitrary open interval (b − ε, b + ε), all the numbers sn
from some integer on, lie in that interval. Thus for the oscillating sequence 1, 0, 1,
0, 1, 0,... defined in (1), no limit exists.

The second topic in the section is the study of a convenient notation for the sum
of a finite number of consecutive terms of a sequence. Let a be a sequence (finite
or infinite) of real numbers. If m and n are in the domain of the sequence, and
if m ≤ n, then the sum am + am+1,+... + an is called a series and is abbreviated∑n
i=m ai. Thus

n∑
i=m

ai = am + am+1 + ...+ an.

We call
∑n
i=m ai the summation of {ai} from m to n.

Example 83. Let {ai} be the sequence defined by ai = i2, for every positive integer
i. Then

5∑
i=1

ai =

5∑
i=1

i2 = 12 + 22 + 32 + 42 + 52 = 55.

Another series defined from the same sequence is

6∑
i=3

ai =

6∑
i=3

i2 = 32 + 42 + 52 + 62 = 86.

On the other hand, we might be interested in the sum of the squares of the first n
integers for an arbitrary positive integer n. This would be the series

n∑
i=1

ai =

n∑
i=1

i2 = 12 + 22 + 32 + ...+ n2.

The symbol i which appears in the series
∑n
i=m ai is called the summation

index. It, too, is a dummy symbol, since the value of the series does not depend
on i. Like the definite integral,

∑n
i=m ai depends on three things: the sequence a

(the function) and the two integers m and n. Thus

n∑
i=m

ai =

n∑
j=m

aj =

n∑
k=m

ak = am + am+1 + ...+ an.
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Example 84. Using the summation notation, write a series for the sum of all the
odd integers from 11 to 101. An arbitrary odd integer can be written in the form
2i + 1 for some integer i. It is not hard to see, therefore, that one answer to the
problem is given by the series

50∑
i=5

(2i+ 1).

Another is the series

51∑
i=6

(2i− 1).

It should be emphasized that the summation notation offers no new mathemat-
ical theory. It is merely a convenient shorthand for writing sums and manipulating
them. The ability to manipulate comes from practice, but the techniques are based
on the following properties:

4.2.1.
n∑

i=m

(ai + bi) =

n∑
i=m

ai +

n∑
i=m

bi.

4.2.2.
n∑

i=m

cai = c

n∑
i=m

ai.

4.2.3.
n∑

i=m

c = c(n−m+ 1).

Proof. The proofs are very simple. For (2.1) we have

n∑
i=m

(ai + bi) = (am + bm) + (am+1 + bm+1) + ...+ (an + bn)

= (am + am+1 + ...+ an) + (bm + bm+1 + ...+ bn)

=

n∑
i=m

ai +

n∑
i=m

bi.

For (2.2),

n∑
i=m

cai = cam + cam+1 + ...+ can

= c(am + am+1 + ...+ an)

= c

n∑
i=m

ai.



4.2. SEQUENCES AND SUMMATIONS. 183

To prove (2.3), one must understand that
∑n
t=m c means

∑n
t=m ai, where {ai} is

the constant sequence defined by ai = c. Hence

n∑
i=m

c =

n∑
i=m

ai =

n−m+1 terms︷ ︸︸ ︷
am + am+1 + ...+ an

= c+ c+ ...+ c

= c(n−m+ 1).

This completes the proof.

There are two other summation identities which are useful and which we shall
include. They are the formulas for the sum of the first n positive integers and for
the sum of the squares of the first n positive integers:

4.2.4.
n∑
i=1

i =
n(n+ 1)

2
.

4.2.5.
n∑
i=1

i2 =
n(n+ 1)(2n+ 1)

6
.

Proof. There is a very clever proof of (2.4), which the great mathematician Carl
Friedrich Gauss (1777-1855) is said to have figured out for himself in a few seconds
in his first arithmetic class at the age of 10. Write the sum S =

∑n
i=1 i, once in

natural order and, underneath it, the sum in reverse order as follows:

S = 1 + 2 + ...+ (n− 1) + n,

S = n+ (n+ 1) + ...+ 2 + 1.

If each number on the right side of the first equation is added to the number directly
beneath it, the sum is n+1. Hence the sum of the two right sides is a series consisting
of n terms each equal to n+ 1. It follows that

2S = n(n+ 1),

from which (2.4) is an immediate corollary.

Formula (2.5) is probably most easily proved by induction on n. The proof is
straightforward, and we omit it.

Example 85. Evaluate

(a)
∑n
i=1(3i2 + 5i− 2),

(b)
∑n
i=1

(3i2+5i−2)
n3 .

Using the various properties of summation, we obtain for (a),
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n∑
i=1

(3i2 + 5i− 2) = 3

n∑
i=1

i2 + 5

n∑
i=1

i− 2

n∑
i=1

1

= 3
n(n+ 1)(2n+ 1)

6
+ 5

n(n+ 1)

2
− 2n

=
2n3 + 3n2 + n

2
+

5n2 + 5n

2
− 4n

2

=
2n3 + 8n2 + 2n

2
= n3 + 4n2 + n.

Part (b) is really a trivial mod)fication of (a). The number n3 which appears in the
denominator is the same for each term in the sum, i.e., it is a constant, and can be
factored out immediately. Thus

n∑
i=1

3i2 + 5i− 2

n3
=

1

n3

n∑
i=1

(3i2 + 5i− 2).

Hence, using the answer from (a), we get

n∑
i=1

3i2 + 5i− 2

n3
=

1

n3
(n3 + 4n2 + n)

= 1 +
4

n
+

1

n2
.

We conclude the section with an example which combines the summation con-
vention with the limit of an infinite sequence,

Example 86. For every positive integer n, let Sn be defined by

Sn =

n∑
i=1

i2 + 2

n3
.

The numbers S1, S2, S3, , ... form an infinite sequence, and the problem is to evaluate
limn→∞ Sn. Using the properties of summation, we obtain

Sn =
1

n3

n∑
i=1

(i2 + 2)

=
1

n3

( n∑
i=1

i2 +

n∑
i=1

2
)

=
1

n3

[n(n+ 1)(2n+ 1)

6
+ 2n

]
=

1

n3

(2n3 + 3n2 + n

6
+

12n

6

)
=

2n3 + 3n2 + 13n

6n3
.
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Hence

lim
n→∞

Sn = lim
n→∞

2n3 + 3n2 + 13n

6n3

= lim
n→∞

(1

3
+

1

2n
+

13

6n2

)
=

1

3
,

which is the answer to the problem. Frequently the notations are compounded; i.e.,
we write

lim
n→∞

n∑
i=1

i2 + 2

n3
=

1

3
.



186 CHAPTER 4. INTEGRATION

Problems

1. For each of the following sequences {sn}, compute limn→∞ sn if the limit
exists.

(a) sn = n+1
n−1 , for n = 2, 3, . . ..

(b) sn = 2n2−3n+1
5n2+7 , for n = 1, 2, 3, . . ..

(c) sn = 1 + 1
n , for every positive integer n.

(d) sn = n−2√
n

, for every positive integer n.

2. Let sequences {ai}, {bj}, and {sn} be defined by

ai = i3,

bj = j − 1,

sn =
1

n+ 1
.

Evaluate

(a)
∑4
i=1 ai

(b)
∑2
j=−2 bj

(c)
∑3
j=1(2aj + 5bj)

(d)
∑4
i=1

ai
i+1

(e)
∑3
i=1 si

(f)
∑3
j=0 ajbj .

3. Compute

(a)
∑5
i=1(2i2 − 3i+ 4)

(b)
∑5
j=1[(j + 1)2 − j2]

(c)
∑3
k=0 x

k

(d)
∑4
j=1

xj

j

(e) (1− x)
∑3
k=0 x

k.

4. For any sequence a0, . . . , an, show that
∑n
k=1(ak−ak−1) depends only on the

first and last terms.

5. Using the various properties of summation, evaluate

(a)
∑n
i=1(3i2 + 2)

(b)
∑n
j=1(j2 − 2j + 1)

(c)
∑n
i=1

3i2+2
n3

(d)
∑n
i=1

2i−2
n2

(e)
∑n
i=0(i2 + i+ 1).
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6. If f(x) = x2 − x+ 1, find

(a)
∑4
i=1 f(i)

(b)
∑4
i=1 f

(
i
4

)
(c)

∑n
i=1 f(i)

(d)
∑n
i=0 f

(
i
n

)
.

7. Compute limn→∞ Sn, if the limit exists, for each of the following sequences.

(a) Sn =
∑n
i=1

3i2+2
n3 , for every positive integer n.

(b) Sn =
∑n
i=1

2i−2
n2 , for every positive integer n.

(c) Sn =
∑n
i=1

i+1
n3 , n = 1, 2, . . ..

(d) Sn =
∑n
j=1

j2+1
n , n = 1, 2, . . ..

8. Evaluate

(a) limn→∞
∑n
i=1

i
n2

(b) limn→∞
∑n
i=1

6i2−2i+1
n3 .

9. Prove ?? by induction on n.

10. Using the identity
n∑
i=1

i3 =

(
n(n+ 1)

2

)2

,

prove that
n∑
i=1

i3 =

(
n∑
i=1

i

)2

.

Verify this result directly for n = 1, 2, 3.

11. (a) How many presents did I receive from my true love on the 12th day
of Christmas, when she gave me “12 drummers drumming, 11 pipers
piping, . . . , and a partridge in a pear tree”?

(b) How many presents did I receive during the entire 12 days of Christmas?
(Some familiarity with the words of the song is required.)
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4.3 Integrability of Monotonic Functions.

Let f be a given function bounded on a closed interval [a, b]. How do we know

whether or not f is integrable over [a, b], i.e., whether or not
∫ b
a
f exists? In this

section we shall give a partial answer, and also compute some integrals. Note that
there is one situation where we know the answer immediately: If a = b, then all
upper and lower sums are equal to zero. Hence f is integrable, and

4.3.1. ∫ a

a

f =

∫ a

a

f(x)dx = 0.

So we now assume that a < b. For every positive integer n, we shall denote by
σn the partition which subdivides [a, b] into n subintervals each of length b−a

n . Thus
σn = {x0, ..., xn}, where

xi = a+
(b− a

n

)
i, i = 0, ..., n.

Moreover,

xi − xi−1 =
b− a
n

, i = 1, ..., n.

The upper and lower sums of f relative to σn will be denoted simply Un, and Ln,
respectively. That is, we abbreviate Uσn by Un, and in the same way Lσn by Ln.
One criterion for integrability is expressed in the following theorem.

4.3.2. lf limn→∞(Un − Ln) = 0, then f is integrable over [a, b] and

lim
n→∞

Ln = lim
n→∞

Un =

∫ b

a

f(x)dx.

Proof. We recall the basic theorem of Section 1—that the upper and lower sums of
f relative to any two partitions σ and τ of the interval [a, b] satisfy the inequality
Lσ ≤ Uτ . This implies, in particular, that any upper sum Uτ is an upper bound of
the set L of all lower sums Lσ. Hence, by the Least Upper Bound Property, the set
L has a least upper bound which we denote by J . Since this number J is an upper
bound of L, we know that Lσ ≤ J for every partition σ. Furthermore, since J is a
least upper bound, we have J ≤ Uτ for every partition τ . Thus

Lσ ≤ J ≤ Uτ ,

for all partitions σ and τ of [a, b]. As a special case of these inequalities, we have

Ln ≤ J ≤ Un, for every positive integer n. (4.6)

Since by hypothesis limn→∞(Un−Ln) = 0, it follows that this number J is the only
number which can lie between all upper and lower sums. Hence, by the definition,

f is integrable over [a, b] and J =
∫ b
a
f(x)dx. From (1) we obtain the inequalities

0 ≤ J − Ln ≤ Un − Ln, for every positive integer n.
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Since the right side of the above inequalities approaches zero, the expression in the
middle is caught in a squeeze and must also approach zero. Hence limn→∞(J−Ln) =
0, or, equivalently,

lim
n→∞

Ln = J =

∫ b

a

f(x)dx.

Finally, consider the identity Un = J + (Un − Ln) − (J − Ln). Since the two
expressions in parentheses approach zero, it follows that

lim
n→∞

Un = J =

∫ b

a

f(x)dx,

and the proof is complete.

An important class of functions to which the preceding theorem can be readily
applied, and which we now define, is the class of monotonic functions. To begin
with, a real-valued function f is said to be increasing on an interval I if the
domain of f contains I as a subset and if, for every x1 and x2 in I,

x1 ≤ x2 implies f(x1) ≤ f(x2). (4.7)

If (2) holds for every x1 and x2 in the entire domain of f , we say simply that f is
an increasing function. Companion definitions are obtained by simultaneously
replacing the second inequality in (2) by f(x1) ≥ f(x2) and the word increasing
by the word decreasing. For example, the function f defined by f(x) = x2 is in-
creasing on the interval [0,∞) and decreasing on the interval (−∞, 0]. The function
g defined by g(x) = −2x+ 1 is a decreasing function.

Note that, according to our definition, a constant function is both increasing and
decreasing. Thus “increasing,” as it is used here, literally means “nondecreasing,”
and in the same way “decreasing” means “nonincreasing.”

A monotonic function is one which is either increasing or decreasing. Simi-
larly, a function is monotonic on an interval if it is either increasing or decreasing
on the interval. For such functions it is not difficult to prove the following integra-
bility theorem.

4.3.3. If the function f is monotonic on the closed interval [a, b], then f is integrable
over [a, b]. Specifically, limn→∞(Un − Ln) = 0.

Proof. For the sake of concreteness, we shall assume that f is increasing on [a, b]. An
analogous argument works if f is decreasing. By far the best proof of this theorem
is obtained from a picture, which provides a completely convincing argument. A
typical example of an increasing function together with a partition of the interval
is shown in Figure ??(a). The difference Un − Ln is equal to the sum of the areas
of the shaded rectangles. By sliding these rectangles under one another to form a
single stack, we obtain the tall rectangle shown in Figure ??(b), whose area is also
equal to Un −Ln. This rectangle has base b−a

n and altitude f(b)− f(a). Its area is
the product of these, and so

Un − Ln =
(b− a

n

)
(f(b)− f(a)).

This difference can be made arbitrarily small by taking n sufficiently large. It follows
that limn→∞(Un − Ln) = 0, and we conclude from (3.2) that f is integrable over
[a, b]. This completes the proof.
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Figure 4.9:

Example 87. Evaluate
∫ 2

0
x2dx. The function f to be integrated is defined by

f(x) = x2, and the interval of integration is [0, 2]. Since f is increasing on the
interval, the integral certainly exists. The partition σn = {x0, ..., xn} which subdi-
vides [0, 2] into n subintervals of equal length is given by

xi = a+
b− a
n

i = 0 +
2

n
i =

2i

n
,

for each i = 0, ..., n. Moreover,

xi − xi−1 =
b− a
n

=
2

n
, i = 1, ..., n.

It follows from Theorems (3.2) and (3.3) that∫ 2

0

x2dx = lim
n→∞

Un = lim
n→∞

Ln.

That is, we may compute the integral using either the lower or the upper sums.
Choosing the latter, we observe from Figure ?? that, on each subinterval [xi−1, xi],
the function f has its maximum value at the right endpoint, i.e., at xi. Hence

Mi = f(xi), i = 1, ..., n.

Since f(xi) = x2i and since xi = 2i
n , it follows that Mi = x2i = 4i2

n2 . Substituting in
the formula for the upper sum,

Un =

n∑
i=1

Mi(xi − xi−1),

we obtain

Un =

n∑
i=1

(4i2

n2

)( 2

n

)
=

n∑
i=1

8i2

n3
=

8

n3

n∑
i=1

i2.

From (2.5), we have
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n∑
i=1

i2 =
n(n+ 1)(2n+ 1)

6
=

2n3 + 3n2 + n

6
.

Hence

Un =
8

n3
2n3 + 3n2 + n

6
=

4

3

(
2 +

3

n
+

1

n2

)
,

and so

lim
n→∞

Un = lim
n→∞

4

3

(
2 +

3

n
+

1

n2

)
=

4

3
· 2 =

8

3
.

We conclude that ∫ 2

0

x2dx =
8

3
.

Figure 4.10:

It was shown in Section 1 that the integral of a nonnegative function is equal
to the area under its graph. It follows from the above example that the area of the
region bounded by the parabola y = x2, the x-axis, and the line x = 2 is equal to
8
3 .

Example 88. Evaluate
∫ 4

1
(5 − x)dx. The function f , defined by f(x) = 5 − x, is

linear and decreasing on the interval [1, 4]. Its graph is shown in Figure ??. The
partition σn = {x0, ..., xn} subdivides the interval [1, 4] into subintervals of length
4−1
n = 3

n , and the points are given by

xi = 1 +
( 3

n

)
i, i = 0, ..., n.

In addition,

xi − xi−1 =
3

n
, i = 1, ..., n.

We shall compute the integral as a limit of lower sums, and it follows from Theorems
(3.2) and (3.3) that
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∫ 4

1

(5− x)dx = lim
n→∞

Ln.

Figure 4.11:

Since f is decreasing, its minimum value on each subinterval [xi−1, xi] occurs at the
right endpoint. Hence

mi = f(xi), i = 1, ..., n.

We have xi = 1 + 3i
n and f(xi) = 5− xi, and so

mi = 5−
(

1 +
3i

n

)
= 4− 3i

n
.

Since xi − xi−1 = 3
n , we get

Ln =

n∑
i=1

mi(xi − xi−1) =

n∑
i=1

(
4− 3i

n

) 3

n
.

The rest of the problem uses the manipulative techniques of the summation con-
vention.

Ln =

n∑
i=1

(
4− 3i

n

) 3

n
=

n∑
i=1

(12

n
− 9i

n2

)
=

n∑
i=1

12

n
−

n∑
i=1

9i

n2

=
12

n

n∑
i=1

1− 9

n2

n∑
i=1

i.
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since
∑n
i=1 1 = n and since

∑n
i=1 i = n(n+1)

2 , we get

Ln =
12

n
− 9

n2
n(n+ 1)

2

= 12− 9

2

(
1 +

1

n

)
.

But it is easy to see that

lim
n→∞

[
12− 9

2

(
1 +

1

n

)]
= 12− 9

2
= 7

1

2
,

and we finally conclude that∫ 4

1

(5− x)dx = lim
n→∞

Ln = 7
1

2
.

This answer can be checked by looking at Figure ??. The value of the integral is
equal to the area of the shaded region P , which is divided by the horizontal line
y = 1 into two pieces: a right triangle sitting on top of a rectangle. The area of the
triangle is 1

2 (3 · 3) = 9
2 , and that of the rectangle is 3 · 1 = 3. Hence∫ 4

1

(5− x)dx = area(P ) =
9

2
+ 3 = 7

1

2
.

The excessive lengths of the computations in Examples 1 and 2 make it obvious
that some powerful techniques are needed to streamline the process of evaluating
definite integrals. The advent of modern high-speed computers is one answer to the
problem, and occasionally, as in Example 2, a simple formula for area will do the
trick. The classical solution to the problem, however, is the Fundamental Theorem
of Calculus, which we shall study in detail in Section 5.
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Problems

1. Evaluate the following definite integrals by finding the limits of the upper or
lower sums.

(a)
∫ 1

0
x2 dx

(b)
∫ 2

0
2x dx

(c)
∫ 3

1
(x+ 1) dx

(d)
∫ 1

0
(3x2 + 1) dx.

2. For each of the integrals in Problem ??, draw the region whose area is given
by the integral.

3. Let f be the step function defined by f(x) = i, if i − 1 < x ≤ i, for every
integer i. Draw the graph of f and compute the following integrals. (Hint:
These problems are neither hard nor long. They require an understanding of
the definition of integrability and possibly some ingenuity.

(a)
∫ 2

1
f

(b)
∫ 3

0
f

(c)
∫ 3

−1 f

(d)
∫ 7

−2 f .

4. Every constant function is both increasing and decreasing. A stronger con-
dition, which excludes constant functions, is obtained by defining f to be
strictly increasing if

x < y implies f(x) < f(y),

for every x and y in the domain of f . The companion definitions of what it
means for a function to be strictly decreasing, strictly increasing on an
interval, etc., should be obvious. Using the Mean Value Theorem, prove that
if a differentiable function f satisfies the inequality f ′(x) > 0 for every x in
an interval I, then f is strictly increasing on I.

5. Prove the converse of Theorem ??; i.e., if f is integrable over [a, b], then
limn→∞(Un − Ln) = 0. (This is a difficult problem.)
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4.4 Properties of the Definite Integral.

If a function f is integrable over an interval [a, b], then in the definite integral∫ b

a

f =

∫ b

a

f(x)dx

the function f is called the integrand, and the numbers a and b the limits of
integration.

The basic properties of the definite integral are contained in the following five
theorems.

4.4.1. If f(x) = k for every x in the interval [a, b], then∫ b

a

f(x)dx =

∫ b

a

kdx = k(b− a).

4.4.2. The function f is integrable over the intervals [a, b] and [b, c] if and only if
it is integrable over their union [a, c]. Furthermore,∫ b

a

f(x)dx+

∫ c

b

f(x)dx =

∫ c

a

f(x)dx.

4.4.3. If f and g are integrable over [a, b] and if f(x) ≤ g(x) for every x in [a, b],
then ∫ b

a

f(x)dx ≤
∫ b

a

g(x)dx.

4.4.4. If f is integrable over [a, b] and if k is any real number, then the product kf
is integrable and ∫ b

a

kf(x)dx = k

∫ b

a

f(x)dx.

4.4.5. If f and g are integrable over [a, b], then so is their sum and∫ b

a

[f(x) + g(x)]dx =

∫ b

a

f(x)dx+

∫ b

a

g(x)dx.

None of the proofs of these theorems is deep in the sense of requiring great
ingenuity or any techniques beyond the use of least upper bounds and greatest
lower bounds. However, they vary considerably in the amount of detail required.
The proof of (4.1) is a triviality. For if f has the constant value k on the interval
[a, b], then, for every partition σ of [a, b], the upper sum Uσ of f relative to σ is
equal to k(b− a), and so is the lower sum. Thus

Lσ = k(b− a) = Uσ,

which proves both that f is integrable and that the value of the integral is k(b−a).
The proof of (4.3) is slightly more difficult and probably most easily obtained

by contradiction. Suppose the premise true and the conclusion false. That is, we

assume that
∫ b
a
f >

∫ b
a
g. The definition of integrability asserts that if a function is
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integrable over an interval, then there exist upper and lower sums Iying arbitrarily

close to the definite integral. Therefore, since g is integrable and since ia
∫ b
a
g <

∫ b
a
f

there must exist an upper sum for g which is less than
∫ b
a
f . Specifically, there exists

a partition σ of [a, b] such that the upper sum of g relative to σ, which we shall
denote by Uσ(g), satisfies the inequality∫ b

a

g ≤ Uσ(g) <

∫ b

a

f.

But since f(x) ≤ g(x) for every x in [a, b], the corresponding upper sum of f ,
denoted Uσ(f) is less than or equal to Uσ(g). Thus we obtain the inequalities

Uσ(f) ≤ Uσ(g) <

∫ b

a

f.

However, every upper sum of f is greater than or equal to the integral
∫ b
a
f . Hence

we have arrived at a contradiction, and (4.3) is proved. The proofs of (4.2) and
(4.5) are given in Appendix B, and that of (4.4) is assigned as a problem at the end
of the section.

The additivity property of the integral stated in Theorem (4.2) obviously extends
to any finite number of intervals. Thus if σ = {x0, ..., xn} is a partition of [a, b] with
a = x0 ≤ x1 ≤ ... ≤ xn = b, and if f is integrable over each subinterval [xi−1, xi],
then by repeated application of (4.2) it follows that f is integrable over [a, b] and
that ∫ b

a

f(x)dx =

n∑
i=1

∫ xi

xi−1

f(x)dx. (4.8)

In Section 3 it was proved that if a function is monotonic on a closed interval,
then it is integrable over that interval. Theorem (4.2), as extended in equation (1),
increases the scope of this result enormously. For although a function f may not be
monotonic on a given interval [a, b], it is frequently possible to partition [a, b] into
subintervals on each of which f is monotonic. It then follows that f is integrable

over the entire interval; i.e.,
∫ b
a
f(x)dx exists.

Example 89. For every nonnegative integer n and interval [a, b], show that the
definite integral ∫ b

a

xndx

exists. To say that
∫ b
a
xndx exists is just another way of saying that the function

f defined by f(x) = xn is integrable over [a, b]. We now prove that this is so.
For every nonnegative integer n, the function xn is an increasing function on the
interval [0,∞), and it is an increasing or a decreasing function on (−∞, 0] according
as n is odd or even. Hence if [a, b] is a subset of [0,∞) or a subset of (−∞, 0], then
the function xn is monotonic on [a, b] and is therefore integrable over that interval.
The remaining possibility is that a < 0 < b. In this case, xn is integrable over the
intervals [a, 0] and [0, b] separately. It then follows that xn is integrable over their
union, which is [a, b], and the proof is complete.
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Just as Theorem (4.2) was generalized to more than two intervals, Theorem
(4.5) can be extended to any finite number of functions. Thus if each one of the
functions f1, ..., fn is integrable over [a, b], then by repeated applications of (4.5) it
follows that the sum f1 + ...+ fn is integrable over [a, b] and that∫ b

a

[f1(x) + ...+ fn(x)]dx =

∫ b

a

f1(x)dx+ ...+

∫ b

a

fn(x)dx. (4.9)

Example 90. Consider an arbitrary polynomial

p(x) = anx
n + an−1x

n−1 + ...+ a1x+ a0

and a closed interval [a, b]. Then, for each i = 0, ..., n, we know from Example 1

that
∫ b
a
xidx exists. It follows by (4.4) that each function aix

i is integrable over

[a, b] and that
∫ b
a
aix

idx = ai
∫ b
a
xidx. We conclude from the preceding paragraph

that the polynomial p(x), which is the sum of the functions aix
i, is integrable and

that ∫ b

a

p(x)dx =

n∑
i=0

ai

∫ b

a

xidx. (4.10)

As a concrete example of equation (3), consider the polynomial 7x5− 3x3 + x2 + 3.
We have immediately

∫ b

a

(7x5 − 3x3 + x2 + 3)dx = 7

∫ b

a

x5dx− 3

∫ b

a

x3dx+

∫ b

a

x2dx+ 3

∫ b

a

1dx.

Since we know from (4.1) that
∫ b
a

1dx = b− a, the last term in the above equation
can be replaced by 3(b− a).

Summarizing Examples 1 and 2, we conclude that all polynomials are integrable
and that the problem of computing their integrals reduces to the problem of com-
puting the integrals of the positive powers of x.

The interpretation of the definite integral as an area will now be generalized
to include functions which may take on negative values. To begin with, suppose
that a function f is integrable over [a, b] and, in addition, that f(x) ≤ 0 for all x
in [a, b]. The graphs of both f and −f are drawn in Figure ??. As shown in the
figure, we denote by P the region consisting of all points (x, y) such that a ≤ x ≤ b
end f(x) ≤ y ≤ 0, and, similarly, by Q the region defined by a ≤ x ≤ b and
0 ≤ y ≤ −f(x). It is obvious that

area(P ) = area(Q).

It follows from Theorem (4.4), by taking k = −1, that the function −f is integrable
over [a, b] and that ∫ b

a

(−f(x))dx = −
∫ b

a

f(x)dx.

Since−f(x) ≥ 0 for every x in [a, b], we know that
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Figure 4.12:

∫ b

a

(−f(x))dx = area(Q).

Combining the preceding three equations, we conclude that∫ b

a

f(x)dx = −area(P ).

Next, we suppose that f is integrable over [a, b] and takes on both positive and
negative values. Specifically, let [a, b] be partitionea by inequalities

a = x0 ≤ x1 ≤ ... ≤ xn = b

so that on each subinterval [xi−1, xi] the function f is either nonnegative or non-
positive. We denote by P+ the set of all points (x, y) such that a ≤ x ≤ b and
0 ≤ y ≤ f(x), and by P− the set of all points (x, y) such that a ≤ x ≤ b and
f(x) ≤ y ≤ 0 (see Figure ??). It follows from the conclusion of the preceding
paragraph and from the additivity of the integral, as generalized in equation (1),
that

4.4.6. ∫ b

a

f(x)dx = area(P+)− area(P−).

This is the principal geometric interpretation of the integral.

Example 91. Evaluate
∫ 2

−2(x3 − 3x)dx. The integrand, f(x) = x3 − 3x, is an an
odd function; i.e., the equation f(−x) = −f(x) is satisfied for every x. Its graph,
drawn in Figure ??, is therefore symmetric under reflection first about the x-axis
and then about the y-axis. It follows that the region P+ above the x-axis has the
same areas as the region P− below it. We conclude that∫ 2

−2
(x3 − 3x)dx = 0.
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Figure 4.13:

Figure 4.14:

The final topic of this section is an extension of the definition of the integral.

Up to this point,
∫ b
a
f(x)dx has been defined only if a ≤ b. It turns out to be

algebraically more convenient to remove this restriction. We do so by decree: If f
is integrable over the interval [a, b], then we now define∫ a

b

f(x)dx = −
∫ b

a

f(x)dx. (4.11)

It is a simple matter to verify that the equations which form the conclusions of
Theorems (4.1), (4.4), and (4.5) remain true, in the light of the extended definition
of the integral, if a and b are interchanged. Thus

∫ b

a

kdx = k(b− a),∫ b

a

kf(x)dx = k

∫ b

a

f(x)dx,∫ b

a

[f(x) + g(x)]dx =

∫ b

a

f(x)dx+

∫ b

a

g(x)dx,

are valid equations regardless of whether a ≤ b or b ≤ a.
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On the other hand, if a and b are interchanged in the conclusion of Theorem
(4.3), then the direction of the inequality must be reversed.

Less trivial to verify, but equally important, is the generalized form of (4.2):

4.4.7. If f is integrable over the smallest closed interoal which contains the numbers
a, b, and c, then ∫ b

a

f(x)dx+

∫ c

b

f(x)dx =

∫ c

a

f(x)dx.

The proof is obtained from (4.2) and the definition (4) by simply checking each
of the six possible cases in turn:

(i) a ≤ b ≤ c.
(ii) a ≤ c ≤ b.
(iii) b ≤ a ≤ c.
(iv) b ≤ c ≤ a.
(v) c ≤ a ≤ b.
(vi) c ≤ b ≤ a.

The details are tedious, and we omit them.
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Problems

1. Expand each of the following integrals. That is, write each one as a sum of
constant multiples of the integrals of the powers of the variables.

(a)
∫ 1

0
(x2 + 5x) dx

(b)
∫ 3

2
(4x5 − x− 2) dx

(c)
∫ 2

1
(3t2 + 2t2 + t) dt

(d)
∫ 3

5
(17y13 − 11y7 + 4) dy

(e)
∫ 1

0
(x2 + 2)2 dx.

2. Given that
∫ 1

0
xn dx = 1

n+1 , for every nonnegative integer n, evaluate

(a)
∫ 1

0
(2x2 + 3x) dx

(b)
∫ 1

0
(5x3 − x2 − 2) dx

(c)
∫ 1

0
(3t2 − 1) dt

(d)
∫ 1

0
(x+ 2)2 dx

(e)
∫ 1

0
(3y2 − y + 1) dy.

3. Use the result ∫ 2

1

xn dx =
2n+1 − 1

n+ 1
, n = 0, 1, 2, . . . ,

and the analogous result at the beginning of Problem ?? to evaluate

(a)
∫ 2

1
(3x2 − 2x+ 1) dx

(b)
∫ 2

0
x2 dx

(c)
∫ 2

0
(4x3 − 3x+ 2) dx

(d)
∫ 2

0
(t3 + t2 + t) dt.

4. Using the definition of integrability, prove Theorem ??. (Suggestion: Treat
the cases k ≥ 0 and k ≤ 0 separately.)

5. Using ??, prove that if f and g are integrable over [a, b] and if f(x) = g(x),
for every x in [a, b], then ∫ b

a

f(x) dx =

∫ b

a

g(x) dx.

6. Prove that if f is integrable over [a, b] and if f(x) ≤M for all x in [a, b], then∫ b

a

f(x) dx ≤M(b− a).

7. Replace the symbol ∗ by either ≤ or ≥ so that the resulting expressions are
correct. Give your reasons.
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(a)
∫ 1

0
x2 dx ∗

∫ 1

0
x3 dx

(b)
∫ 1

−1 x
2 dx ∗

∫ 1

−1 x
3 dx

(c)
∫ 3

1
x2 dx ∗

∫ 3

1
x3 dx.

8. Plot the graph of the function f(x) = 1 − x2, and indicate the region P+

defined by the inequalities 0 ≤ x ≤ 2 and 0 ≤ y ≤ f(x) and the region P−

defined by the inequalitiy 0 ≤ x ≤ 2 and f(x) ≤ y ≤ 0.

(a) Use the identities given in Problems 4.4.2 and 4.4.3 to evaluate the inte-

grals
∫ 1

0
f(x) dx,

∫ 2

1
f(x) dx, and

∫ 2

0
f(x) dx.

(b) Find area(P+), area(P−), and area(P+ ∪ P−).

9. Draw the graph of the function f(x) = x(x− 2)(x− 4) = x3 − 6x2 + 8x, and
indicate the region P+ defined by the inequalities 0 ≤ x ≤ 3 and 0 ≤ y ≤ f(x),
and the region P− defined by 0 ≤ x ≤ 3 and f(x) ≤ y ≤ 0. Let P = P+∪P−,

and suppose that
∫ 2

0
f(x) dx = 4 and

∫ 3

0
f(x) dx = 2 1

4 . Find area(P+),
area(P−), and area(P ).

10. Prove case ??(iii) of Theorem ??.

11. Consider a function f which is integrable over [a, b] and which, in addition,
satisfies:

(i)f is continuous at every point of [a, b].

(ii)f(x) ≥ 0, for every x in [a, b].

(iii)f(c) > 0 for at least one point c in [a, b].

Prove that
∫ b
a
f(x) dx > 0.
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4.5 The Fundamental Theorem of Calculus.

In spite of the fact that we have thus far developed a sign)ficant amount of the

theory of the definite integral, the actual evaluation of
∫ b
a
f(x)dx, for even a very

simple function f , is generally an arduous task. For a wide class of functions, the
problem of computation is solved by a theorem which relates the definite integral
to the derivative and which has become known as the Fundamental Theorem of
Calculus.

To understand clearly our presentation of this important result, it is necessary
to be aware of the following integrability theorem.

4.5.1. If the function f is continuous at every x in the closed interval [a, b], then
f is integrable over [a, b].

We shall give only a brief outline of the proof, which shows that the result is
plausible. Since f is continuous, its values do not vary widely over a small interval.
Recall that the nth upper and lower sums are defined by

Un = M1(x1 − x0) + ...+Mn(xn − xn−1),

Ln = m1(x1 − x0) + ...+mn(xn − xn−1),

where Mi and mi are, respectively, the maximum and minimum values of f on the
ith subinterval. We assume that n is large and each subinterval small. By the
continuity of f , therefore, the difference Mi −mi is small for each i = 1, ..., n. This
in turn implies that Un−Ln is small. In fact, Un−Ln can be made arbitrarily small
by taking n sufficiently large; i.e., limn→∞(Un − Ln) = 0. This limit is sufficient
to prove that f is integrable over [a, b], as shown in Theorem (3.2). To change this
outline into a complete proof, it is necessary to introduce the concept of uniform
continuity, which we shall not do in this book.

We shall now show how the definite integral can be used to define a new function.
Suppose that f is a given function which is continuous at every x in some interval I.
Let a be an arbitrary number in I. A new function F is defined, for every number
t in I, by the equation

F (t) =

∫ t

a

f(x)dx.

The existence of
∫ t
a
f(x)dx follows from the continuity of f and the integrability

Theorem (5.1). Thus the function F is well defined by the above equation.
Using the interpretation of the integral as area, we can give geometric meaning

to F (t). Suppose that a ≤ t and that f(x) ≥ 0 for every x in the interval [a, t],

as shown in Figure ??(a). The integral
∫ t
a
f(x)dx is then equal to the area of the

region P bounded by the graph of f , the x-axis, and the lines x = a and x = t.
Thus

F (t) = area(P ).

On the other hand, if t ≤ a and f(x) ≥ 0 for every x in [t, a], which is the situ-
ation shown in Figure ??(b), then the area of P is equal to the integral

∫ a
t
f(x)dx.

Hence, in this case, we have

F (t) =

∫ t

a

f(x)dx = −
∫ a

t

f(x)dx = −area(P ).
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Figure 4.15:

In the general case, of course, f may take on both positive and negative values. If
the region bounded by the graph of f , the x-axis, and the lines x = a and x = t is
expressed as the union of the part P+ above the axis and the part P− below the
axis, then

F (t) = ±[area(P+)− area(P−)],

where we take + or - according as a ≤ t or t ≤ a.
We come now to the main result of the section.

4.5.2 (The Fundamental Theorem of Calculus.). Let f be continuous at every x in
some interval I, and let a be a number in I. If the function F is defined by

F (t) =

∫ t

a

f(x)dx, for every t in I,

then F is a differentiable function and

F ′(t) = f(t), for every t in I.

Proof. According to the definition of the derivative, we must prove that

lim
h→0

F (t+ h)− F (t)

h
= f(t).

By the definition of the function F ,

F (t+ h) =

∫ t+h

a

f(x)dx.

Hence

F (t+ h)− F (t) =

∫ t+h

a

f(x)dx−
∫ t

a

f(x)dx.

By Theorem (4.7) we have∫ t

a

f(x)dx+

∫ t+h

t

f(x)dx =

∫ t+h

a

f(x)dx,
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and the preceding two equations therefore imply that

F (t+ h)− F (t) =

∫ t+h

t

f(x)dx.

Consequently,

F (t+ h)− F (t)

h
=

1

h

∫ t+h

t

f(x)dx. (4.12)

These steps are illustrated geometrically in Figure ??. Let the maximum and min-

Figure 4.16:

imum values of f between t and t + h be denoted by fM and fm, respectively.
Thus

fm ≤ f(x) ≤ fM ,

for every x between t and t+h. If h is positive (as it is in Figure ??), then it follows
by Theorem (4.3) that∫ t+h

t

fmdx ≤
∫ t+h

t

f(x)dx ≤
∫ t+h

t

fMdx.

Since fm and fM are constants, Theorem (4.1) implies that∫ t+h

t

fmdx = fm · (t+ h− t) = fm · h,∫ t+h

t

fMdx = fM · (t+ h− t) = fM · h.

Hence

fm · h ≤
∫ t+h

t

f(x)dx ≤ fM · h,

or, equivalently,

fm ≤
1

h

∫ t+h

t

f(x)dx ≤ fM . (4.13)
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If, on the other hand, h is negative, it is a straightforward (and logically necessary)
matter to verify that the same inequalities (2) follow. Combining (1) and (2), we
therefore obtain

fm ≤
F (t+ h)− F (t)

h
≤ fM . (4.14)

Finally, since f is continuous at t, we know that

lim
h→0

fm = f(t) = lim
h→0

fM .

The fraction F (t+h)−F (t)
h is thus seen in (3) to be caught between two quantities

both of which approach f(t) as h approaches zero. It, too, must therefore approach
f(t) as a limit. We conclude that

F ′(t) = lim
h→0

F (t+ h)− F (t)

h
= f(t),

and the proof of the Fundamental Theorem is completed.

Before reaping the computational rewards of this theorem, we give a concrete
example to emphasize precisely what the theorem says.

Example 92. If F (t) =
∫ t
0

1
x2+1dx, find F ′(1), F ′(2), and F ′(x). The integrand

in this example is the continuous function f defined by f(x) = 1
x2+1 . In this case,

therefore, the interval I can be taken to be the whole real line. By the Fundamental
Theorem,

F ′(t) = f(t) =
1

t2 + 1
.

In particular,

F ′(1) =
1

12 + 1
=

1

2
,

F ′(2) =
1

22 + 1
=

1

5
,

and, in general,

F ′(x) =
1

x2 + 1
, for every real number x.

As the preceding example illustrates, the conclusion of the Fundamental Theo-
rem can equally well be written

F ′(x) = f(x), for every x in I.

We used the letter t in the statement of the theorem simply to avoid confusion with
the dummy variable x which appears in the integral. We might just as well have
written

If F (x) =

∫ x

a

f(t)dt, then F ′(x) = f(x),

or, perhaps better yet,
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If F (x) =

∫ x

a

f, then F ′(x) = f(x).

The important thing to remember is that the derivative of F at any point in the
given interval is equal to the value of the integrand f at that same point.

We now consider the implications of the Fundamental Theorem. By an an-
tiderivative of a function f is meant any differentiable function F with the prop-
erty that F ′(x) = f(x) for every x in the domain of f . Similarly, we shall say that
a function F is an antiderivative of f on an interval I if F ′(x) = f(x) for every

x in I. Thus the function x3

3 is an antiderivative of x2 because

d

dx

(x3
3

)
=

3x2

3
= x2.

Of course, x2

3 is an antiderivative of x2 on any interval we care to name. The
Fundamental Theorem states that if f is continuous at every point of I, then the
function F defined by

F (x) =

∫ x

a

f

is an antiderivative of f on I.
If a function f has one antiderivative F , then it has infinitely many because, for

every constant c,
(F + c)′ = F ′ + c′ = F ′ + 0 = f.

Conversely, we have proved that any two functions which have the same derivative
differ by a constant [see Theorem (5.4), page 114]. Hence, if F ′ = f , then the set
of all antiderivatives of f is the set of all functions F + c for every real number c.
Combining these facts, we obtain

4.5.3. Corollary of the Fundamental Theorem. Let f be a function which is continu-
ous at every x in some interval I. Then f has an antiderivative on I. Furthermore,
if F is any antiderivative whatever of f on I, then, for any a and b in I,∫ b

a

f(x)dx = F (b)− F (a).

This theorem is the computation tool which we have been seeking. Before giving
the proof, which is easy, let us see how it works.

Example 93. Evaluate the definite integrals

(a)
∫ 2

0
x2dx,

(b)
∫ 4

1
(5− x)dx.

Both integrands are obviously continuous functions. As already observed, the func-

tion F defined by F (x) = x3

3 is an antiderivative of x2. Hence, by Theorem ??∫ 2

0

x2dx = F (2)− F (0)

=
23

3
− 03

3
=

8

3
.
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Similarly, we can see by inspection that the function G defined by G(x) = 5x− x2

2
is an antiderivative of 5− x, since

d

dx

(
5x− x2

2

)
= 5− x.

It therefore follows by Theorem (5.3) that

∫ 4

1

(5− x)dx = G(4)−G(1)

=
(

5 · 4− 42

2

)
−
(

5 · 1− 12

2

)
= 12− 4

1

2
= 7

1

2
.

These are the two integrals whose values were computed in Section 3 by finding the
limits of upper and lower sums. The difference in the magnitude of the computations
there and here should render unnecessary any comments on the significance of the
results of the present section.

Proof of Theorem ??. The assertion that f has an antiderivative on I is verified by
the Fundamental Theorem. Let G be the antiderivative defined by

G(x) =

∫ x

a

f, for every x in I. (4.15)

Suppose now that F is an arbitrary antiderivative of f on I. Then

G′(x) = f(x) = F ′(x), for every x in I.

It follows by Theorem (5.4), page 114, that on the interval I the two functions G
and F differ by a constant. That is, there exists a real number c such that

G(x) = F (x) + c, for every x in I.

Substituting x = b in equation (4), we obtain

G(b) =

∫ b

a

f.

Moreover, we know that G(a) =
∫ a
a
f = 0. Hence∫ b

a

f(x)dx =

∫ b

a

f = G(b)−G(a)

= [F (b) + c]− [F (a) + c]

= F (b)− F (a),

and the proof of ?? is complete.
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The following is an extremely useful notational device. For any realvalued func-
tion F of one variable, we abbreviate F (b)−F (a) by F (x)|ba. If F is an antiderivative
of the continuous function f on some interval containing the numbers a and b, then
we may write the value of the definite integral as∫ b

a

f(x)dx = F (x)
∣∣∣b
a
.

The advantage of this notation is that the order of writing is the same as the logical
order in which the problem is done. Thus one first writes the antiderivative, and
then indicates the numbers at which it is to be evaluated. As a result, the whole
problem can frequently be done in a single line. For example,∫ 2

0

x2dx =
x3

3

∣∣∣2
0

=
23

3
− 03

3
=

8

3
.

Example 94. Evaluate the definite integral
∫ 1

−1(y5 − 3y2 + 2)dy.
Note that we get the same answer whether the dummy variable of integration is

y, x, or anything else. The integral is the function f defined by f(y) = y5−3y2 +2.

An antiderivative of y5 is easily seen to be y6

6 an antiderivative of 3y2 is y3, and an

antiderivative of 2 is obviously 2y. Hence y6

6 − y
3 + 2y is an antiderivative of f . We

conclude that

∫ 1

−1
(y5 − 3y2 + 2)dy =

(y6
6
− y3 + 2y

)∣∣∣1
−1

=
(16

6
− 13 + 2 · 1

)
−
( (−1)6

6
− (−1)3 + 2(−1)

)
= (

1

6
− 1 + 2)− (

1

6
+ 1− 2)

= 2.
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Problems

1. Verify that 1
r+1x

r+1 is an antiderivative of xr, if r is any rational number
except −1.

2. Find an antiderivative of each of the following functions.

(a) f(x) = x7

(b) f(x) = x3 + 1
x3

(c) f(y) = 7y
1
5

(d) f(t) = 5t4 + 3t2 + 1

(e) g(x) = (3x+ 1)2

(f) f(x) = 2x
(x2+1)2 .

3. Evaluate each of the following definite integrals by finding an antiderivative
and using Theorem ??.

(a)
∫ 1

0
3x2 dx

(b)
∫ 1

0
(4x3 + 3x2 + 2x+ 1) dx

(c)
∫ 3

1
(5x− 1) dx

(d)
∫ 3

1
(5t− 1) dt

(e)
∫ 2

1

(
x2 + 1

x2

)
dx

(f)
∫ 2

3
x

1
3 dx

(g)
∫ 0

−2 y
1
5 dy

(h)
∫ 2

1

(
2
x3 + 1

x2 + 2
)
dx

(i)
∫ 1

−1(y2 − y + 1) dy

(j)
∫ 0

6
(x3 − 9x2 + 16x) dx

(k)
∫ 5

3
(2x− 1)2 dx

(l)
∫ x
3

(6t2 − 4t+ 2) dx

(m)
∫ t
0
(x2 + 3x− 1) dx

(n)
∫ x2

0
s3 ds

(o)
∫ b
a
dx

(p)
∫ 3x

x
(4t− 1) dt.

4. Let n be a positive integer.

(a) Evaluate
∫ b
a
xn dx.

(b) Evaluate
∫ b
a

1
xn dx provided (i) n 6= 1, and (ii) a and b are either both

positive or both negative.

(c) In ??, what is the reason for proviso (i)? For proviso (ii)?
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5. Let F be an antiderivative of f and G an antiderivative of g.

(a) Prove that F +G is an antiderivative of f + g.

(b) For any constant k, prove that kF is an antiderivative of kf .

6. What is the domain of the function F defined by F (t) =
∫ t
1

1
x dx.

7. Let F (t) =
∫ t
0
(6x2 − 4x+ 1) dx.

(a) Using just the Fundamental Theorem and without evaluating F , find
F ′(t), F ′(−1), F ′(2), and F ′(x).

(b) Find F (t) as a polynomial in t by finding a polynomial which is an
antiderivative of 6x2 − 4x+ 1.

(c) Differentiate the answer in ??, and thereby check ??.

8. Let G(x) =
∫ x
1

(
t+ 1

t2

)
dt, for x > 0.

(a) Using just the Fundamental Theorem, find G′(x) and G′(2).

(b) Evaluate G(x) as a rational function of x by finding an antiderivative of
t+ 1

t2 .

(c) Take the derivative of G(x) as found in ?? and thereby check ??.

9. (a) Evaluate F (t) =
∫ t2
0

(3x2 + 1) dx.

(b) Find F ′(t) and F ′(2) by taking the derivative of the answer to ??.

(c) Find F ′(t) directly using just the Fundamental Theorem and the Chain
Rule.

10. If f is continuous and g is differentiable and if F (t) =
∫ g(t)
a

f(x) dx, use the
Fundamental Theorem and the Chain Rule to show that F ′(t) = f(g(t))g′(t).

11. In each of the following integrals evaluate F ′(t). Do not attempt to first find
an antiderivative.

(a) F (t) =
∫ t
0

√
1 + x3 dx.

(b) F (t) =
∫ 1

t
1

1+x2 dx.

(c) F (t) =
∫ 2t+1

0
1

1+x2 dx.

(d) F (t) =
∫ t2
t

1
x2+x+1 dx.

(
Hint:

∫ t2
t
f =

∫ 1

t
f +

∫ t2
1
f.
)

12. Is there anything wrong with the computation∫ 1

−1

1

x2
dx = − 1

x

∣∣∣∣1
−1

= (−1)− (1) = −2?

If so, what?

13. In each of the following, find the area of the subset P of the xy-plane bounded
by the curve y = f(x), the x-axis, and the lines x = a and x = b. Sketch the
curve and the subset P .
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(a) f(x) = x2 + 1, a = −1, and b = 2.

(b) f(x) = x2 + 2x, a = 0, and b = 2.

(c) f(x) = 1
2x+ 1, a = 2, and b = 4.

(d) f(x) = x3, a = 0, and b = 2.

(e) f(x) = x3 − 2x2 + x, a = 0, and b = 2.

14. Find the derivative of the function F defined by F (x) =
∫ x
0

1
t2+1 dt. Sketch

the graph of F using the techniques of curve sketching discussed in Section ??.
Label and maximum, minimum, or critical points and any points of inflection.

What is the domain of F?
(

Do not attempt to find an explicit antiderivative of 1
t2+1 .

)
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4.6 Indefinite Integrals.

In this section we shall study the problem of finding a function given its derivative.
The topic is a large one, and the present treatment is only an introduction. Many
techniques for finding a function whose derivative is known have been developed,
and some of these will be studied in Chapter 7.

Recall that an antiderivative of a function f is any differentiable function F with
the property that F ′(x) = f(x) for every x in the domain of f . An antiderivative of
f is also called an indefinite integral of f and is denoted by

∫
f(x)dx. If F ′ = f ,

we write ∫
f(x)dx = F (x) + c.

Since the most we know about
∫
f(x)dx and F (x) is that they have the same

derivative f(x), they may very well differ by a nonzero constant. If the constant
c is omitted, there is a very real possibility of making an error, since a particular
indefinite integral may not be the one which is the solution to the problem at hand.

Example 95. At every point (x, f(x)) on the graph of a given function f , there is
a tangent line with slope equal to x2. If the graph passes through the point (3, 2),
find f . The solution is based on the fact that the slope of the tangent line is given

by the derivative. Hence f ′(x) = x2. One function with this derivative is x3

3 , and
so

f(x) =
x3

3
+ c, (4.16)

for some constant c. We also write∫
x2dx =

x3

3
+ c.

Since the point (3, 2) lies on the graph, we know that f(3) = 2. Thus

2 = f(3) =
33

3
+ c = 9 + c,

whence c = −7, and we conclude that

f(x) =
x3

3
− 7.

Omission of the c in equation (1) would have lead to the incorrect answer f(x) = x3

3 .

The reason for calling an antiderivative of a function f an indefinite integral and
for denoting it by

∫
f(x)dx is its close connection with the definite integral. Let

f be continuous on an interval containing a and b. Since d
dx

∫
f(x)dx = f(x), we

obtain the formula ∫ b

a

f(x)dx =

∫
f(x)dx

∣∣∣b
a

(4.17)

by applying Corollary (5.3) of the Fundamental Theorem of Calculus. The value of∫
f(x)dx|ba is the same for any two indefinite integrals of f and there is therefore no
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need to include the constant c in applications of equation (2). For example, even
though ∫

(2x+ 1)dx = x2 + x+ c,

for an arbitrary real number c, we may write∫ 2

0

(2x+ 1)dx =

∫
(2x+ 1)dx

∣∣∣2
0

= (x2 + x)
∣∣∣2
0

= 6.

The integration techniques that we shall consider are expressed in formulas for
finding indefinite integrals. The first four of these, (6.1), (6.2), (6.3), and (6.4),
have already been used in computing definite integrals. We write them down only
to make them explicit. They are:

4.6.1. ∫
[f(x) + g(x)]dx =

∫
f(x)dx+

∫
g(x)dx.

4.6.2. ∫
kf(x)dx = k

∫
f(x)dx, for every constant k.

4.6.3. ∫
dx = x+ c.

4.6.4. ∫
xrdx =

xr+1

r + 1
+ c, where r is a rational number different from -1.

Since an indefinite integral is determined only to within an additive constant,
(6.1) and (6.2) are open to a possible (but unlikely) false interpretation. The precise
statement of (6.1) is: If F is an indefinite integral of f and if G is an indefinite
integral of g, then F +G is an indefinite integral of f + g. The proof takes one line:

(F +G)′ = F ′ +G′ = f + g.

On the other hand, if F , G, and H are three arbitrary indefinite integrals of f , g,
and f + g, respectively, we certainly cannot infer that H = F +G. All we know is
that H ′ = F ′ +G′, whence H = F +G+ c. Similarly, (6.2) should be read: If F is
an indeknite integral of f , then kF is an indefinite integral of kf . The proof:

(kF )′ = kF ′ = kf.

The proof of (6.4) is the equation

d

dx

( xr+1

r + 1
+ c
)

= xr,

and (6.3) is simply the special case of (6.4) obtained by setting r = 0. Note that
each of these four integration formulas is the inverse of one of the basic rules for
differentiation derived in Section 7 of Chapter 1.
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Example 96. Evaluate the following three integrals:

(i)
∫ (

2x2 + 2
x2

)
dx,

(ii)
∫

(y3 + 2y2 + 2y + 1)dy,

(iii)
∫ 5

1
(s2/3 + 1)ds.

Computation of the indefinite integrals follows directly from (6.1), (6.2), (6.3), and
(6 4) Thus ∫ (

2x2 +
2

x2

)
dx = 2

∫
x2dx+ 2

∫
x−2dx

= 2
x3

3
+ 2

x−1

−1
+ c

=
2

3
x3 − 2

x
+ c.

Since separately we would write 2
∫
x2dx = 2

3x
3 + c and also 2

∫
x−2dx = − 2

x + c,
one might think that two constants of integration should appear in the sum, i.e.,
that the answer should have been written∫ (

2x2 +
2

x2

)
dx =

2

3
x3 + c1 −

2

x
+ c2.

Although this last equation is not false, it is unnecessarily complicated and also
misleading. If F is one indefinite integral of a function, the specification of any
other requires the specification of one additional number, not two. Remember that,
for a given F , the set of all functions F + c such that c is an arbitrary real number
is identical to the set of all functions F + c1 + c2 such that c1 and c2 are arbitrary
real numbers. The sum of two arbitrary constants is still an arbitrary constant.

To do (ii), one must realize that the sum rule (6.1) implies an analogous rule for
integrating the sum of three functions, or four, or any finite number. We get

∫
(y3 + 2y2 + 2y + 1)dy =

∫
y3dy + 2

∫
y2dy + 2

∫
ydy +

∫
dy

=
y4

4
+ 2

y3

3
+ 2

y2

2
+ y + c

=
1

4
y4 +

2

3
y3 + y2 + y + c.

Finally, to evaluate (iii), we combine the above rules of integration with equation
(2) to obtain

∫ 5

1

(s2/3 + 1)ds =
(s5/3

5/3
+ s
)∣∣∣5

1

= [
3

5
(5)5/3 + 5]− [

3

5
(1)5/3 + 1]

= 3(5)2/3 +
17

5
.
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The Chain Rule provides an extremely useful technique for computing integrals.
Suppose that F is an antiderivative of f and that g is a differentiable function.
Aecording to the Chain Rule,

[F (g)]′ = F ′(g)g′.

Since F ′ = f , we conclude that

[F (g)]′ = F ′(g)g′ = f(g)g′;

i.e., the composition F (g) is an antiderivative, or indefinite integral, of f(g)g′. Thus
we have proved:

4.6.5. If F is any indefinite integral of f , then∫
f(g(x))g′(x)dx = F (g(x)) + c.

This formula tells us that we can integrate a function of the form f(g(x))g′(x)
provided we know how to integrate f(x).

Example 97. Compute
∫ √

x3 + x+ 1(3x2 + 1)dx. The integrand is the product

of two functions. The first factor,
√
x3 + x+ 1, is the composition of x3+x+1 with

the square root, and we know how to integrate
√
x. The second factor is 3x2 + 1,

which is the derivative of x3 + x+ 1. Hence (6.5) is applicable. We have

g(x) = x3 + x+ 1,

f(x) =
√
x.

Since ∫ √
xdx =

∫
x1/2dx =

2

3
x3/2 + c,

we take F (x) = 2
3x

3/2. According to (6.5), the answer to the problem is

F (g(x)) + c =
2

3
(x3 + x+ 1)3/2 + c.

That is, ∫ √
x3 + x+ 1(3x2 + 1)dx =

2

3
(x3 + x+ 1)3/2 + c.

We can check this answer by taking its derivative. We obtain

d

dx
[
2

3
(x3 + x+ 1)3/2 + c] = (x3 + x+ 1)1/2(3x2 + 1),

which is the original integrand.

Example 98. Evaluate
∫

(x2 + 1)5dx. It is possible to do this problem by first
expanding (x2 + 1)5 by the Binomial Theorem, but formula (6.5) makes this unnec-
essary. Again, the integrand is the product of two functions. The first is (x2 + 1)5,
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which is the composition f(g(x)) of the two functions g(x) = x2 + 1 and f(x) = x5.
The latter we know how to integrate:∫

x5dx =
x6

6
+ c,

so we take F (x) = x6

6 . The second factor in the integrand is x, which is not equal
to g′(x) = 2x, but is a constant multiple of it. This is just as good because of the
general rule

∫
kf(x)dx = k

∫
f(x)dx. In this case, we may write

∫
(x2 + 1)5xdx =

2

2

∫
(x2 + 1)5xdx

=
1

2

∫
(x2 + 1)5(2x)dx

=
1

2

∫
f(g(x))g′(x)dx

=
1

2
F (g(x)) + c.

Since F (x) = x6

6 , we have F (g(x)) = (x2+1)6

6 and so

∫
(x2 + 1)5xdx =

(1

2

)[ (x2 + 1)6

6

]
+ c

=
(x2 + 1)6

12
+ c.

The derivative of the indefinite integral should be the function which was integrated,
i.e., the integrand. Checking, we get

d

dx

[ (x2 + 1)6

12
+ c
]

=
6

12
(x2 + 1)52x = (x2 + 1)5x.

To summarize: Formula (6.5) is applicable if the integrand is a product of two
functions one of which is a composition f(g(x)) and the other of which is g′(x) or
possibly a constant multiple of g′(x). With a little practice the reader should be
able to recognize immediately, for example, that of the three integrals∫ √

x2 + 2dx,∫ √
x2 + 2xdx,∫ √
x2 + 2x2dx,

only the middle one can be successfully attacked by this method.
Formula (6.5) implies an analogous fact about definite integrals. Called the

Change of Variable Theorem for Definite Integrals, it is the following:

4.6.6. If both integrands are continuous functions on their respective intervals of
integration, then
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∫ b

a

f(g(x))g′(x)dx =

∫ g(b)

g(a)

f(y)dy.

Proof. Since the integrands are continuous, both integrals exist. Let F be an indef-
inite integral of f . By the definition of the definite integral,∫ g(b)

g(a)

f(y)dy = F (y)
∣∣∣g(b)
g(a)

= F (g(b))− F (g(a)).

By (6.5), ∫ b

a

f(g(x))g′(x)dx = F (g(x))
∣∣∣b
a

= F (g(b))− F (g(a)).

This completes the proof.

Example 99. Compute
∫ 2

−2
x+1√

x2+2x+2
dx. We first check that the integrand is

continuous on the interval [ - 2, 2]. Since the minimum value of x2 + 2x + 2 is 1,
which is positive, we know that the denominator is never zero, and so the integral is
defined. Set g(x) = x2 + 2x+ 2 and f(y) = y−1/2. Then g′(x) = 2x+ 2, g(−2) = 2,
and g(2) = 10. Hence∫ 2

−2

x+ 1√
x2 + 2x+ 2

dx =
1

2

∫ 2

−2

2x+ 2√
x2 + 2x+ 2

dx

=
1

2

∫ 2

−2
f(g(x))g′(x)dx

=
1

2

∫ 10

2

y−1/2dy.

Since
∫
y−1/2dy = 2y1/2 + c, we obtain

1

2

∫ 10

2

y−1/2dy = y1/2
∣∣∣10
2

=
√

10−
√

2.

We conclude that ∫ 2

−2

x+ 1√
x2 + 2x+ 2

dx =
√

10−
√

2.

The differential of a function F was defined in Section 6 of Chapter 2, and was
shown to satisfy the basic equation dF (x) = F ′(x)dx. If F ′ = f , we therefore obtain

dF (x) = F ′(x)dx = f(x)dx. (4.18)

In this section we have expressed the fact that F is an antiderivative of f by writing∫
f(x)dx = F (x) + c. (4.19)

Equations (3) and (4) suggest that we interpret the symbol dx that appears to the
right of the integral sign not merely as a piece of notation but as a differential. With
this interpretation, the symbol

∫
becomes a notation for the operation which is the

inverse of taking differentials. Thus, for any differentiable function F , we define
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∫
dF (x) = F (x) + c. (4.20)

If f(x) is given and we find F (x) such that dF (x) = f(x)dx, then∫
f(x)dx =

∫
dF (x) = F (x) + c.

If a function is denoted by a variable u, the definition (5) has the simple form∫
du = u + c. Moreover, in terms of differentials, Theorem (6.5) also has the

following simple form:

4.6.7. If F ′ = f and if u is a differentiable function, then∫
f(u)du = F (u) + c.

Proof. If u = g(x), then du = g′(x)dx. The above equation therefore becomes∫
f(g(x))g′(x)dx = F (g(x)) + c,

and this is just (6.5).

Another way of proving (6.7) is to start from the equation

dF (u) = F ′(u)du, (4.21)

[see Theorem (6.1), Chapter 2]. From this follows dF (u) = f(u)du, and so

F (u) + c =

∫
dF (u) =

∫
f(u)du.

It is worth noting that Theorem (6.5) is simply an inverse statement of the
Chain Rule. The Chain Rule was also the raison d’être behind equation (6). The
differential is a handy device solely because this important theorem is true.

Example 100. Evaluate the integrals

(i)
∫ √

5x+ 2dx,

(ii)
∫
s(s2 − 1)125ds.

To do (i), set u = 5x+ 2. Then du = 5dx, and so dx = 1
5du. Hence

∫ √
5x+ 2dx =

1

5

∫ √
udu =

1

5

2

3
u3/2 + c

=
2

15
(5x+ 2)3/2 + c.

Similarly, in (ii), let u = s2 − 1. We get du = 2sds and
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∫
s(s2 − 1)125ds =

1

2

∫
u125du =

1

2

1

126
u126 + c

=
1

252
(s2 − 1)126 + c.

In each of these examples the reader should verify that the derivative of the answer
gives back the original integrand.

Each of the integral formulas (6.1), (6.2), (6.3), and (6.4) can be written as a fact
about the integral of certain differentials. Let u and v be differentiable functions
and c an arbitrary constant. Then

4.6.8. (6.1’) ∫
(du+ dv) =

∫
du+

∫
dv.

4.6.9. (6.2’) ∫
kdu = k

∫
du, for ecery constant k.

4.6.10. (6.3’) ∫
du = u+ c.

4.6.11. (6.4’)∫
u′du =

ur+1

r + 1
+ c, where r is a rational number and r 6= −1.
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Problems

1. Evaluate the following indefinite integrals.

(a)
∫

(x2 + x+ 1) dx

(b)
∫ (

3x2 − 1
3x3

)
dx

(c)
∫

(6t2 − 2t+ 5) dt

(d)
∫

(2y + 1)(y − 3) dy

(e)
∫

(2x− 1)
3
2 dx

(f)
∫

(3x3 + 2)5x2 dx

(g)
∫
x
√
a2 − x2 dx

(h)
∫

t+2√
t2+4t+5

dt

(i)
∫
s(s3 + 3s2 + 5)(s+ 2) ds

(j)
∫
|x| dx.

2. Among the following integrals identify those that can be evaluated using the
techniques in this section. Evaluate them.

(a)
∫ (
x+ 1

x

)
dx

(b)
∫ (√

x+ 1√
x

)
dx

(c)
∫
y2(y3 + 7)4 dy

(d)
∫
y(y3 + 7)4 dy

(e)
∫
t
√
t3 − 1 dt

(f)
∫
x+1
x−1 dx

(g)
∫

(3x2 − 1)(x+ 2) dx

(h)
∫

(s+ 1)(s2 + 2s− 3)4 ds

(i)
∫
x2−1
x+1 dx

(j)
∫

y+2
y2+1 dy

(k)
∫

x−1
(x+1)3 dx.

3. The curve defined by y = f(x) passes through the point (1, 4). In addition,
at each point (x, f(x)), the slope of the curve is 8x3 + 2x. Find f(x).

4. The line tangent to the graph of the differentiable function f at each point
(x, f(x)) has slope 3x2 + 1, and the graph passes through the point (2, 9).
Find f(x).

5. If f ′′(x) = 12x2 + 2 and the graph of y = f(x) passes through (0,−2) with a
slope of 5, find f(x).

6. Evaluate the following definite integrals.

(a)
∫ 1

0
(3x2 + 4x+ 1) dx
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(b)
∫ 1

−1(2t3 + t) dt

(c)
∫ 1

−1(x3 + 1)17x2 dx

(d)
∫ 2

−1
s+1√

s2+2s+3
ds

(e)
∫ 3

1

(
x2 + 1

x

)3 (
2x− 1

x2

)
dx

(f)
∫ 2

0
1

(x+1)2 dx

(g)
∫ 2

−2
√

4− x2 x dx

(h)
∫ 2

−2(2|x|+ 1) dx

(i)
∫ 1

0
t(t3 + 3t2 − 1)3(t+ 2) dt

(j)
∫ 2

1
x4+2x3−2

x2 dx.

7. If f ′′(x) = 18x + 10 and f ′(0) = 2, find f ′(x). If, in addition, f(0) = 1, find
f(x).

8. (a) If g′′(x) =
√
x and g′(1) = 0 and g(0) =

√
2, find g(x).

(b) If f ′′′(t) = 6 and f ′′(1) = 8 and f ′(0) = 1 and f(1) = 4, find f(t).

9. If the slope of the curve y = f(x) is equal to 6 at the point (1, 4) and,
more generally, equals 6x at (x, f(x)), what is the area bounded by the curve
y = f(x), the x-axis, and the lines x = 1 and x = 3?

10. Sketch the region bounded by the curves y = 1√
x+1

, x = 0, and y = 1
2 . Find

its area.
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4.7 Area between Curves.

Let f be a function which is integrable over the interval [a, b] and whose graph may
cross the x-axis a finite number of times in the interval. It was shown in Section 4
that the relation between area and the definite integral is given by the formula∫ b

a

f(x)dx = area(P+)− area(P−), (4.22)

where P+ is the set of all points (x, y) such that a ≤ x ≤ b and 0 ≤ y ≤ f(x),
and P− is the set of all points (x, y) such that a ≤ x ≤ b and f(x) ≤ y ≤ 0. If
we exclude their boundaries, then either or both of the regions P+ and P− may
consist of several pieces. This possibility is illustrated in Figure ??, which shows
the graph of a continuous function f which crosses the x-axis at the four points a,
b, c, and d. For the regions shown in the figure, we have

Figure 4.17:

area(P+) =

∫ b

a

f(x)dx+

∫ d

c

f(x)dx,

area(P−) = −
∫ c

b

f(x)dx.

Since area(P+ ∪ P−) = area(P+) + area(P−), it follows that

area(P+ ∪ P−) =

∫ b

a

f(x)dx−
∫ c

b

f(x)dx+

∫ d

c

f(x)dx.

Suppose in this example that F is an antiderivative of f on the interval [a, d]; i.e.,
we have F ′(x) = f(x) for every x in [a, d]. Then

∫ b

a

f(x)dx = F (b)− F (a),∫ c

b

f(x)dx = F (c)− F (b),∫ d

c

f(x)dx = F (d)− F (c).
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Hence the total area is given by

area(P+ ∪ P−) = [F (b)− F (a)]− [F (c)− F (b)] + [F (d)− F (c)]

= −F (a) + 2F (b)− 2F (c) + F (d).

In this section we shall extend (1) to compute the areas of regions with more
complicated boundaries. The principal result here is the following:

4.7.1. Let the functions f and g be integrable over a closed interval [a, b], and
suppose that g(x) ≤ f(x) for every x in [a, b]. If R is the set of all points (x, y)
such that a ≤ x ≤ b and g(x) ≤ y ≤ f(x), then

area(R) =

∫ b

a

[f(x)− g(x)]dx.

Figure 4.18:

Proof. The region R is illustrated in Figure ??(a). The only complicating feature
of the proof is the fact that g or f , or both, may take on negative values in the
interval [a, b]. If this happens [as it does in Figure ??(a)], we shall simply slide,
or translate, the graphs of g and f upward so that the region between them lies
above the x-axis and its area is unchanged. The sliding, or translation, is shown
geometrically in Figure ??(b), and can be accomplished anaIytically as follows. Let
l be a lower bound for the values of the function g on the interval [a, b]; i.e., we
choose a number l such that l ≤ g(x) for every x in [a, b]. Such a number certainly
exists since g is assumed to be integrable over [a, b], and is therefore bounded on
[a, b]. In addition, if it does happen that g(x) ≥ 0 for every x in [a, b], then we take
l = 0. We now define functions f∗ and g∗ by

f∗(x) = f(x) + |l|,
g∗(x) = g(x) + |l|.

Their graphs and the region between them, which is denoted by R∗, is shown in
Figure ??(b). It is obvious that

area(R) = area(R∗).
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Let P be the set of points bounded by the graph of g∗, the x-axis, and the lines
x = a and x = b. By the integral formula for area, we know that

area(P ∪R∗) =

∫ b

a

f∗(x)dx,

area(P ) =

∫ b

a

g∗(x)dx.

Since area(R∗) = area(P ∪R∗)− area(P ), we obtain

area(R) = area(R∗) =

∫ b

a

f∗(x)dx−
∫ b

a

g∗(x)dx

=

∫ b

a

[f∗(x)− g∗(x)]dx.

However,

f∗(x)− g∗(x) = [f(x) + |l|]− [g(x) + |l|]
= f(x)− g(x).

Hence

area(R) =

∫ b

a

[f(x)− g(x)]dx,

and the proof is complete.

It should be remarked that, rigorously speaking, the above proof omits some
logical details. These occur in our use of the function area. To begin with, we have
not in this book attempted to give a mathematical definition of the area of a set, al-
though we have shown that if area does exist and satisfies certain simple properties,
then the integral formula (1) is valid. Moreover, in the preceding paragraph we have
tacitly assumed some of the properties of area which are obvious to the intuition,
but logically would require proof. For example, we assumed that area is invariant
under translation when we asserted that area(R) = area(R∗). In the same way, our
statement that area(R∗) = area(P ∪ R∗) − area(P ) [see Figure ??(b)] was based
solely on geometric intuition. There is nothing wrong with omitting these details,
but it is important that a careful reader realize that the omissions are there.

Example 101. Compute the area of the region R bounded by the graphs of the
functions f(x) = 2x − 1 and g(x) = −(2x − 1)2. and the lines x = 1 and x = 2.
Since

g(x) ≤ 0, for every x,

f(x) ≥ 0, if 1 ≤ x ≤ 2,

it follows that g(x) ≤ f(x) on the interval [1, 2]. Both functions are continuous and
hence integrable, and so (7.1) is applicable. We obtain

area(R) =

∫ 2

1

[f(x)− g(x)]dx.
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Since f(x)− g(x) = (2x− 1) + (2x− 1)2 = 4x2 − 2x, the answer is

area(R) =

∫ 2

1

(4x2 − 2x)dx = (
4

3
x3 − x2)

∣∣∣2
1

= (
32

3
− 4)− (

4

3
− 1) =

19

3
.

Example 102. Find the area of the region R lying between the lines x = −1 and
x = 2 and between the curves y = x2 and y = x3. We first sketch the lines and
curves in question and indicate the region R by shading (see Figure ??). Observe
that

x3 ≤ x2, if − 1 ≤ x ≤ 1,

x2 ≤ x3, if 1 ≤ x ≤ 2.

Figure 4.19:

Writing R as the union of regions R1 and R2, as is done in the figure, we have, by
(7.1),
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area(R1) =

∫ 1

−1
(x2 − x3)dx,

area(R2) =

∫ 2

1

(x3 − x2)dx.

Hence

area(R) = area(R1) + area(R2)

=

∫ 1

−1
(x2 − x3)dx+

∫ 2

1

(x3 − x2)dx.

The function F (x) = x3

3 −
x4

4 is clearly an indefinite integral of x2 − x3. Thus

∫ 1

−1
(x2 − x3)dx = F (x)

∣∣∣1
−1

= F (1)− F (−1),∫ 2

1

(x3 − x2)dx = −
∫ 2

1

(x2 − x3)dx

= −F (x)
∣∣∣2
1

= −F (2) + F (1).

Finally, therefore,

area(R) = F (1)− F (−1)− F (2) + F (1)

=
1

12
+

7

12
+

4

3
+

1

12
=

25

12
.

Because of symmetry, each of the integral formulas for area which we have
developed has an obvious counterpart for functions of y. For example, if f is the
function of y whose graph is drawn in Figure ??, then∫ d

c

f(y)dy = area(P+)− area(P−),

where P+ and P− are the regions indicated in the figure.
Sometimes a curve in the xy-plane can be defined as the graph of a function of

y and not as a function of x. An example is the parabola defined by the equation
(y − 1)2 = x − 1 and illustrated in Figure ??. Although this equation cannot be
solved uniquely for y in terms of x, it is easy to do the opposite. We get

x = (y − 1)2 + 1 = y2 − 2y + 2,

and so the curve is the graph of the function f defined by f(y) = y2 − 2y + 2. The
area of the region P bounded by the parabola, the two coordinate axes, and the
horizontal line y = 2 is given by
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area(P ) =

∫ 2

0

f(y)dy =

∫ 2

0

(y2 − 2y + 2)dy

=
(y3

3
− y2 + 2y

)∣∣∣2
0

=
8

3
.

Figure 4.20:

Figure 4.21:

Example 103. Express the area of the shaded region Q in Figure ??(a) as a sum
of definite integrals. There are many different ways to do this. We shall begin by
subdividing Q into four subregions Q1, Q2, Q3, and Q4 using the two vertical lines
x = a1, and x = a2 as shown in Figure ??(b).

Consider for a moment the region Q1 alone. Every horizontal line L which
intersects Q1 cuts its boundary in at most two points. Suppose that L crosses
the y-axis at the point (0, y). Moving along L from left to right, we denote the
x-coordinate of the first point encountered on the boundary of Q1, by g1(y). In
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this way a function g1 is defined whose graph forms the “western boundary” of Q1.
In fact, Q1 is the region between y = b1 and y = b2 [see Figure ??(b)] and also
between the curves x = g1(y) and x = a1. By the counterpart of (7.1) for functions
of y, we therefore obtain

area(Q1) =

∫ b2

b1

[a1 − g1(y)]dy.

Figure 4.22:

Turning next to the region Q2, we see that the “northern boundary” is the graph
of a function f1, and the “southern boundary” is the graph of a function f2. These
functions are indicated in Figure ??(c). Hence

area(Q2) =

∫ a2

a1

[f1(x)− f2(x)]dx.

Similarly, we have

area(Q3) =

∫ a2

a1

[h1(x)− h2(x)]dx,

and also

area(Q4) =

∫ c2

c1

[g2(y)− a2]dy.
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Since area(Q) = area(Q1) + area(Q2) + area(Q3) + area(Q4), we therefore obtain
finally

area(Q) =

∫ b2

b1

[a1 − g1(y)]dy +

∫ a2

a1

[f1(x)− f2(x)]dx

+

∫ a2

a1

[h1(x)− h2(x)]dx+

∫ c2

c1

[g2(y)− a2]dy.
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Problems

1. For each of the following functions and intervals: Compute
∫ b
a
f(x) dx; draw

the graph of f ; label the region P− on or below the x-axis which is bounded
by the curve y = f(x), the x-axis, and the lines x = a and x = b; label the
analogous region P− on or below the x-axis; evaluate area(P+) and area(P−);
and check formula (??).

(a) f(x) = x− 1, a = 0, and b = 4.

(b) f(x) = −x2 + x+ 2, a = 0, and b = 3.

(c) f(x) = −x2 + x+ 2, a = −2, and b = 3.

(d) f(x) = (x− 1)3, a = 0, and b = 2.

2. In each of the following find the area of the subset P+ ∪ P− of the xy-plane
bounded by the curve y = f(x), the x-axis, and the lines x = a and x = b.

(a) f(x) = x5, a = −1, and b = 1.

(b) f(x) = x2 − 3x+ 2, a = 0, and b = 2.

(c) f(x) = (x+ 1)(x− 1)(x− 3), a = 0, and b = 2.

(d) f(x) = |x2 − 1|, a = −2, and b = 2.

3. Let f be a continuous function. Using areas, show that

(a) If f is an odd function, then
∫ a
−a f(x) dx = 0.

(b) If f is an even function, then
∫ a
−a f(x) dx = 2

∫ a
0
f(x) dx.

4. Prove ?? and ?? analytically using the Fundamental Theorem of Calculus.
[More specifically, use Theorems ?? and ??.]

5. Draw the region R bounded by the lines x = 0 and x = 2 and lying between
the graphs of the functions f(x) = x+ 2 and g(x) = (x− 1)2. Find the area
of R.

6. Draw the region Q lying to the right of the y-axis and bounded by the curves
x = 0, 3y − x+ 3 = 0, and 3y + 3x2 − 8x = 3. Compute area(Q).

7. Find the area of the subset R of the xy-plane lying between the lines x = 1
2

and x = 2, and between the graphs of the functions f(x) = 1
x2 and g(x) = x2.

Draw the relevant lines and curves and indicate the region R.

8. Find the area of the region bounded by the two parabolas y = −x2 + x + 2
and y = x2 − 2x.

9. Draw the graphs of the equations y = x2 and y = 4, and label the region R
bounded by them.

(a) Express the area of R as an integral with respect to x using ??. Evaluate
the integral.

(b) Similarly, express the area of R as an integral with respect to y using the
counterpart of ?? for functions of y. Evaluate the integral and check the
answer to ??.



232 CHAPTER 4. INTEGRATION

10. (a) If f(y) = −y2 + y+ 2, sketch the region bounded by the curve x = f(y),
the y-axis, and the lines y = 0 and y = 1. Find its area.

(b) Find the area bounded by the curve x = −y2 + y + 2 and the y-axis.

(c) The equation x+ y2 = 4 can be solved for x as a function of y, or for y
as plus or minus a function of x. Sketch the region in the first quadrant
bounded by the curve x+ y2 = 4, and find its area first by integrating a
function of y and then by integrating a function of x.

11. If the function f is continuous at every point of the interval [a, b] and may
cross the x-axis at a finite number of points in the interval. Let P+ and P−

have their usual meaning [as in formula (??)].

(a) Is |f(x)| continuous at every point of [a, b]?

(b) Show that

area(P+ ∪ P−) =

∫ b

a

|f(x)| dx.

12. Find the area of the region bounded by the parabola y = x2, the x-axis, and
the line tangent to the parabola at the point (2, 4). Do the problem

(a) using x as the variable of integration.

(b) using y as the variable of integration.

13. Do Problem ?? for the line tangent to the parabola at the general point (a, a2).

14. Express the area of the ellipse x2

a2 + y2

b2 = 1 as a definite integral of a function
of x, and as a definite integral of a function of y. (The resulting indefinite
integrals cannot be evaluated with the theory so far developed.)

15. Find the area of the shaded region in Figure ??. The curves are parabolas.
The inscribed square has area 4, and the circumscribed square has area 16.



4.8. INTEGRALS OF VELOCITY AND ACCELERATION. 233

4.8 Integrals of Velocity and Acceleration.

In this section we shall develop some of the integral formulas associated with velocity
and acceleration. Among these is the formula for the distance traveled by an object,
or particle, which moves with velocity v(t) during the time interval from t = a to
t = b.

Consider a particle which, during some interval of time, moves along a straight
line. We take the straight line to be a coordinate axis of real numbers, and denote
the position of the particle on the line at time t by s(t). Thus s is a real-valued
function of a real variable with value s(t) for every t in some interval. We shall
assume that s is differentiable. In Section 3 of Chapter 2 the velocity v of the
particle is defined to be the derivative of s. That is,

v(t) = s′(t).

Equivalent to this equation is the statement that s is an antiderivative of v. It
follows that

s(t) =

∫
v(t)dt+ c. (4.23)

If we consider the motion of the particle from t = a to t = b, and add the assumption
that v is continuous on [a, b], then, by Corollary (5.3) of the Fundamental Theorem
of Calculus (see page 204), we obtain the formula

s(b)− s(a) =

∫ b

a

v(t)dt. (4.24)

Example 104. An object dropped from a cliff at time t = 0 falls with a velocity
given by v(t) = kt. If we take the direction of increasing distance to be downward,
and measure distance in feet and time in seconds, then k = 32 and v(t) is in units
of feet per second. How high is the cliff if the object hits the bottom 3 seconds after
being dropped? The height equals the difference s(3)− s(0). Hence

s(3)− s(0) =

∫ 3

0

v(t)dt

=

∫ 3

0

32tdt = 16t2
∣∣∣3
0

= 144 feet.

Acceleration is defined in Section 3 of Chapter 2 to be the derivative of velocity.
Thus

a(t) = v′(t),

and, as before, an equivalent statement is that velocity is an antiderivative of ac-
celeration. We therefore have the formula

v(t) =

∫
a(t)dt+ c. (4.25)
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Example 105. A body in free fall under the earth’s gravitational pull falls with
a constant acceleration g, equal in magnitude to 32 feet per second per second.
Suppose that at time t = 0 a ball is projected straight up from the ground with
an initial velocity v0 = 256 feet per second. Write formulas for the subsequent
velocity v(t) and distance from the ground s(t). What is the maximum height the
ball attains? In this example we shall choose the direction of increasing distance to
be upward. As a result, the gravitational acceleration is negative, and the starting
point of our calculations is the equation a(t) = −32. We have

v(t) =

∫
a(t)dt+ c =

∫
(−32)dt+ c

= −32t+ c,

whence
v(0) = −32 · 0 + c = c.

The initial velocity is given as v0 = v(0) = 256 feet per second. Hence c = 256 and

v(t) = −32t+ 256,

which is one of the formulas asked for. The second integration yields

s(t) =

∫
v(t)dt+ c

=

∫
(−32t+ 256)dt+ c

= −16t2 + 256t+ c.

The constant of integration c in the preceding equations has, of course, nothing to
do with the one obtained from integrating a(t). Here s(0) = −16 ·02+256 ·0+c = c.
Since the ball is at ground level when t = 0, we conclude that 0 = s(0) = c, and so

s(t) = −16t2 + 256t,

which is the second formula required. To find the maximum value of the function
s, we compute its derivative and set it equal to zero:

s′(t) = v(t) = −32t+ 256 = 0,

whence it follows that

t =
256

32
= 8 seconds.

Since s′′(t) = v′(t) = a(t) = −32, which is negative, we know that s has a local
maximum when t = 8, and it is easy to see that this local maximum is an absolute
maximum. Thus the maximum height attained by the ball is equal to

s(8) = −16 · 82 + 256 · 8
= −210 + 211

= 1024 feet.
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It is important to realize that the quantity s(b)−s(a) in (2) does not necessarily
equal the distance traveled by the object, or particle, during the time interval from
t = a to t = b. This is because the number s(t) simply gives the position of the
particle on the line at time t. Thus in the preceding example of the ball we showed
that

s(t) = −16t2 + 256t.

Substituting t = 0 and t = 16, respectively, we get

s(0) = −16 · 02 + 256 · 0 = 0,
s(l6) = −16 · 162 + 256 · 16 = 0.

The interpretation of these equations is clear: The ball left the ground at time t = 0,
and 16 seconds later it had fallen back. However, an insect who accompanied the
ball on its flight would probably not report to his admiring friends and relatives
that the total distance traveled was

s(16)− s(0) = 0− 0 = 0 feet.

A similar situation is an automobile trip 10 miles down a road and back again. The
distance traveled is presumably 20 miles, and not zero.

It is not hard to guess the proper mod)fication of formula (2) to obtain a true
distance formula. If we denote the distance traveled during the time interval from
t = a to t = b, where a ≤ b, by distance|ba, then

distance
∣∣∣b
a

=

∫ b

a

|v(t)|dt. (4.26)

Logically, however, there is no way to prove (4), since we have not given a
mathematical definition of distance|ba. As a result, we shall take (4) as a definition
after checking that it corresponds to our intuition. First of all, if v(t) does not
change sign from t = a to t = b, then∫ b

a

|v(t)|dt =
∣∣∣ ∫ b

a

v(t)at
∣∣∣.

(See Problem 4 at the end of this section.) Hence, by formula (2),∫ b

a

|v(t)|dt =
∣∣∣ ∫ b

a

v(t)dt
∣∣∣ = |s(b)− s(a)|.

The assumption that v(t) does not change sign means that the direction of the
motion does not change. In this case, we would certainly expect |s(b)−s(a)|, which
equals the distance on the real line between the initial position s(a) and the final
position s(b), to be the total distance traveled.

Further motivation for the definition in formula (4) is obtained by going back
to the definition of the definite integral. We assume that the function |v(t)| is
integrable over the interval [a, b]. Consider an arbitrary partition σ = {t0, ..., tn} of
[a, b] such that

a = t0 ≤ t1 ≤ ... ≤ tn−1 ≤ tn = b.
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For each i = 1, ..., n, we denote by Mi the least upper bound of the set of all numbers
|v(t)|, where t is in the subinterval [ti−1, ti]. Similarly, let mi be the greatest lower
bound. Thus the number Mi is the maximum speed of the particle in the subinterval
[ti−1, ti], and mi is the minimum speed. Intuitively, therefore, the distance traveled
by the particle during the sub interval of time [ti−1, ti] must be less than or equal
to Mi(ti− ti−1) and greater than or equal to mi(ti− ti−1). Consequently, the upper
and lower sums,

Uσ =

n∑
i=1

Mi(ti − ti−1),

Lσ =

n∑
i=1

mi(ti − ti−1),

are upper and lower bounds, respectively, of the total distance traveled. But the
function |v(t)| has been assumed to be integrable over [a, b]. It follows that there

exists one and only one number,
∫ b
a
|v(t)|dt, such that

Lσ ≤
∫ b

a

|v(t)|dt < Uσ,

for every partition σ of [a, b]. This just)fies the adoption of formula (4) as the
definition of distance|ba.

Example 106. A particle moves on the x-axis, and its position at time t is given
by x(t) = 2t3 − 21t2 + 60t− 14. Its velocity is the function v defined by

v(t) = x′(t) = 6t2 − 42t+ 60

= 6(t2 − 7t+ 10) = 6(t− 2)(t− 5).

Find the total distance traveled by the particle during the time interval t = 0 to
t = 6. Clearly, v(t) = 0 when t = 2 and t = 5, and the sign of v(t) is as indicated
by

+ + + - - - - - + + + + sign of v(t)

2 5 t-axis

Hence

|v(t)| =

 v(t) if∞ < t ≤ 2,
−v(t) if 2 ≤ t ≤ 5,
v(t) if 5 ≤ t <∞.

Consequently,

distance
∣∣∣6
0

=

∫ 6

0

|v(t)|dt

=

∫ 2

0

v(t)dt−
∫ 5

2

v(t)dt+

∫ 6

5

v(t)dt.
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Since x(t) is an antiderivative of v(t),

∫ 2

0

v(t)dt = x(2)− x(0),∫ 5

2

v(t)dt = x(5)− x(2),∫ 6

5

v(t)dt = x(6)− x(5),

and so ∫ 6

0

|v(t)|dt = −x(0) + 2 · x(2)− 2 · x(5) + x(6).

Substitution in the equation for x(t) yields x(0) = −14, x(2) = 38, x(5) = 11, and
x(6) = 22. Hence

distance
∣∣∣6
0

=

∫ 6

0

|v(t)|dt

= 14 + 2 · 38− 2 · 11 + 22

= 90.

The motion described in this example is the same as in Example 1, page 105.
By looking at Figure ??, Chapter ??, one can see that the distance traveled by the
particle during the time interval [0, 6] agrees with the value just obtained.

The integral formulas derived in this section all presuppose motion along a
straight line. The reason for this restriction is that the definition of velocity, and
consequently of acceleration, has been based on the possibility of representing the
position of the particle at time t by a real number s(t) along a coordinate axis.
A coordinate system on a line in turn is defined in terms of the distance between
two points, and thus far the only measure of distance between points which we
have is straight-line distance. ln Chapter 10 we shall introduce the notion of arc
length along a curve and shall study the notions of velocity and acceleration for
curvilinear motion. At this point, however, it is worth noting that if we think of
obtaining a curve by bending a coordinate axis without stretching it, and if s(t)
measures position on the curve in the obvious way, then formulas (1), (2), (3), and
(4) still hold. Thus if the speedometer reading on a car is given by some nonnegative
and integrable function f of time, then the distance traveled during the time interval

[a, b] is equal to
∫ b
a
f(t)dt whether the road is straight or not.

We conclude this section with another type of problem illustrating the integra-
tion of rates of change.

Example 107. Air is escaping from a spherical balloon so that its radius r is
decreasing at the rate of 2 inches per minute. Find the rate of change of the volume
V as a function of time if we are given that r = 10 inches when t = 0. What is
the volume of the balloon when t = 2 minutes, and at what time will V = 0? The
volume of a sphere is given by V = 4

3πr
3, and we are given that
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dr

dt
= −2.

Hence

r =

∫
dr

dt
dt+ c =

∫
(−2)dt+ c

= −2t+ c.

Setting t = 0, we see that the constant of integration c is the value of the radius at
t = 0, namely, 10 inches. Hence

r = −2t+ 10.

Since

dV

dt
=

d

dt

(4

3
πr3
)

=
4

3
π · 3r2 · dr

dt
,

we obtain for the answer to the first part of the problem

dV

dt
= 4π(−2t+ 10)2(−2) = −32π(−t+ 5)2,

where t is measured in minutes and dV
dt in cubic inches per minute. Clearly,

V (t) =
4

3
π[r(t)]3 =

4

3
π(−2t+ 10)3.

The volume of the balloon when t = 2 minutes is therefore

V (2) =
4

3
π(−2 · 2 + 10)3 =

4

3
π63 = 288π cubic inches,

and the volume will be zero when

V (t) =
4

3
π(−2t+ 10)3 = 0,

i.e., when t = 5 minutes.
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Problems

1. A straight highway connects towns A and B. A car starts at t = 0 from A
and goes toward B with a velocity given by v(t) = 60t − 12t2, measured in
miles per hour. When the car arrives at B, it is slowing down and its speed
is 48 miles per hour.

(a) How far apart are the two towns?

(b) What are the maximum and minimum speeds obtained during the trip?
When are they reached, and at what distances?

2. A straight highway connects towns A and B. A car, initially stopped, starts
at t = 0 from A and accelerates at 240 miles per hour per hour until reaching
a speed of 60 miles per hour.

(a) How long does this take, both in time and distance? Assume that the
car travels at the constant speed of 60 miles per hour once it has reached
that speed, and that is slows down to a stop at town B in the same way
that it left A.

(b) How far apart are A and B if the whole trip takes 5 hours?

3. A projectile is fired straight up with an initial velocity of 640 feet per second
(see Example ??).

(a) Find the velocity v(t).

(b) How far does the projectile travel during the first 10 seconds of its flight?

(c) How far does the projectile go, and how many seconds after takeoff is
this maximum height reached?

(d) What is the total distance traveled by the projectile during the first 30
seconds of its flight?

(e) What is the velocity when the projectile returns to the ground?

4. Let the function f be integrable over the interval [a, b], and suppose that f(x)
does not change sign on the interval. Prove that∫ b

a

|f(x)| dx =

∣∣∣∣∣
∫ b

a

f(x) dx

∣∣∣∣∣ .
(This is an easy problem. Consider separately the two cases: First, f(x) ≥ 0
for every x in [a, b], and second, f(x) ≤ 0 for every x in [a, b].)

5. A particle moves on the x-axis with velocity given by v(t) = −4t+ 20.

(a) In which direction is the particle moving at time t = 0?

(b) Find s(t), the position of the particle at time t, if its coordinate is −30
when t = 1.

(c) Find the distance traveled by the particle during the time interval from
t = 0 to t = 4.

(d) Find the distance traveled by the particle during the time interval from
t = 0 to t = 8.
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(e) When is s(t) = 0?

6. A particle moves on the y-axis with acceleration given by a(t) = 6t−2. Denote
its velocity and position at time t by v(t) and y(t), respectively. At time t = 1,
the particle is at rest at the zero position.

(a) Find v(t) and y(t).

(b) How far does the particle move during the time interval from t = 1 to
t = 3?

(c) What is the distance traveled by the particle from t = −1 to t = 2?

7. A road borders a rectangular forest, and a car is driven around it. The car
starts from rest at one corner and accelerates at 120 miles per hour per hour
until it reaches the next corner 15 minutes later. The second side is 20 miles
long and the car is driven along it at constant velocity equal to the final
velocity reached on the first side. The car continues at this same speed on
the third side. On the fourth side, however, the car slows down with constant
acceleration and comes to a stop at its original starting place. Find

(a) the dimensions of the rectangle.

(b) the acceleration on the fourth side.

(c) the time taken for the whole trip.

8. Let the function f be integrable over the interval [a, b]. From the definition

of integrability in Section ??, prove that
∫ b
a
f is the only number such that

Lσ ≤
∫ b

a

f ≤ Uσ,

for every partition σ of [a, b].

9. A conical funnel of height 36 inches and base with radius 12 inches is initially
filled with sand. At t = 0, the sand starts running out the bottom (apex of
the cone) so that the volume V of sand remaining in the funnel is decreasing
at the constant rate of 10 cubic inches per minute.

(a) Find V as a function of time t, and determine how long it takes for all
the sand to run out.

(b) Assuming that the sand retains its original conical shape during the
process, find the radius r of the base of the cone of sand as a function of
t.

10. A particle moves on the parabola y = x2, and its horizontal component of
velocity is given by x′(t) = 1

(t+1)2 , t ≥ 0. At time t = 0 the particle is at the
origin.

(a) What are the x and y coordinates of the particle when t = 1? When
t = 3?

(b) As t increases without bound what happens to the particle?
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11. At time t = 0, an object is dropped from an airplane which is moving hor-
izontally with velocity v0. Its downward acceleration y′′(t) is constant and
equal to −g. Measure the positive direction of x in the direction of motion
of the airplane and the positive direction of y upward. Also assume that
x(0) = y(0) = 0.

(a) Find x(t) and y(t).

(b) By eliminating t from the equations in ??, find the equation in terms of
x and y in which the object falls. What is the name of the curve?
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Chapter 5

Logarithms and Exponential
Functions

5.1 The Natural Logarithm.

If f is any real-valued function of a real variable which is continuous on some
interval, we have seen that there exists an antiderivative, or indefinite integral, F
such that F ′(x) = f(x) for every x in the interval. For some functions we have been
able to write their antiderivatives explicitly. For example, if f(x) = xr and r is a
rational number different from -1, then the general antiderivative is∫

xrdx =
xr+1

r + 1
+ c,

where c is an arbitrary constant. This formula is not applicable if r = −1. Never-
theless, 1

x is certainly continuous on the interval (0,∞), and therefore some function
has it for a derivative. For every positive number a, we can define such a function
by writing

F (x) =

∫ x

a

dt

t
, for every x > 0.

For then by the Fundamental Theorem of Calculus [see Theorem (5.2), page 200],

F ′(x) =
1

x
.

To be specific, we choose a = 1 and select
∫ x
1
dt
t for a particular antiderivative

of 1
x . As we shall see, this function is interesting enough to have a special name

and a special notation. The notation we shall use is ln (x), or, more briefly, ln x,
and we shall save the name and reason for its choice until we have investigated its
properties. For now, we define

ln x =

∫ x

1

dt

t
, for every x > 0.

The reason that x must be positive in this definition is that the function 1
t has a

discontinuity at t = 0. If x is negative, the integral does not exist and lnx is not
defined.

243
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Geometrically, In x is an area or the negative of an area. If x > 1, then lnx is
the area of the region bounded by the hyperbola y = 1

t , the t-axis, and the lines
t = 1 and t = x [see Figure ??(a)]. On the other hand, if 0 < x < 1, we have

ln x =

∫ x

1

dt

t
= −

∫ 1

x

dt

t
,

and lnx is the negative of the area shown in Figure ??(b). Thus we have the
following properties of the function ln.

5.1.1.  ln 1 = 0,
ln x > 0, if x > 1,
ln x < 0, if 0 < x < 1.

Figure 5.1:

Another interesting property is obtained by taking the derivative d
dx ln kx, where

k is an arbitrary positive constant. By the Chain Rule,

d

dx
ln kx =

1

kx

d

dx
kx =

1

kx
· k =

1

x
.

Hence the functions ln kx and lnx have the same derivative. We know that two
functions which have the same derivative over an interval, in this case all positive
real numbers, differ by a constant. Hence

ln kx− ln x = c,

for some real number c and all positive x. We evaluate c by substituting a particular
value for x. Since the value of ln 1 is known, we let x = 1, getting

ln k − ln 1 = c.

Since ln 1 = 0, we know that c = ln k. Hence ln kx− lnx = ln k, or, equivalently,

ln kx = ln k + ln x.
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In deriving this equation we have used the fact that k is a constant and x a variable.
Once we have derived it, and know that it is valid for every positive k and x, we
can forget the distinction and write

5.1.2.
ln ab = ln a+ ln b, for all positioe real numbers a and b.

If a is positive, then 1
a is also positive and a substitution of 1

a for b in (1.2) gives
the equation ln 1 = ln a+ ln 1

a . Since ln 1 = 0, we have

5.1.3.

ln
1

a
= − ln a, a > 0.

Applying (1.2) to the product of the two numbers a and 1
b , and using (1.3), we

obtain ln a
b = ln

(
a · 1b

)
= ln a+ ln 1

b = ln a− ln b. That is,

5.1.4.
ln

a

b
= ln a− ln b, a > 0 and b > 0.

In summary: The function ln applied to a product is equal to the sum of the
values obtained when the function is applied to the factors. Applied to the quotient,
the value of In is the difference between the values of the function applied to the
numerator and to the denominator.

Let r be any rational number, and consider the derivative d
dx ln xr. By the

Chain Rule again,

d

dx
ln xr =

1

xr
d

dx
xr =

1

xr
rxr−1 = r

1

x
.

Moreover,

d

dx
r ln x = r

d

dx
ln x = r

1

x
.

Thus ln xr and r ln x have the same derivative and so must differ by a constant:

ln xr − r ln x = c.

Substitution of 1 for x tells us that c = 0, and therefore ln xr = r ln x for every
positive number x. For uniformity in appearance with properties (1.2), (1.3), and
(1.4), we set x = a and obtain

5.1.5.

ln ar = r ln a, for every rational number r and every positive real number a.

The properties we have derived for the function In should be recognized by
anyone who has been exposed to logarithms. However, ln is not the same as the
function log10 or the function log2, which the student may have seen earlier. It has
many of the same properties though and is called the natural logarithm, hence
the abbreviation ln.

We next draw the graph of the function ln. Since d
dx ln x = 1

x and since 1
x is

positive for all x for which ln x is defined, the slope of the tangent line to the graph
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is always positive. From this we can see that ln x always increases as x increases;
that is, the function ln is strictly increasing. To prove this analytically, we use the
Mean Value Theorem, page 113. Suppose that 0 < a < b. By the Mean Value
Theorem there exists a number c such that a < c < b and

ln b− ln a = (b− a)
( d
dx

ln x
)

(c) = (b− a)
1

c
> 0.

Figure 5.2:

Hence ln a < ln b, and the monotonicity of the natural logarithm is proved. Since
d2

dx2 ln x = − 1
x2 , the graph of lnx is concave downward for all x. With this informa-

tion and the fact that ln 1 = 0, we can make a reasonable sketch of the graph. This
appears in Figure ??. Note that the graph is steep and the values of the function
negative for very small values of x. The values increase and the curve goes up to
the right, passing through (1, 0) with a slope of 1. Since d

dx ln x = 1
x , the slope de-

creases as x increases. This raises the question of whether lnx becomes arbitrarily
large as x increases without bound, or possibly tends toward some limiting value.
However, it is obvious that the inequality 1

t ≥
1
2 is true for every real number in

the closed interval [1, 2]. It follows from one of the fundamental properties of the
integral [specifically, from (4.3) on page 191] that∫ 2

1

1

t
dt ≥

∫ 2

1

1

2
dt.

The left side of this inequality is equal to ln 2, and the right side to 1
2 . Thus we

have proved that

ln 2 ≥ 1

2
,

[a fact which can also be obtained geometrically by looking at Figure ??(a) and
considering the area under the curve y = 1

t between t = 1 and t = 2]. Hence for
every rational number r, we have ln 2r = r ln 2 ≥ r

2 . By taking r large enough,
we can make r

2 and, consequently ln 2r, as large as we like. We conclude that

lim
x→∞

ln x =∞.
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Example 108. If ln 2 = a and ln 3 = b, evaluate each of the following in terms of
a and b.

(a) ln 4, (c) ln 1
6 , (e) ln 2

9 ,
(b) ln 6, (d) ln 24, (f) ln 2m3n.

Using the various properties of logarithms developed above, we find

(a) ln 4 = ln 22 = 2 ln 2 = 2a,

(b) ln 6 = ln(2 · 3) = ln 2 + ln 3 = a+ b,

(c) ln 6 = − ln 6 = −(a+ b) = −a− b,
(d) ln 24 = ln(8 · 3) = ln 8 + ln 3 = ln 23 + ln 3 = 3 ln 2 + ln 3 = 3a+ b,

(e) ln 2
9 = ln 2− ln 9 = ln 2− ln 32 = ln 2− 2 ln 3 = a− 2b,

(f) ln 2m3n = ln 2m + ln 3n = m ln 2 + n ln 3 = ma+ nb.

The derivative of the natural logarithm of a differentiable function is found by
means of the Chain Rule. Thus if F (x) = ln(f(x)), then F ′(x) = ln′ (f(x))f ′(x) =
1

f(x)f
′(x) = f ′(x)

f(x) . If the variable u is used to denote a differentiable function of x,

then the same result can be written

d

dx
ln u =

1

u
· du
dx
.

Example 109. Find the derivatives of (a) ln(x2 − 3), (b) ln
√

4x+ 7. Using the
Chain Rule in (a), we obtain

d

dx
ln(x2 − 3) =

1

x2 − 3
· 2x =

2x

x2 − 3
.

Note that the original function, ln(x2 − 3), is defined only for |x| >
√

3, although
the function which is its derivative can be defined for all x except ±

√
3. We can do

(b) either by use of the Chain Rule directly, as

d

dx
ln
√

4x+ 7 =
1√

(4x+ 7)
· 1

2
(4x+ 7)−1/2 · 4 =

2

4x+ 7
,

or more simply by noting that ln
√

4x+ 7 = 1
2 ln(4x+ 7). Then

d

dx
ln
√

4x+ 7 =
1

2

d

dx
ln(4x+ 7) =

1

2

1

4x+ 7
· 4 =

2

4x+ 7
.

The latter method would be much shorter for finding the derivative of ln(x2+2)(x−
3)(x+5)3. The expanded form ln(x2+2)+ln(x−3)+3 ln(x+5) is certainly simpler
to differentiate.

Since the natural logarithm is defined only for positive numbers, it follows that
the function In x is an antiderivative of 1

x only for x > 0. It is natural to ask whether
or not 1

x , which is defined and continuous for all x except 0, has an antiderivative
for x < 0. The answer is yes; ln(−x) is an antiderivative. Of course, if x is negative,
then −x is positive and so ln(−x) is defined. By the Chain Rule,
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d

dx
ln (−x) =

1

(−x)

d

dx
(−x) =

1

(−x)
· (−1) =

1

x
.

This equation may be combined with the equation d
dx lnx = 1

x , which holds for all
positive x, into the single equation

d

dx
ln |x| = 1

x
, for all x except 0.

The corresponding formula for the indefinite integral is

5.1.6. ∫
dx

x
dx = ln |x|+ c.

If f is a differentiable function, the Chain Rule implies that

d

dx
ln |f(x)| = 1

f(x)
· f ′(x) =

f ′(x)

f(x)
.

Hence, we have the integration formula

5.1.7. ∫
f ′(x)

f(x)
dx = ln |f(x)|+ c.

Example 110. Integrate (a)
∫
dx
3x , (b)

∫
x+7

x2+14x+5dx. To do (a), we use (1.6) and
the fact that the integral of a constant times a function is the constant times the
integral of the function. ∫

dx

3x
=

1

3

∫
dx

x
=

1

3
ln |x|+ c.

For (b), formula (1.7) is applicable because the numerator is 1
2 times the derivative

of the denominator.

∫
x+ 7

x2 + 14x+ 5
dx =

1

2

∫
2x+ 14

x2 + 14x+ 5
dx =

1

2
ln |x2 + 14x+ 5|+ c.

Alternative ways of writing the integration formula (1.7) are obtained by letting
u = f(x). We then get ∫

1

u

du

dx
dx = ln |u|+ c.

Using the theory of differentials, we have du = du
dxdx, and the formula becomes∫

u

du
= ln |u|+ c.

Example 111. Compute the definite integral
∫ 2

0
x2dx
x3−17 . Let u = x3 − 17. Then

du = 3x2dx, or, equivalently, x2dx = du
3 . Hence
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x2dx

x3 − 17
=

1

u

du

3
=

1

3

du

u
,

and so

∫
x2dx

x3 − 17
=

1

3

∫
du

u
=

1

3
ln |u|+ c

=
1

3
ln |x3 − 17|+ c.

Finally, therefore,

∫ 2

0

x2dx

x3 − 17
=

1

3
ln |x3 − 17|

∣∣∣2
0

=
1

3
ln |8− 17| − 1

3
ln | − 17|

=
1

3
ln 9− 1

3
ln 17 =

1

3
ln

9

17
.

Note that, if we had neglected the absolute value, we would have encountered the
undefined quantities ln(−9) and ln(−17).

Since log10 10 = 1 and log2 2 = 1, it is reasonable to ask for that value of x for
which lnx = 1 and to call this number the base for natural logarithms. We know
that such a number exists, since lnx increases as x increases and since the graph of
y = lnx crosses the line y = 1. An accurate graph would show that the abscissa of
the point where they cross is between 2.7 and 2.8, more accurately between 2.71 and
2.72, and more accurately still between 2.718 and 2.719. Although this number is
irrational, we can find better and better decimal approximations to it. They start
out 2.71828.... This number, denoted by e, is therefore defined by the equation
ln e = 1.

The sequence of rational numbers 1+1, 1+ 1
2 , 1+ 1

3 , 1+ 1
4 , ..., 1+ 1

n , ... approaches

1 as a limit. The chord connecting points (1, 0) and
(

1 + 1
n , ln

(
1 + 1

n

))
on the

graph of y = lnx has a slope equal to

ln
(

1 + 1
n

)
− 0(

1 + 1
n

)
− 1

= n ln
(

1 +
1

n

)
.

Hence, by (1.5), the slope is ln
(

1+ 1
n

)n
. As n→∞, we have 1

n → 0, and the chord

approaches the tangent to the curve at (1, 0), which has slope equal to 1. Hence

lim
n→∞

ln
(

1 +
1

n

)n
= 1

Furthermore, as can be seen from Figure ??, the slope of the chord increases as n

increases. Hence ln
(

1 + 1
n

)n
increases, and because ln is an increasing function, it

follows that the numbers
(

1 + 1
n

)n
also increase. Since

ln
(

1 +
1

n

)n
< 1 = ln e,
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n (1 + 1
n )n

1 2.
2 2.25

10 2.594
50 2.692

1000 2.717
e 2.71828 ...

Table 5.1:

Figure 5.3:

we know that (
1 +

1

n

)n
< e.

It follows immediately from the least upper bound property of the real numbers
that a bounded sequence of increasing real numbers must have a limit. Hence

lim
n→∞

(
1 +

1

n

)n
exists.

Since ln is a continuous function, the limit of a natural logarithm approaches the
natural logarithm of the limit, and so

1 = lim
n→∞

ln
(

1 +
1

n

)n
= ln[ lim

n→∞

(
1 +

1

n

)n
].

Since 1 = ln e and since there is only one number whose logarithm is 1, we conclude
that

lim
n→∞

(
1 +

1

n

)n
= e.

In Table 1 values of
(

1+ 1
n

)n
for several values of n are compared with the limiting

value e.
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Problems

1. Find the derivative with respect to x of each of the following functions.

(a) lnx2

(b) ln(7x+ 2)

(c) ln
√

(x− 3)(x+ 4)

(d) ln(x2 − 9x+ 3)

(e) ln frac2x

(f) ln
7
√

7x3

(g)
∫ x2+3

1
dt
t

(h) (lnx)3

(i) ln(lnx)

(j) lnx
√
x− 1

(k) ln x−3
x+1

(l) ln x2−2x+4
x2+1

(m) ln x
2−x2 .

2. Show that |x2 +2x+3| = x2 +2x+3 and hence that ln(x2 +2x+3) is defined
for all x.

3. If ln 2 = p, ln 3 = q, and ln 5 = r, write each of the following as a function of
p, q, and r.

(a) ln 10

(b) ln 0.25

(c) ln 6000

(d) ln 0.625

(e) ln 0.03

(f) ln 1728.

4. Integrate each of the following.

(a)
∫

2 dx
x

(b)
∫

x dx
x2+1

(c)
∫ (x−3) dx
x2−6x+2

(d)
∫
x
√
x2 + 3 dx

(e)
∫

13x2

x3−6 dx

(f)
∫ (

2
x+1 + 3

2x−1 −
4

3x+5

)
dx

(g)
∫
x dx
x−1

(h)
∫

2 dx
(2x−1)2
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(i)
∫

1
x lnx dx.

5. Sketch the graph of each of the following functions. Label all the extreme
points and points of inflection, and give the values of x at which these occur.
Classify each extreme point as a local maximum or minimum.

(a) f(x) = ln(x+ 4)

(b) f(x) = lnx2

(c) f(x) = ln(1 + x2)

(d) f(x) = x2 − 4 lnx2

(e) f(x) = x2 + 4 lnx2.

6. Compute the following definite integrals.

(a)
∫ 1

0
dt
t+1

(b)
∫ 3

1
dx

5x−3

(c)
∫ 1

0
s−2

s2−4s+4 ds

(d)
∫ x
2

t dt
t2−3

(e)
∫ x2

1
dt
t2

(f)
∫ −1
−5

dx
x .

7. In each of the following examples, find the area of the region bounded by the
graph of y = f(x), the x-axis, and the two vertical lines whose equations are
given.

(a) f(x) = 1
x , x = 3 and x = 7.

(b) f(x) = ln x
x , x = 1 and x = 4.

(c) f(x) = 1
x2 , x = 9 and x = 11.

8. If F (x) =
∫ x
2

t dt
t2−3 , what is the domain of the function F?

9. (a) For what values of x is
∫ x
−2

dt
t−1 defined?

(b) What, if anything, is wrong with the computation∫ 2

−2

dx

x− 1
= ln |x− 1|

∣∣∣∣2
−2

= ln 1− ln 3 = − ln 3?

10. Use the appropriate form of L’Hôpital’s Rule to evaluate each of the following
limits.

(a) limx→∞
ln x
x

(b) limx→∞
ln x
xn , n an arbitrary positive integer.

(c) limx→0+ x lnx

(d) limx→1
ln x
1−x

(e) limx→0+ x
n lnx, n an arbitrary positive integer.
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5.2 The Exponential Function.

According to the definition in Chapter 1, page 13, a function f is a set of or-
dered pairs with the property that the first member x of any pair (x, y) in the
set determines the second member y, which we call f(x). For example, the set
{(1, 3), (2, 5), (4, 3))} is a function. Suppose, for a given functionf, we consider the
set of all pairs (y, x) such that (x, y) is in f . This set may or may not be a function.
In our example it is the set {(3, 1), (5, 2), (3, 4)}, which is not a function because
it contains both (3, 1) and (3, 4). Hence the first member does not determine the
second uniquely. However, if the new set is a function, it is called the inverse
function of f and is denoted by f−1.

If f is the function defined by f(x) = 7x, for every real number x, then the
inverse function f−1 exists and is defined by f−1(x) = 1

7x. On the other hand, the
function f defined by

f(x) = x2, −∞ < x <∞,

does not have an inverse. The reason is that if f(x) = x2 = 4, for example, we have
no way of knowing whether x = 2 or x = −2. If we restrict the domain of f to the
set of nonnegative real numbers, i.e.,

f(x) = x2, 0 ≤ x,

then f−1 exists and is the function defined by

f−1(x) =
√
x, 0 ≤ x.

The following three elementary properties of functions and their inverses should
be noted:

5.2.1.

(f−1)−1 = f.

5.2.2.

y = f(x) if and only if x = f−1(y).

5.2.3. Two functions f and g are inverses of each other if and only if

f(g(x)) = x, for every x in the domain of g,
g(f(x)) = x, for every x in the domain of f.

The first of these, (f−1)−1 = f , follows at once from the definition of f−1.
To prove (2.2), suppose first that y = f(x). This means that the ordered pair

(x, y) belongs to the set f . Hence the pair (y, x) belongs to f−1. But this says that
x = f−1(y). To prove the converse, suppose that x = f−1(y). Hence, by what we
have just proved, we know that y = (f−1)−1(x). Since (f−1)−1 = f , we obtain
y = f(x).

The importance of (2.3) is that it provides a simple criterion for deciding when
two functions are inverses of each other. For example, if f(x) = 3x+ 5 and g(x) =
x−5
3 , then
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f(g(x)) = f
(x− 5

3

)
= 3
(x− 5

3

)
+ 5 = x,

g(f(x)) = g(3x+ 5) =
(3x+ 5)− 5

3
= x,

and we may therefore conclude that g = f−1 and that g−1 = f . The proof is
completely straightforward (and rather tedious), and we omit it.

The only way a function f can fail to have an inverse is if there exist at least
two elements a and b in its domain for which a 6= b and f(a) = f(b). Suppose that
f is a strictly increasing function and that a and b are two distinct numbers in its
domain. Then either a < b or b < a. If a < b, then f(a) < f(b); and if b < a,
then f(b) < f(a). Thus it is impossible that f(a) = f(b), and we conclude that f−1

exists. A similar argument applies to any function that is strictly decreasing, and
so

5.2.4. If f is strictly increasing or strictly decreasing, then f has an inverse.

The natural logarithm has been shown to be a strictly increasing function, and
hence must have an inverse. Let us call this function exp(x) and justify the name
after we have looked at its properties. Thus, by (2.2),

y = exp(x) if and only if x = ln y.

Since ln y is defined only for positive y, we see immediately that exp(x) is always
positive. Furthermore, for any real number x, there exists a number y such that
x = ln y because the graph of the equation x = ln y crosses every vertical line.
Hence exp(x) is defined for every real number x. Finally, since 0 = ln 1, we obtain
1 = exp(0). Summarizing, we have

5.2.5. {
exp(x) > 0, −∞ < x <∞,
exp(0) = 1.

To develop the algebraic properties of the function exp, let p = exp(a) and
q = exp(b). Then a = ln p and b = ln q. Hence

a+ b = ln p+ ln q = ln pq,

and therefore pq = exp(a + b). Replacing p and q in this last equation, we obtain
the important fact that

5.2.6.

exp(a) · exp(b) = exp(a+ b).

Similarly, −a = − ln p = ln 1
p , and therefore 1

p = exp(−a). Replacing p in this
equation, we find that

5.2.7.
1

exp(a)
= exp(−a).
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If we apply (2.6) to the sum of the two numbers a and −b, we get

exp(a− b) = exp[a+ (−b)] = exp(a) · exp(−b).
Since

exp(−b) =
1

exp(b)
,

it follows that

5.2.8.
exp(a)

exp(b)
= exp(a− b).

If a function f has an inverse, then the ordered pairs which comprise it become
the ordered pairs of f−1when we interchange the order of each pair. Hence the
graph of f−1 may be obtained from the graph of f by interchanging x and y. This
is equivalent to a reflection across the line y = x. The graph of y = exp(x) is thus
the reflection of the graph of y = ln x across this line, and it is shown in Figure
??. The curve passes through (0, 1) and gets closer and closer to the x-axis as x
decreases without bound. As x increases without bound, so also does exp(x).

Figure 5.4:

The graph of y = exp(x) is a smooth curve, and it is obvious geometrically
that there is a tangent line at every point. We conclude that exp is a differentiable
function. [For an analytic proof of this fact, see Theorem (3.4) in the next section.]
We may compute the derivative by implicit differentiation. Consider the equation
y = exp(x) and its equivalent equation ln y = x. The latter implicitly defines exp(x)
since ln[exp(x)] = x. Hence from ln y = x we obtain

d

dx
ln y =

d

dx
x,

1

y

dy

dx
= 1,

dy

dx
= y.

Replacing y by exp(x), we get
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5.2.9.
d

dx
exp(x) = exp(x).

Alternatively we may write: If f(x) = exp(x), then f ′(x) = exp(x) for every real
number x.

Thus exp(x) is a most remarkable function, one which is equal to its own deriva-
tive. It is quite easy to show that this function and constant multiples of it are the
only functions with this property. [See Problem 8 at the end of this section.]

Another property of exp arises as a consequence of the logarithmic equation,
ln pr = r ln p, for positive p and rational r. If we again let a = ln p, then p = exp(a)
and ar = r ln p = ln pr. Equivalent to ar = ln pr is pr = exp(ar). Since p stood for
exp(a), we conclude that

5.2.10.
[exp(a)]r = exp(ar), for all a and rational r.

We know that exp(0) = 1 and may wonder what exp(1) is. If we set y = exp(1),
then 1 = ln y. But e is the only number with a natural logarithm equal to 1. Hence,
exp(1) = e.

As an application of (2.10), we see that if x is a rational number, then

ex = [exp(1)]x = exp(1 · x) = exp(x).

What about ex if x is real but not rational? Note that if a is any positive number,
we have previously encountered a raised only to rational powers. For example, at

this point we have no idea what 3
√
2 even means. For the number e, however, there

is a very natural way to define ex for all real numbers x. We have just shown that
if x is rational, then ex = exp(x). Since the function exp has every real number in
its domain, we shall define ex to be exp(x) if x is not rational. Hence

ex = exp(x), for every real number x.

We shall define ax, for an arbitrary positive number a and real x, in Section 4, and

then 3
√
2 will make sense.

The reason for the term “exp,” which is an abbreviation for “exponential,”
should now be clear. The function agrees with our previous idea of an exponential
for rational values, and it has the following properties translated from those derived
earlier in this section: 

e0 = 1,

ea · eb = ea+b,

e−a = 1
ea ,

ea

eb
= ea−b.

(5.1)

Thus ex obeys the familiar laws of exponents. In addition,

d

dx
ex = ex. (5.2)
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If u is a differentiable function of x, then the Chain Rule implies that d
dxe

u =(
d
due

u
)
du
dx . Since d

due
u = eu, we have

d

dx
eu = eu

du

dx
. (5.3)

Example 112. Find the derivative of each of the composite functions

(a) e2x+7, (b) ex
2

, (c)
1

e2x3 .

For the first, we have d
dxe

2x+7 = e2x+7 d
dx (2x + 7) = 2e2x+7. For (b), d

dxe
x2

=

ex
2 d
dxx

2 = 2xex
2

. For (c), we writ 1
e2x3

as e−2x
3

and differentiate to get e−2x
3

(−6x2)

or − 6x2

e2x3
.

Since ex is its own derivative, it is also its own indefinite integral. Hence

5.2.11. ∫
exdx = ex + c.

More generally, from (3) [or, equivalently, from (6.5), page 213] we obtain the
integral formula

5.2.12. ∫
eu
du

dt
dx = eu + c.

Example 113. Compute the following integrals:

(a)

∫
e5xdx, (b)

∫
x2ex

3+7dx, (c)

∫
exdx

4ex − 3
.

To solve (a), we let u = 5x. Then du
dx = 5, and multiplying by 5

5 , we have

∫
e5xdx =

1

5

∫
eu5dx =

1

5

∫
eu
du

dx
dx

=
1

5
eu + c =

1

5
e5x + c.

In the same manner we solve (b) by letting u = x3 + 7. Then du
dx = 3x2. Omitting

the explicit substitution of the variable u, we write∫
x2ex

3+7dx =
1

3

∫
ex

3+73x2dx =
1

3
ex

3+7 + c.

Part (c) combines logarithms and exponentials. Since ex lacks only a factor of 4 to
be the derivative of 4ex − 3, we can supply the 4, and the integral is then of the
form

∫
1
u
du
dxdx, which is equal to ln |u|+ c. Hence∫

exdx

4ex − 3
=

1

4

∫
1

4ex − 3
4exdx =

1

4
ln |4ex − 3|+ c.
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Each of these answers can be checked by differentiating to see if we get back the
original integrand. For example, in (b) we get

d

dx
(
1

3
ex

3+7 + c) =
1

3
ex

3+7 d

dx
(x3 + 7)

=
1

3
ex

3+73x2 = x2ex
3+7.

In (c),

d

dx
(
1

4
ln |4ex − 3|+ c) =

1

4

1

4ex − 3

d

dx
(4ex − 3)

=
ex

4ex − 3
.

Since the natural logarithm and the exponential functions are inverses of each
other, an application of (2.3) gives the two useful formulas

ln ex = x, −∞ < x <∞,
eln x = x, 0 < x <∞.

Example 114. Simplify (a) e2 ln x and (b) e3+5 ln x. For the first, since 2 lnx = lnx2,
we have

e2 ln x = eln x
2

= x2.

For part (b),

e3+5 ln x = e3e5 ln x = e3eln x
5

= e3x5.
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Problems

1. One must be careful to distinguish between the inverse of a function and the
reciprocal of the function. If f(x) = 3x+ 4, write

(a) f−1(x), the value of the inverse function f−1 at x.

(b) [f(x)]−1, the reciprocal of f(x).

2. If f has an inverse f−1, what relations hold between the domains and ranges
of f and f−1?

3. Find the derivative with respect to x of each of the following functions.

(a) e7x

(b) 1
3e

3x+2

(c) xex

(d) e−x
2

(e) ex lnx

(f) ex+e−x
2

(g) ex−e−x
2

(h) 3
2ex

(i) ex

x

(j) 5 ln x
x

(k) e3x
2−4x+5

(l) eax+b.

4. Solve each of the following integrals.

(a)
∫
e3x dx

(b)
∫

2xex
2

dx

(c)
∫

1
xe

ln x dx

(d)
∫
ex+e−x

ex−e−x dx

(e)
∫
xex

2
dx

4ex2+5

(f)
∫

3 dx
2e4x

(g)
∫
x2 dx
ex3−2

(h)
∫

(x+ 1)ex
2+2x dx

(i)
∫
eπ dx

(j)
∫
eax+b dx.

5. Evaluate each of the following integrals.

(a)
∫ 2

1
dx
x
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(b)
∫ 3

0
e2x dx

(c)
∫ x2

x
et dt

(d)
∫ 8

4
dx
ex .

6. Sketch the graph of each of the following equations. Label all extreme points
and point of inflection, and give the values of x at which these occur. Classify
each extreme point as a local maximum or minimum.

(a) y = e3x

(b) y = x lnx

(c) y = xe−x

(d) y = x2e−x

(e) y = e−x
2

.

7. In each of the following examples, find the area of the region above the x-
axis, below the graph of the function f , and between two vertical lines whose
equations are given.

(a) f(x) = 2e4x, x = 0 and x = 2.

(b) f(x) = xex
2

, x = 2 and x = 4.

(c) f(x) = 1
ex , x = 5 and x = 7.

8. Suppose f is a function which has the property that it is equal to its own
derivative; i.e., f ′ = f .

(a) Compute the derivative of the quotient f(x)
ex .

(b) Using the result of ??, prove that f(x) = kex for some constant k.

9. Let f be a function with domain [0, 1] and defined by

f(x) =
√

2x− x2, 0 ≤ x ≤ 1.

Draw the graph of f and the graph of the inverse function f−1.

10. Compute each of the following limits using L’Hôpital’s Rule or some other
method if you prefer.

(a) limx→0
ex−1
x

(b) limx→0
ex−1−x
x2

(c) limx→1
ex−e
x−1

(d) limx→0
x2ex

1−ex2

(e) limx→∞
x
ex

(f) limx→∞
ex

x6

(g) limx→0+
ln x

e
1
x

(h) limx→0
ex−e−x

x .
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11. Show by means of an example that half of ?? is not enough. That is, define
two functions f and g such that f(g(x)) = x, for every x is the domain of g,
but g 6= f−1.

12. Prove that limx→0
ex−1
x = 1, using d

dxe
x = ex and the definition of the deriva-

tive at 0.

13. A function of x is a solution of a differential equation if it and its derivatives
make the equation true. For what value (or values) of m is y = emx a solution

of d2y
dx2 − 3 dydx + 2y = 0?

14. Find each of the following limits.

(a) limn→∞
(
1 + 1

n

)2n
, n an integer.

(b) limn→∞
(
1 + 1

x

)−3x
, x an integer.

15. Let f be a function differentiable on some unbounded interval (a,∞). Prove
that if limx→∞[f(x) + f ′(x)] = L, then limx→∞ f(x) = L. [Hint: Consider

the quotient exf(x)
ex .]
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5.3 Inverse Function Theorems.

In this section we shall prove some basic theorems about continuous functions and
the inverses of monotonic functions, which we have already used in studying the
exponential function. These theorems are all geometrically obvious. We shall show
that they also follow logically from the definitions of continuity and monotonicity
using the least upper bound property of the real numbers. This shows, as much as
anything, that these definitions say what we want them to say. To put it facetiously,
if these theorems could not be proved, we would change the definitions until they
could be.

5.3.1. INTERMEDIATE VALUE THEOREM. If f is continuous on the closed
interval [a, b] and w is any real number such that f(a) < w < f(b), then there exists
at least one real number c such that a < c < b and f(c) = w.

A similar theorem is obtained if the inequalities f(a) < w < f(b) are replaced
by f(a) > w > f(b). The proof, in all essentials, is the same. To see that (3.1) is
geometrically obvious, look at Figure ??. The horizontal line y = w must certainly
cut the curve y = f(x) at least once.

Figure 5.5:

Proof. Consider the subset L of the interval [a, b] that consists of all numbers x in
[a, b] such that f(x) < w. The set L is not empty because in particular it contains
a. Since every number in L is less than b, the number b is an upper bound for L.
It follows by the Least Upper Bound Property of the real numbers (page 7) that L
has a least upper bound, which we denote by c. Moreover, c lies in [a, b]. There are
three possibilities:

(i) f(c) < w,

(ii) f(c) > w,

(iii) f(c) = w.

We shall show that (i) and (ii) are, in fact, not possible. Suppose that (i) holds.
Since f(b) > w, it follows that c < b. Set ε = w − f(c), which is positive. Since f
is continuous at c, there exists a positive number δ such that whenever |x− c| < δ
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and x is in [a, b], then |f(x)−f(c)| < ε. Hence, there exist numbers x in [a, b] larger
than c for which |f(x)− f(c)| < ε. For any such x,

f(x)− f(c) ≤ |f(x)− f(c)| < ε = w − f(c),

and so f(x) < w, which implies that x belongs to L. Thus there are numbers in L
which are larger than c, which contradicts the fact that c is an upper bound.

Next suppose that (ii) holds. Since f(a) < w, it follows that a < c. This time
set ε = f(c)−w, which is positive. The continuity of f at c implies the existence of a
positive number δ such that if |x−c| < δ and x is in [a, b], then |f(x)−f(c)| < ε. Pick
x0 in [a, b] such that |x0 − c| < δ and x0 < c. We contend that x0 is also an upper
bound for L. For if x is any number such that x0 ≤ x ≤ c, then |f(x)− f(c)| < ε.
Consequently,

−f(x) + f(c) ≤ |f(x)− f(c)| < ε = f(c)− w,

and so −f(x) < −w, or, equivalently, f(x) > w, which implies that x is not in L.
This proves the contention that x0 is an upper bound for L, which contradicts the
fact that c is the least upper bound.

The only remaining possibility is (iii). Hence f(c) = w, and the proof is com-
plete.

This theorem, (3.1), was used in Section 2, where it was asserted that, for any
real number x, there exists a number y such that x = ln y. We have previously
shown that the natural logarithm takes on arbitrarily large positive and negative
values. Hence we can “surround” a given number x with values of ln. That is, there
exist numbers a and b for which ln a < x < ln b. The existence of a number y sueh
that x = ln y now follows immediately from (3.1).

An interval was defined on page 4 to be any subset I of the set of all real numbers
with the property that, if a and c belong to I and a ≤ b ≤ c, then b also belongs to
I. The following proposition is therefore fully equivalent to Theorem (3.1). [More
precisely, it is equivalent to the conjunction of (3.1) and its companion theorem
with the inequality f(a) > w > f(b).]

5.3.2. If the domain of a continuous real-valuedfunction is an interval, then so is
its range.

The reader should verify that (3.1) and (3.2) are equivalent.
We have already proved that every strictly monotonic function has an inverse

[see (2.4), page 250]. However, more is needed than simply existence:

5.3.3. If f is a strictly increasing continuousfunction whose domain is an interval,
then the same is true of the inuerse function f−1.

A companion theorem is obtained if “increasing” is replaced by “decreasing. ”

Proof. There are three things to be proved: (i) f−1 is strictly increasing, (ii) the
domain of f−1 is an interval, and (iii) f−1 is a continuous function. The first is
completely straightforward, and we leave it as a problem. The second follows at
once from (3.2) and the observation that the domain of f−1 is equal to the range
of f : In proving (iii), we shall assume that the interval which is the domain of f
is neither empty nor consists of a single point. This is reasonable, because in these
two cases the assumption that fis continuous is not particularly meaningful. Let b



264 CHAPTER 5. LOGARITHMS AND EXPONENTIAL FUNCTIONS

be a number in the domain of f−1, let a = f−1(b), and let ε be an arbitrary positive
number. If a is an endpoint of the interval which is the domain of f , the following
argument must be modified slightly. We shall assume that a is not an endpoint and
also that ε is sufficiently small that both a + ε and a − ε are in the domain of f
(see Figure ??). Set δ equal to the smaller of the two numbers f(a + ε) − b and
b− f(a− ε). Then, if y is any number in the domain of f−1 such that |y − b| < δ,
we know that

f(a− ε) < y < f(a+ ε).

Since f−1 is strictly increasing, we have

Figure 5.6:

a− ε = f−1(f(a− ε)) < f−1(y) < f−1(f(a+ ε)) = a+ ε,

which implies that −ε < f−1(y) − a < ε. Since a = f−1(b), the latter inequalities
are equivalent to

|f−1(y)− f−1(b)| < ε,

which proves that f−1 is continuous. This completes the proof.

Our final theorem concerns the differentiability of an inverse function. It was
used in Section 2, where we asserted that the exponential function exp is differen-
tiable.

5.3.4. Let f be a strictly monotonic differentiable function whose domain is an
interval. If b = f (a) and if f ′(a) 6= 0, then f−1 is differentiable at b. Moreover,

(f−1)′(b) =
1

f ′(a)
.

Proof. According to the definition of the derivative, we must show that

lim
y→b

f−1(y)− f−1(b)

y − b
=

1

f ′(a)
.
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Let x = f−1(y). Then y = f(x) and, of course, a = f−1(b). Hence

f−1(y)− f−1(b)

y − b
=

x− a
f(x)− f(a)

=
1

f(x)−f(a)
x−a

.

Since the reciprocal of a limit is the limit of the reciprocal, we know that

1

f ′(a)
=

1

limx→a
f(x)−f(a)

x−a

= lim
x→a

1
f(x)−f(a)

x−a

.

It is a simple matter to finish the proof provided we know that x approaches a as
y approaches b. But this is just the assertion that f−1 is continuous at b, which we
know to be true as a result of Theorem (3.3). Hence

1

f ′(a)
= lim

y→b

1
f(x)−f(a)

x−a

= lim
y→b

f−1(y)− f−1(b)

y − b
= (f−1)′(b),

and the proof is complete.

We have also used Theorem ?? before to establish the differentiability of the
function g defined by g(x) = x1/n, where n is a positive integer and x is any positive
real number (see page 72). The inverse function f , defined by f(x) = xn, for every
positive real number x, is strictly increasing and has a positive derivative at every
point in the interval (0,∞). Theorem ?? tells us at once that g is a differentiable
function.
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Problems

1. Prove that if f is a strictly increasing function, then the inverse function f−1

is also strictly increasing.

2. Does the assertion in Problem ?? remain true if “increasing” is replaced by
“decreasing”?

3. Show by giving an example that a strictly increasing function is not necessarily
continuous.

4. Give an example of a differentiable strictly increasing function defined for all
values of x whose inverse is not differentiable everywhere.

5. Show that Theorem ?? is geometrically obvious. [Hint: The derivative is the
slope of the tangent line, and the graph of y = f(x) is the same as that of
x = f−1(y).]

6. Supply the details which prove that Theorem ?? is equivalent to ?? [i.e., to
the conjunction of ?? and its companion].
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5.4 Other Exponential and Logarithm Functions.

If m and n are integers and n > 0, then

2m/n =
n
√

2m.

Hence, for any rational number r, the number 2r is defined. But what is 2x if x is
not rational? More generally, how should ax be defined for an arbitrary real number
x and a positive number a?

If x is a rational number and a is positive, we have shown that ln ax = x ln a,
and therefore ax = ex ln a. However, ex ln a is defined for every real number x. We
shall take advantage of this fact, and, if x is real but not rational, we define ax to
be ex ln a. Consequently, for every real number x, we have

ax = ex ln a, a > 0.

This function, so defined, has all the familiar properties of an exponential func-
tion:

5.4.1. 

ax > 0, −∞ < x <∞,

a0 = 1,

a1 = a,

ax · ay = ax+y,

a−x = 1
ax ,

ax

ay = ax−y.

The proofs follow readily from the properties of the functions ln and exp. For
example,

a1 = e1 ln a = eln a = a,

ax · ay = ex ln a · ey ln a = ex ln a+y ln a = e(x+y) ln a = ax+y.

The derivative of ax is easily computed from its defining equation. Since

d

dx
ax =

d

dx
ex ln a = ex ln a d

dx
(x ln a) = ax ln a,

we have the formula

5.4.2.
d

dx
ax = ax ln a.

More generally, if u is a differentiable function of x, the Chain Rule implies that

d

dx
au = au ln a

du

dx
. (5.4)
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Example 115. Compute the derivative of each of the following functions:

(a) 2x, (b) 2(x
2), (c) 2(2

x).

For (a) we get
d

dx
2x = 2x ln 2;

for (b),

d

dx
2(x

2) = 2(x
2) ln 2

d

dx
x2 = 2(x

2)(ln 2)(2x)

= x2x
2+1 ln 2;

and for (c),

d

dx
2(2

x) = 2(2
x) ln 2

d

dx
2x = 2(2

x)(ln 2)2x ln 2

= 22
x+x(ln 2)2.

If a = 1, then ax = ex ln 1 = e0 = 1 for every real number x. Hence 1x is the
constant function 1.

If a > 1, then the graph of the function ax resembles the graph of ex. The slope
of the tangent line to the graph is always positive, for if a > 1, then ln a > 0, and,
since ax > 0, we see that

d

dx
ax = ax ln a > 0.

This means that ax is a strictly increasing function (see Problem 10 at the end
of this section). The second derivative is also always positive, since

d2

dx2
ax =

d

dx
(ax ln a) = ax(ln a)2 > 0.

Hence the graph is concave upward for all x. Moreover, there are no extreme
points, critical points, or points of inflection. The graph is drawn in Figure ??. It

is relatively flat on the left, passes through
(
−1,− 1

a

)
, (0, 1), and (1, a), and goes

upward to the right. For greater values of a, the graph is flatter on the left and
steeper on the right.

If 0 < a < 1, the function ax may be studied by considering it in another form,(
1
a

)−x
. Since 1

a > 1, the graph of the function
(

1
a

)x
is of the type described in

the preceding paragraph, and the graph of a, which is equal to
(

1
a

)−x
, is the same

curve reflected across the y-axis. It is steep on the left, passes through
(
−1, 1a

)
, (0,

1), and (1, a), and flattens out as it goes to to the right. It is drawn in Figure ??.
Every derivative formula has a corresponding integral formula. Since

d

dx

( ax
ln a

)
=

1

ln a

d

dx
ax = ax,

the integral formula corresponding to (4.2) is
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Figure 5.7:

5.4.3. ∫
axdx =

ax

ln a
+ c.

As always, the Chain Rule provides a generalization. If u is a differentiable
function of x, then ∫

au
du

dx
dx =

au

ln a
+ c. (5.5)

Figure 5.8:

Example 116. Compute each of the following indefinite integrals:

(a)

∫
3ydy, (b)

∫
x10x

2−7dx, (c)

∫
1

x
(2.31)ln xdx.

A direct use of (4.3) gives for (a)∫
3ydy =

3y

ln 3
+ c.
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Since d
dx (x2− 7) = 2x, integral (b) can be written 1

2

∫
10x

2−7 · 2x · dx, which by (2)

is equal to 1
2
10x

2−7

ln 10 + c. Hence∫
x10x

2−7dx =
10x

2−7

2 ln 10
+ c.

For part (c) we note that d
dx lnx = 1

x , and therefore that the integral is of the form
in (2). Thus ∫

(2.31)ln x
1

x
dx =

(2.31)ln x

ln 2.31
+ c.

It was proved on page 241 that ln ar = r ln a, for every rational number r and
every positive real number a. We are now in a position to remove the restriction
that r be rational. Let x be an arbitrary real number. Then ax = ex ln a, and so
ln ax = ln ex ln a = ln exp(x ln a). Since ln and exp are inverse functions of each
other it follows that ln exp(x ln a) = x ln a. We have therefore proved that

5.4.4. ln ax = x ln a, for every real number x and every positive real number a.

Another of the well-known laws of exponents now follows easily:

5.4.5. (ax)y = axy for all real numbers x and y and every positive real number a.

Proof. If we let ax = b, then (ax)y = by = ey ln b. Replacing b in the last expression,
we have

(ax)y = ey ln a
x

,

and, using (4.4),

ey ln a
x

= ey(x ln a) = exy ln a.

Since exy ln a = axy, it follows that (ax)y = axy, and the proof is complete.

In particular, (ex)y = exy for all real numbers x and y.
Let a be any real number, and consider the function f defined for every positive

real number x by

f(x) = xa.

Hitherto in this section we have considered the function ax. Now we reverse the
roles of constant and variable. One of the basic rules of differentiation proved in
Chapter 1 states that, if a is a rational number, then

f ′(x) =
d

dx
xa = axa−1.

We now remove the restriction that a be rational. Observe first that xa is certainly
a differentiable function, since it is the composition of differentiable functions:

xa = ea ln x = exp(a lnx).

Knowing this, we use implicit differentiation to compute its derivative. Let y = xa.
Then ln y = lnxa = a lnx, and so
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d

dx
ln y =

d

dx
a lnx,

1

y

dy

dx
= a

1

x
,

dy

dx
=

ay

x
.

Since y = xa, it follows that ay
x = axa

x = axa−1. Thus we have proved that

5.4.6.
d

dx
xa = axa−1, for any real number a.

The technique of taking logarithms and differentiating implicitly, which was used
in proving ??, can also be used to compute the derivative of a positive differentiable
function which is raised to a power which is itself a differentiable function. For
example, to compute d

dxx
x, we let y = xx. Then

ln y = lnxx = x lnx,

and it follows that

1

y

dy

dx
=

d

dx
(x lnx) = x

1

x
+ lnx = 1 + lnx,

dy

dx
= y(1 + lnx) = xx(1 + lnx), (x > 0).

This technique is known as logarithmic differentiation and is a basic tool for
finding derivatives. We can use it to derive a formula for d

dxu
v, where u is a positive

differentiable function of x and v is any differentiable function of x. Let y = uv,
and then ln y = v lnu. Hence

1

y

dy

dx
=

d

dx
(v lnu) = v

1

u

du

dx
+ lnu

du

dx
,

dy

dx
= y

( v
u

du

dx
+ lnu

dv

dx

)
,

dy

dx
= uv

( v
u

du

dx
+ lnu

dv

dx

)
,

and finally, therefore,

d

dx
uv = vuv−1

du

dx
+ uv lnu

dv

dx
. (5.6)

We do not suggest that the reader memorize this formula. It is more important to
be able to use the method of logarithmic differentiation.
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Example 117. Find d
dx (x2 + 1)e

x

. Letting y = (x2 + 1)e
x

and taking natural
logarithms, we have

ln y = ln(x2 + 1)e
x

= ex ln(x2 + 1).

Differentiating, we obtain

1

y

dy

dx
= ex

1

x2 + 1
2x+ ex ln(x2 + 1),

dy

dx
= yex

[ 2x

x2 + 1
+ ln(x2 + 1)

)
.

Hence
d

dx
(x2 + 1)e

x

= ex(x2 + 1)e
x
[ 2x

x2 + 1
+ ln(x2 + 1)

]
.

The function ax is strictly monotonic if a is positive and not equal to 1, increasing
if a > 1 and decreasing if 0 < a < 1. Moreover, it has a nonzero derivative at
every x. It follows by Theorem (3.4), page 261, that ax has a differentiable inverse
function. Even as the inverse function of ex is the natural logarithm, we call the
inverse function of ax the logarithm to the base a. Hence

y = logax if and only if x = ay.

We emphasize that a must be a positive number different from 1 and that loga x
is defined only for positive values of x. The so-called common logarithm, usually
denoted by simply log and encountered in the usual tables of logarithms, is the
logarithm to the base 10. Thus log 100 = log10 100 = 2, since 102 = 100. The
logarithm to the base a has the same algebraic properties as the natural logarithm:

5.4.7. 

loga1 = 0,

logaa = 1,

logapq = logap+ loga q,

loga
p
q = loga p− logaq,

logap
′,= b loga p.

The above properties hold for every positive real number a different from 1, for
all positive real numbers p and q, and for every real number b. Each one may be
proved by considering the corresponding exponential function. Note that since ax

and loga x are inverse functions of each other,{
loga a

x = x, for all real x,
aloga x = x, for all positive real x.

For example, if we let x = loga p and y = loga q, then we have p = ax and q = ay,
and so
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loga pq = loga(axay) = loga a
x+y = x+ y

= loga p+ loga q.

The other properties are proved in the same way.
To compute the derivative of loga x, we let y = loga x. The equivalent exponen-

tial equation is x = ay, from which it follows that lnx = ln ay = y ln a. By implicit
differentiation, therefore,

d

dx
(y ln a) =

d

dx
lnx,

ln a
dy

dx
=

1

x
.

Solving for dy
dx , which equals d

dx loga x, we obtain

5.4.8.
d

dx
loga x =

1

ln a

1

x
.
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Problems

1. Find the derivative with respect to x of each of the following functions.

(a) 4x+1

(b) log10(x2 + 1)

(c) log10 4x+1

(d) ex
2+x+2

(e) xax

(f) 2xx2

(g) xe−x

(h) log4(x2 − 4x)

(i) xx−1

(j) x(x
2)

(k) (xx)2.

2. If a and b are positive numbers not equal to 1, prove that loga b = 1
logb a

.

3. Prove that

(a) lnx = (ln a)(logax)

(b) lnx = loga x
loga e

.

4. Integrate each of the following.

(a)
∫

7x dx

(b)
∫
x223x

3+4 dx

(c)
∫

1
x+2 ln |x+ 2| dx

(d)
∫

1
x ln

∣∣ 1
x

∣∣ dx
(e)

∫
log2 e

7x−5 dx

(f)
∫

1
x+33ln |x+3| dx

(g)
∫
ex5(e

x) dx.

5. (a) Differentiate logarithmically y =
√

(x−1)(x+3)
(x+2)(x−4) .

(b) For what values of x is the differentiation in ?? valid?

6. If u is a positive function of x and a is positive but not equal to 1, show that
loga u = lnu

ln a .

7. Differentiate each of the following functions with respect to x.

(a) xln x

(b) (lnx)x

(c) (ex)x
2+1
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(d) (lnx)ln x.

8. (a) Given only that loga 1 = 0 and that loga pq = loga p+ loga q, prove that

loga

(
1
p

)
= − loga p.

(b) Then prove that loga
p
q = loga p− loga q.

9. Prove all the properties listed in ?? (see Problem ??).

10. Using the Mean Value Theorem, Theorem ??, prove that if f ′(x) > 0 for all
x, then f is a strictly increasing function.

11. Assume that a > 1.

(a) Using the definition of ax, show that

lim
x→∞

ax =∞.

(b) Using the result of ??, prove that

lim
x→−∞

ax = 0.

(c) Using ??, show that

lim
x→∞

d

dx
ax =∞.

(d) Using ??, show that

lim
x→−∞

d

dx
ax = 0.

(e) What do ??, ??, ??, and ?? say geometrically about the graph of the
function ax?

12. Assume that a1 > a2 > 1.

(a) Using the definition of ax, show that, if x > 0, then a1
x > a2

x.

(b) Using ??, show that, if x < 0, then a1
x < a2

x.

13. Evaluation of a limit of the form limx→a f(x)g(x) is not obvious if any one of
the following three possibilities occurs.

(i) limx→a f(x) = limx→a g(x) = 0.

(ii) limx→a f(x) = 1 and limx→a g(x) =∞.

(iii) limx→a f(x) =∞ and limx→a g(x) = 0.

These three types are usually referred to, respectively, as the indeterminate
forms 00, 1∞, and ∞0. The standard attack, akin to logarithmic differentia-
tion, is the following: Let

h(x) = ln f(x)g(x) = g(x) ln f(x) =
ln f(x)

1
g(x)

.
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One then applies L’Hôpital’s Rule to the quotient, thereby hopefully discov-
ering that limx→a h(x) exists and what its value is. If it does exist, it follows
by the continuity of the exponential function that

e[limx→a h(x)] = lim
x→a

eh(x).

But, since

eh(x) = eln f(x)
g(x)

= f(x)g(x),

we therefore conclude that

lim
x→a

f(x)g(x) = e[limx→a h(x)],

and the problem is solved.

Apply this method to evaluate the following limits.

(a) limx→0+ x
x

(b) limx→∞ x
1
x

(c) limx→0(1 + 2x)
1
x .
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5.5 Introduction to Differential Equations.

For a given differentiable function, we are frequently interested in an equation which
contains the derivative of the function and which is true for every number in the
domain of the function. These equations arise naturally in physics and in many
applied branches of mathematics. An example of such an equation is obtained if y
is the function of x defined by y = 2e3x. Since dy

dx = 3(2e3x) = 3y, the equation

dy

dx
− 3y = 0

holds for this particular function y and all real values of x. For another example,
let y be the function defined by y = x3 − x2. It is easy to verify by differentiation
and substitution that the equation

x
dy

dx
− 3y = x2

is true for this function and all real values of x.

The two equations in the preceding paragraph are examples of differential equa-
tions. They are called first-order differential equations because they involve the
first derivative of the function but no higher derivatives. In each example above
we started with a function and then found an equation containing its derivative.
More commonly we encounter the differential equation and then set out to find the
function. For example, for what function y is the equation

dy

dx
=
x

y

true for all values of x in the domain of y? If such a function exists, it is called a
solution to the differential equation. Generally speaking, if a differential equation
has one solution, it has infinitely many. We may be required to find one solution to
a given differential equation, or possibly all solutions.

Let us try to fix the ideas in the above examples by giving a general definition.
Consider an equation in three variables x, y, and z, which we write

F (x, y, z) = 0.

Not all the variables need occur in the equation, but at least z must. Substituting
dy
dx for z, we obtain the equation

F
(
x, y,

dy

dx

)
= 0, (5.7)

which is a first-order differential equation. This equation, however, is merely
a formal statement of equality containing the symbols x, y, and dy

dx . As such, it is
neither true nor false. By a solution to (1) we mean any differentiable function f
such that the equation

F (x, f(x), f ′(x)) = 0

is true for every x in the domain of f .
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The reader should realize, of course, that there is nothing sacred about the letters
x and y which we have thus far used to denote the independent and dependent
variable, respectively. For example, the differential equation

t
dx

dt
+ x = et

has for a solution the function of t defined by x = et

t .

In this section we shall consider some simple types of first-order differential equa-
tions and the techniques for solving them. Other first-order differential equations
and differential equations of higher order will be studied in Chapters 6 and 11.

The first type to be studied has already been solved in this book. Let f be a
given continuous function, and consider the differential equation

dy

dx
= f(x). (5.8)

A solution is any function y with the property that its derivative is the functionf.
That is, a function is a solution if and only if it is an antiderivative, or indefinite
integral, of f . Hence, if F ′(x) = f(x), we have

y =

∫
f(x)dx = F (x) + c, (5.9)

where c is an arbitrary constant. Thus solving the differential equation is the same
thing as finding the indefinite integral. As c ranges over all real numbers, we get all
antiderivatives and therefore all solutions to the differential equation (2). For this
reason, (3) is called the general solution to the differential equation.

Example 118. Find the general solution of each of the following differential equa-
tions:

(a) dy
dx = 3x2 + 2x− 1,

(b) dx
dt = et − 1,

(c) x dydx = (lnx)2.

Solving (a), we obtain

y =

∫
(3x2 + 2x− 1)dx = x3 + x2 − x+ c.

Similarly, for (b),

x =

∫
(et − 1)dt = et − t+ c.

As it stands, (c) is not in the form of (2). However, an equivalent equation is
dy
dx = 1

x (lnx), and so

y =

∫
(lnx)2

1

x
dx.

The integral is of the form
∫
u2 dudx , where u = lnx; hence

y =
(lnx)3

3
+ c.



5.5. INTRODUCTION TO DIFFERENTIAL EQUATIONS. 279

The second type of differential equation which we consider in this section arises
when we are given two continuous functions f and g and form the differential
equation

dy

dx
=
f(x)

g(y)
. (5.10)

A differential equation of this form is called separable. An equivalent equation is
g(y) dydx = f(x), where the variables have been “separated” in the sense that on the
right we have a function of x and on the left a function of y and the derivative of y.
The differential equation can be readily solved provided we can find antiderivatives
of f and g. From the latter equation we obtain∫

g(y)
dy

dx
dx =

∫
f(x)dx. (5.11)

Suppose that F ′(x) = f(x) and that G′(y) = g(y). That is,∫
f(x)dx = F (x) + c,∫
g(y)dy = G(y) + k.

Then it is also true that ∫
g(y)

dy

dx
dx = G(y) + k,

because, by the Chain Rule,

d

dx
[G(y) + k] = G′(y)

dy

dx
= g(y)

dy

dx
.

It follows from (5) that G(y) + k = F (x) + c. This tells us that G(y) and F (x)
differ by the constant c− k, which for convenience we rename simply c. Therefore,
we finally obtain the equation

G(y) = F (x) + c, (5.12)

which implicitly defines any solution y of the original differential equation.
Conversely, if we differentiate (6) with respect to x, we get (4) again:

d

dx
G(y) =

d

dx
[F (x) + c],

G′(y)
dy

dx
= f(x),

g(y)
dy

dx
= f(x),

dy

dx
=
f(x)

g(y)
.

Thus, for any value of the constant c, every differentiable function y defined implic-
itly by (6) is a solution. Hence (6) defines the general solution to the separable
differential equation (4).
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Example 119. (a) Find the general solution to the differential equation dy
dx = x

y .

(b) Find the particular solution whose graph passes through the point (2, 1). This
is a separable differential equation, and “separating variables” we replace it by the
equivalent form y dydx = x, y 6= 0. It follows that∫

y
dy

dx
dx =

∫
xdx,

and, integrating both sides, we obtain

y2

2
=
x2

2
+ c.

If we multiply by 2, we get y2 = x2 + 2c. But twice an arbitrary constant is still
an arbitrary constant, so we replace 2c by simply c. Hence the general solution to
dy
dx = x

y is implicitly defined by the equation

y2 = x2 + c. (5.13)

Solving for y explicitly, we obtain

y = ±
√
x2 + c

as the answer to part (a). To find the particular solution that passes through (2,
1), we substitute x = 2 and y = 1 in (7) to get 1 = 4 + c, whence c = −3. Since y
takes on the value 1, which is positive, we choose the positive square root, and the
answer to part (b) is therefore the function defined by

y =
√
x2 − 3.

A first-order differential equation F
(
x, y, dydx

)
= 0 is called linear if the cor-

responding function F (x, y, z) is a polynomial of first degree in y and z, i.e., if
F (x, y, z) = f(x)y + g(x)z + h(x). Thus among the differential equations

dy

dx
− 3y = 0,

x
dy

dx
− 3y = x2,

dy

dx
=

x

y
,

the first two are linear and the third is not. The last type of differential equation
which we study in this section is the simplest linear type,

dy

dx
+ ky = 0, (5.14)

where k is an arbitrary constant.
Actually every such differential equation is also separable, since it can be written

in the form dy
dx = − k

1/y . We treat it as a third type because it is linear and because
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it has many interesting applications. Solving it as a separable differential equation,
however, we first replace it by the equivalent equation 1

y
dy
dx = −k. Then∫

1

y

dy

dx
dx = −

∫
kdx.

Integrating, we obtain

ln |y| = −kx+ c,

which defines the general solution implicitly. Since the natural logarithm and the
exponential are inverse functions, we can solve for |y|, getting

|y| = e−kx+c = ece−kx,

y = (±ec)e−kx.
(5.15)

As c takes on all real values, the quantity ec takes on all positive real values. Thus ec

is simply an arbitrary positive constant, and ±ec is therefore an arbitrary nonzero
constant. The original differential equation dy

dx + ky = 0 certainly also has the
constant function y = 0 as a solution. From this fact and (9) we conclude that the
general solution to the linear differential equation (8) is

y = ce−kx, (5.16)

where c is an arbitrary constant.

Example 120. Let x be the amount of radium present in a pile at time t. Thus
x is a function of t. It is known that the rate of radioactive decay of the pile of
radium is proportional to the amount x that remains in the pile.

(a) Show that the length of time T for an amount x to diminish by radioactive
decay to an amount x

2 is independent of x. The number T is called the half-life of
radium. It is equal to approximately 1550 years.

(b) If 0.01 grams of radium is present at t = 0, how much is present after 500
years?

The rate of change of the amount of radium present with respect to time is given
by the derivative dx

dt . This is positive for growth and negative for decay. Since the
rate of decay is proportional to the amount present, i.e., to x, we know that

dx

dt
= −kx,

where k is some positive constant of proportionality. This is the differential equation
governing the physical process. We have shown that the general solution is

x = ce−kt, (5.17)

where c is an arbitrary constant. If after an interval of time equal to T the amount
has dwindled to x

2 we have
x

2
= ce−k(t+T ).
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Solving this equation for x and using (11), we get x = 2ce−k(t+T ) = ce−kt, from
which it follows that 2e−kT = 1, or 2 = ekT . Hence, ln 2 = ln(ekT ) = kT , and we
conclude that

T =
ln 2

k
,

which is independent of x.

To do part (b), let us denote by x0 the amount of radium present at time t = 0.
Hence from (11) we get

x0 = ce−k·0 = c,

and so x = x0e
−kt. Since k = ln 2

T , we obtain the formula

x = x0e
−(ln 2/T )t,

which expresses the amount of radium present at time t in terms of the original
amount at time t = 0 and the half-life of radium. In our problem x0 = 0.01 grams,
t = 500 years, and T = 1550 years. Hence, the answer is x grams, where

x = (0.01)e−(500/1550) ln 2 = 0.008 (approximately).
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Problems

1. Find the general solution of each of the following differential equations.

(a) dy
dx − 3y = 0

(b) dy
dt = t(t2 + 1)

(c) x dydx + y = 0

(d) (x+ 1)y dydx = (y2 + 1)

(e) dy
dxe

t−y

(f) xy dydx = y2 − 2.

2. For each of the following differential equations, find the particular solution
whose graph passes through the point indicated.

(a) dy
dx = − yx , passing through (1, 1).

(b) 2 dydx = 3y, passing through (0, 5).

(c) y dydx = 18x3, passing through (2,−9).

(d) dy
dx + x

y = 0, passing through (5, 0).

3. A curve defined by y = f(x) has slope m at every point (x, y) given by m = 2y.
If the curve passes through the point (0,−1), find f(x).

4. Find all solutions to the differential equation dy
dx = −xy . Sketch the graphs of

the different solutions.

5. Find all solutions to the differential equation dy
dx = x

y . Sketch the graphs of
the different solutions.

6. Classify each of the following differential equations as separable, linear, both,
or neither.

(a) ln y dydx = y
x

(b) x2 dydx + y = ex

(c) y dydx + x+ y = 0

(d) dx
dt − 7t = 0

(e) dx
dt − 7x = 0

(f)
√
y2 + 1 dydx + x2y = 0

(g) 1
x
dx
dt = 3

(h) dy
dx + x

y = x2

(i)
(
dy
dx

)2
+ 3y = 7x.
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7. An alternative approach to solving the linear differential equation dy
dx +ky = 0

is to write it as dy
dx = −ky. The latter equation is similar to dy

dx = y, which has
ex for a solution. With this similarity in mind, it is not hard to guess, and
then verify, that y = e−kx is a solution to the original equation. The problem
is now to show that every solution is a constant multiple of e−kx. Prove this
fact by assuming that y = f(x) is an arbitrary solution of dy

dx + ky = 0 and

then showing that the derivative of the quotient f(x)
e−kx

is zero. (See Problem
??.)

8. A radioactive substance has a half-life of 10 hours. What fraction of an amount
of this substance decays in 15 hours?

9. If a certain population increases at a rate proportional to the number in the
population and it doubles in 45 years, in how many years is it multiplied by
a factor of 3?

10. Find the constant of proportionality relating a radioactive substance and its
rate of decay if the substance has a half-life of 16 hours.

11. The number y of bacteria in a culture grows at a rate dy
dt proportional to the

number present. If the number doubles in 3 days and there are 107 bacteria
present at the beginning of the experiment, how many are there after 24 hours?

12. A toy block lying on the floor is given a kick. The resulting acceleration v′

(which is negative) is equal to −5v. If the kick gives it an initial velocity of
6 feet per second, how many seconds later is the velocity equal to 2 feet per
second?

13. A car sliding along a track slows down at a rate proportional to its velocity.
If it has one-half its initial velocity after 30 seconds, at what fraction of its
initial velocity is it traveling after 1 minute?

14. Let a and b be constants with a 6= 0. Show that the differential equation

dy

dx
+ ay = b (5.18)

reduces to dz
dx + az = 0 if we let z = y − b

a . As a result, find the general
solution of (??).

15. Use the substitution described in Problem ?? to find the particular solution
of the differential equation dy

dx − 2y = 6 which passes through the point (0, 4).



Chapter 6

Trigonometric Functions

Although the reader is probably familiar with the geometry of sines and cosines,
etc., in terms of angles, our definitions will emphasize them as functions of a real
variable. Thus the stage is set for the development of the differential and integral
calculus of these important functions. Later in the chapter we introduce complex
numbers where exponential and trigonometric functions are blended in the famous
equation eix = cosx+ i sinx. We conclude with an application to linear differential
equations.

6.1 Sine and Cosine.

In this section we shall define and study the elementary properties of two real-
valued functions, the sine and the cosine, abbreviated sin and cos, respectively.
Both functions have as domain the entire set of all real numbers, and, as we shall
see in Section 2, both are differentiable functions.

The definitions will be made in terms of what is called arc length, by which
is meant the distance from one point on a curve to another measured along the
curve. This is a new concept, for although we have defined the straight-line distance
between two points on page 11, we have not yet treated distance along a curve.
Actually we shall postpone the discussion of arc length in general to Section 2 of
Chapter 10 because here we need it only for distance along a circle, in fact, only
along the particular circle C which is the graph of the equation x2 + y2 = 1 in the
xy-plane. However, we shall assume that the idea of distance along this curve is
understood. For example, we assume the familiar fact that the arc length of the
whole circle C, i.e., its circumference, is equal to 2π.

Let t be an arbitrary positive real number. We denote by P (t) the point on the
circle C whose distance from the fixed point (1, 0) along C in the counterclockwise
direction is equal to t. Intuitively, we take a piece of string of length t, fasten one
end at (1, 0), and wrap the string counterclockwise around C. Then P (t) is the
point on the circle to which the other end of the string reaches. Next, for every
negative number t, let P (t) be the point on C whose distance from the same fixed
point (1, 0) along the curve in the clockwise direction is equal to −t. That is,
this time we wrap the string in the opposite direction. Finally, for t = 0, we set
P (0) = (1, 0). The definition is illustrated in Figure ??. Thus, to every real number

285
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t, we have assigned a point P (t) which is an ordered pair of real numbers. Note
that, because the circumference of the circle C is 2π, it follows that

P (t+ 2π) = P (t), (6.1)

for every real number t.

Figure 6.1:

The cosine and sine are now defined as follows: cos(t) is the x-coordinate of
P (t), and sin(t) is the y-coordinate. More briefly, we write cos t and sin t. Thus

P (t) = (cos t, sin t).

For example, from Figure ??, in which P (5) is seen to be in the fourth quadrant, we
may conclude that cos 5 is positive and that sin 5 is negative. It is clear geometrically
that, if the difference between two real numbers t and a is small, then the point
P (t) is close to the point P (a) and hence the differences between their corresponding
coordinates are small. More precisely, both | cos t− cos a| and | sin t− sin a| can be
made arbitrarily small by choosing |t − a| sufficiently small. It follows that the
cosine and the sine are eontinuous functions. Their common domain is the set of
all real numbers.

For certain values of t which are simple fractions of the total eircumference 2π,
it is easy to locate the point P (t) on the circle and then to read off the coordinates
cos t and sin t. For example (see Figure ??),

P (0) = (1, 0),

P
(π

4

)
= (

1

2

√
2,

1

2

√
2),

P
(π

2

)
= (0, 1),

P (π) = (−1, 0),

P
(3π

2

)
= (0,−1),
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from which it follows at once that

cos 0 = 1 and sin 0 = 0,

cos
π

4
= sin

π

4
=

1

2

√
2,

cos
π

2
= 0 and sin

π

2
= 1,

cosπ = −1 and sinπ = 0,

cos
3π

2
= 0 and sin

3π

2
= −1,

The reader should be thoroughly familiar with all these values—not by sheer mem-
ory, but from an understanding of P (t) and its location on the circle C.

Figure 6.2:

Most of the important properties of the functions cos and sin can be expressed
in a few equations called trigonometric identities. Some of these are obvious from
the definition of P (t). To begin with, it follows from (1) that

(cos(t+ 2π), sin(t+ 2π)) = P (t+ 2π) = P (t) = (cos t, sin t),

and so

6.1.1.
cos(t+ 2π) = cos t
sin(t+ 2π) = sin t

} for every real number t.

The property of cos and sin stated in these two equations is expressed in words
by saying that cos and sin are periodic functions with period 2π. That is,
each time the value of the variable is increased by 2π, the value of each function is
repeated.

Next, since P (t) lies on the circle defined by x2 +y2 = 1, the coordinates of P (t)
must satisfy this equation. Hence

6.1.2.
(cos t)2 + (sin t)2 = 1, for every real number t.
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There is a strong tradition for abbreviating (cos t)n and (sin t)n by cosn t and
sinn t, respectively, provided n is a positive integer. [However, one never writes
sin−1 t for (sin t)−1.] As a result, (1.2) is usually written

cos2 t+ sin2 t = 1.

The third basic property of cos and sin comes from the relation between P (t) =
(cos t, sin t) and P (−t) = (cos(−t), sin(−t)). It is not hard to see that the difference
between measuring the arc length |t| in the counterclockwise direction from (1, 0)
and measuring the same distance in the clockwise direction will be only a difference
of sign in the y-coordinate of P (t). That is,

P (−t) = (cos(−t), sin(−t)) = (cos t,− sin t).

It follows that

6.1.3.
cos(−t) = cos t
sin(−t) = − sin t

} for every real number t.

Thus the cosine is an even function, and the sine is an odd function (see pages
90 and 92).

If a and b are any two real numbers, what can we say about the relative positions
of the points P (a), P (b) and P (a + b) on the circle C defined by x2 + y2 = 1 ? lt
follows from the definition of P (t) that the point P (a + b) is obtained by moving
from P (0) = (1, 0) a distance |a+b| along C counterclockwise or clockwise according
as a+ b is positive or negative. However, it is important to realize that P (a+ b) can
be reached in two steps another way: First, move from P (0) a distance |a| along C,
counterclockwise or clockwise according as a is positive or negative. This move will
take us to P (a). Second, move from P (a) a distance |b| along C, counterclockwise if
b is positive and clockwise if b is negative. By examining the different cases— a > 0
and b > 0, then a < 0 and b > 0, etc.—one can verify that the final point reached
in these two steps is P (a+ b). Note, however, that in the second step we move from
P (a) to P (a + b) in exactly the same way that we would move from P (0) to P (b)
according to the definition of P (b)—by moving along C the same distance and in
the same direction. Thus the distance moved along the circle from P (a) to P (a+ b)
is equal to the distance moved from P (0) to P (b). It follows that the straight-line
distances are the same, too. That is, the straight-line distance between P (a+ b) and
P (a) is equal to the straight-line distance between P (b) and P (0). This important
fact is illustrated in Figure ??.

We can now derive a formula for the cosine of the difference of two numbers,
cos(c−d), in terms of the cosines and sines of c and d. Let a = d and b = c−d. Then
a + b = c, and it follows directly from the conclusion of the preceding paragraph
that the straight-line distance between P (c) and P (d) is equal to the straight-line
distance between P (c− d) and (1, 0). But

P (c) = (cos c, sin c),

P (d) = (cos d, sin d),

P (c− d) = (cos(c− d), sin(c− d)).
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Figure 6.3:

Hence by the formula for the distance between two points,√
(cos c− cos d)2 + (sin c− sin d)2 =

√
(cos(c− d)− 1)2 + (sin(c− d)− 0)2.

Squaring both sides and multiplying out, we get

cos2 c− 2 cos c cos d+ cos2 d+ sin2 c− 2 sin c sin d+ sin2 d

= cos2(c− d)− 2 cos(c− d) + 1 + sin2(c− d).

This equation can be greatly simplified by use of the formula cos2 t + sin2 t = 1
three times. The result is

2− 2 cos c cos d− 2 sin c sin d = 2− 2 cos(c− d),

from which follows the identity

6.1.4.
cos(c− d) = cos c cos d+ sin c sin d,

for all real numbers c and d.

A similar formula for cos(c+ d) can be obtained easily from (1.3) and (1.4). We
have

cos(c+ d) = cos(c− (−d)) = cos c cos(−d) + sin c sin(−d).

Since cos(−d) = cos d, and sin(−d) = − sin d, we get

6.1.5.
cos(c+ d) = cos c cos d− sin c sin d,

for all real numbers c and d.

Taking c = π
2 in (1.4), we get cos

(
π
2 − d

)
= cos π2 cos d + sin π

2 sin d. Since

cos π2 = 0 and sin π
2 = 1, the result is the useful equation cos

(
π
2 − d

)
= sin d. This

equation implies its mate. If we write it letting d = π
2 − a, then π

2 − d = a and we

obtain cos a = sin
(
π
2 − a

)
. Thus we have proved the symmetric pair of identities
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6.1.6.

cos
(
π
2 − a

)
= sin a

sin
(
π
2 − a

)
= cos a

} for every real number a.

The remaining two identities are the formulas for the sine of the sum and dif-
ference of two numbers. The first follows easily from (1.4) and (1.6):

sin(a+ b) = cos
(π

2
− (a+ b)

)
= cos

((π
2
− a
)
− b
)

= cos
(π

2
− a
)

cos b+ sin
(π

2
− a
)

sin b

= sin a cos b+ cos a sin b.

Thence, by (1.3),

sin(a− b) = sin(a+ (−b))
= sin a cos(−b) + cos a sin(−b)
= sin a cos b− cos a sin b.

We write these together in the formula

6.1.7.
sin(a± b) = sin a cos b± cos a sin b,

for all real numbers a and b.

An alternative approach to the trigonometric functions is made with a domain
of angles instead of real numbers. We shall show that the two approaches are in no
way contradictory.

It is assumed that the reader knows what an angle is and what its initial side,
its terminal side, and its vertex are. An angle α is said to be in standard position
on a Cartesian grid if it has its vertex at the origin and its initial side lies along the
positive x-axis. If any point, excluding the vertex, on the terminal side is chosen,
it has an abscissa x and an ordinate y and lies at a distance d from the origin.
Although each point on the terminal side has its x, its y, and its d, it is easy to see
that the ratios x

d and y
d are independent of the choice of the point, i.e., in Figure

?? we have x
d = x1

d1
and y

d = y1
d1

.

Figure 6.4:
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Since the location of the terminal side depends on the angle, each of these ratios
is a function of the angle and we define the cosine of α to be x

d and the sine of α
to be y

d . Since we may choose any point (not the origin) on the terminal side, we
could simplify the process by choosing the point where d = 1. This, of course, is
the point where the terminal side euts the eirele with equation x2 + y2 = 1. Then
cosα is the abscissa of that point and sin a its ordinate. Hence in many ways the
two approaches are the same.

We have not yet mentioned units for measuring angles. If we piek a unit to agree
with the are length, we would have exact agreement: The cosine of an angle of u
such units is equal to the cosine of the real number u and the sine of an angle of u
sueh units is equal to the sine of the real number u. This unit is ealled the radian
and it should be obvious that there are 2π radians in an angle of one revolution.
Another unit, probably more familiar to the reader, is the degree, which is 1

360 of
a revolution and π

180 of a radian. Thus the cosine of an angle of d degrees is equal

to the cosine of the real number πd
180 .
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Problems

1. Find the values of

(a) sin(−π) and cos(−π)

(b) sin( 3
4π) and cos( 3

4π)

(c) sin(−π2 ) and cos(−π2 )

(d) sin(π6 ) and cos(π6 )

(e) sin(π3 ) and cos(π3 )

(f) sin( 5π
4 ) and cos( 5π

4 ).

2. Make a table like the one below showing the sign of cos t and sin t in each of
the four quadrants. Put + or − in each entry of the table.

TABLE, PLEASE!

3. Find all values of t such that

(a) sin t = 0

(b) cos t = 0

(c) sin t = 1

(d) cos t = 1

(e) sin t = −1

(f) cos t = −1

(g) sin t = 2

(h) cos t = 2.

4. What is the domain and range of each of the functions of cos and sin?

5. If k is an arbitrary integer, find

(a) cos kπ

(b) sin kπ

(c) cos
(
π
2 + kπ

)
(d) sin

(
π
2 + kπ

)
.

6. Remembering that π
4 + π

6 = 5π
12 and π

4 −
π
6 = π

12 , find

(a) sin 5π
12

(b) cos 5π
12

(c) sin π
12

(d) cos π
12 .

7. If f is a function with the property that f(t + 2π) = f(t), for every real
number t, show from this that

(a) f(t− 2π) = f(t), for every real number t.
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(b) f(t + 2πn) = f(t), for every real number t and every integer n. (Use
induction.)

8. (a) Use ?? to write a formula for cos 2a in terms of cos a and sin a.

(b) Similarly, use ?? to write a formula for sin 2a.

(c) Write a formula for cos a and another for sin a in terms of cos a2 and sin a
2 .

9. Use the formula for cos 2a [Problem ??] and identity 1 = cos2 a + sin2 a to
derive a formula for

(a) cos2 a in terms of cos 2a

(b) sin2 a in terms of cos 2a.

10. Let f be a function which is periodic with period 2π, i.e., f(t + 2π) = f(t),
and suppose that the graph of f for 0 ≤ t ≤ 2π is as shown in Figure ??.
Draw the graph of f for −2π ≤ t ≤ 6π.



294 CHAPTER 6. TRIGONOMETRIC FUNCTIONS

6.2 Calculus of Sine and Cosine.

The formulas for the derivative and integral of the functions sin and cos follow in a
straightforward way from one fundamental limit theorem. It is

6.2.1.

lim
t→0

sin t

t
= 1.

Figure 6.5:

Proof. It is convenient first to impose the restriction that t > 0 and prove that the
limit from the right equals 1; i.e.,

lim
t→0+

sin t

t
= 1. (6.2)

Since, in proving (1), we are concerned only with small values of t, we may assume
that t < π

2 . Thus we have 0 < t < π
2 and, as a consequence, sin t > 0 and cos t > 0.

Let S be the region in the plane bounded by the circle x2 + y2 = 1, the positive
x-axis, and the line segment which joins the origin to the point (cos t, sin t); i.e., S is
the shaded sector in Figure 6. Since the area of the circle is π and the circumference
is 2π, the area of S is equal to t

2π · π = t
2 . Next, consider the right triangle T1 with

vertices (0, 0), (cos t, sin t), and (cos t, 0). Since the area of any triangle is one half
the base times the altitude, it follows that area(T1) = 1

2 cos t sin t. The line which

passes through (0,0) and (cos t, sin t) has slope sin t
cos t and equation y = sin t

cos tx. Setting

x = 1, we see that it passes through the point
(

1, sin t
cos t

)
, as shown in Figure 6. Hence

if T2 is the right triangle with vertices (0,0),
(

1, sin t
cos t

)
, and (1, 0), then

area(T2) =
1

2
· 1 · sin t

cos t
=

1

2

sin t

cos t
.

Since T1 is a subset of S and since S is a subset of T2, it follows by a fundamental
property of area [see (1.3), page 171] that

area(T1) ≤ area(S) ≤ area(T2).
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t sin t
0.50 0.4794
0.40 0.3894
0.30 0.2955
0.20 0.1987
0.10 0.0998
0.08 0.0799
0.06 0.0600
0.04 0.0400
0.02 0.0200

Table 6.1:

Hence
1

2
cos t sin t ≤ t

2
≤ 1

2

sin t

cos t
.

If we multiply through by 2
sin t , we get

cos t ≤ t

sin t
≤ 1

cos t
.

Taking reciprocals and reversing the direction of the inequalities, we obtain finally

1

cos t
≥ sin t

t
≥ cos t. (6.3)

With these inequalities, the proof of (1) is essentially finished. Since the function cos
is continuous, we have limt→0+ cos t = cos 0 = 1. Moreover, the limit of a quotient
is the quotient of the limits, and so limt→0+

1
cos t = 1

1 = 1. Thus sin t
t lies between

two quantities both of which approach 1 as t approaches zero from the right. It
follows that

lim
t→0+

sin t

t
= 1.

It is now a simple matter to remove the restriction t > 0. Since sin t
t = − sin t

−t =
sin(−t)
−t , we know that

sin t

t
=

sin |t|
|t|

. (6.4)

As t approaches zero, so does |t|; and as |t| approaches zero, we have just proved
that the right side of (3) approaches 1. The left side, therefore, also a pproaches 1,
and so the proof is complete.

It is interesting to compare actual numerical values of t and sin t. Table 1
illustrates the limit theorem (2.1) quite effectively.

A useful corollary of (2.1) is

6.2.2.

lim
t→0

1− cos t

t
= 0.
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Proof. Using trigonometric identities, we write 1−cos t
t in such a form that (2.1) is

applicable.
1 = cos2 t

2 + sin2 t
2 ,

cos t = cos( t2 + t
2 ) = cos2 t

2 − sin2 t
2 .

Hence 1− cos t = 2 sin2 t
2 , and

1− cos t

t
=
t

2
sin2 t

2
=
( sin t

2
t
2

)
sin

t

2
.

As t approaches zero, t
2 also approaches zero, so, by (2.1), the quantity

sin t
2

t
2

approaches 1. Moreover, sin is a continuous function, and therefore sin t
2 approaches

sin 0 = 0. The product therefore approaches 1 ·0 = 0, and the proof is complete.

In writing values of the functions sin and cos, we have thus far avoided the
letter x and have not written sinx and cosx simply because the point on the circle
x2+y2 = 1 whose coordinates define the value of cos and sin has nothing to do with,
and generally does not lie on, the x-axis. However, when we study sin and cos as
two real-valued functions of a real variable, it is natural to use x as the independent
variable. We shall not hesitate to do so from now on.

Example 121. Evaluate the limits

(a) lim
x→0

sin 3x

sin 7x
, (b) lim

x→0

1− cos2 x

x
, (c) lim

x→0

cosx

sinx
.

We evaluate the first two limits by writing the quotients in such a form that the
fundamental trigonometric limit theorem, limx→0

sin x
x = 1, is applicable. For (a),

sin 3x

sin 7x
=

sin 3x

3x

7x

sin 7x

3

7
.

As x approaches zero, so does 3x and so does 7x. Hence sin 3x
3x approaches 1, and

7x
sin 7x =

(
sin 7x
7x

)−1
approaches 1−1 = 1. We conclude that

lim
x→0

sin 3x

sin 7x
= 1 · 1 · 3

7
=

3

7
.

To do (b), we use the identity cos2 x+ sin2 x = 1. Thus

1− cos2 x

x
=

sin2 x

x
= sinx

sinx

x
.

As x approaches zero, sinx approaches sin 0 = 0, and sin x
x approaches 1. Hence

lim
x→0

1− cos2 x

x
= 0 · 1 = 0.

For (c), no limit exists. The numerator approaches 1, and the denominator ap-
proaches zero. Note that we cannot even write the limit as +∞ or −∞ because
sinx may be either positive or negative. As a result, cos x

sin x takes on both arbitrarily
large positive values and arbitrarily large negative values as x approaches zero.
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We are now ready to find d
dx sinx. The value of the derivative at an arbitrary

number a is by definition( d
dx

sinx
)

(a) = lim
t→0

sin(a+ t)− sin a

t
.

As always, the game is to manipulate the quotient into a form in which we can see
what the limit is. Since sin(a+ t) = sin a cos t+ cos a sin t, we have

sin(a+ t)− sin a

t
=

sin a cos t+ cos a sin t− sin a

t

= cos a
sin t

t
− sin a

1− cos t

t
.

As t approaches 0, the quantities cos a and sin a stay fixed. Moreover, sin t
t ap-

proaches 1, and 1−cos t
t approaches 0. Hence, the right side of the above equation

approaches (cos a) · 1− (sin a) · 0 = cos a. We conclude that( d
dx

sinx
)

(a) = cos a, for every real number a.

Writing this result as an equality between functions, we get the simpler form

6.2.3.
d

dx
sinx = cosx.

The derivative of the cosine may be found from the derivative of the sine using

the Chain Rule and the twin identities cosx = sin
(
π
2 − x

)
and sinx = cos

(
π
2 − x

)
[see (1 6), page 286].

d

dx
cosx =

d

dx
sin
(π

2
− x
)

= cos
(π

2
− x
) d
dx

(π
2
− x
)

= cos
(π

2
− x
)

(−1) = − sinx.

Writing this result in a single equation, we have

6.2.4.
d

dx
cosx = − sinx.

Example 122. Find the following derivatives.

(a) d
dx sin(x2 + 1), (c) d

dt sin et,
(b) d

dx cos 7x, (d) d
dx ln(cosx)2.

These are routine exercises which combine the basic derivatives with the Chain
Rule. For (a) we have

d

dt
sin(x2 + 1) = cos(x2 + 1)

d

dx
(x2 + 1) = 2x cos(x2 + 1).

The solution to (b) is
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d

dx
cos 7x = − sin 7x

d

dx
7x = −7 sin 7x.

For (c),

d

dt
sin et = cos et

d

dt
et = et cos et,

and for (d),

d

dx
ln(cosx)2 =

1

(cosx)2
d

dx
(cosx)2

=
1

(cosx)2
2 cosx

d

dx
cosx

=
−2 cosx sinx

(cosx)2
= −2 sinx

cosx
.

Every derivative formula has its corresponding integral formula. For the trigono-
metric functions sin and cos, they are

6.2.5. ∫
sinxdx = − cosx+ c,∫
cosxdx = sinx+ c.

The proofs consist of simply verifying that the derivative of the proposed integral
is the integrand. For example,

d

dx
(− cosx+ c) = − d

dx
cosx = sinx.

Example 123. Find the following integrals.

(a)

∫
sin 8xdx, (b)

∫
x cos(x2)dx, (c)

∫
cos5 x sinxdx.

The solutions use only the basic integral formulas and the fact that if F ′ = f ,
then

∫
f(u)dudx = F (u) + c. Integral (a) is simple enough to write down at a glance:∫

sin 8xdx = −1

8
cos 8x+ c.

To do (b), let u = x2. Then du
dx = 2x, and

∫
x cos(x2)dx =

1

2
(cos(x2))2xdx

=
1

2

∫
(cosu)

du

dx
dx

=
1

2
sinu+ c

= 2 sin(x2) + c.
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x y = sinx
0 0
π
6

1
2

π
4

1
2

√
2 = 0.71 (approximately)

π
3

1
2

√
3 = 0.87 (approximately)

π
2 1

Table 6.2:

For (c), we let u = cosx. Then du
dx = − sinx. Hence

∫
cos5 x sinxdx = −

∫
cos5 x(− sinx)dx

= −
∫
u5
du

dx
dx

= −1

6
u6 + c

= −1

6
cos6 x+ c.

The graphs of the functions sin and cos are extremely interesting and important
curves. To begin with, let us consider the graph of sinx only for 0 ≤ x ≤ π

2 . A few
isolated points can be plotted immediately (see Table 2).

The slope of the graph is given by the derivative, d
dx sinx = cosx. At the origin it

is cos 0 = 1, and, where x = π
2 the slope is cos π2 = 0. Since

d

dx
sinx = cosx > 0 if 0 < x <

π

2
,

we know that sinx is a strictly increasing function on the open interval
(

0, π2

)
.

In addition, there are no points of inflection on the open interval and the curve is
concave downward there because

d2

dx2
sinx =

d

dx
cosx = − sinx < 0 if 0 < x <

π

2
.

On the other hand, the second derivative changes sign at x = 0, and so there is a
point of inflection at the origin. With all these facts we can draw quite an accurate
graph. It is shown in Figure 7.

It is now a simple matter to fill in as much of the rest of the graph of sinx as
we like. For every real number x, the points x and π − x on the real number line
are symmetrically located about the point π

2 . The midpoint between x and π − x
is given by x+(π−x)

2 = π
2 . As x increases from 0 to π

2 the number π − x decreases
from π to π

2 . Moreover,

sin(π − x) = sinπ cosx− cosπ sinx

= 0 · cosx− (−1) · sinx
= sinx.



300 CHAPTER 6. TRIGONOMETRIC FUNCTIONS

Figure 6.6:

It follows that the graph of sinx on the interval
[
π
2 , π

]
is the mirror image of the

graph on
[
0, π2

]
reflected across the line x = π

2 . This is the dashed curve in Figure

7. Now, because sinx is an odd function, its graph for x ≤ 0 is obtained by reflecting
the graph for x ≥ 0 about the origin (i.e., reflecting first about one coordinate axis
and then the other). This gives us the graph for −π ≤ x ≤ π. Finally, since sinx is
a periodic function with period 2π, its values repeat after intervals of length 2π. It
follows that the entire graph of sinx is the infinite wave, part of which is shown in
Figure 8.

Figure 6.7:

The graph of cosx is obtained by translating (sliding) the graph of sinx to the
left a distance π

2 . This geometric assertion is equivalent to the algebraic equation

cosx = sin
(
x+ π

2

)
. But this follows from the trigonometric identity

sin
(
x+

π

2

)
= sinx cos

π

2
+ cosx sin

π

2
= (sinx) · 0 + (cosx) · 1
= cosx.

The graphs of cosx and sinx are shown together in Figure 9.
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Figure 6.8:



302 CHAPTER 6. TRIGONOMETRIC FUNCTIONS

Problems

1. Evaluate the following limits.

(a) limt→0
sin2 t
t2

(b) limt→0
sin t cos t

t

(c) limx→0
1−cos2 x

x2

(d) limx→0
sin 2x
x

(e) limt→π
sin(π−x)
x(π−x)

(f) limt→0
sin 2t
sin 3t

(g) limx→π
2

cos x

(π2−x)

(h) limx→0
cos x
x

(i) limx→0
1−cos 2x

x2

(j) limx→0
1−cos x
x sin x .

2. Find the derivatives of the following functions.

(a) sin(x2 + 3)

(b) cos ex

(c) cos t sin t

(d) cos2 x+ sin2 x

(e) cos(sinx)

(f) ln sinx

(g) sin5 x5

(h) sin x
cos x

(i) cos x
sin x

(j) e−x sinx.

3. Evaluate the following integrals.

(a)
∫

cos 7x dx

(b)
∫

(cos 2x+ sin 3x) dx

(c)
∫
ex cos ex dx

(d)
∫

sin(x+ a) dx

(e)
∫

(cosx)e− sin x dx

(f)
∫

(cos t) cos(sin t) dt

(g)
∫

sin x
cos x dx

(h)
∫

cos6 x sinx dx

(i)
∫

sin6 x cosx dx

(j)
∫

(cos2 x+ sin2 x) dx

4. Find the integrals
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(a)
∫

cosn x sinx dx

(b)
∫

sinn x cosx dx.

The next two integrals can be reduced to sums of integrals of the forms
?? and ?? by using the identity sin2 x+ cos2 x = 1.

(c)
∫

sin3 x dx

(d)
∫

cos4 x sin3 x dx.

5. Express cos2 x in terms of cos 2x, and thence evaluate
∫

cos2 x dx.

6. Express sin2 x in terms of cos 2x, and thence evaluate
∫

sin2 x dx.

7. Solve the differential equations

(a) dy
dx = ex sin ex

(b) dy
dx = sin x

cos y

(c) y dydx = cos x
sin(y2) .

8. Evaluate the following limits using L’Hôpital’s Rule.

(a) limx→0
sin x
x

(b) limx→0
1−cos x

x

(c) limx→0
sin2 x
x2

(d) limt→0
et−1
t

(e) limx→0
ex−1−x
x2

(f) limx→0
1−cos x
x sin x .

9. Draw the graphs of the equations

(a) y = 3 sinx

(b) y = cos
(
π
2x
)

(c) y = sin(2πx)

(d) y = 2 sin
(
x+ π

6

)



304 CHAPTER 6. TRIGONOMETRIC FUNCTIONS

6.3 Other Trigonometric Functions.

The other trigonometric functions are the tangent, cotangent, secant, and cosecant.
They are abbreviated tan, cot (or ctn), sec, and csc, respectively, and the definitions
are

tanx = sin x
cos x secx = 1

cos x

cotx = cos x
sin x cscx = 1

sin x .

Unlike sin and cos, these functions are not defined for all real values of x since
the denominators in the defining expressions are zero for some values of x. The set
of all solutions to the equation cosx = 0 is the set consisting of all odd multiples of
π
2 . Hence tanx and secx are defined if and only if x is not an odd multiple of π

2 .
Similarly, cotx and cscx are defined for all real numbers x except integer multiples
of π.

Although sine and cosine were first defined with a domain of real numbers, we
have shown that they also can be considered as functions with a domain of angles.
Since the other four functions are defined in terms of sine and cosine, they may also
be regarded as functions with a domain of angles. Thus it makes sense to speak of
the tangent of the angle α, written tanα, and of the cosecant of an angle of 30◦,
written csc 30◦. The former is defined if and only if the radian measure of α is not
an odd multiple of π

2 or, alternatively, if the degree measure of α is not an odd
multiple of 90. The latter is the reciprocal of sin 30◦ and is equal to 1

1
2

= 2.

Two useful trigonometric identities, which are simply alternative statements of
the basic equation cos2 x + sin2 x = 1, are derived as follows: Dividing first by
cos2 x, we have

cos2 x
cos2 x + sin2 x

cos2 x = 1
cos2 x

|| || ||

1 tan2 x sec2 x,

hence 1 + tan2 x = sec2 x. On the other hand, if we divide by sin2 x, we have

cos2 x
sin2 x

+ sin2 x
sin2 x

= 1
sin2 x

|| || ||

cot2 x 1 csc2 x,

and so cot2 x+ 1 = csc2 x. Summarizing, we write

6.3.1.

1 + tan2 x = sec2 x,

cot2 x+ 1 = csc2 x.
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Another formula which we shall find useful is that for the tangent of the differ-
ence of two numbers, a− b, in terms of tan a and tan b. First,

tan(a− b) =
sin(a− b)
cos(a− b)

=
sin a cos b− cos a sin b

cos a cos b+ sin a sin b
.

Dividing both numerator and denominator by cos a cos b, we get

tan(a− b) =
sin a cos b
cos a cos b −

cos a sin b
cos a cos b

cos a cos b
cos a cos b + sin a sin b

cos a cos b

=
sin a
cos a −

sin b
cos b

1 + sin a
cos a

sin b
cos b

.

Hence

6.3.2.

tan(a− b) =
tan a− tan b

1 + tan a tan b
.

The trigonometric identities developed in this section are handy tools, and we
shall not hesitate to use them. In themselves, however, they are of secondary
importance. Any one of them can be derived quickly and in a completely routine
way from the basic identities in sin and cos derived in Section 1.

An important application of the tangent function is in connection with the slope
of a straight line. We define the angle of inclination α of a straight line L as follows:
If L is horizontal, then α = 0. If L is not horizontal, then it intersects an arbitrary
horizontal line H in a single point P . Let α be the angle with vertex P , initial side
the part of H to the right of P , terminal side the part of L above P , and whose
measure in radians satisfies the inequality 0 < α < π (see Figure 10). We contend
that

6.3.3. The slope of a line is equal to the tangent of its angle of inclination.

Proof. We refer again to Figure 10. The given line is L, its inclination is α, and
its slope is m. If L′ is drawn through the origin parallel to L, then L′ also has
inclination α and slope m. Furthermore, the point (cosα, sinα) lies on L′. Since
(0,0) also lies on L′, the definition of slope yields

m =
sinα− 0

cosα− 0
=

sinα

cosα
= tanα,

which completes the proof. If L is vertical, its slope is not defined. But then the
angle of inclination is π

2 and tan π
2 is not defined either.

The importance of (3.2) is apparent when we try to determine the angle between
two nonvertical intersecting lines. Let α be the angle of inclination of one line and,
β the angle of inclination of the other. For convenience, we assume that α > β. It
follows that 0 < α−β < π and, from Figure 11 that the difference α−β is an angle
between the two lines. We denote the slope of the first line by m1, and that of the
second by m2. That is, we have m1 = tanα and m2 = tanβ. By (3.2),
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Figure 6.9:

Figure 6.10:

tan(α− β) =
tanα− tanβ

1 + tanα tanβ
=

m1 −m2

1 +m1m2
.

If this number is positive, then α − β is the acute angle between the lines. If
this number is negative, then α − β is the obtuse angle between the lines. If this
number is unclefined, then α−β = π

2 and the lines are perpendicular. The number
m1−m2

1+m1m2
is unclefined if and only if 1 +m1m2 = 0. Since this equation is equivalent

to m1m2 = −1, it follows that we have proved the statement made on page 44
that two nonvertical lines with slopes m1 and m2, are perpendicular if and only if
m1m2 = −1.

The formulas for the derivatives of the remaining four trigonometric functions
are found using the derivatives of sin and cos together with the usual rules of
differentiation. They are

6.3.4.

d

dx
tanx = sec2 x,
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d

dx
cotx = − csc2 x,

d

dx
secx = secx tanx,

d

dx
cscx = − cscx cotx.

Proving the first of these, we have

d

dx
tanx =

d

dx

sinx

cosx
=

cosx d
dx sinx− sinx d

dx cosx

cos2 x

=
cos2 x+ sin2 x

cos2 x
=

1

cos2 x
= sec2 x.

The others are left as exercises. We observe the following mnemonic device. From
any one of the six formulas for differentiating trigonometric functions another one
is obtained by adding the prefix “co” to every function which does not have one,
removing the prefix “co” from each function which has it already, and changing the
sign. For example, this procedure transforms the equation d

dx secx = secx tanx

into d
dx cscx = − cscx cotx and transforms d

dx cosx = − sinx into d
dx sinx = cosx.

Hence the number of derivative formulas which need to be memorized can be cut
in half.

The integrals corresponding to the above derivatives are

6.3.5. ∫
sec2 xdx = tanx+ c,∫
csc2 xdx = − cotx+ c,∫
secx tanxdx = secx+ c,∫
cscx cotxdx = − cscx+ c.

Example 124. Find the following integrals:

(a)
∫
x2 sec2(x3 + 1)dx,

(b)
∫

tanxdx,

(c)
∫

csc2 x cot5 xdx.

In (a) we observe that d
dx (x3 + 1) = 3x2, or, equivalently,

x2 =
1

3

d

dx
(x3 + 1).

Hence

∫
x2 sec2(x3 + 1)dx =

1

3

∫
[sec2(x3 + 1)]

d

dx
(x3 + 1)dx

=
1

3
tan(x3 + 1) + c.
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For (b), we have
∫

tanxdx =
∫

sin x
cos xdx. If u = cosx, then du

dx = − sinx, and so

∫
tanxdx =

∫
sinx

cosx
dx = −

∫
1

u

du

dx
dx

= − ln |u|+ c = − ln | cosx|+ c.

Finally, to do (c), we see that since d
dx cotx = − csc2 x, the integral is, except for a

minus sign, of the form
∫
u5 dudxdx. Thus

∫
csc2 x cot5 xdx = −

∫
(cot5 x)

d

dx
cotxdx

= −1

6
cot6 x+ c.

Each of these integrals can be checked by differentiation.

The graph of tanx is an interesting curve, which we now describe. Note, first of
all, that tan is an odd function,

tan(−x) =
sin(−x)

cos(−x)
=
− sinx

cosx
= − tanx,

and the graph is therefore symmetric about the origin. Moreover,

tan(x+ π) =
sin(x+ π)

cos(x+ π)
=

sinx cosπ + cosx sinπ

cosx cosπ − sinx sinπ

=
− sinx

− cosx
= tanx.

Thus tan is a periodic function with period π. The slope of the graph is given by
the derivative,

d

dx
tanx = sec2 x,

which is positive for every value of x for which tanx is defined. Hence tanx is
a strictly increasing function in the interval −π2 < x < π

2 . From the definition,

tanx = sin x
cos x , we see that tanx is positive when both functions cosx are positive,

as they are for 0 < x < π
2 ; is zero when sinx = 0, as it is for x = 0; and is negative

when the two functions have opposite sign, as they do for −π2 < x < 0. We also
see that tanx takes on arbitrarily large positive values as x approaches π

2 from the
left, since sinx approaches 1 and cosx approaches 0. Thus

lim
x→π

2−
tanx =∞.

The second derivative is given by

d2

dx2
tanx = 2 sec2 x tanx =

 < 0 if − π
2 < x < 0,

= 0 if x = 0,
> 0 if 0 < x < π

2 ,
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x y = tanx dy
dx = sec2 x

0 0 1
π
6

1√
3

= 0.58 (approx.) 4
3 = 1.33 (approx.)

π
4 1 2
π
3

√
3 = 1.73 (approx.) 4

Table 6.3:

from which it follows that the graph is concave downward for −π2 < x < 0, concave
upward for 0 < x < π

2 and has a point of inflection at the origin. Combining all
these facts with the few isolated values shown in Table 3, we obtain the graph shown
in Figure 12.

Figure 6.11:

The graph of cotx can be obtained in the same way in which we worked out the
graph of tanx. However, there is a quicker way based on an identity. Since

tan
(
x+

π

2

)
=

sin
(
x+ π

2

)
cos
(
x+ π

2

) =
sinx cos π2 + cosx sin π

2

cosx cos π2 − sinx sin π
2

=
cosx

− sinx
= − cotx,

we know that
cotx = − tan

(
x+

π

2

)
.

The geometric significance of this identity is that the graph of cotx is obtained by
translating (sliding) the graph of tanx to the left a distance π

2 and then reflecting
about the x-axis.
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From the definition, secx = 1
cos x , it is apparent that

secnπ =
1

cosnπ
= { 1 if n is even,

−1 if n is odd.

If a is any odd multiple of π
2 , then cos a = 0, and so

lim
x→a
| secx| = lim

x→a

1

| cosx|
=∞.

Figure 6.12:

Moreover, on an interval where one function is increasing, its reciprocal function is
decreasing, and vice versa. It follows that the over-all shape of the graph of secx
can be ascertained quite easily from the graph of its reciprocal function cosx. The
graph of secx is shown in Figure 13.

The graph of cscx is related to that of secx in the same way as the graph of
sinx is related to the graph of cosx.
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Problems

1. Which of the six trigonometric functions are odd functions and which are even
functions?

2. Derive the formulas for the derivatives of the functions cot, sec, and csc.

3. Find the following derivatives.

(a) d
dx sec2 x

(b) d
dx tan(2x2 − 1)

(c) d
dx ln | secx|

(d) d
dy cos y tan y

(e) d
dt (sec2 t− 1)

(f) d
dx csc(x3 − 1)

(g) d
dx tanx cotx

(h) d
dt ln | cot t|.

4. Prove each of the following identities from the basic identities in sine and
cosine developed in Section ??.

(a) tan(x+ y) = tan x+tan y
1−tan x tan y

(b) cscx = sec
(
x− π

2

)
(c) cot(a+ b) = cot a cot b−1

cot a+cot b

(d) cot(x+ π) = cotx.

5. Find the following intervals.

(a)
∫

tan 5x dx

(b)
∫

cotx dx

(c)
∫
ex sec2 ex dx

(d)
∫

tan2 x dx [Hint: Use tan2 x+ 1 = sec2 x.]

(e)
∫

tan4 x sec2 x dx

(f)
∫

sec4 x tanx dx

(g)
∫

1√
x

csc
√
x cot

√
x dx

(h)
∫

csc4 x dx.

6. Find d
dx (secx+ tanx) and use the result to evaluate the integral∫

secx dx =

∫
secx

secx+ tanx

secx+ tanx
dx.

7. Find
∫

tanx dx =
∫

tan x sec x
sec x dx by substituting u = secx and du

dx in the right
side. Compare the answer obtained with Example ??.

8. Draw the graph of
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(a) cotx

(b) cscx.

9. Evaluate the following limits.

(a) limx→0
tan x
x

(b) limx→0 x cot 2x.

10. Find the tangent of the angle between

(a) the straight lines y − 2x = 1 and 2y − x = 4.

(b) the straight lines y + 2x = 2 and 2y − x = 2.

(c) the tangent lines to the curves y = x2 and x2 + y2 = 1 at their point of
intersection in the first quadrant.

11. What is the domain and the range of each one of the six trigonometric func-
tions?

12. Evaluate each of the following indeterminate forms (see Problem ??):

(a) limx→0+(sinx)tan x

(b) limx→0+ x
1−cos x.

13. If limx→a f(x) = limx→a g(x) = ±∞, it is not immediately apparent whether
or not limx→a(f(x)− g(x)) exists. Such limits are commonly called indeter-
minate forms of the type ∞ − ∞. The usual method of evaluation is to
express the difference f(x) − g(x) as a quotient and then to try to find its
limit. For example, we write

ex

ex − 1
− 1

x
=
xex − (ex − 1)

x(ex − 1)
,

and, as x approaches zero, the limit of the right side can be obtained by two
applications of L’Hôpital’s Rule. Evaluate

(a) limx→0

(
ex

ex−1 −
1
x

)
(b) limx→0

[
(x2+8)

1
3

2x2 − 1
x2

]
(c) limx→0

(
x2+3x+5

sin x − 5
x

)
(d) limt→0

(
cot t− 1−2t

t

)
(e) limx→0+

(
1
x + lnx

)
(f) limx→π

2
(secx− tanx).
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6.4 Inverse Trigonometric Functions.

The function sin does not have an inverse function. The reason is that it is perfectly
possible to have a 6= b and sin a = sin b. Another way to reach the same conclusion
is to consider the equation x = sin y. Its graph is the curve in Figure 14. It does
not define a function of x because it does not satisfy the condition in the definition
of function (see page 14) which asserts that every vertical line intersects the graph
of a function in at most one point.

Figure 6.13:

However, on the interval
[
−π2 ,

π
2

]
the function sin is a strictly increasing func-

tion. Hence, although sin does not have an inverse, it follows by Theorem (2.4),

page 250, that the function sin with domain restricted to
[
−π2 ,

π
2

]
does have an

inverse. This inverse function is denoted by either sin−1 or arcsin, and in this book
we shall use the latter notation. Thus

y = arcsinx if and only if x = sin y
and − π

2 ≤ y ≤
π
2 .

The graph of the function arcsin is shown in Figure 15(b). It is that part of the
graph of the equation x = sin y for which y satisfies the inequality −π2 ≤ y ≤ π

2 .
Note that the graph of arcsin is obtained from the graph of the restricted function
sin by reflection across the diagonal line y = x. It follows both from the definition of
arcsin and also from the illustration that the domain of arcsin is the closed interval

[−1, 1] and the range is the closed interval
[
−π2 ,

π
2

]
.

It is a consequence of Theorem (3.4), page 261, that the function arcsin is
differentiable at every point of its domain except at -1 and +1. [In applying (3.4),

let f be the function sin restricted to
[
−π2 ,

π
2

]
and then f−1 = arcsin.] We may

compute the formula for the derivative either directly from (3.4) or by implicit
differentiation. Choosing the latter method, we begin with y = arcsinx and seek to
find dy

dx . If y = arcsinx, then x = sin y, and so

d

dx
x =

d

dx
sin y, or 1 = cos y

dy

dx
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Figure 6.14:

Hence
dy

dx
=

1

cos y
.

To express cos y in terms of x, we use the identity cos2 y + sin2 y = 1 and the fact
that x = sin y. Hence cos2 y + x2 = 1, and therefore

cos y = ±
√

1− x2.
However, y is restricted by the inequality −π2 ≤ y ≤ π

2 and in this interval cos y is
never negative. Hence the positive square root is the correct one, and we conclude
that dy

dx = 1√
1−x2

. Thus

6.4.1.
d

dx
arcsinx =

1√
1− x2

.

Example 125. Find the domain, range, and derivative of each of the composite
functions

(a) arcsin
1

1 + x2
, (b) arcsin(lnx).

The quantity 1
1+x2 is defined for every real number x and also satisfies the inequal-

ities 0 < 1
1+x2 ≤ 1. Hence, arcsin 1

1+x2 is defined for every x; i.e., its domain is the

set of all real numbers. The range of the function 1
1+x2 , however, is the half-open

interval (0, 1]. It can be seen from Figure 15(b) that the function arcsin maps

the interval (0, 1] on the x-axis onto the interval
(

0, π2

]
on the y-axis. It follows

that the range of the composition arcsin 1
1+x2 is the half-open interval

(
0, π2

]
. The

derivative is found using (4.1) and the Chain Rule:

d

dx
arcsin

1

1 + x2
=

1√
1−

(
1

1+x2

)2 d

dx

( 1

1 + x2

)
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=
1√

(1+x2)2−1
(1+x2)2

−2x

(1 + x2)2

=
−2x

(1 + x2)
√

2x2 + x4
=

−2x

(1 + x2)|x|
√

2 + x2
.

For any particular value of x, the quantity arcsin(lnx) is defined if and only
if lnx is defined and also lies in the domain of the function arcsin, which is the
interval [ - 1, 1]. Thus x must be positive, and lnx must satisfy the inequalities
−1 ≤ lnx ≤ 1. Hence x must satisfy 1

e ≤ x ≤ e. The domain of arcsin(lnx) is

therefore the interval
[
1
e , e
]
, and the range is the same as that of arcsin, i.e., the

interval
[
−π2 ,

π
2

]
. The derivative is given by

d

dx
arcsin(lnx) =

1√
1− (lnx)2

d

dx
lnx =

1

x
√

1− (lnx)2
.

The integral formula corresponding to (4.1) is

6.4.2. ∫
dx√

1− x2
= arcsinx+ c.

Example 126. Find
∫

xdx√
4−x4

. The first thing we do is to write the denominator,

as closely as possible, in the form
√

1− u2.

1√
4− x4

=
1√

4
(

1− x4

4

) =
1

2

√
1−

(
x2

2

)2
Hence, letting u = x2

2 , we have du
dx = x and∫

xdx√
4− x4

=
1

2

∫
xdx√

1−
(
x2

2

)2 =
1

2

∫
1√

1− u2
du

dx
dx.

By (4.2),
1

2

∫
1√

1− u2
du

dx
dx =

1

2
arcsinu+ c.

Finally, substituting x2

2 for u, we obtain∫
xdx√
4− x4

=
1

2
arcsin

x2

2
+ c.

The function cos does not have an inverse for the same reason that sin does
not. However, a partial inverse can be obtained, just as before, by restricting the
domain to an interval on which cos is either increasing or decreasing. Any such
interval can be chosen. With the function sin it was natural to choose the largest

possible interval containing the number 0—the closed interval
[
−π2 ,

π
2

]
. With cos

the choice is less obvious. However, we shall select the interval [0, π], on which cos
is strictly decreasing [see Figure 16(a)]. The function cos with domain restricted to
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Figure 6.15:

[0, π] then has an inverse, which is denoted cos−1 or arccos. As before, we shall use
the second notation. Thus

y = arccosx if and only if x = cos y
and 0 ≤ y ≤ π.

The graph of arccos is shown in Figure 16(b).

It should come as no surprise that the two functions arcsin and arccos are closely
related. In fact,

6.4.3.

arcsinx =
π

2
− arccosx.

Proof. Let y = π
2 −arccosx. Then arccosx = π

2 − y, and so x = cos
(
π
2 − y

)
. Hence

x = cos
(π

2
− y
)

= cos
π

2
cos y + sin

π

2
sin y = sin y.

Since 0 ≤ arccosx ≤ π, it follows that −π ≤ − arccosx ≤ 0 and hence −π2 ≤
π
2 − arccosx ≤ π

2 or, equivalently, −π2 ≤ y ≤ π
2 . This, together with x = sin y,

implies that y = arcsinx, and the proof is complete.

Note that the validity of (4.3) depends on our having chosen arccos so that its
range is the interval [0, π].

It follows from (4.3) that the derivative of arccos is the negative of the derivative
of arcsin. Thus

6.4.4.
d

dx
arccosx = − 1√

1− x2
.
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From (4.4) we see that another indefinite integral of 1√
1−x2

is − arccosx.

Obviously, not one of the six trigonometric functions with unrestricted domain
has an inverse. The function tan with its domain restricted to the open interval(
−π2 ,

π
2

)
is strictly increasing and so has an inverse function, which we denote tan−1

or arctan.

y = arctanx if and only if x = tan y
and − π

2 < y < π
2 .

The graph of arctan is obtained by reflecting the graph of tan with domain

restricted to
(
−π2 ,

π
2

)
across the diagonal line y = x. It is shown in Figure 17(b).

As can be seen from Figure 17(a), the function tan maps the open interval
(
−π2 ,

π
2

)
onto the entire set of real numbers. That is, for every real number y, there exists a

real number x in
(
−π2 ,

π
2

)
such that y = tanx. Hence the domain of arctun is the

whole real line (−∞,∞). The range is the interval
(
−π2 ,

π
2

)
.

Figure 6.16:

It is a corollary of Theorem (3.4), page 261, that arctan is a differentiable func-
tion. We compute the derivative by implicit differentiation. Let y = arctanx. Then
x = tan y, and

d

dx
x =

d

dx
tan y or 1 = sec2 y

dy

dx
.

Hence
dy

dx
=

1

sec2 y
.

From the identity sec2 y = 1 + tan2 y, we get sec2 y = 1 + x2. It follows that
d
dx = 1

1+x2 . Thus
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6.4.5.
d

dx
arctanx =

1

1 + x2
.

The corresponding integral formula is

6.4.6. ∫
dx

1 + x2
= arctanx+ c.

Example 127. Compute the definite integral
∫ 1

0
dx

1+x2 . We get immediately∫ 1

0

dx

1 + x2
= arctanx

∣∣1
0

= arctan 1− arctan 0.

Since tan 0 = 0 and tan π
4 = 1, we know that 0 = arctan 0 and π

4 = arctan 1. Hence∫ 1

0

dx

1 + x2
=
π

4
.

This is a fascinating result: The number π is equal to four times the area bounded
by the curve y = 1

1+x2 , the x-axis, and the lines x = 0 and x = 1.

The function cot is strictly decreasing on the open interval (0, π). With its
domain restricted to this interval, cot therefore has an inverse function, which we
denote cot−1 or arccot. The relation between the two functions arccot and arctan
is the same as that between arccos and arcsin,

6.4.7.
arccotx =

π

2
− arctanx.

The proof is analogous to the proof of (4.3) and is left to the reader as an exercise.
It is a corollary that the derivative of arccot is the negative of the derivative of
arctan. Hence

6.4.8.
d

dx
arccot x = − 1

1 + x2
.

Here again, we see another indefinite integral of 1
1+x2 , the function −arccot x.

The union of the two half-open intervals
[
0, π2

)
and (π2 , π] consists of all real

numbers x such that 0 ≤ x ≤ π and x 6= π
2 . It can be seen from the graph of

the equation y = secx in Figure 13, page 308, that if a and b are two numbers in
the union [0, π2 ) ∪ (π2 , π] and if a 6= b, then sec a 6= sec b. We omit π

2 because the
secant of that number is not defined. It follows that the function sec with domain
restricted to

[
0, π2

)
∪
(
π
2 , π

]
has an inverse, which is denoted sec−1 or arcsec. Thus

y = arcsec x if and only if x = sec y
and y is in [0, π2 ) ∪ (π2 , π].

The graph of the function arcsec is shown in Figure 18(b). Its range is the union[
0, π2

)
∪
(
π
2 , π

]
. As can be seen from Figure 18(a), the function sec maps the set[

0, π2

)
∪
(
π
2 , π

]
onto the set of all real numbers with absolute value greater than or
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Figure 6.17:

equal to 1. Hence the domain of arcsec is the set of all real numbers x such that
|x| ≥ 1.

The derivative can again be found by implicit differentiation. Let y = arcsec x.
Then x = sec y and

d

dx
x =

d

dx
sec y, which implies 1 = sec y tan y

dy

dx
.

Thus
dy

dx
=

1

sec y tan y
.

Using the identity sec2 y = 1 + tan2 y and the equation x = sec y, we obtain

sec y tan y = ±x
√
x2 − 1.

If x ≥ 1, then 0 ≤ y < π
2 , and so sec y tan y is nonnegative. Hence

sec y tan y = x
√
x2 − 1 if x ≥ 1.

On the other hand, if x ≤ −1, then π
2 < y ≤ π, and in this case both sec y and

tan y are nonpositive. Their product is therefore again nonnegative; i.e.,

sec y tan y = −x
√
x2 − 1 if x ≤ −1.

It follows that both cases are covered by the single equation sec y tan y = |x|
√
x2 − 1.

Hence dy
dx = 1

|x|
√
x2−1 , and we have derived the formula

6.4.9.
d

dx
arcsec x =

1

|x|
√
x2 − 1

.
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The final inverse trigonometric function is the inverse of the cosecant with do-

main restricted to the union
[
−π2 , 0

)
∪
(

0, π2

]
. This function, denoted csc−1 or

arccsc, has range equal to
[
−π2 , 0

)
∪
(

0, π2

]
and domain equal to the set of all real

numbers x such that |x| ≥ 1. The analogue of (4.3) and (4.7) is valid. That is,

6.4.10.
arcsec x =

π

2
− arccsc x.

Proof. The proof mimics that of (4.3). Let y = −π2 − arccsc x. Then arccsc x =
π
2 − y, and so x = csc

(
π
2 − y

)
. Thus

x = csc
(π

2
− y
)

=
1

sin
(
π
2 − y

) =
1

cos y
= sec y.

Since −π2 ≤ arccsc x ≤ π
2 it follows that 0 ≤ π

2 − arccsc x ≤ π, or, equivalently,
that 0 ≤ y ≤ π. This, together with x = sec y, implies that y = arcsec x, and the
proof is complete.

From this it follows at once that

6.4.11.
d

dx
arccsc x = − 1

|x|
√
x2 − 1

.
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Problems

1. Evaluate the following

(a) arcsin 1

(b) arcsin 1
2

(c) arccos 1
2

(d) arcsin
(
−
√
3
2

)
(e) arctan

√
3

(f) arccot
√

3

(g) arcsec
(

2√
3

)
(h) arccsc 2

(i) arcsin(sin a)

(j) arctan
(
tan π

7

)
(k) arctan

(
cot π7

)
(l) arcsin(cos a)

(m) tan[arctan(−1)]

(n) arcsin(2 sinx cosx)

(o) arcsin
(
sin 3π

4

)
(p) arctan

(
cot π6

)
.

2. Find dy
dx .

(a) y = arcsinx2

(b) y = arctan
√
x

(c) y = arcsin x−1
x+1

(d) y = arccos(cosx)

(e) y = arccos(sinx)

(f) y = arcsec (1 + x2)

(g) y = arcsin(x+ 1) + arccos(x+ 1)

(h) y = arctanx3 − arccot x3

(i) y = arctan(lnx)

(j) y = arccos
(
1
x

)
− arcsec x.

3. What is the domain and range of each of the functions y of x in Problem ???

4. Find the following integrals.

(a)
∫

dx
x2+2

(b)
∫

dx√
2−x2

(c)
∫

y dy
1+y4
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(d)
∫

dx
x2+2x+2

(e)
∫

dy√
2y−y2

(f)
∫ (x+1) dx√

1−(x+1)4

(g)
∫

dx√
x4−x2

(h)
∫

x dx
x4+2x2+2 .

5. Prove the identity ??.

6. Find d
dx arccosx by implicit differentiation.

7. Evaluate the following definite integrals.

(a)
∫ 1

2

0
dx√
1−x2

(b)
∫ 1

1
2

dx√
2x−x2

(c)
∫ 1

0
dt

1+3t2

(d)
∫√3

0
dt√
4−t2

(e)
∫ x
0

dt
1+t2

(f)
∫√2

1
dx

x
√
x2−1 .

8. (a) Draw the graph of the function arccot .

(b) What is the domain and range of arccot .

(c) Find d
dx cotx by implicit differentiation.

9. Identify the function F defined in Example ??.

10. Prove the identities

(a) arcsec x = arccos
(
1
x

)
(b) arccsc x = arcsin

(
1
x

)
.

11. Draw the graph of the function arccsc , and specify its domain and range.

12. Prove or disprove

(a) arcsin(−x) = − arcsinx

(b) arccos(−x) = arccosx

(c) arctan(−x) = − arctanx

(d) arccos(−x) = π − arccosx.
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6.5 Algebraic and Transcendental Functions.

We recall that a real-valued function f of one variable is a polynomial if there exist
real numbers a0, a1, ..., an such that, for every real number x,

f(x) = a0 + a1x+ ...+ anx
n =

n∑
k=0

akx
k.

Thus, among the different functions f defined respectively by

(a) f(x) = x3 + 17x− 2, (f) f(x) = 1
x ,

(b) f(x) = πx2, (g) f(x) = 1
1+x2 ,

(c) f(x) = ex, (h) f(x) = 5,
(d) f(x) = xe, (i) f(x) =

√
x+ 1,

(e) f(x) = sinx, (j) f(x) = e(x− 1),

only those defined in (a), (b), (h), and (j) are polynomials, and the rest are not.
In asserting, for example, that the trigonometric function sin is not a polynomial,
it is important to realize that we are stating more than just the obvious fact that
sinx does not look like a finite sum of terms of the form akx

k. We are asserting
that it is impossible to write sinx in this form. The easiest way to prove this is to
find some one property which every polynomial has and which sin does not have.
For example, if f is a polynomial, then the derivative f ′ is a polynomial of degree
one less. Hence the jth derivative f (j) is the constant function zero, if j is chosen

big enough. On the other hand, the jth derivative dj

dxj sinx is equal to ± cosx or
± sinx, and is therefore never a constant. This proves that the function sin is not
a polynomial.

Similarly, a real-valued function F of two variables will be defined to be a poly-
nomial if there exist real numbers aij , i = 0, ...,m and j = 0, ..., n, such that, for
every pair of real numbers x and y,

F (x, y) =

m∑
i=0

n∑
j=0

aijx
iyj .

An alternative formulation, which avoids writing the double sum, is to define a
polynomial in two variables to be a function which is the sum of functions each one
of which is defined by an expression axiyj , where a is a constant, and i and j are
nonnegative integers. Examples of polynomials in two variables are those functions
defined by

(a) F (x, y) = x3 + 2x2y + xy3,
(b) G(x, y) = (x+ y)yx,
(c) f(x, y) = 17xy,
(d) H(x, y) = 7x+ 2,
(e) h(x, y) = 3.

We come now to the two principal definitions of this section. A function f
of one variable is said to be an algebraic function if there exists a polynomial
F in two variables such that F (x, f(x)) = 0, for every x in the domain of f . A
transcendental function is one which is not algebraic.
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Example 128. The two functions

(a) f(x) =
x2 + 1

2x3 − 1
, (b) g(x) =

√
x3 + 2,

are both algebraic. To show that f is an algebraic function, let y = x2+1
2x3−1 . Then

y(2x3 − 1) = x2 + 1, or, equivalently, 2x3y − y − x2 − 1 = 0. Hence if we let F be
the polynomial defined by

F (x, y) = 2x3y − y − x2 − 1,

it will be true that F (x, f(x)) = 0. This is not surprising, since the polynomial
F (x, y) was invented precisely to make the last equation true. Checking, we get

F (x, f(x)) = 2x3
x2 + 1

2x3 − 1
− x2 + 1

2x3 − 1
− x2 − 1

= (2x3 − 1)
x2 + 1

2x3 − 1
− x2 − 1

= x2 + 1− x2 − 1 = 0.

The function g can be shown to be algebraic by letting y =
√
x3 + 2. Squaring

both sides, we obtain y2 = x3 + 2, which is equivalent to y2 − x3 − 2 = 0. Hence if
we define the polynomial F by the equation

F (x, y) = y2 − x3 − 2,

then F (x, g(x)) = 0. Checking, we have

F (x, g(x)) = (
√
x3 + 2)2 − x3 − 2

= x3 + 2− x3 − 2 = 0.

A rational function is one which can be expressed as the ratio of two polynomials.
That is, a function f of one variable is rational if there exist polynomials p and q

of one variable such that f(x) = p(x)
q(x) . The technique used in Example 1 to show

that the function x2+1
2x3−1 is algebraic can be applied to any rational function of one

variable. Thus we have the theorem

6.5.1. Any rationalfunction f of one variable is algebraic.

Proof. Since f is rational, there exist polynomials p and q such that f(x) = p(x)
q(x) .

Letting y = p(x)
q(x) , we obtain yq(x) = p(x), which is equivalent to yq(x)− p(x) = 0.

The function F defined by

F (x, y) = yq(x)− p(x)

is a polynomial in x and y. Substituting f(x) for y, and then p(x)
q(x) for f(x), we

obtain

F (x, f(x)) = f(x)q(x)− p(x)

=
p(x)

q(x)
q(x)− p(x)

= p(x)− p(x) = 0,
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which completes the proof.

The function g defined by g(x) =
√
x3 + 2 is an example of an algebraic function

which is not rational. (A simple proof of this fact is suggested in Problem 2.) Thus
the set of all rational functions of one variable is a proper subset of the larger set
of all algebraic functions of one variable.

It is by no means obvious that transcendental functions exist. However, we have
actually encountered quite a few such functions already. Although a proof of the
next theorem is too advanced to give in this book, it is important to know that it
is true.

6.5.2. The following functions are transcendental:

(i) lnx,

(ii) ex,

(iii) ax, forany a > 0, a 6= 1,

(iv) loga x, forany a > 0, a 6= 1,

(v) sinx, cosx, tanx, cotx, secx, cscx,

(vi) arcsinx, arccosx, arctanx, arccotx, arcsecx, arccscx.

Another theorem [not so deep as (5.2), but still beyond the scope of this book]
states that if f is an algebraic function, then the derivative f ′ is also algebraic.
However, the converse is false. In particular, we know that

d

dx
lnx =

1

x
,

and 1
x is not only algebraic, but also rational. In addition, the formulas in Section

4 for the derivatives of the inverse trigonometric functions show that every one of
these six transcendental functions has a derivative which is algebraic.
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Problems

1. In each of the following examples identify the function f as a polynomial
or not. If it is not a polynomial, give a reason. (Consider such things as
the vanishing of higher-order derivatives, or the behavior of f , or of some
derivative f (j), near a point of discontinuity.)

(a) f(x) = 1
x

(b) f(x) = x−1
x+1

(c) f(x) = πx2 + ex+ 2

(d) f(x) = x
2
3 + x

1
3

(e) f(x) =
√
x2 − 2

(f) f(x) = x(x2 − 7)

(g) f(x) = ex

(h) f(x) = tanx.

2. Prove that the algebraic function g defined by g(x) =
√
x3 + 2 is not rational.

[Hint: Suppose it is rational. Then there exist polynomials p and q such that√
x3 + 2 = p(x)

q(x) , for every x ≥ − 3
√

2. But then

x3 + 2 =

[
p(x)

q(x)

]2
,

or, equivalently,

(x3 + 2)[q(x)]2 − [p(x)]2 = 0, for all x ≥ − 3
√

2.

The left side of this equation is a polynomial which is not identically zero.
(Why?) How many roots can such a polynomial have?]

3. Prove that each of the following functions f is algebraic by exhibiting a poly-
nomial F (x, y) and showing that F (x, f(x)) = 0.

(a) f(x) =
√

x+1
x−1

(b) f(x) = d
dx arctanx

(c) f(x) = d
dx arcsinx

(d) f(x) = d
dxarcsec x

(e) f(x) = ln 5x

(f) f(x) = 2x+
√

4x2 − 1.
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6.6 Complex Numbers.

Since the square of a real number is never negative, the equation x2 = −1 has
no solution in the set R of all real numbers. However, we shall show that R can
be considered as a subset of a larger set C which has the following properties:
(i) The sum and product of any two elements in C are defined, and addition and
multiplication obey the ordinary laws of algebra. (ii) There is an element i in C
such that i2 = −1. (iii) Every element in C can be written in the form x + iy,
where x and y are real numbers. The elements of the set C are called complex
numbers. Let us assume, for the moment, that the existence of C, obeying the
three properties, has already been demonstrated. Then the sum of two complex
numbers x1 + iy1 and x2 + iy2 is given by

(x1 + iy1) + (x2 + iy2) = (x1 + x2) + i(y1 + y2). (6.5)

For the product, we have

(x1 + iy1)(x2 + iy2) = x1x2 + iy1x2 + iy2x1 + i2y1y2

= x1x2 + i(x1y2 + x2y1) + i2y1y2.

However, since i2 = −1, we get

(x1 + iy1)(x2 + iy2) = (x1x2 − y1y2) + i(x1y2 + x2y1). (6.6)

For example,

(2 + i) + (5− i3) = 7− i2,
(2 + i)(5− i3) = 10 + i5− i6− i23

= 10− i− (−1)3

= 13− i.

We turn now to the task of showing that there is a set C having the properties
listed in (i), (ii), and (iii). We shall take for C the set R2 of all ordered pairs of
real numbers, i.e., the xy-plane. Thus a complex number is by definition an ordered
pair (x, y) of real numbers. Up to this point we have not ascribed any algebraic
structure to the xy-plane, and so we must define what we mean by addition and
multiplication of ordered pairs of real numbers. Later in this section we shall show
how to express the ordered pair (x, y) in the traditional form x + iy. Anticipating
this, however, we use equations (1) and (2) to motivate the definitions of the sum
and product of ordered pairs. We define

(x1, y1) + (x2, y2) = (x1 + x2, y1 + y2), (6.7)

(x1, y1)(x2, y2) = (x1x2 − y1y2, x1y2 + x2y1). (6.8)

It was stated that addition and multiplication of complex numbers are to obey
the ordinary laws of algebra. By this we mean that the following six propositions
are true. The basic algebraic properties which they describe are the same as those
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for the real numbers, and these six statements should be compared with the corre-
sponding list on page 2. Abbreviating (x1, y1), (x2, y2), and (x3, y3) by z1, z2, and
z3, respectively, we have

6.6.1. ASSOCIATIVE LAWS.

z1 + (z2 + z3) = (z1 + z2) + z3, z1(z2z3) = (z1z2)z3.

6.6.2. COMMUTATIVE LAWS.

z1 + z2 = z2 + z1, z1z2 = z2z1.

6.6.3. DISTRIBUTIVE LAW.

(z1 + z2)z3 = z1z3 + z2z3.

6.6.4. EXISTENCE OF IDENTITIES. The two complex numbers 0′ = (0, 0)
and 1′ = (1, 0) have the properties that 0′ + z = z and 1′z = z for every z in C.

6.6.5. EXISTENCE OF SUBTRACTION. For every complex number z =
(x, y), the complex number (−x,−y) is denoted by −z and has the property that
z + (−z) = 0′. [The expression z1 − z2 is an abbreviation for z1 + (−z2).]

6.6.6. EXISTENCE OF DIVISION. For every complex number z = (x, y)

different from 0′, the complex number
(

x
x2+y2 ,

−y
x2+y2

)
is denoted by z−1 or 1

z and

has the property that zz−1 = 1′.
(

The expression z1
z2

is an abbreviation for z1z
−1
2 .)

Proof. The proofs are simple exercises using the definitions and the algebraic prop-
erties of real numbers. We give the proofs of (6.4) and (6.6) and leave the others for
the reader to supply. It is asserted in (6.4) that the complex number (0, 0), which
is abbreviated 0′ (and later simply as 0), is an additive identity. Letting z = (x, y),
we have

0′ + z = (0, 0) + (x, y) = (0 + x, 0 + y) = (x, y) = z,

which proves the assertion. Similarly, for the multiplicative identity 1′ = (1, 0)
(later to be abbreviated simply by 1), we obtain

1′z = (1, 0)(x, y) = (1x− 0y, 1y + x0) = (x, y) = z,

and the proof of (6.4) is complete.
To prove (6.6), let z = (x, y) be a complex number different from 0′ = (0, 0). It

follows that x2 + y2 is positive. Hence the ordered pair
(

x
x2+y2 ,

−y
x2+y2

)
is defined,

and (in anticipation of the proof) is denoted z−1. Multiplying, we get

zz−1 = (x, y)
( x

x2 + y2
,
−y

x2 + y2

)
=

( x2

x2 + y2
− −y2

x2 + y2
,
−xy

x2 + y2
+

xy

x2 + y2

)
=

(x2 + y2

x2 + y2
, 0
)

= (1, 0)

= 1′,

which completes the proof of (6.6).
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Assuming that the remaining four propositions have been proved, we have now
satisfied requirement (i) in the first paragraph of the section for the set C of complex
numbers: Addition and multiplication are defined and obey the ordinary laws of
algebra. But what about the prior assumption that the set R of all real numbers
can be considered a subset of C? Of course, it is not actually a subset, since no
real number is also an ordered pair of real numbers. However, there is a subset
of C which has all the properties of R. This subset is the x-axis, the set of all
complex numbers whose second coordinate is zero. Speaking informally, we shall
identify R with the x-axis in C by identifying an arbitrary real number x with the
complex number (x, 0). Proceeding formally, we define a function whose value for
each real number x is denoted by x′ and defined by x′ = (x, 0). This function sets
up a one-to-one correspondence between the set R and the x-axis in C. Essential,
however, is the fact that this correspondence preserves the algebraic operations of
addition and multiplication. To show that this is so, let x1 and x2 be any two real
numbers. Then, for addition,

x′1 + x′2 = (x1, 0) + (x2, 0) = (x1 + x2, 0) = (x1 + x2)′,

and for multiplication,

x′1x
′
2 = (x1, 0)(x2, 0) = (x1x2 − 0 · 0, x1 · 0 + x2 · 0)

= (x1x2, 0) = (x1x2)′.

It follows that the algebraic properties of the set R of all real numbers are identical
with those of the x-axis in C. It is therefore legitimate to make the identification,
and henceforth we shall denote x′ simply by x. Note that in so doing, the additive
identity 0′ and the multiplicative identity 1′, referred to in (6.4), become simply 0
and 1, respectively.

We now define i to be the complex number (0, 1). Requirement (ii) in the first
paragraph of this section is easily seen to be satisfied:

i2 = (0, 1)(0, 1) = (0 · 0− 1 · 1, 0 · 1 + 0 · 1)

= (−1, 0) = −(1, 0).

Since we have agreed to write (1, 0) = 1′ = 1, we therefore obtain the famous
equation

6.6.7.
i2 = −1.

Requirement (iii) is

6.6.8. If z = (x, y) is an arbitrary complex number, then z = x+ iy.

Proof. The expression x+ iy is an abbreviation for the more formal x′+ iy′. Hence

x+ iy = (x, 0) + (0, 1)(y, 0)

= (x, 0) + (0 · y − 1 · 0, 0 · 0 + y · 1)

= (x, 0) + (0, y) = (x, y)

= z,

completing the proof, and also our construction of the set C of complex numbers.
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Example 129. If z1 = 4+i3, z2 = 4−i3, and z3 = 7−i2, then find z1+z2, z1z2, 3z1−
2z3, and z1z3. These are simply routine exercises involving the addition, subtrac-
tion, and multiplication of complex numbers.

z1 + z2 = (4 + i3) + (4− i3) = 8,

z1z2 = (4 + i3)(4− i3) = 16 + i12− i12− i29

= 16− (−1)9 = 25,

3z1 − 2z3 = 3(4 + i3)− 2(7− i2)

= 12 + i9− 14 + i4 = −2 + i13,

z1z3 = (4 + i3)(7− i2) = 28 + i21− i8− i26

= 28− (−1)6 + i13 = 34 + i13.

Example 130. If z1 = 2+ i3 and z2 = 3− i, plot z1, z2, and z1 +z2 on the complex
plane. We have

z1 + z2 = (2 + i3) + (3− i) = 5 + i2,

and the three points are shown in Figure 19.

Figure 6.18:

A complex number is a point in the xy-plane and can be indicated in a picture
by a dot. Another useful geometric representation of z is an arrow with its tail at
the origin and its head at the point z. We have drawn these arrows in Figure 19.
Note that if P is the parallelogram whose adjacent sides are the arrows representing
z1 and z2, then the diagonal of P which has the origin as an endpoint is the arrow
representing the sum z1 + z2. The definition of addition in C implies that this
parallelogram principle is valid for every pair of complex numbers. It provides a
good method for adding complex numbers geometrically.

When the complex number i was first introduced in mathematics, it was regarded
as highly mysterious and was called an imaginary number, and this terminology
has survived. If z = x + iy is an arbitrary complex number, then by definition x
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is the real part of z, and y is the imaginary part of z. Note that the imaginary
part of a complex number is a real number. A complex number whose real part is
zero, i.e., one that lies on the y-axis, is called pure imaginary. It is important to
remember that

6.6.9. Two complex numbers are equal if and only if their real parts are equal and
their imaginary parts are equal. That is, x1 + iy1 = x2 + iy2 if and only if x1 = x2
and y1 = y2.

Proof. We know that x1 + iy1 = (x1, y1) and x2 + iy2 = (x2, y2). But two ordered
pairs are equal if and only if their first coordinates are equal and their second
coordinates are equal, and so (6.9) is proved. Another proof, which uses only the
algebraic properties of complex numbers rather than their explicit construction as
ordered pairs, is the following. Suppose that x1 + iy1 = x2 + iy2. Then x1 − x2 =
i(y2 − y1), and squaring both sides we obtain

(x1 − x2)2 = i2(y2 − y1)2 = −(y2 − y1)2.

The left side is a nonnegative real number, and the right side is a nonpositive real
number. They can be equal only if both are zero. Hence x1 = x2 and y2 = y1. The
converse proposition is, of course, trivial.

The absolute value, or modulus, of a complex number z = x + iy is a non-
negative real number denoted by |z| and defined by

|z| =
√
x2 + y2.

The geometric significance of |z| is that it is the distance between the point z and
the origin in the complex plane. If z is represented by an arrow, then |z| is the
length of the arrow. Note that if z is real, i.e., if its imaginary part is equal to zero,
then the absolute value of z is simply its absolute value as a real number. Thus, if
z = x+ iy and y = 0, then

|z| =
√
x2 + 02 =

√
x2 = |x|.

An important property of the absolute value is the following.

6.6.10. The absolute value of the product of two complex numbers is the product of
their absolute values; i.e., |z1z2| = |z1||z2|.

Proof. Let z1 = x1 + iy1 and z2 = x2 + iy2. Then we have z1z2 = x1x2 − y1y2 +
i(x1y2 + x2y1). Hence, by the definition of absolute value,

|z1z2|2 = (x1x2 − y1y2)2 + (x1y2 + x2y1)2.

Simplifying, we get

|z1z2|2 = x21x
2
2 − 2x1x2y1y2 + y21y

2
2 + x21y

2
2 + 2x1x2y1y2 + x22y

2
1

= x21(x22 + y22) + y21(x22 + y22)

= (x21 + y21)(x22 + y22)

= |z1|2|z2|2.

Thus |z1z2| = |z1|2|z2|2, and the proof is completed by taking the positive square
root of each side of the equation.
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As an illustration of Theorem (6.10), consider the complex numbers and z2
shown in Figure 19. The product z1z2 is equal to

z1z2 = (2 + i3)(3− i) = 6 + i9− i2− i23

= 9 + i7.

The absolute values are

|z1| =
√

22 + 32 =
√

13,

|z2| =
√

32 + (−1)2 =
√

10,

|z1z2| =
√

92 + 72 =
√

130,

which is in agreement with (6.10).
If z = x+ iy, then the complex conjugate of z, denoted by z̄, is defined to be

the complex number
z̄ = x− iy.

The product of a complex number and its complex conjugate is always a nonnegative
real number, since

zz̄ = (x+ iy)(x− iy) = x2 + y2.

Since x2 + y2 = |z|2, we obtain the formula

zz̄ = |z|2.

The complex conjugate is a useful tool for computing the real and imaginary
parts of the quotient of two complex numbers. If z1 and z2 are given and if z2 6= 0,
then

z1
z2

=
z1
z2

z̄2
z̄2

=
z1 z̄2
|z2|2

and the denominator of the right side is a real number.

Example 131. Compute the real and imaginary parts of the complex number
7 + i2. The complex conjugate of 7− i2 is the number 7 + i2. Hence

5 + i3

7− i2
=

5 + i3

7− i2
7 + i2

7 + i2
=

(5 + i3)(7 + i2)

72 + 22
.

Since (5 + i3)(7 + i2) = 35− 6 + i21 + i10 = 29 + i31, we obtain

5 + i3

7− i2
=

29 + i31

53
=

29

53
+ i

31

53
.

Thus the real part is 29
53 , and the imaginary part is 31

53 .
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Problems

1. Prove Proposition ??, ??, ??, and ??.

2. Perform each of the indicated operations and write the answer in the form
x+ iy.

(a) (3 + i4) + (7− i3)

(b) (−2 + i
√

2) + (−2− i
√

2)

(c) (−2 + i
√

2)(−2− i
√

2)

(d) 3−i7
2+i

(e) (a+ ib)(2a− i2b)
(f) 2(4− i3) + 7(−2 + i5)

(g) −3+i44−i3

(h) 7+i
−2−i5

(i) a+ib
3a−i3b

(j) −2−i2−i

(k) 25
3−i4

(l) (2 + i7)(2− i5).

3. Let z1 = 2 + i3, z2 = −1− i, and z3 = i. Plot each of the following complex
numbers in the complex plane.

(a) z1

(b) z2

(c) z1 + z2

(d) z1z3

(e) z1 − 2z2

(f) z1
z2

.

4. Find the complex conjugate of each of the following complex numbers.

(a) 2− i3
(b) 5 + i4

(c) (2− i3) + (5 + i4)

(d) (2− i3)(5 + i4)

(e) 4(2− i3)

(f) −7

(g) 2i.

5. (a) In Problem ??, compute the sum of conjugates formed in ?? and ??, and
compare with the conjugate of the sum in ??.

(b) In Problem ??, compute the product of the conjugates found in ?? and
??, and compare with the conjugate of the product found in ??.
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(c) In Problem ??, multiply the conjugate found in ?? by 4, and compare
with the answer found in ??.

6. For any complex numbers z1 and z2, prove that

(a) z1 + z2 = z1 + z2

(b) z1z2 = z1 z2

(c) kz1 = kz1, k real.

7. If a is real and positive and z complex, prove that |az| = a|z|.

8. (a) Prove that the sum and product of two complex numbers which are
conjugates of each other are real.

(b) Prove that the difference of two complex numbers which are conjugates
of each other is pure imaginary.

9. Graph all points z satisfying

(a) |z| = 2

(b) |z| < 3

(c) |z| > 1

(d) |z| ≤ 2

(e) 2 < |z| < 4

(f) |z − 2| = 2

(g) |z − z0| = 3, for a fixed z0

(h) 1 ≤ |z − 3| ≤ 2.

10. Given two complex numbers z1 and z2, plot them and give a geometric inter-
pretation of |z1 − z2|.

11. (a) Show that −1 has two square roots in C.

(b) Show that every nonzero real number has two square roots.
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6.7 The Complex Exponential Function ez.

Consider the function ϕ defined by

ϕ(x) = cosx+ i sinx,

for every real number x. This is a complex-valued function of a real variable. The
domain of ϕ is the set R of all real numbers. For every real number x, we have

|ϕ(x)| =
√

cos2 x+ sin2 x =
√

1 = 1.

It follows that ϕ(x) is a point on the unit circle in the complex plane, i.e.,
the circle with center at the origin and radius 1. Conversely, every point on the
unit circle is equal to (cosx, sinx), for some real number x, and we know that
(cosx, sinx) = cosx+ i sinx. It follows that the range of ϕ is the unit circle.

The function ϕ has the following properties:

6.7.1.
(7.1) ϕ(0) = 1.
(7.2) ϕ(a)ϕ(b) = ϕ(a+ b).

(7.3) ϕ(a)
ϕ(b) = ϕ(a− b).

(7.4) ϕ(−a) = 1
ϕ(a) .

Proof. The proofs are completely straightforward. Thus (7.1) follows from the equa-
tions

ϕ(0) = cos 0 + i sin 0 = cos 0 = 1.

To prove (7.2), we write

ϕ(a)ϕ(b) = (cos a+ i sin a)(cos b+ i sin b)

= cos a cos b− sin a sin b+ i(sin a cos b+ cos a sin b).

The trigonometric identities for the cosine and sine of the sum of two numbers then
imply that

ϕ(a)ϕ(b) = cos(a+ b) + i sin(a+ b),

and the right side is by definition equal to ϕ(a + b). Thus (7.2) is proved. As a
special case of (7.2), we have

ϕ(a− b)ϕ(b) = ϕ(a− b+ b) = ϕ(a).

On dividing by ϕ(b), which is never zero, we get (7.3). The last result, (7.4), is
obtained by taking a = 0 in (7.3) and then substituting 1 for ϕ(0) in accordance
with (7.1). Thus

ϕ(0)

ϕ(b)
= ϕ(0− b),

1

ϕ(b)
= ϕ(−b).
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The above four properties of ϕ are also shared by the real-valued exponential
function exp [we recall that exp(x) = ex]. This fact suggests the possibility of
extending the domain and range of exp into the complex plane. That is, it suggests
that the functions ϕ and exp can be combined to give a complex-valued exponential
function of a complex variable which will have the property that when its domain
is restricted to the real numbers, it is simply exp. We define such a function now.
For every complex number z = x+ iy, let Exp be the function defined by

Exp(z) = exp(x)ϕ(y).

Thus
Exp(z) = ex(cos y + i sin y).

If z = x + i0, then z = x and Exp(z) = exp(x)ϕ(0) = exp(x). Hence the function
Exp is an extension of the function exp.

It is a routine matter to show that the function Exp has the exponential prop-
erties listed above for ϕ. Following the practice for the real-valued exponential, we
shall write Exp(z) as ez. In this notation therefore, if z = x + iy, the definition
reads

ez = ex(cos y + i sin y).

The exponential properties are

6.7.2.
(7.1′) e0 = 1.
(7.2′) ez1ez2 = ez1+z2 .

(7.3′) ez1

ez2 = ez1−z2 .
(7.4′) 1

ez = e−z.

Proof. The proofs simply use the fact that the functions exp and ez separately have
these properties. Thus

e0 = e0+i0 = exp(0)ϕ(0) = 1 · 1 = 1.

Letting z1 = x1 + iy1 and z2 = x2 + iy2, we have

ez1ez2 = exp(x1)ϕ(y1) exp(x2)ϕ(y2)

= exp(x1 + x2)ϕ(y1 + y2).

Since z1 + z2 = (x1 + x2) + i(y1 + y2), the right side is by definition equal to
Exp(z1 + z2), which is ez1+z2 . The last two propositions, (7.3’) and (7.4’), are
corollaries of (7.1’) and (7.2’) in exactly the same way that (7.3) and (7.4) follow
from (7.1) and (7.2).

If x is an arbitrary real number, then

eix = e0+ix = e0(cosx+ i sinx).

Thus we have the equation

6.7.3.
eix = cosx+ i sinx, for every real number x.
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Figure 6.19:

Thus if x is any real number, the complex number eix is the ordered pair
(cosx, sinx). Hence eix is the point on the unit circle obtained by starting at
the complex number 1 and measuring along the circle at a distance equal to the
absolute value of x, measuring in the counterclockwise direction if x is positive and
in the clockwise direction if it is negative (see Figure 20). In terms of angle, x is
the radian measure of the angle whose initial side is the positive half of the real axis
and whose terminal side contains the arrow representing z.

Letting x = π in (7.5), we get eiπ = cosπ + i sinπ. Since cosπ = −1 and
sinπ = 0, it follows that eiπ = −1, which is equivalent to the equation

eiπ + 1 = 0.

This equation is most famous since it combines in a simple formula the three special
numbers π, e, and i with the additive and multiplicative identities 0 and 1.

One of the most important features of the complex exponential function is that
it provides an alternative way of writing complex numbers. We have

6.7.4. Every complex number z can be written in the form z = |z|eit, for some real
number t. Furthermore, if z = x + iy and z 6= 0, then z = |z|eit if and only if
cos t = x

|z| and sin t = y
|z| .

Proof. If z = 0, then |z| = 0, and so 0 = z = |z|eit, for every real number t. Next
we suppose that z 6= 0. Then |z| 6= 0, and z

|z| is defined and lies on the unit circle

because

| z
|z|
| = |z|
|z|

= 1.

Hence there exists a real number t such that z
|z| = eit, and this proves the first

statement in the theorem. Suppose that z = x + iy and that z 6= 0. If z = |z|eit,
then

x+ iy = |z|eit = |z|(cos t+ i sin t).

Two complex numbers are equal if and only if their real parts are equal and their
imaginary parts are equal. Hence x = |z| cos t and y = |z| sin t. Since |z| 6= 0, we
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conclude that cos t = x
|z| and sin t = y

|z| . Conversely, if we start from the last two

equations, it follows that

x+ iy = |z|(cos t+ i sin t).

The left side is equal to z, and the right side to |z|eit. This completes the proof of
the theorem.

A complex number written as z = |z|eit is said to be in exponential form.
The number |z| is, of course, the absolute value of z, and the number t is called the
angle, or argument, of z. The latter is not uniquely determined by z. Since the
trigonometric functions sin and cos have period 2π, it follows that

z = |z|eit = |z|ei(t+2πn),

for every integer n.
Consider two complex numbers written in exponential form:

z1 = |z1|eit1 and z2 = |z2|eit2 .

The product and ratio are given by

z1z2 = |z1||z2|eit1eit2 ,
z1
z2

=
|z1|
z2

eit1

eit2
.

Hence by formulas (7.2’) and (7.3’) for the product and ratio of exponentials, we
have

z1z2 = |z1||z2|ei(t1+t2),
z1
z2

= ei(t1−t2).

That is, two complex numbers are multiplied by multiplying their absolute values
and adding their angles. They are divided by dividing their absolute values and
subtracting their angles.

Example 132. Let z1 = 3 + i4 and z2 = −2i. Express z1, z2, z1z2, and z1
z2

in the

exponential form |z|eit, and plot the resulting arrows in the complex plane. To
begin with,

|z1| =
√

32 + 42 = 5,

|z2| =
√

02 + (−2)2 = 2.

We next seek a real number t1 such that cos t1 = 3
5 and sin t1 = 4

5 , and also a
number t2 such that cos t2 = 0 and sin t2 = −1. These are given by

t1 = arccos
3

5
= 0.93 (approximately),

t2 = arcsin(−1) = −π
2
.

Then
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z1 = |z1|eit1 = 5ei(0.93),

z2 = |z2|eit2 = 2e−i(π/2).

Since t1 + t2 = 0.93− π
2 = −0.64 (approximately) and t1− t2 = 0.93−

(
−π2
)

= 2.50

(approximately), we obtain

z1z2 = |z1||z2|ei(t1+t2) = 10e−i(0.64),

z1
z2

=
|z1|
|z2|

ei(t1−t2) =
5

2
ei(2.50).

Figure 6.20:

The arrows representing z1, z2, z1z2 and z1
z2

are shown in Figure 21. To locate
these numbers geometrically using a ruler and protractor marked off in degrees, we
would compute

t1 = 0.93 radian = 53 degrees,

t2 = −π
2

radians = −90 degrees,

t1 + t2 = −0.64 radian = −37 degrees,

t1 − t2 = 2.50 radians = 143 degrees.
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Of course, we can find the real and imaginary parts of z1z2 and z1
z2

by the compu-
tations

z1z2 = (3 + i4)(−2i) = 8− i6,
z1
z2

=
3 + i4

−2i
=

3 + i4

−2i

2i

2i
=
−8 + i6

4
= −2 + i

3

2
.

If z is a complex number, then zn can be defined inductively, for every nonneg-
ative integer n, by

z0 = 1, (6.9)

zn = z(zn−1), for n > 0. (6.10)

Another useful property of the complex exponential function is

6.7.5.

(ez)n = enz, for every nonnegative integer n.

Proof. By induction. If n = 0, then (ez)n = (ez)0. Since ez is a complex number,
(ez)0 = 1, by equation (1). Moreover, in this case, enz = e0z = 1, by (7.1’). Next
suppose that n > 0. By equation (2), we have (ez)n = ez(ez)n−1, and by hypothesis
of induction (ez)n−1 = e(n−1)z = e(n−1)z. Hence, by (7.2’),

(ez)n = eze(n−1)z = ez+(n−1)z,

and, since z + (n− 1)z = nz, the proof is finished.

Let z be a complex number and n a positive integer. A complex number w is
said to be an nth root of z if wn = z. We shall now show that

6.7.6. If z 6= 0, then there exist n distinct nth roots of z.

Proof. Let us write z in exponential form: z = |z|eit. By |z|1/n we mean the positive
nth root of the real number |z| (which we assume exists and is unique). Consider
the complex number

w0 = |z|1/nei(t/n).

It is easy to see that w0 is an nth root of z, since

wn0 = (|z|1/n)n(ei(t/n))n

= |z|eit

= z.

However, w0 is not the only nth root. We have already observed that

z = |z|eit = |z|ei(t+2πk),

for every integer k. If we set

wk = |z|1/nei
i+2πk
n ,
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then all these numbers are seen to be nth roots of z, since each one satisfies the
equation wnk = z. However, they are not all different. Note that wk+1 is equal to
the product wke

i(2π/n). The angle of ei(2π/n) is 2π
n radians, and 2π

n is one nth the
entire circumference of the unit circle. Thus wk+1 is obtained from wk by adding an
angle of 2π

n radians, or, equivalently, by rotating wk exactly 1
n of an entire rotation.

If we begin with wk and form wk+1, wk+2, ... by successive rotations, when we get
to wk+n we will be back at wk, where we started. Thus there are only n distinct
complex numbers among all the w’s. In particular,

wk = |z|1/nei
i+2πk
n , k = 0, ..., n− 1,

are n distinct nth roots of z. This completes the proof.

An nth root of z is a solution of the complex polynomial equation wn−z = 0. It
is a well-known theorem of algebra that a polynomial equation of degree n cannot
have more than n roots. Hence we can strengthen the statement of (7.8) to read
that every nonzero complex number z has precisely n distinct nth roots.

Figure 6.21:

Example 133. Find the three cube roots of the complex number z = 1 + i, and
plot them in the complex plane. Writing z in exponential form, we have

z =
√

2ei(π/4)

(see Figure 22). Hence the three cube roots are

wk = (
√

2)1/3ei
π/4+2πk

3 , k = 0, 1, 2.

Since (
√

2)1/3 = 21/6 = 1.12 (approximately) and 1
3

(
π
4

)
radius = 15 degrees, we see

that w0 is the complex number lying on the circle of radius 1.12 about the origin
and making an angle of 15 degrees with the positive x-axis. The other two roots
lie on the same circle and have angles of 15 + 120 degrees and 15 + 240 degrees,
respectively. The three roots are thus 6

√
2ei(π/12), 6

√
2ei(3π/4), and 6

√
2ei(17π/12).
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Problems

1. Write each of the following complex numbers in the exponential form |z|eit.

(a) 1 + i

(b) 1− i
(c) 1 + i

√
3

(d) −2
√

3 + 2i

(e) −5

(f) ex, where z = 2 + ipi4
(g) 5

(h) i.

2. Let z1 =
√

3 + i and z2 = 1− i. Write each of the following complex numbers
in the exponential form |z|eit and plot it in the complex plane.

(a) z1

(b) z2

(c) z1z2

(d) z1
z2

(e) 2z1

(f) (z1)6.

3. Find the real and imaginary parts of each of the following complex numbers.

(a) eiπ

(b) 2ei(
π
4 )

(c) eiπ2ei(
π
4 )

(d) eiπ + 2ei(
π
4 )

(e)
√

34eit, where t = arcsin 5√
34

(f)
√

13eit, where sin t = −2√
13

.

4. If z1 = |z1|eit, what is the exponential form of its complex conjugate z1?

5. Derive ?? and ?? using ?? and ??.

6. Let n be a positive integer, and let zn be defined as in the text. If z 6= 0,
define z−n = 1

zn , and then show that (ez)−n = e−nz. As a result, we know
that Theorem ?? holds for all integers.

7. Find and plot the nth roots of z in each of the following cases.

(a) n = 3 and z = 8i

(b) n = 2 and z = i

(c) n = 3 and z = 2

(d) n = 4 and z = 1
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(e) n = 5 and z = 2i

(f) n = 3 and z = 1 + i
√

3.

8. How would you define the function 5z?

9. (a) Using the equation eix = cosx + i sinx and the fact that (eix)n = einx,
prove that

cosnx+ i sinnx = (cosx+ i sinx)n.

This is known as de Moivre’s Formula.

(b) Using de Moivre’s Formula and the Binomial Theorem, find trigonomet-
ric identities for cos 3x and sin 3x in terms of cosx and sinx.

10. Every complex-valued function f of a real variable determines two real-valued
functions f1 and f2 of a real variable defined by

f1(x) = real part of f(x),

f2(x) = imaginary part of f(x).

Thus f(x) = f1(x) + if2(x) for every x in the domain of f . We define the
derivative f ′ by the formula

f ′(x) = f ′1(x) + if ′2(x).

Applying this definition to the function f(x) = eix, show that

d

dx
eix = ieix.
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6.8 Differential Equations.

In this section we shall show how to obtain the general solution of any differential
equation of the form

d2y

dx2
+ a

dy

dx
+ by = 0, (6.11)

where a and b are real constants. Differential equations of this type occur frequently
in mechanics and also in the theory of electric circuits. Equation (1) is a second-

order differential equation, since it contains the second derivative d2y
dx2 but no

higher derivative. It is called linear because each one of y, dydx , and d2y
dx2 occurs, if

at all, to the first power. That is, if we set dy
dx = z and d2y

dx2 = w, then (1) becomes
w + az + by = 0, and the left side is a linear polynomial, or polynomial of first
degree, in w, z, and y. A secondorder linear differential equation more general than
(1) is

d2y

dx2
+ f(x)

dy

dx
+ g(x)y = h(x),

where f , g, and h are given functions of x. Equation (1) is a special case, called
homogeneous, because h is the zero function, and said to have constant co-
efilcients, since f and g are constant functions. Thus the topic of this section be-
comes: the study of second-order, linear, homogeneous differential equations with
constant coefficients.

An important and easily proved property of differential equations of this kind is
the following:

6.8.1. If y1 and y2 are any two solutions of the differential equation (1), and if c1
and c2 are any two real numbers, then c1y1 + c2y2 is also a solution.

Proof. The proof uses only the elementary properties of the derivative. We know
that

d

dx
(c1y1 + c2y2) = c1

dy1
dx

+ c2
dy2
dx

.

Hence

d2

dx2
(c1y1 + c2y2) =

d

dx

(
c1
dy1
dx

+ c2
dy2
dx

)
= c1

d2y1

dx2
+ c2

d2y2

dx2
.

To test whether or not c1y1 + c2y2 is a solution, we substitute it for y in the
differential equation:

d2

dx2
(c1y1 + c2y2) + a

d

dx
(c1y1 + c2y2) + b(c1y1 + c2y2)

= c1
d2y1
dx2

+ c2
d2y2
dx2

+ ac1
dy1
dx

+ ac2
dy2
dx

+ bc1y1 + bc2y2

= c1

(d2y1
dx2

+ a
dy1
dx

+ by1

)
+ c2

(d2y2
dx2

+ a
dy2
dx

+ by2

)
.
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The expressions in parentheses in the last line are both zero because, y1 and y2 are
by assumption solutions of the differential equation. Hence the top line is also zero,
and so c1y1 + c2y2 is a solution. This completes the proof.

It follows in particular that the sum and difference of any two solutions of (1)
is a solution, and also that any constant multiple of a solution is again a solution.
Finally, note that the constant function 0 is a solution of (1) for any constants a
and b.

In Section 5 of Chapter 5 we found that the general solution of the differential
equation dy

dx +ky = 0 is the function y = ce−kx, where c is an arbitrary real number.
This differential equation is first-order, linear, homogeneous, and with constant
coefficients. Let us see whether by any chance an exponential function might also

be a solution of the second-order differential equation d2y
dx2 + a dydx + by = 0. Let

y = erx, where r is any real number. Then

dy

dx
= rerx,

d2y

dx2
= r2erx.

Hence

d2y

dx2
+ a

dy

dx
+ by = r2erx + arerx + berx

= (r2 + ar + b)errx.

Since erx is never zero, the right side is zero if and only if r2 + ar+ b = 0. That is,
we have shown that

6.8.2. The function erx is a solution of d2y
dx2 + a dydx + by = 0 if and only if the real

number r is a solution of t2 + at+ b = 0.

The latter equation is called the characteristic equation of the differential
equation.

Example 134. Consider the differential equation d2y
dx2 − dy

dx − 6y = 0. Its charac-
teristic equation is t2− t− 6 = 0. Since t2− t− 6 = (t− 3)(t+ 2), the two solutions,
or roots, are 3 and -2. Hence, by (8.2), both functions e3x and e−2x are solutions
of the differential equation. It follows by (8.1) that the function

y = c1e
3x = +c2e

−2x

is a solution for any two real numbers c1 and c2.

The form of the general solution of the differential equation

d2y

dx2
+ a

dy

dx
+ dx+ by = 0

depends on the roots of the characteristic equation t2 + at+ b = 0. There are three
different cases to be considered.

Cuse 1. The characteristic equation has distinct real roots. This is the simplest
case. We have

t2 + at+ b = (t− r1)(t− r2),
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where r1, and r2 are real numbers and r1 6= r2. Both functions er1x and er2x are
solutions of the differential equation, and so is any linear combination c1e

r1x+c2e
r2x.

Moreover it can be shown, although we defer the proof until Chapter 11, that if y
is any solution of the differential equation, then

y = c1e
r1x + c2e

r2x, (6.12)

for some two real numbers c1 and c2. Hence we say that (2) is the general solution.
In Example 1 the function c1e

3x + c2e
−2x is therefore the general solution of the

differential equation d2y
dx2 − dy

dx − 6y = 0.

Case 2. The characteristic equation has complex roots. The roots of t2+at+b =
0 are given by the quadratic formula

r1, r2 =
−a±

√
a2 − 4b

2
.

Since a and b are real, r1 and r2 are complex if and only if a2 − 4b < 0, which we

now assume. Setting α = −a2 and β =
√
4b−a2
2 , we have

r1 = α+ iβ, r2 = α− iβ.

Note that r1, and r2 are complex conjugates of each other.
Motivated by the situation in Case 1, in which r1 and r2 were real, we consider

the complex-valued function c1e
r1x + c2e

r2x, where we now allow c1 and c2, to be
complex numbers. We shall show that

6.8.3. If c1 and c2 are any two complex conjugates of each other and if r1 and r2
are complex solutions of the characteristic equation, then the function

y = c1e
r1x + c2e

r2x

is real-valued. Moreover it is a solution of the differential equation (1).

Proof. Let c1 = γ + iδ and c2 = γ − iδ. Since r1 = α+ iβ and r2 = α− iβ, we have

c1e
r1x + c2e

r2x = (γ + iδ)e(α+iβ)x + (γ − iδ)e(α−iβ)x

= eαx[(γ + iδ)eiβx + (γ − iδ)e−iβx].

Recall that eiβx = cosβx + i sinβx and e−iβx = cos(βx) + isin(−βx) = cosβx −
i sinβx. Substituting, we get

c1e
r1x + c2e

r2x = eαx[(γ + iδ)(cosβx+ i sinβx) + (γ − iδ)(cosβx− i sinβx)]

= eαx(2γ cosβx− 2δ sinβx).

The right side is certainly real-valued, and this proves the first statement of the
theorem. Since γ and δ are arbitrary real numbers, so are 2γ and −2δ. We may
therefore replace 2γ by k1 and −2δ by k2. We prove the second statement of the
theorem by showing that the function

y = eαx(k1 cosβx+ k2 sinβx) (6.13)
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is a solution of the differential equation. Let y1 = eαx cosβx and y2 = eax sinβx.
Since y = k1y1 + k2y2, it follows by (8.1) that it is enough to show that y1 and y2
separately are solutions of the differential equation. We give the proof for y1 and
leave it to the reader to check it for y2. By the product rule,

dy1
dx

=
d

dx
(eαx cosβx) = αeαx cosβx− βeαx sinβx

= eαx(α cosβx− β sinβx).

Hence

d2y1
dx2

= αeαx(α cosβx− β sinβx) + eαx(−αβ sinβx− β2 cosβx)

= eαx[(α2 − β2) cosβx− 2αβ sinβx].

Thus

d2y1
dx2

+ a
dy1
dx

+ by1 = eαx[(α2 − β2) cosβx− 2αβ sinβx]

+aeαx(α cosβx− β sinβx) + beαx cosβx

= eαx([(α2 − β2) + aα+ b] cosβx− β(2α+ a) sinβx).

But, remembering that r1 = α+ iβ and r2 = α− iβ and that these are the roots of
the characteristic equation, we read from the quadratic formula that

α = −a
2
, β =

√
4b− a2

2
.

Hence

(α2 − β2) + aα+ b =
(
−a

2

)2
−
(√4b− a2

2

)2
+ a
(
−a

2

)
+ b

=
a2

4
− b+

a2

4
− a2

2
+ b = 0,

and also
2α+ a = 2

(
−a

2

)
+ a = −a+ a = 0,

whence we get

d2y1
dx2

+ α
dy1
dx

+ by1 = eαx(0 · cosβx− β · 0 · sinβx)

= 0,

and so y1 is a solution. Assuming the analogous proof for y2, it follows that y, as
defined by (3), is also a solution and the proof is complete.

It can be shown, although again we defer the proof, that if y is any real solution
to the differential equation (1), and if the roots r1 and r2 of the characteristic
equation are complex, then

y = c1e
r1x + c2e

r2x, (6.14)
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for some complex number c1 and its complex conjugate c2. Hence, if the roots are
complex, the general solution of the differential equation can be written either as
(4), or in the equivalent form,

y = eαx(k1 cosβx+ k2 sinβx), (6.15)

where r1 = α+ iβ and r2 = a− iβ, and k1 and k2 are arbitrary real numbers. Note
that solutions (2) and (4) look the same, even though they involve different kinds
of r’s and different kinds of c’s.

Example 135. Find the general solution of the differential equation

d2y

dx2
+ 4

dy

dx
+ 13y = 0.

The characteristic equation is t2 + 4t + 13 = 0. Using the quadratic formula, we
find the roots

r1, r2 =
−4±

√
16− 4 · 13

2
=
−4±

√
−36

2
= −2± 3i.

Hence, by (4), the general solution can be written

y = c1e
(−2+3i)x = +c2e

(−2−3i)x,

where c1 and c2 are complex conjugates of each other. Unless otherwise stated,
however, the solution should appear as an obviously real-valued function. That
is, it should be written without the use of complex numbers as in (5). Hence the
preferred form of the general solution is

y = e−2x(k1 cos 3x+ k2 sin 3x).

We now consider the remaining possibility.

Case 3. The characteristic equation t2 + at+ b = 0 has only one root r. In this
case, we have t2 + at+ b = (t− r)(t− r), and the quadratic formula yields r = −a2
and
√
a2 − 4b = 0.

Theorem (8.2) is still valid, of course, and so one solution of the differtial equa-

tion d2y
dx2 + a dydx + by = 0 is obtained by taking y = erx. We shall show that, in the

case of only one root, xerx is also a solution. Setting y = xerx, we obtain

dy

dx
= erx + xrerx = erx(1 + rx),

d2y

dx2
= rerx(1 + rx) + erx · r

= rerx(2 + rx).

Hence

d2y

dx2
+ a

dy

dx
+ by = rerx(2 + rx) + aerx(1 + rx) + bxerx

= erx(2r + r2x+ a+ arx+ bx)

= erx[x(r2 + ar + b) + (a+ 2r)].
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Since r is a root of t2 + at + b, we know that r2 + ar + b = 0. Moreover, we have
seen that r = −a2 , and so a+2r = 0. It follows that the last expression in the above
equations is equal to zero, which shows that the function xerx is a solution of the
differential equation.

Thus erx is one solution, and xerx is another. It follows by (8.1) that, for any
two real numbers c1 and c2, a solution is given by

y = c1xe
rx + c2e

rx = (c1x+ c2)erx,

Conversely, it can be shown that if y is any solution of the differential equation (1),
and if the characteristic equation has only one root r, then

y = (c1x+ c2)erx (6.16)

for some pair of real numbers c1 and c2. The general solution in the case of a single
root is therefore given by (6).

Example 136. Find the general solution of the differential equation 9y′′−6y′+y =
0. Here we have used the common notation y′ and y′′ for the first and second
derivatives of the unknown function y. Dividing the equation by 9 to obtain a
leading coefficient of 1, we get y′′ − 2

3y
′ + 1

9y = 0, for which the characteristic
equation is t2 − 2

3 t + 1
9 = 0. Since t2 − 2

3 t + 1
9 = (t − 1

3 )(t − 1
3 ), there is only one

root, r = 3. Hence
y = (c1x+ c2)ex/3

is the general solution.

The solution of a differential equation can be checked just as simply as an in-
definite integral, by differentiation and substitution.



350 CHAPTER 6. TRIGONOMETRIC FUNCTIONS

Problems

1. Find the general solution of each of the following differential equations. If the
characteristic equation has complex roots, write your solution in trigonometric
form.

(a) 2 dydx + 3y = 0

(b) y′ = 5y

(c) d2y
dx2 + 4 dydx − 5y = 0

(d) d2y
dx2 − 2 dydx + 5y = 0

(e) y′′ + 8y′ + 16y = 0

(f) 4 d
2y
dx2 − 4 dydx + y = 0

(g) y′′ − 7y′ = 0

(h) d2y
dx2 + 4y = 0

(i) d2y
dx2 − 9y = 0

(j) dy
dx + 13y = 0

(k) d2y
dx2 + 13 dydx = 0

(l) d2y
dx2 + dy

dx + y = 0

(m) y′′ + 14y′ + 50y = 0

(n) y′′ + 14y′ + 49y = 0.

2. (a) Find the general solution of the differential equation

d2y

dx2 8

dy

dx
+ 16y = 0.

(b) Find the particular solution y of the equation in part ?? with the property
that y = 2 and dy

dx = 9 when x = 0. (Hint: Use these two conditions to
evaluate the arbitrary constants which appear in the general solution.)

3. Find the particular solution y of each of the following differential equations
such that y and dy

dx have the prescribed values when x = 0.

(a) d2y
dx2 + 4 dydx + 3y = 0, y = 3 and dy

dx = −5 when x = 0.

(b) 25 d
2y
dx2 + 10 dydx + y = 0, y = 1 and dy

dx = 14
5 when x = 0.

(c) d2y
dx2 + 3 dydx = 0, y = 3 and dy

dx = 6 when x = 0.

(d) d2y
dx2 + 2 dydx + 2y = 0, y = 5 and dy

dx = −5 when x = 0.

(e) y′′ + 3y′ + 5y = 0, y(0) = 2 and y′(0) = 6.

4. Show by differentiation and substitution that eαx sinβx is a solution of

d2y

dx2
+ a

dy

dx
+ by = 0 if α+ iβ is a root of t2 + at+ b = 0.
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5. (a) Show that ez = ez.

(b) Use ?? and Problem ?? to show that cez + cez is real for any complex
numbers c and z.

6. (a) Multiply a cosx+b sinx by
√
a2+b2√
a2+b2

and hence show that it can be written

in the form c sin(x+k), where c =
√
a2 + b2, sin k = a√

a2+b2
, and cos k =

b√
a2+b2

.

(b) Multiply a cosx+b sinx by
√
a2+b2√
a2+b2

and hence show that it can be written

in the form c cos(x+ k), where

c =
√
a2 + b2, sin k =

−b√
a2 + b2

, and cos k =
a√

a2 + b2
.

7. (a) Show that y = c1e
αx sin(βx+c2) is a solution of the differential equation

y′′ − 2αy′ + (α2 + β2)y = 0.

(b) Show that y = c1e
αx cos(βx + c2) is also a solution of the differential

equation in ??.

8. For what value of values of r is erx a solution of the third-order linear differ-
ential equation y′′′ − 6y′′ + 5y′ = 0?

9. (a) Solve the homogeneous differential equation

d2y

dx2
− 8

dy

dx
+ 12y = 0.

(b) Substitute the linear polynomial Ax + B for y in the nonhomogeneous
differential equation

d2y

dx2
− 8

dy

dx
+ 12y = 24x+ 12.

Hence find values of A and B for which this polynomial is a particular
solution of the differential equation.

(c) Show that the function which is the sum of the solutions found in ?? and
?? is also a solution to the differential equation in ??.

10. If yh is a solution of d
2y
dx2 +a dydx +by = 0 and yp is a solution of d

2y
dx2 +a dydx +by =

h(x), show that yh + yp is also a solution of

d2y

dx2
+ a

dy

dx
+ by = h(x).
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Chapter 7

Techniques of Integration

We have found indefinite integrals for many functions. Nevertheless, there are many
seemingly simple functions for which we have as yet no method of integration.
Among these, for example, are lnx and

√
a2 − x2, since we have no way of finding∫

lnxdx and
∫ √

a2 − x2dx. In this chapter we shall develop a number of techniques,
each of which will enlarge the set of functions which we can integrate.

7.1 Integration by Parts.

One of the most powerful methods of integration comes from the formula for finding
the derivative of the product of two functions. If u and v are both differentiable
functions of x, we recall that d

dxuv = u dvdx + v dudx . As a consequence, of course, it is

true that u dvdx = d
dxuv − v

du
dx . From this last equation it follows that∫
u
dv

dx
dx =

∫ ( d
dx
uv − v du

dx

)
dx.

Since the integral of a difference is equal to the difference of the integrals, the last
equation is equivalent to∫

u
dv

dx
dx =

∫
d

dx
(uv)dx−

∫
v
du

dx
dx.

But
∫

d
dx (uv)dx = uv+c. Hence, leaving the constant of integration as a by-product

of the last integral, we obtain

7.1.1. ∫
u
dv

dx
dx = uv −

∫
v
du

dx
dx.

This is the formula for the technique of integration by parts. To use it, the
function to be integrated must be factored into a product of two functions, one to
be labeled u and the other dv

dx . If we can recover v from dv
dx , then we hope that∫

v dudxdx is easier to find than
∫
u dvdxdx. As we shall see, the trick is to find the right

factorization. Sometimes it is obvious, and sometimes it is not.

353
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Example 137. Integrate

(a)

∫
lnxdx, (b)

∫
x sinxdx.

For (a), consider the factorization lnx ·1, and let u = lnx and dv
dx = 1. Then du

dx = 1
x

and v = x (we normally do not concern ourselves with a constant of integration at
this point—we look for some v, not the most general v). Integrating by parts, we
have ∫

lnx · 1 · dx = (lnx)(x) −
∫
x · 1x · dx,

l l l l l l
u dv

dx u v v du
dx

or ∫
lnxdx = x lnx−

∫
dx

= x lnx− x+ c.

If this is the correct answer, its derivative will be the integrand. Checking, we get

d

dx
(x lnx− x+ c) = 1 · lnx+ x · 1

x
− 1 + 0

= lnx+ 1− 1 = lnx.

For (b) we have choices. We can try letting u = x and dv
dx = sinx, or we can try

u = sinx and dv
dx = x, or even u = x sinx and dv

dx = 1. Trial and error shows that

the first suggestion works and the others do not. If u = x and dv
dx = sinx, then we

have du
dx = 1 and v = − cosx. The integration-by-parts formula implies that∫

x sinxdx = (x)(− cosx)−
∫

(− cosx)(1)dx,

or ∫
x sinxdx = −x cosx+

∫
cosxdx

= −x cosx+ sinx+ c.

Although it is not true that every function can be written as a product of
functions which will lead to a simplification of integrals—this technique is of little
use if

∫
v dudxdx is not easier to integrate than

∫
u dvdxdx—it is true that many can and

that they can be integrated as were the two integrals in Example 1. The problem is
to find the best function to call u. Sometimes the technique of integration by parts
must be used more than once in a problem.

Example 138. Integrate
∫

(3x2 − 4x + 7)e2xdx. If we let u = 3x2 − 4x + 7 and
dv
dx = e2x, then du

dx = 6x− 4 and v = 1
2e

2x.

∫
(3x2 − 4x+ 7)e2xdx = (3x2 − 4x+ 7)(

1

2
e2x)−

∫
(
1

2
e2x)(6x− 4)dx

=
1

2
(3x2 − 4x+ 7)e2x −

∫
(3x− 2)e2xdx.
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This last integral again involves a product of a polynomial and e2x, so we apply the
technique again. Let u1 = 3x − 2 and dv1

dx = e2x. Then du1

dx = 3 and v1 = 1
2e

2x.
Thus

∫
(3x− 2)e2xdx = (3x− 2)(

1

2
e2x)−

∫
(
1

2
e2x)(3)dx

=
1

2
(3x− 2)e2x − 3

2

∫
e2xdx

=
1

2
(3x− 2)e2x − 3

4
e2x + c1.

Substituting, we have∫
(3x2 − 4x+ 7)e2xdx =

1

2
(3x2 − 4x+ 7)e2x − [

1

2
(3x− 2)e2x − 3

4
e2x + c1]

= [(
3

2
x2 − 2x+

7

2
− 3

2
x+ 1 +

3

4
)e2x] + c

= (
3

2
x2 − 7

2
x+

21

4
)e2x + c.

Generally, faced with the product of a polynomial and a trigonometric or expo-
nential function, it is best to let the polynomial be u and the transcendental function
be dv

dx . In this way, the degree of the polynomial is reduced by one each time the
product is integrated by parts. However, faced with a product of transcendental
functions, the choice may not be quite so obvious.

Example 139. Integrate
∫
e2x cos 3xdx. Let us select e2x as u and cos 3x as dv

dx .

Then du
dx = 2e2x and v = 1

3 sin 3x. Thus

∫
e2x cos 3xdx = (e2x)(

1

3
sin 3x)−

∫
(
1

3
sin 3x)(2e2x)dx

=
1

3
e2x sin 3x− 2

3

∫
e2x sin 3xdx.

At this point a second integration by parts is necessary. The reader should check
that the choice of sin 3x for u will lead back to an identity. We choose e2x for u1
and sin 3x for dv1

dx . Then du1

dx = 2e2x and v1 = − 1
3 cos 3x. Hence∫

e2x sin 3xdx = (e2x)(−1

3
cos 3x)−

∫
(−1

3
cos 3x)(2e2x)dx

= −1

3
e2x cos 3x+

2

3

∫
e2x cos 3xdx.

Substituting, we have

∫
e2x cos 3xdx =

1

3
e2x sin 3x− 2

3

(
−1

3
e2x cos 3x+

2

3

∫
e2x cos 3xdx

)
or
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∫
e2x cos 3xdx =

1

3
e2x sin 3x+

2

9
e2x cos 3x− 4

9

∫
e2x cos 3xdx.

This does not look much simpler, since we have found an integral in terms of itself.
But, if we add 4

9

∫
e2x cos 3xdx to each side of the equation (supplying the constant

of integration at the same time), we have

13

9

∫
e2x cos 3xdx =

e2x

9
(3 sin 3x+ 2 cos 3x) + c1.

Finally, therefore, ∫
e2x cos 3xdx =

e2x

13
(3 sin 3x+ 2 cos 3x) + c.

If we had chosen cos 3x as u in the first integration by parts and sin 3x as u1 in the
second integration by parts, the integral could be found in the same way that we
just found it.

The differential of a function was introduced in Section 6 of Chapter 2 and
was shown to satisfy the equation dF (x) = F ′(x)dx. As a result, the symbol dx
which occurs in an indefinite integral

∫
f(x)dx may be legitimately regarded as

a differential since, if F ′(x) = f(x), then dF (x) = f(x)dx. Moreover, if u is a
differentiable function of x, then

dF (u) = F ′(u)du = f(u)du,

so we write

F (u) + c =

∫
f(u)du.

[see (6.7) on page 216]. Using differentials, we obtain a very compact form for the
formula for integration by parts. Since du = du

dxdx and dv = dv
dxdx, substitution in

(1.1) yields

Theorem (7.1.1’) ∫
udv = uv −

∫
vdu.

We have less to write when we use this form of the formula, but the result is the

same.

Example 140. Integrate
∫
x lnxdx. lf we use (1.1’), we set u = lnx and dv = xdx.

Then du = 1
xdx and v = 1

2x
2. Hence

∫
x lnxdx = (lnx)(

1

2
x2)−

∫
(
1

2
x2)
( 1

x
dx
)

=
1

2
x2 lnx− 1

2

∫
xdx

=
1

2
x2 lnx− 1

4
x2 + c.
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In the remainder of this chapter we shall take full advantage of the streamlined
notation offered by the differential and shall use it freely when making substitutions
in indefinite integrals.

Example 141. Find
∫
x ln(x+ 1)dx. This example illustrates the fact that a judi-

cious choice of a constant of integration ean sometimes simplify the computation.

Set u = ln(x+ 1) and dv = xdx. Then du = 1
x+1dx and we may take v = x2

2 . If we
do this, we have

∫
x ln(x+ 1)dx = ln(x+ 1)

x2

2
−
∫
x2

2

1

x+ 1
dx

=
1

2
x2 ln(x+ 1)− 1

2

∫
x2

x+ 1
dx.

Dividing, we find that x2

x+1 = x− 1 + 1
x+1 , and hence∫

x ln(x+ 1)dx =
1

2
x2 ln(x+ 1)− 1

2

∫ (
x− 1 +

1

x+ 1

)
dx

=
1

2
x2 ln(x+ 1)− 1

2
(
1

2
x2 − x+ ln |x+ 1|) + c

=
1

2
(x2 − 1) ln(x+ 1)− 1

4
x2 +

1

2
x+ c.

[Since ln(x + 1) makes sense only if x + 1 > 0, we have replaced ln |x + 1| by

ln(x + 1).] The same result is reached more quickly if we take v = x2

2 + c = x2+k
2 .

Then integration by parts gives∫
x ln(x+ 1)dx = ln(x+ 1)

x2 + k

2
−
∫
x2 + k

2

1

x+ 1
dx.

Since we have a free choice for k, we shall choose k = −1 and then x2+k
2

1
x+1 =

x2−1
2

1
x+1 = x−1

2 . The problem becomes

∫
x ln(x+ 1)dx = ln(x+ 1)

x2 − 1

2
−
∫
x− 1

2
dx

=
1

2
(x2 − 1) ln(x+ 1)− 1

4
x2 +

1

2
x+ c.

The method of integration by parts can frequently be used to obtain a recursion
formula for one integral in terms of a simpler one. As an example, we derive the
useful identity

7.1.2. For every integer n ≥ 2,∫
cosn xdx =

cosn−1 x sinx

n
+
n− 1

n

∫
cosn−2 xdx.
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Proof. We write cosn x as the product cosn−1 x cosx, and let u = cosn−1 x and
dv = cosxdx. Then v = sinx and du = (n − 1) cosn−2 x(− sinxdx) = −(n −
1) cosn−2 x sinxdx. Hence∫

cosn xdx = cosn−1 x sinx−
∫

sinx[−(n− 1) cosn−2 x sinxdx]

= cosn−1 x sinx+ (n− 1)

∫
cosn−2 x sin2 xdx.

Replacing sin2 x by 1− cos2 x, the equation becomes∫
cosn xdx = cosn−1 x sinx+ (n− 1)

∫
cosn−2 x(1− cos2 x)dx

= cosn−1 x sinx+ (n− 1)

∫
cosn−2 xdx− (n− 1)

∫
cosn xdx.

Adding (n− 1)
∫

cosn xdx to both sides of the equation, we obtain

n

∫
cosn xdx = cosn−1 x sinx+ (n− 1)

∫
cosn−2 xdx,

whence ?? follows at once upon division by n.

Thus by repeated applications of the recursion formula (1.2), the integral
∫

cosn xdx
can be reduced eventually to a polynomial in sinx and cosx. If n is even, the final
integral is ∫

cos0 xdx =

∫
dx = x+ c,

and, if n is odd, it is ∫
cosxdx = sinx+ c.

Example 142. Use the recursion formula (1.2) to find
∫
cos52xdx. We first write∫

cos5 2xdx = 1
2

∫
cos5 2xd(2x) and then∫
cos5 2xd(2x) =

cos4 2x sin 2x

5
+

4

5

∫
cos3 2xd(2x).

A second application of the formula yields∫
cos3 2xd(2x) =

cos2 2x sin 2x

3
+

2

3

∫
cos 2xd(2x),

and, of course, ∫
cos 2xd(2x) = sin 2x+ c1.

Combining, we have∫
cos5 2xdx =

1

2

[cos4 2x sin 2x

5
+

4

5

{ (cos2 2x sin 2x

3
+

2

3
(sin 2x+ c1)

}]
=

1

10
cos4 2x sin 2x+

2

15
cos2 2x sin 2x+

4

15
sin 2x+ c.
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Problems

1. Integrate each of the following.

(a)
∫
x cosx dx

(b)
∫

(x+ 2)e2x dx

(c)
∫

arctanx dx

(d)
∫
x2 sin 7x dx

(e)
∫
x3 lnx dx

(f)
∫

(x3 − 7x+ 2) sinx dx

(g)
∫
e3x sin 2x dx

(h)
∫

sec3 x dx

(i)
∫
x2 ln(x+ 1) dx

(j)
∫

ln(x2 + 2) dx.

2. Do Example ?? again, first letting u = cos 3x and then u1 = sin 3x.

3. Find formulas for

(a)
∫
eαx cos bx dx

(b)
∫
eαx sin bx dx.

4. Derive the recursion formula analogous to ??: For every integer n ≥ 2,∫
sinn x dx = − sinn−1 x cosx

n
+
n− 1

n

∫
sinn−2 x dx.

5. Evaluate

(a)
∫

cos2 x dx

(b)
∫

sin2 x dx

by the recursion formulas [see ?? and Problem ??], and also using the trigono-
metric identities

cos2 x =
1

2
(1 + cos 2x),

sin2 x =
1

2
(1− cos 2x).

Show that the results obtained are the same. (The preceding identities can
be read off at once from two more basic ones:

1 = cos2 x+ sin2 x

cos 2x = cos2 x− sin2 x.)

6. Use integration by parts to find recursion formulas, expressing the given inte-
gral in terms of an integral with a lower power:

(a) Show that
∫
xnexdx = xnex − n

∫
xn−1exdx.
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(b) Show that
∫

secn x dx = secn−2 x tan x
n−1 + n−2

n−1
∫

secn−2 x dx.

(c) Find a reduction formula, expressing
∫

(ln |ax+b|)ndx in terms of
∫

(ln |ax+
b|)n−1dx.

7. Use the formulas derived in ?? and in Problems ?? and ?? to find

(a)
∫
x5ex dx

(b)
∫

sin4 x dx

(c)
∫

cos3 5x dx

(d)
∫

(ln |3x+ 7|)6 dx

(e)
∫ π

2

0
sin3 x dx

(f)
∫ 1

0
x3ex dx.
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7.2 Integrals of Trigonometric Functions.

Products of trigonometric functions, powers of trigonometric functions, and prod-
ucts of their powers are all functions which we need to integrate at various times. In
this section techniques will be developed for finding antiderivatives of the commonly
encountered functions of these types.

The first and simplest occur with the integrals∫
cos ax cos bxdx,∫
sin ax sin bxdx,∫
sin ax cos bxdx, in which a 6= b.

(7.1)

None of these can be integrated directly, but eaeh of the three integrands is a term
in the expansions of cos(ax+bx) and cos(ax−bx) or in the expansions of sin(ax+bx)
and sin(ax− bx). We can use these addition formulas to change products to sums
or differences, and the latter ean be integrated easily.

Example 143. Integrate:

(a)

∫
sin 8x sin 3xdx, (b)

∫
sin 7x cos 2xdx.

The integrand sin 8x sin 3x in (a) is one term in the expansion of cos(8x + 3x)
and also in the expansion of cos(8x− 3x). That is, we have

cos(8x+ 3x) = cos 8x cos 3x− sin 8x sin 3x,

cos(8x− 3x) = cos 8x cos 3x+ sin 8x sin 3x.

Subtracting the first from the second, we get

cos(8x− 3x)− cos(8x+ 3x) = 2 sin 8x sin 3x.

Hence, since 8x− 3x = 5x and 8x+ 3x = 11x, we obtain

sin 8x sin 3x = 2(cos 5x− cos 11x),

and so

∫
sin 8x sin 3xdx =

1

2

∫
(cos 5x− cos 11x)dx

=
1

10
sin 5x− 1

22
sin 11x+ c.

For the integral in (b), we use the formulas for the sine of the sum and difference
of two numbers:

sin(7x+ 2x) = sin 7x cos 2x+ cos 7x sin 2x,

sin(7x− 2x) = sin 7x cos 2x− cos 7x sin 2x.
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Adding, we have

sin(7x+ 2x) + sin(7x− 2x) = 2 sin 7x cos 2x.

Hence

sin 7x cos 2x =
1

2
(sin 9x+ sin 5x),

and

∫
sin 7x cos 2xdx =

1

2

∫
(sin 9x+ sin 5x)dx

= − 1

18
cos 9x− 1

10
cos 5x+ c.

It should be clear that, using the formulas for the cosine and sine of the sum
and difference of two numbers as in Example 1, we can readily evaluate any integral
of the type given in equations (1).

We next consider integrals of the type∫
cosm x sinn xdx, (7.2)

in which at least one of the exponents m and n is an odd positive integer (the other
exponent need only be a real number). Suppose that m = 2k + 1, where k is a
nonnegative integer. Then

cosm x sinn x = cos2k+1 x sinn x

= (cos2 x)k sinn x cosx.

Using the identity cos2 x = 1− sin2 x, we obtain∫
cosm x sinn xdx =

∫
(1− sin2 x)k sinn x cosxdx.

The factor (1− sin2 x)k can be expanded by the Binomial Theorem, and the result
is that

∫
cosm x sinn xdx can be written as a sum of constant multiples of integrals

of the form
∫

sinq x cosxdx. Since∫
sinq x cosxdx = {

1
q+1 sinq+1 x+ c if q 6= −1,

ln | sinx|+ c if q = −1,

it follows that
∫

cosm x sinn xdx can be readily evaluated. An entirely analogous
argument follows if the exponent n is an odd positive integer.

Example 144. Integrate

(a)

∫
cos3 4xdx, (b)

∫
sin5 x cos4 xdx.

The integral in (a) illustrates that the method just described is applicable to
odd positive integer powers of the sine or cosine (i.e., either m or n may be zero).
We obtain
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∫
cos3 4xdx =

∫
cos2 4x cos 4xdx

=

∫
(1− sin2 4x) cos 4xdx

=

∫
cos 4xdx−

∫
sin2 4x cos 4xdx

=
1

4
sin 4x− 1

12
sin3 4x+ c.

In (b) it is the exponent of the sine which is an odd positive integer. Hence∫
sin5 x cos4 xdx =

∫
(sin2 x)2 cos4 x sinxdx

=

∫
(1− cos2 x)2 cos4 x sinxdx

=

∫
(1− 2 cos2 x+ cos4 x) cos4 x sinxdx

=

∫
cos4 x sinxdx− 2

∫
cos6 x sinxdx+

∫
cos8 x sinxdx

=
1

5
cos5 x+

2

7
cos7 x− 1

9
cos9 x+ c.

The third type of integral we consider consists of those of the form∫
cosm x sinn xdx (7.3)

in which both m and n are even nonnegative integers. These functions are not so
simple to integrate as those containing an odd power. We first consider the special
case in which either m = 0 or n = 0. The simplest nontrivial examples are the
two integrals

∫
cos2 xdx and

∫
sin2 xdx, which can be integrated by means of the

identities

cos2 x =
1

2
(1 + cos 2x),

sin2 x =
1

2
(1− cos 2x).

These are useful enough to be worth memorizing, but they can also be derived
quickly by addition and subtraction from the two more primitive identities

1 = cos2 x+ sin2 x,

cos 2x = cos2 x− sin2 x.

Evaluation of the two integrals is now a simple matter. We get
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∫
cos2 xdx =

1

2

∫
(1 + cos 2x)dx =

x

2
+

1

4
sin 2x+ c,∫

sin2 xdx =
1

2

∫
(1− cos 2x)dx =

x

2
− 1

4
sin 2x+ c.

Going on to the higher powers, consider the integral
∫

cos2i xdx, where i is an
arbitrary positive integer. We write

cos2i x = (cos2 x)i = [
1

2
(1 + cos 2x)]i

=
1

2i
(1 + cos 2x)i.

The factor (1 + cos 2x)i can be expanded by the Binomial Theorem. The result is
that cos2i x can be written as a surli of constant multiples of functions of the form
cosj 2x, and in each of these j < 2i. The terms in this sum for which j is odd
are all of the type already shown to be integrable. The terms for which j is even
are of the type now under consideration. However, the exponents j are all smaller
than the original power 2i. For each function cosj 2x with j even and nonzero, we
repeat the process just described. Again, the resulting even powers of the cosine
will be reduced. By repetition of these expansions, the even powers of the cosine
can eventually all be reduced to zero. It follows that, although the process may be
a tedious one, the integral

∫
cos2i xdx can always be evaluated. The argument for∫

sin2i xdx is entirely analogous.

Example 145. Integrate
∫

sin6 2xdx. We write

sin6 2x = (sin2 2x)3 = [
1

2
(1− cos 4x)]3

=
1

8
(1− 3 cos 4x+ 3 cos2 4x− cos3 4x)

=
1

8
[1− 3 cos 4x+

3

2
(1 + cos 8x)− cos3 4x]

=
5

16
− 3

8
cos 4x+

3

16
cos 8x− 1

8
cos3 4x.

Hence ∫
sin6 2xdx =

5x

16
− 3

32
sin 4x+

3

128
sin 8x− 1

8

∫
cos3 4xdx.

In Example 2 we have shown that∫
cos3 4xdx =

1

4
sin 4x− 1

12
sin3 4x+ c.

We conclude that∫
sin6 2xdx =

5x

16
− 3

32
sin 4x+

3

128
sin 8x− 1

32
sin 4x+

1

96
sin3 4x+ c

=
5x

16
− 1

8
sin 4x+

3

128
sin 8x+

1

96
sin3 4x+ c.
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Returning to the general case, we can now integrate
∫

cosm x sinn xdx, where m
and n are arbitrary nonnegative even integers. For, setting m = 2i and n = 2j, we
can write

cosm x sinn x = cos2i x(sin2 x)j

= cos2i x(1− cos2 x)j .

When expanded, the right side is a sum of constant multiples of even powers of
cosx, and we have shown that each of these can be integrated. This completes
the argument. Actually, if neither m nor n is zero, we can save time by using the
identity

sinx cosx =
1

2
sin 2x,

as illustrated in the following example.

Example 146. Integrate
∫

cos4 x sin2 xdx. Since sin2 x is the factor with the
smaller exponent, we write

cos4 x sin2 x = cos2 x(cos2 x sin2 x)

= cos2 x(sinx cosx)2

= [
1

2
(1 + cos 2x)](

1

2
sin 2x)2.

Expanding, we get

cos4 x sin2 x =
1

8
(1 + cos 2x) sin2 2x

=
1

8
sin2 2x+

1

8
sin2 2x cos 2x

=
1

16
(1− cos 4x) +

1

8
sin2 2x cos 2x.

Hence∫
cos4 x sin2 xdx =

1

16

∫
dx− 1

16

∫
cos 4xdx+

1

8

∫
sin2 2x cos 2xdx

=
x

16
− 1

64
sin 4x+

1

48
sin3 2x+ c.

An important alternative method for integrating positive integer powers of the
sine and cosine is by means of recursion (or reduction) formulas. In Section 1
[see (1.2), page 359], such a formula was developed, expressing

∫
cosn xdx in terms

of
∫

cosn−2 xdx. Following the derivation,
∫

cos5 2xdx is evaluated with two ap-
plications of the formula. A similar reduction formula for

∫
sinn xdx was given in

Problem 4, page 361. Certainly no one should memorize these formulas, but, if they
are available, they undoubtedly provide the most automatic way of performing the
integration.
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We next turn to the problem of evaluating∫
tann xdx, (7.4)

where n is an arbitrary positive integer. For n = 1, the integral is an elementary
one: ∫

tanxdx =

∫
sinx

cosx
dx =

{
− ln | cosx|+ c,

ln | secx|+ c.

For n ≥ 2, there is a reduction formula, which is easily derived as follows. Using
the identity sec2 x− 1 = tan2 x, we have

∫
tann xdx =

∫
tann−2 x tan2 xdx

=

∫
tann−2 x(sec2 x− 1)dx

=

∫
tann−2 x sec2 xdx−

∫
tann−2 xdx.

Since d
dx tanx = sec2 x, the first integral on the right is equal to∫

tann−2 xd tanx.

Hence we obtain

7.2.1. ∫
tann xdx =

1

n− 1
tann−1 x−

∫
tann−2 xdx.

However, we generally perform such integrations without explicit use of the re-
duction formula (2.1). We simply carry out this technique of replacing tan2 x by
sec2 x− 1 as often as necessary.

Example 147. Integrate tan 5xdx. Factoring and substituting, we get∫
tan5 xdx =

∫
tan3 x tan2 xdx

=

∫
tan3 x(sec2 x− 1)dx

=

∫
tan3 x sec2 xdx−

∫
tan3 xdx

=
1

4
tan4 x−

∫
tanx(sec2 x− 1)dx

=
1

4
tan4 x−

∫
tanx sec2 xdx+

∫
tanxdx

=
1

4
tan4 x− 1

2
tan2 x+ ln | secx|+ c.
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The difficulty in evaluating the integral∫
secn xdx, (7.5)

where n is a positive integer, depends on whether n is even or odd. If n = 2i, for
some positive integer i, then

secn x = (sec2 x)i−1 sec2 x = (1 + tan2 x)i−1 sec2 x.

Hence, if n is even, secn x can be expanded into a sum of multiples of integrals of
the form ∫

tanj x sec2 xdx =
1

j + 1
tanj+1 x+ c.

If n is odd, the problem is not so simple. We shall use the reduction formula

7.2.2. ∫
secn xdx =

secn−2 x tanx

n− 1
+
n− 2

n− 1

∫
secn−2 xdx.

This formula is derived by integration by parts [see Problem 6(b), page 362] and
is applicable for any integer n ≥ 2, whether even or odd. With a finite number of
applications,

∫
secn xdx can therefore be reduced to an expression in which the only

remaining integral is
∫
dx or

∫
secxdx, according as n is even or odd. Hence, if n is

odd, we need to know
∫

secxdx. An ingenious method of integration is to consider
the pair of functions secx and tanx and to observe that the derivative of each one
is equal to secx times the other. Writing this fact in terms of differentials, we have

d secx = secx tanxdx,

d tanx = sec2 xdx = secx secxdx.

Adding and factoring, we obtain

d(secx+ tanx) = secx(tanx+ secx)dx.

Hence

secxdx =
d(secx+ tanx)

secx+ tanx
,

from which follows the useful formula

7.2.3. ∫
secxdx = ln | secx+ tanx|+ c.

Example 148. Integrate
∫

sec5 xdx. Using the reduction formula (2.2) twice, we
have

∫
sec5 xdx =

sec3 x tanx

4
+

3

4

∫
sec3 xdx

=
sec3 x tanx

4
+

3

4

( secx tanx

2
+

1

2

∫
secxdx

)
.
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From this and (2.3), we conclude that∫
sec5 xdx =

sec3 x tanx

4
+

3 secx tanx

8
+

3

8
ln | secx+ tanx|+ c.

Of course, the integration of
∫

cotn xdx parallels the technique for integrating∫
tann xdx, and the integration of

∫
cscn xdx parallels that for

∫
secn xdx. The

reduction formula corresponding to (2.2) is

7.2.4. ∫
cscn xdx = −cscn−2 x cotx

n− 1
+
n− 2

n− 1

∫
cscn−2 xdx.

The last type of integral to be discussed consists of those of the form∫
secm x tann xdx, (7.6)

where m and n are positive integers. There are a number of variations, depending
on whether each of m and n is even or odd. We shall consider three cases:

Case 1. m is even. Then m = 2k, for some positive integer k. Hence

∫
secm x tann xdx =

∫
sec2k x tann xdx

=

∫
sec2k−2 x tann x sec2 xdx

=

∫
(sec2 x)k−1 tann x sec2 xdx

=

∫
(1 + tan2 x)k−1 tann x sec2 xdx.

We can now expand (1 + tan2 x)k−1, and the result is that the original integral can
be written as a sum of constant multiples of integrals of the form

∫
tanj x sec2 xdx.

As we have seen, each of these is equal to
∫
ujdu, with u = tanx, and is easily

integrated.
Case 2. n is odd. Then n = 2k + 1, for some nonnegative integer k. We write

∫
secm x tann xdx =

∫
secm x tan2k+1 xdx

=

∫
secm−1 x(tan2 x)k secx tanxdx

=

∫
secm−1 x(sec2 x− 1)k secx tanxdx.

Again we expand by use of the Binomial Theorem. In this case, the original integral
becomes a sum of constant multiples of integrals of the form

∫
secj x secx tanxdx,

each of which can be integrated, since

∫
secj x secx tanxdx =

∫
secj xd(secx)

=
1

j + 1
secj+1 x+ c.
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Case 3. n is even. Then n = 2k, for some positive integer k. In this case, we
have

∫
secm x tann xdx =

∫
secm x tan2k xdx

=

∫
secm x(tan2 x)kdx

=

∫
secm x(sec2 x− 1)kdx.

This time, if we expand the integrand, we get a sum of constant multiples of integrals
of the type

∫
secj xdx, and we can use the reduction formula (2.2) on each of them.

The three cases discussed are not mutually exclusive, and one may have a choice.
For example, if m is even and n odd, the integral may be found by the techniques of
Case 1 or that of Case 2. If m and n are both even, either the techniques described
in Case I or Case 3 may be used.

Example 149. Evaluate the integrals

(a)

∫
sec4 x tan6 xdx, (b)

∫
sec3 x tan5 xdx.

For (a) we write∫
sec4 x tan6 xdx =

∫
sec2 x tan6 x sec2 xdx

=

∫
(1 + tan2 x) tan6 x sec2 xdx

=

∫
tan6 x sec2 xdx+

∫
tan8 x sec2 xdx

=
1

7
tan7 x+

1

9
tan9 x+ c.

It is also possible to evaluate this integral by the technique described in Case 3.
However, the resulting computation would be so much longer that it would be
foolish to do so.

For (b) we use the method of Case 2. Factoring, we get∫
sec3 x tan5 xdx =

∫
sec2 x tan4 x secx tanxdx

=

∫
sec2 x(sec2 x− 1)2 secx tanxdx

=

∫
sec2 x(sec4 x− 2 sec2 x+ 1) secx tanxdx

=

∫
sec6 x secx tanxdx− 2

∫
sec4 x secx tanxdx

+

∫
sec2 x secx tanxdx

=
1

7
sec7 x− 2

5
sec5 x+

1

3
sec3 x+ c.
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We conclude with the remark that techniques for integrating
∫

cscm x cotn x are
analogous to those for

∫
secm x tann xdx.
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Problems

1. Integrate each of the following.

(a)
∫

cos 5x sin 2x dx

(b)
∫

cos 3x cosx dx

(c)
∫

sin 3x sinx dx

(d)
∫

cos 4z cos 7z dz

(e)
∫

cos 3x sinπx dx

(f)
∫

cos 2πy sinπy dy

(g)
∫

sinx sin 6x dx

(h)
∫

cos 7w sin 17w dw.

2. (a) Integrate
∫

sin3 θ dθ by using the fact that the exponent of sin θ is an
odd positive integer.

(b) Integrate
∫

sin3 θ dθ by making use of the identity sin 3θ = 3 sin θ −
4 sin3 θ.

(c) Show that the answers obtained in ?? and ?? differ by a constant.

3. (a) Integrate
∫

sin5 2x dx by using the fact that the exponent of the sine is
an odd positive integer.

(b) Integrate
∫

sin5 2x dx by using the recursion formula given in Problem
??.

(c) Show that the answers obtained in ?? and ?? differ by a constant.

4. Integrate each of the following.

(a)
∫

cos3 2x dx

(b)
∫

cos4 x dx

(c)
∫

sin4 3x dx

(d)
∫

sin3 x cos44 x dx

(e)
∫

sin2 θ cos2 θ dθ

(f)
∫ √

sinx cos5 x dx

(g)
∫

cos6 3x dx

(h)
∫

sin4 y cos5 y dy

(i)
∫

cos2 y sin4 y dy

(j)
∫

sin3 x(cosx)
5
2 dx.

5. (a) Integrate
∫

cos2 θ dθ using the identity cos2 θ = 1
2 (1 + cos 2θ).

(b) Integrate
∫

cos2 θ dθ by parts.

(c) Show that the answers obtained in ?? and ?? differ by a constant.

6. Evaluate
∫

sec2 x tanx dx in two different ways: first using the fact that the
secant has an even exponent, and then using the fact that the tangent has an
odd exponent. Show that the two solutions differ by a constant.
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7. Integrate each of the following.

(a)
∫

tan4 x dx

(b)
∫

tan3 4y dy

(c)
∫

sec4 θ dθ

(d)
∫

sec3 2x dx

(e)
∫

sec4 x tan4 x dx

(f)
∫

sec3 x tan3 x dx

(g)
∫

sec4 x tan5 x dx

(h)
∫

sec6 x
√

tanx dx

(i)
∫

dx
sec x tan x .

8. (a) Let n ≥ 2 be an integer, and derive a reduction formula for
∫

cotn xx dx
analogous to ??.

(b) Use the formula derived in ?? to integrate
∫

cot5 3θ dθ.

9. By a method analogous to that used previously to find
∫

secx dx, prove that∫
cscx dx = − ln | cscx+ cotx|+ c.

10. (a) Use integration by parts to derive the reduction formula ?? for
∫

cscn x dx.

(b) Use this formula to integrate
∫

csc6 y dy.

11. Integrate each of the following.

(a)
∫

csc5 θ dθ

(b)
∫

sin 3x cot 3x dx

(c)
∫

cot4 y dy

(d)
∫

csc4 x cot2 x dx

(e)
∫

csc3 2y cot3 2y dy

(f)
∫

csc3 φ cot2 φ dφ.
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7.3 Trigonometric Substitutions.

In this section we shall study a technique of integration which is particularly useful
for finding integrals of functions of

√
a2 − x2,

√
a2 + x2, and

√
x2 − a2. The tech-

nique is that of trigonometric substitutions and is based on some of the elementary
trigonometric identities developed in Chapter 6. We shall develop the method by
doing specific examples.

Figure 7.1:

Consider the problem of evaluating
∫ √

a2 − x2dx. The domain of the function√
a2 − x2 is the closed interval [−|a|, |a|]. In what follows it will be convenient to

view this interval as lying on the vertical axis, and, for this reason, the traditional
positions of the x-axis and the y-axis will be interchanged. For every real number x
in the domain [−|a|, |a|], the point (

√
a2 − x2, x) lies on the semicircle in the right

half-plane with radius lal and center at the origin (see Figure 1). It follows from
the definition of the trigonometric functions sine and cosine on page 282 that this
point (

√
a2 − x2, x) is equal to (|a| cos θ, |a| sin θ), where θ is the radian measure of

the angle denoted by the same letter in Figure 1. Hence{ √
a2 − x2 = |a| cos θ,

x = |a| sin θ. (7.7)

We shall restrict θ to the interval
[
−π2 ,

π
2

]
. Then θ is uniquely defined by equations

(1), and, as θ takes on all values in this interval, x assumes all values in the domain
of the function

√
a2 − x2. Using equations (1), we obtain dx = |a| cos θdθ and∫ √
a2 − x2dx =

∫
|a| cos θ · |a| cos θdθ = a2

∫
cos2 θdθ.

Since cos2 θ = 1
2 (cos 2θ + 1),

∫ √
a2 − x2dx =

a2

2

∫
(cos 2θ + 1)dθ
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=
a2

2
(
1

2
sin 2θ + θ) + c.

But θ = arcsin x
|a| and

1

2
sin 2θ = sin θ cos θ =

x

|a|

√
a2 − x2
|a|

=
x
√
a2 − x2
a2

Substituting back, we get

∫ √
a2 − x2dx =

a2

2

(x√a2 − x2
a2

+ arcsin
x

|a|

)
+ c

=
1

2

(
x
√
a2 − x2 + a2 arcsin

x

|a|

)
+ c.

In general, with any integral involving
√
a2 − x2, we make the trigonometric

substitutions based on equations (1); i.e., we replace x by |a| sin θ,
√
a2 − x2, by

|a|cosθ, and dx by |a| cos θdθ. Note that there is an equivalent alternative procedure:
We may set x = |a| cos θ and restrict θ to the interval [0, π]. Then x can take on all
values in the interval [−|a|, |a|] as before, and, in addition, sin will be nonnegative.
Since cos2 θ + sin2 θ = 1, we will have√

a2 − x2 =
√
a2 − a2 cos2 θ =

√
a2 sin2 θ = |a| sin θ.

Thus the integral may be evaluated equally well using the equations{
x = |a| cos θ,√

a2 − x2 = |a| sin θ. (7.8)

Of course, if these substitutions are used, then dx = −|a| sin θdθ. Geometrically,
equations (2) are obtained by starting from the point (x,

√
a2 − x2), which lies on

the semicircle in the upper half-plane instead of the right half-plane.
A definite integral may be simpler to evaluate than an indefinite integral, since

we may use the Change of Variable Theorem for Definite Integrals (see page 215)
and thereby avoid the substitution back to the original variable.

Example 150. Evaluate the definite integral∫ 2
√
3

2

x2dx√
16− x2

Using equations (1), we define θ by setting x = 4 sin θ and
√
a2 − x2 = 4 cos θ. It

follows that dx = 4 cos θdθ. If x = 2, then sin θ = 1
2 and so θ = π

6 . If x = 2
√

3, then

sin θ =
√
3
2 and θ = π

3 . Hence

∫ 2
√
3

2

x2dx√
16− x2

=

∫ π/3

π/6

16 sin2 θ · 4 cos θdθ

4 cos θ

= 16

∫ π/3

π/6

sin2 θdθ.
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Since sin2 θ = 1
2 (1− cos 2θ), we obtain

∫ 2
√
3

2

x2dx√
16− x2

= 8

∫ π/3

π/6

(1− cos 2θ)dθ

= (8θ − 4 sin 2θ)
∣∣∣π/3
π/6

=
(

8 · π
3
− 4 sin

2π

3

)
−
(

8 · π
6
− 4 sin

2π

6

)
=

8π

3
− 4 ·

√
3

2
− 8π

6
+ 4 ·

√
3

2
=

4π

3
.

Next we consider integrals involving
√
a2 + x2. The domain of the function√

a2 + x2 is the set of all real numbers, i.e., the unbounded interval (−∞,∞).
Geometrically, we shall again find it convenient to place this domain on the vertical
axis and to interchange the usual x-axis and y-axis in the picture. For every real
number x, consider the point (|a|, x), and let θ be the radian measure of the angle
shown in Figure 2. It follows that

Figure 7.2:

{
x = |a| tan θ,√

a2 + x2 = |a| sec θ.
(7.9)

We restrict θ to the open interval
(
−π2 ,

π
2

)
. In this way, θ is uniquely determined

by x according to equations (3), and the interval (−∞,∞) of all possible values

of x corresponds in a one-to-one fashion to the interval
(
−π2 ,

π
2

)
of all values of

θ. It follows from the equation x = |a| tan θ that dx = |a| sec2 θdθ. Hence, if we
substitute |a| tan θ for x, we substitute |a| sec θ for

√
a2 + x2 and |a| sec2 θdθ for dx.

Algebraically, the substitutions given by equations (3) arise from the trigono-
metric identity 1 + tan2 θ = sec2 θ. If we set x = |a| tan θ, then x will assume all

real values as θ takes on all values in the open interval
(
−π2 ,

π
2

)
. Moreover, sec θ is

positive in this interval. It follows that
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√
a2 + x2 =

√
a2(1 + tan2 θ) =

√
a2 sec2 θ = |a| sec θ.

Example 151. Integrate
∫

dx√
a2+x2

. Letting x = |a| tan θ, we obtain
√
a2 + x2 =

|a| sec θ and dx = |a| sec2 θdθ. Henee∫
dx√
a2 + x2

=

∫
|a| sec2 θdθ

|a| sec θ
=

∫
sec θdθ.

It was shown in Section 2 that∫
sec θdθ = ln | sec θ + tan θ|+ c.

Consequently,

∫
dx√
a2 + x2

= ln | sec θ + tan θ|+ c

= ln
∣∣∣√a2 + x2

|a|
+

x

|a|

∣∣∣+ c = ln
∣∣∣√a2 + x2 + x

|a|

∣∣∣+ c.

Using the properties of the logarithm, we may write

ln
∣∣∣√a2 + x2 + x

|a|

∣∣∣ = ln |
√
a2 + x2 + x| − ln |a|.

Since − ln |a|+ c is no more or less arbitrary as a constant than c itself, we conclude
that ∫

dx√
a2 + x2

= ln |
√
a2 + x2 + x|+ c.

By trigonometric substitutions, functions of
√
x2 − a2 may frequently be put

in a form so that integration is possible. Since
√
x2 − a2 is defined if and only if

|x| ≥ |a|, the domain of the function
√
x2 − a2, unlike the others, is the union of

two intervals: (−∞,−|a|] and [|a|,∞). In this ease we shall set x = |a| sec θ. Using
the identity 1 + tan2 θ = sec2 θ, we obtain√

x2 − a2 =
√
a2(sec2 θ − 1) =

√
a2 tan2 θ = |a tan θ|.

If θ is restricted to the interval
[
0, π2

)
, then tan θ is nonnegative, and, as θ takes on

all values in this interval, x assumes all values in [|a|,∞). Similarly, if θ is restricted

to the interval
[
−π,−π2

)
then tan θ is again nonnegative, and, as θ runs through

this interval, x correspondingly traverses (−∞,−|a|] (in the opposite direction).
Thus we have defined a new variable θ by the equations{

x = |a| sec θ,√
x2 − a2 = |a| tan θ.

(7.10)

These equations can also be obtained geometrically. Figure 3 illustrates the situa-
tion for x ≥ |a|. For every such x, consider the point (|a|,

√
x2 − a2) in the plane,
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Figure 7.3:

and let θ be the radian measure of the angle shown. Since x appears only as the
hypotenuse of a right triangle, we have used letters other than x and y in labeling
the horizontal and vertical axes.

It follows from x = |a| sec θ that dx = |a| sec θ tan θdθ. Hence if we make the
trigonometric substitutions based on equations (4), we substitute |a| sec θ tan θdθ
for dx.

Example 152. Find the indefinite integral

(a)

∫
dx√
x2 − a2

dx,

and evaluate the definite integral

(b)

∫ −3√2

−6
x3
√
x2 − 9dx.

For part (a), we let x = |a| sec θ and
√
x2 − a2 = |a| tan θ. Then dx = |a| sec θ tan θdθ

and ∫
dx√
x2 − a2

=

∫
|a| sec θ tan θdθ

|a| tan θ
=

∫
sec θdθ.

It was shown in Section 2 that∫
sec θdθ = ln | sec θ + tan θ|+ c.

Hence ∫
dx√
x2 − a2

= ln | sec θ + tan θ|+ c.

But sec θ = x
|a| and tan θ =

√
x2−a2
|a| and, substituting back, we therefore obtain∫

dx√
x2 − a2

= ln
∣∣∣ x|a| +

√
x2 − a2
|a|

∣∣∣+ c.
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Since ln
∣∣∣ x|a|+√x2−a2

|a|

∣∣∣ = ln |x+
√
a2 − x2|−ln |a| and since c is an arbitrary constant,

we may incorporate the term − ln |a| into the constant of integration and conclude
that ∫

dx√
a2 − x2

= ln |x+ dx
√
x2 − a2|+ c.

For the definite integral in part (b), we introduce θ as the variable of integration
by letting x = 3 sec θ. Then

√
x2 − 9 = 3 tan θ and dx = 3 sec θ tan θdθ. Restricting

θ to the interval
[
−π,−π2

)
we see that, when x = −6, sec θ = −2 and so θ = − 2π

3 .

Similarly, when x = −3
√

2, sec θ = −
√

2 and θ = − 3π
4 . With these substitutions

and the Change of Variable Theorem for Definite Integrals, we obtain

∫ −3√2

−6
x3
√
x2 − 9dx =

∫ −3π/4
−2π/3

27 sec3 θ · 3 tan θ · 3 sec θ tan θdθ

= 243

∫ −3π/4
−2π/3

sec4 θ tan2 θdθ.

To integrate this, we replace a factor of sec2 θin the integrand by 1 + tan2 θ. The
integral then becomes

∫ −3√2

−6
x3
√
x2 − 9dx = 243

∫ −3π/4
−2π/3

(1 + tan2 θ) tan2 θ sec2 θdθ

= 243

∫ −3π/4
−2π/3

tan2 θ sec2 θdθ + 243

∫ −3π/4
−2π/3

tan4 θ sec2 θdθ.

Since d tan θ = sec2 θdθ, it is easy to find antiderivatives of tan2 θ sec2 θ and tan4 θ sec2 θ.
Hence

∫ −3√2

−6
x3
√
x2 − 9dx = 243(

1

3
tan3 θ +

1

5
tan5 θ)

∣∣∣−3π/4
−2π/3

= 243[(
1

3
· 1 +

1

5
· 1)− (

1

3
· 3
√

3 +
1

5
· 9
√

3)]

= 243
( 8

15
− 14

√
3

5

)
=

81

5
(8− 42

√
3),

and the example is finished.
Although the trigonometric substitutions developed in this section have been

primarily directed at integrands containing certain square roots, we can equally
well apply them to other functions of a2−x2, a2 +x2, and x2− a2. For example, if
we let x = |a| tan θ, then a2 + x2 = a2(1 + tan2 θ) = a2 sec2 θ and dx = |a| sec2 θdθ.
We then obtain
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∫
dx

a2 + x2
=

∫
|a| sec2 θdθ

a2 sec2 θ
=

1

|a|

∫
dθ =

1

|a|
θ + c

=
1

|a|
arctan

x

|a|
+ c.

Given a choice, one would probably not evaluate
∫

dx
a2+x2 by this method. It is more

likely that one would do the problem directly, remembering the formula
∫

dx
1+x2 =

arctanx+ c.

We conclude this section with consideration of the integral∫
dx

(ax2 + bx+ c)n
, (7.11)

where n is any positive integer and the polynomial ax2 + bx+ c is irreducible over
the real numbers. To say that a quadratic polynomial is irreducible means that it
cannot be written as the product of two linear factors. It follows from the familiar
quadratic formula that ax2 + bx+ c is irreducible over the real numbers if and only
if b2 − 4ac < 0. We shall show, by means of the trigonometric substitution used in
the preceding paragraph, that the integral (5) can be changed to

K

∫
cos2n−2 θdθ, (7.12)

where K is a constant. This latter integral, as we saw in Section 2, can always
be integrated, and this means that it is always possible to integrate (5). This fact,
which is of interest in itself, will play a part in a more general theory to be developed
in Section 4.

By first factoring and then completing the square, we obtain

ax2 + bx+ c = a
(
x2 +

b

a
x+

c

a

)
= a

(
x2 +

b

a
x+

b2

4a2
+
c

a
− b2

4a2

)
= a

[(
x+

b

2a

)2
+
(√4ac− b2

2a

)2]
.

Note that, since b2 − 4ac < 0, we know both that a 6= 0 and that
√

4ac− b2 is real.

For convenience, we shall let y = x+ b
2a and k =

√
4ac−b2
2a . Then

ax2 + bx+ c = a(y2 + k2),

and dy = dx. Making the trigonometric substitution y = |k| tan θ, we have

ax2 + bx+ c = a(y2 + k2) = ak2(tan2 θ + 1) = ak2 sec2 θ,

and dx = dy = |k| sec2 θdθ. It therefore follows that
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∫
dx

(ax2 + bx+ c)n
=

∫
|k| sec2 θdθ

(ak2 sec2 θ)n
=
|k|

ank2n

∫
1

(sec θ)2n−2
dθ

= K

∫
cos2n−2 θdθ,

where k = |k|
ank2n . Thus, every integral (5) can be integrated by first changing it

into the integral of a power of a cosine by trigonometric substitutions and then by
reducing the power of the cosine with the reduction formula on page 359.



7.3. TRIGONOMETRIC SUBSTITUTIONS. 381

Problems

1. Evaluate
∫ √

a2 − x2 dx using equations (??), and compare your answer with
that found using equations (??).

2. (a) Write a set of equations for integrating functions of
√
a2 + x2 which are

analogous to equations (??), but are based on the identity 1 + cot2 θ =
csc2 θ.

(b) Select an interval to which θ can be restricted so that it is uniquely
determined by the equations in part ?? and so that x can take on all real
number values.

3. Evaluate
∫

dx√
a2+x2

using the subtraction described in Problem ??.

4. What is the set to which θ should be restricted if the substitution of |a| csc θ
for x makes

√
x2 − a2 equal to |a| cot θ, defines θ unambiguously, and also lets

x take on all real values such that |x| ≥ |a|?

5. Evaluate the following integrals.

(a)
∫ √

x2−9
x dx

(b)
∫ √

(x2 − 1)3 dx

(c)
∫
x
√

16− x2 dx
(d)

∫
x3
√
x2 − 4 dx

(e)
∫

dx
x2−9

(f)
∫ √

(x2 + 4)3 dx

(g)
∫

x dx√
(a2+x2)3

(h)
∫

x3 dx√
4−x2

(i)
∫ √

x2 − a2 dx
(j)
∫

dx√
(x2−25)3

.

6. Evaluate 2
∫ a
a−h
√
a2 − x2 dx, and hence find the area of a segment of height

h in a circle of radius a.

7. Evaluate the following definite integrals.

(a)
∫ 4

0
dx√
9+x2

(b)
∫√5

0
x dx√
4+x2

(c)
∫ 1

4

0
dx√

1−4x2

(d)
∫ 4

4√
3

dx√
(x2−4)3

(e)
∫ 4

3
x
√

25− x2 dx

(f)
∫ 7

2
5
2

dx√
4x2−9 .
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8. Integrate

(a)
∫

dx
5+x2

(b)
∫

dx
2x2+8

(c)
∫

dx
x2+2x+5

(d)
∫

dx
2x2+12x+20

(e)
∫

dx
(2x2+6)2

(f)
∫

dx
(x2−4x+8)2

(g)
∫

dx
(x2+9)3

(h)
∫

dx
(x2+2x+2)3 .

9. By the substitutions used to change equation (??) to (??) and by the reduction
formula, ??, verify the following reduction formula (where b2 − 4ac < 0):∫

dx

(ax2 + bx+ c)n
=

2ax+ b

(n− 1)(4ac− b2)(ax2 + bx+ c)n−1

+
2a(2n− 3)

(n− 1)(4ac− b2)

∫
dx

(ax2 + bx+ c)n−1
.
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7.4 Partial Fractions.

A rational function is by definition one which can be expressed as the ratio of two
polynomials. A simple example is the function f , defined by

f(x) =
1

(x2 + 1)(x− 2)
=

1

x3 − 2x2 + x− 2
,

for every real value of x except 2. At present, we have no way of integrating this
function. However, in this section we shall develop a method of integration which
is applicable to any rational function. It is called the method of partial fractions.

To illustrate the method, consider the equation

1

x− 2
− x+ 2

x2 + 1
=

5

(x2 + 1)(x− 2)
,

which is easily seen to be true for all real values of x except 2. It follows that

1

(x2 + 1)(x− 2)
=

1

5

1

x− 2
− 1

5

x+ 2

x2 + 1

=
1

5

1

x− 2
− 1

5

x

x2 + 1
− 2

5

1

x2 + 1
.

Hence

∫
dx

(x2 + 1)(x− 2)
=

1

5

∫
dx

x− 2
− 1

5

∫
xdx

x2 + 1
− 2

5

∫
dx

x2 + 1

=
1

5
ln |x− 2| − 1

10
ln(x2 + 1)− 2

5
arctanx+ c.

Thus 1
(x2+1)(x−2) can be integrated, since it can be written as a sum of simpler

rational functions, each of which can be integrated separately. The method of
integration by partial fractions is based on the fact that such a decomposition
exists for every rational function. In this example, we have given no indication of
how the decomposition is to be found. However, the general method, which we now
describe, consists of just such a prescription.

We begin with the result from algebra that it is always possible by means of
division to express any given rational function as the sum of a polynomial and a
rational function in which the degree of the numerator is less than the degree of
the denominator. Stated formally, this theorem says that, if N(x) and D(x) are
any two polynomials and if D(x) is not the zero function, then there exist uniquely
determined polynomials Q(x) and R(x) such that

N(x)

D(x)
= Q(x) +

R(x)

D(x)
, (7.13)

and such that the degree of R(x) is less than the degree of D(x). (The letters N , D,
Q, and R have been used to suggest, respectively, the words “numerator,” “denomi-
nator,” “quotient,” and “remainder.”) The first step in the method of integration by

partial fractions is to write the given rational function N(x)
D(x) in the form of equation
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(1). Since we can obviously integrate the polynomial Q(x), we need next consider
only rational functions in which the degree of the numerator is less than the degree
of the denominator. If we start with such a function, then no division is necessary.

Example 153. Write the function x4−4x3+8x2−7x+3
x3−2x2+3x−4 as the sum of a polynomial

and a rational function in which the degree of the numerator is less than the degree
of the denominator. Dividing, we have

x− 2

x3 − 2x2 + 3x− 4 ) x4 − 4x3 + 8x2 − 7x+ 3
x4 − 2x3 + 3x2 − 4x

−2x3 + 5x2 − 3x+ 3
−2x3 + 4x2 − 6x+ 8

x2 + 3x− 5.

It follows that

x4 − 4x3 + 8x2 − 7x+ 3

x3 − 2x2 + 3x− 4
= (x− 2) +

x2 + 3x− 5

x3 − 2x2 + 3x− 4
,

which gives the required sum.

Another algebraic fact about polynomials, which we shall not prove, but shall
assume and use, is that any nonconstant polynomial (i.e., of degree at least 1) with
real coefficients can be written as a product of linear and quad ratic factors, each
with real coefficients. By a linear factor we mean a polynomial L(x) of degree 1;
that is, L(x) = ax+ b and a 6= 0. Similarly, a quadratic factor is a polynomial Q(x)
of degree 2; thus Q(x) = cx2 + dx+ e and c 6= 0. The theorem states that, for any
polynomial

f(x) = anx
n + ...+ a1x+ a0

with real coefficients ai and with n ≥ 1 and an 6= 0, there exist linear factors
L1(x), · · · , Lp(x) and quadratic factors Q1(x), · · · , Qq(x) with real coefficients such
that

f(x) = L1(x) · · ·Lp(x)Q1(x) · · ·Qq(x).

Note that either p or q may be zero. In actual practice, such a factorization of f(x)
may be very difficult to find, but the theorem assures us that it exists.

A polynomial is said to be irreducible if it cannot be written as the product
of two polynomials each of degree greater than or equal to 1. The degree of the
product of two polynomials is equal to the sum of the degrees of the factors, and it
therefore follows that every linear polynomial is irreducible. It was pointed out in
Section 3 that a quadratic polynomial cx2+dx+e is irreducible over the reals if and
only if its discriminant d2−4ce is negative. For example, the polynomials x2+1 and
x2 +x+1 are irreducible, whereas x2 +2x+1 and x2 +2x−1 are not. If a quadratic
polynomial is not irreducible, it can be factored and written as the product of two
linear polynomials. Hence the factorization of an arbitrary nonconstant polynomial
into linear and quadratic factors, as described in the preceding paragraph, can
always be done so that all the factors are irreducible.

Returning specifically to the method of integration by partial fractions, we con-

sider a rational function N(x)
D(x) , with the degree of D(x) greater than the degree of
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N(x). The second step is to write the denominator D(x) as a product of irreducible
factors. Having done so, we have

D(x) = L1(x) · · ·Lp(x)Q1(x) · · ·Qq(x), (7.14)

where, for each i = 1, ..., p,

Li(x) = aix+ bi, ai 6= 0,

and, for each j = 1, ..., q,

Qj(x) = cjx
2 + djx+ ej , d2j − 4cjej < 0.

There is no reason to suppose that the factors which appear in equation (2) will all
be distinct, and it may very well happen that L1(x) = L2(x), etc. However, the
theory is simpler if no repetitions occur, and we shall consider that case first.

Case 1. The irreducible factors of D(x) are all distinct. The algebraic theory of

partial fractions, which we shall assume, tells us that we can write N(x)
D(x) as a sum of

rational functions each of which has one of the factors of D(x) as its denominator
and such that in each term the degree of the numerator is less than the degree of
the denominator. Moreover, given the factorization of D(x) into irreducibles, this
decomposition is unique except for the order in which the terms are written. Thus

N(x)

D(x)
=

A1

a1x+ b1
+

A2

a2x+ b2
+ · · ·+ Ap

apx+ bp

+
B1x+ C1

c1x2 + d1x+ e1
+

B2x+ C2

c2x2 + d2x+ e2

+ · · ·+ Bqx+ Cq
cqx2 + dqx+ eq

,

where each of the letters Ai, Bj and Ck represents a uniquely determined real
constant. The rational functions which appear on the right side are called the

partial fractions of the decomposition of N(x)
D(x) .

We shall show by means of examples how the constants in the partial fractions
decomposition are determined. Consider the rational function 1

(x2+1)(x−2) discussed

at the beginning of the section. The degree of the numerator, zero, is already
less than 3, the degree of the denominator. Moreover, the denominator is already
factored into irreducibles. Hence, we seek constants A, B, and C such that

1

(x2 + 1)(x− 2)
=

A

x− 2
+
Bx+ C

x2 + 1
.

Adding the two fractions on the right side, we have

1

(x2 + 1)(x− 2)
=
A(x2 + 1) + (Bx+ C)(x− 2)

(x2 + 1)(x− 2)
.

The fact that a nonzero polynomial of degree n has at most n distinct roots implies
that two rational functions with the same denominator are equal if and only if their
numerators are equal (see Problem 8 at the end of this section). Hence the equation
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1 = A(x2 + 1) + (Bx+ C)(x− 2) (7.15)

is true for all real values of x. There are two common ways to find the constants A,
B, and C. One is to multiply and regroup the terms in (3) to obtain the equation

0 = (A+B)x2 + (C − 2B)x+ (A− 2C − 1),

which also holds for all real values of x. The only polynomial with infinitely many
roots is the zero polynomial, i.e., the polynomial with no nonzero coefficients. Hence
the three coefficients on the right side of the preceding equation are all equal to zero,
and we can therefore find A, B, and C by solving the system of equations

A + B = 0,
− 2B + C = 0,

A − 2C = 1.

Usually simpler is the technique in which we take advantage of the fact that (3)
must be true for all values of x, and we choose values cleverly to help evaluate the
constants. For example, letting x = 2 in (3), we have

1 = A(22 + 1) + (B · 2 + C)(2− 2)

= 5A.

Hence A = 1
5 . lf we then let x = 0, we have

1 =
1

5
(02 + 1) + (B · 0 + C)(0− 2)

=
1

5
− 2C,

or, equivalently, 2C = 1
5 − 1, and so C = − 2

5 . Finally, choosing x = 1, we get

1 =
1

5
(12 + 1) + (B · 1− 2

5
)(1− 2)

=
2

5
−B +

2

5
,

from which we conclude that B = − 1
5 . Whichever method we use, we have A = 1

5 ,
B = − 1

5 , and C = − 2
5 , from which it follows that

1

(x2 + 1)(x− 2)
=

1

5

1

x− 2
− 1

5

x+ 2

x2 + 1
,

the form which we integrated at the beginning of the section.

Example 154. Integrate
∫

dx
a2−x2 . Since a2 − x2 = (a − x)(a + x), we decompose

1
a2−x2 into partial fractions A

a+x and B
a−x . Thus

1

a2 − x2
=

A

a+ x
+

B

a− x
=
A(a− x) +B(a+ x)

a2 − x2
.
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Equating numerators on the left and right, we get

1 = A(a− x) +B(a+ x).

Letting x = a, we obtain the equation 1 = A·0+B ·2a, and so B = 1
2a . Similarly,

setting x = −a, we get 1 = A · 2a+B · 0, from which it follows that A = 1
2a . Thus

1

a2 − x2
=

1

2a

1

a+ x
+

1

2a

1

a− x
,

and, therefore,

∫
dx

a2 − x2
=

1

2a

∫
dx

a+ x
+

1

2a

∫
dx

a− x

=
1

2a
ln |a+ x| − 1

2a
ln |a− x|+ c

=
1

2a
ln
∣∣∣a+ x

a− x

∣∣∣+ c.

Thus the third step in applying this method of integration is the decomposition
into partial fractions, and the fourth and final step is the integration of the partial
fractions. We shall show later in the section that it is always possible to carry out
the last step, but, as the next example shows, doing so can be tedious.

Example 155. Integrate
∫

3x3+x2−14x+46
(x2+x+1)(x2−5x−14)dx. The degree of the numerator

is 3 and that of the denominator is 4, so we proceed to the factorization of the
denominator into irreducibles. It is already written as the product of two quadratics,
of which x2 + x + 1 is irreducible but x2 − 5x − 14 is not, since x2 − 5x − 14 =
(x− 7)(x+ 2). Hence the form of the partial fractions decomposition is

3x3 + x2 − 14x+ 46

(x2 + x+ 1)(x− 7)(x+ 2)
=

Ax+B

x2 + x+ 1
+

C

x− 7
+

D

x+ 2
.

The sum of the three fractions on the right side is

(Ax+B)(x− 7)(x+ 2)
+C(x2 + x+ 1)(x+ 2) +D(x2 + x+ 1)(x− 7)

(x2 + x+ 1)(x− 7)(x+ 2)
.

Equating numerators, we have

(Ax+B)(x− 7)(x+ 2) + C(x2 + x+ 1)(x+ 2) +D(x2 + x+ 1)(x− 7)

= 3x3 + x2 − 14x+ 46.

If we set x = 7 in this equation, then

C · 513 = 1026 or C = 2.

Letting x = −2, we obtain

D · (−27) = 54 or D = −2.
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If we let x = 0, then

B · (−14) + C · 2 +D · (−7) = 46

or
−14B = 46− 2C + 7D = 46− 4− 14 = 28 or B = −2.

Finally, letting x = −1, we have

(−A+B) · (−8) + C +D · (−8) = 58

or
8A = 58 + 8B − C + 8D = 58− 16− 2− 16 = 24 or A = 3.

The partial fractions decomposition is, therefore,

3x3 + x2 − 14x+ 46

(x2 + x+ 1)(x2 − 5x− 14)
=

3x− 2

x2 + x+ 1
+

2

x− 7
− 2

x+ 2
. (7.16)

Except for the first, the terms on the right side are easily integrated. The first term
can be integrated by writing it as the sum of two fractions. We use the identity

Bx+ C

cx2 + dx+ e
=
B

2c

2cx+ d

cx2 + dx+ e
+
(
C − dB

2c

) 1

cx2 + dx+ e
.

Note that the numerator 2cx + d is the derivative of cx2 + dx + e. Both of these
fractions can be integrated. In this example, we have

3x− 2

x2 + x+ 1
=

3

2

2x+ 1

x2 + x+ 1
− 7

2

1

x2 + x+ 1
.

Then ∫
2x+ 1

x2 + x+ 1
dx = ln(x2 + x+ 1) + c.

For the second fraction, we complete the square in the denominator. The result is

1

x2 + x+ 1
=

1(
x+ 1

2

)2
+
(√

3
2

)2 ,
and, since

∫
dy

y2+a2 = 1
|a| arctan y

|a| , it follows that

∫
dx

x2 + x+ 1
=

∫
dx(

x+ 1
2

)2
+
(√

3
2

)2 =
2√
3

arctan
(x+ 1

2√
3
2

)
+ c

=
2√
3

arctan
(2x+ 1√

3

)
+ c.

Hence ∫
3x− 2

x2 + x+ 1
dx =

3

2
ln(x2 + x+ 1)− 7√

3
arctan

(2x+ 1√
3

)
+ c.

Returning to equation (4), we therefore get the final integral
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∫
3x3 + x2 − 14x+ 46

(x2 + x+ 1)(x2 − 5x− 14)
dx =

3

2
ln(x2 + x+ 1)− 7√

3
arctan

(2x+ 1√
3

)
+2 ln |x− 7| − 2 ln |x+ 2|+ c,

and this completes the example.

We consider next the situation in which the factorization of the denominator of
N(x)
D(x) as shown in equation (2), contains repeated factors.

Case 2. The irreducible factors of D(x) are not all distinct. We assume, as
in Case 1, that the degree of N(x) is less than the degree of D(x). There is still

a unique decomposition of N(x)
D(x) into the sum of partial fractions, but now it is

more complicated. By regrouping, we may write the factorization of D(x) into
irreducibles as

D(x) = [L1(x)]m1 · · · [Lr(x)]mr [Q1(x)]n1 · · · [Qs(x)]ns , (7.17)

where m1, ...,mr and n1, ..., ns are positive integers, the factors Li(x) = aix + bi
are all distinct, and the factors Qj(x) = cjx

2 + djx+ ej are all distinct In this case,
N(x)
D(x) is the total sum of the following individual sums of partial fractions: For each

i = 1, ..., r, there is the sum

Ai1
aix+ bi

+
Ai2

(aix+ bi)2
+ · · ·+ Aimi

(aix+ bi)mi
,

in which the Aik are uniquely determined real constants. Similarly, for each j =
1, ..., s, there is the sum

Bj1x+ Cj1
cjx2 + djx+ ej

+
Bj2x+ Cj2

(cjx2 + djx+ ej)2
+ · · ·+

Bjnjx+ Cjnj
(cjx2 + djx+ ej)nj

,

in which the Bjk and Cjk are uniquely determined real constants.

Example 156. Integrate the rational function 2x2+x+2
x(x−1)3 by the method of partial

fractions. The degree of the numerator, 2, is less than that of the denominator, 4.
So we turn at once to the decomposition into partial fractions. Since the irreducible
factor x− 1 is repeated three times, the decomposition is of the form

2x2 + x+ 2

x(x− 1)3
=

A

x− 1
+

B

(x− 1)2
+

C

(x− 1)3
+
D

x
.

The sum on the right side is equal to

Ax(x− 1)2 +Bx(x− 1) + Cx+D(x− 1)3

x(x− 1)3
.

Equating numerators, we obtain the equation

Ax(x− 1)2 +Bx(x− 1) + Cx+D(x− 1)3 = 2x2 + x+ 2, (7.18)

which holds for all real values of x. Setting x = 1, we obtain
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C · 1 = 2 · 12 + 1 + 2, whence C = 5.

If we let x = 0, then

D · (−1)3 = 2, whence D = −2.

Thus, equation (6) has become

Ax(x− 1)2 +Bx(x− 1) + 5x− 2(x− 1)3 = 2x2 + x+ 2.

In this equation we let x = 2, getting

A · 2 +B · 2 + 10− 2 = 8 + 2 + 2

or

2A+ 2B = 4. (7.19)

Next, setting x = −1, we have

A · (−1)(−2)2 +B · (−1)(−2)− 5 + 16 = 2− 1 + 2

or

− 4A+ 2B = −8. (7.20)

Subtracting (8) from (7), we get 6A = 12 and so A = 2. It follows that B = 0, and
we have therefore found the partial fractions decomposition to be

2x2 + x+ 2

x(x− 1)3
=

2

x− 1
+

5

(x− 1)3
− 2

x
.

Hence ∫
2x2 + x+ 2

x(x− 1)3
dx = 2

∫
dx

x− 1
+ 5

∫
dx

(x− 1)3
− 2

∫
dx

x

= 2 ln |x− 1| − 5

2

1

(x− 1)2
− 2 ln |x|+ c,

and this completes the example.

Since any rational function can be written as the sum of a polynomial and a series
of partial fractions, the general problem of integrating a rational function reduces
to three integration problems: (1) integration of a polynomial; (2) integration of
functions of the form A

(ax+b)m , where m is a positive integer and a 6= 0; and (3)

integration of functions of the form Bx+C
(cx2+dx+e)n where n is a positive integer and

d2− 4ce < 0. The first, of course, offers no difficulties whatever. The second is also
simple, since A

(ax+b)m = A
a

a
(ax+b)m , and so

∫
A

(ax+ b)m
dx =

A

a

∫
a

(ax+ b)m
dx =

{ A
a(1−m)

1
(ax+b)m−1 + c if m 6= 1,

A
a ln |ax+ b|+ c if m = 1.
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The third problem can be solved, but we have seen in Example 3 that it is compli-
cated even with n = 1. It is attacked by writing

Bx+ C

(cx2 + dx+ e)n
=
B

2c

2cx+ d

(cx2 + dx+ e)n
+
(
C − dB

2c

) 1

(cx2 + dx+ e)n
.

The integra
∫

2cx+d
(cx2+dx+e)n dx is easily found, since it is of the form

∫
du
un with u =

cx2 + dx + e. The problem therefore reduces to finding
∫

dx
(cx2+dx+e)n . However it

was demonstrated at the end of Section 3 that this integral can be evaluated by
trigonometric substitution, which reduces it to an integral of the form

∫
cos2n−2 θdθ.

An alternative method is to use the reduction formula given in Problem 9, page 384.
Thus all possible partial fractions resulting from the decomposition of a rational

function can be integrated. It follows that every rational function can be integrated.
The factoring of the denominator into irreducibles may be difficult, and the decom-
position into partial fractions and the resulting integrations may be tedious, but
the following important result has been established.

7.4.1. Every rational function can be integrated by the method of partialfractions.

A table of integrals will show how to integrate many of the functions which are
the partial fractions of a rational fraction. For this reason, there is no need to mem-
orize the formulas for integration. However, it is necessary to know the technique
of separating a rational function into its partial fractions in order to replace an
apparently nonintegrable function by a sum of obviously integrable functions.
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Problems

1. Separate each of the following into the sum of a polynomial and a sum of
partial fractions.

(a) 5
(x−2)(x+3)

(b) x+2
(2x+1)(x+1)

(c) 2x3+3x2−2
2x2+3x+1

(d) 4x2−5x+10
(x−4)(x2+2)

(e) 3x3+5x2−27x+8
x2+4x

(f) x2+1
x2+x+1 .

2. Integrate each of the following.

(a)
∫

5
(x−2)(x+3) dx

(b)
∫

x+2
(2x+1)(x+1) dx

(c)
∫

2x3+3x2−2
2x2+3x+1 dx

(d)
∫

4x2−5x+10
(x−4)(x2+2) dx.

3. Find the partial fractions decomposition of each of the following rational func-
tions.

(a) x−8
x2−x−6

(b) 18
x2+8x+7

(c) x+1
(x−1)2

(d) 8x+25
x2+5x

(e) 4
x2(x+2)

(f) 6x2−x+13
(x+1)(x2+4)

(g) (x+2)2

(x+3)3

(h) x2+2x+5
(2x−1)(x2+1)2 .

4. Evaluate each of the following integrals.

(a)
∫

x−8
x2−x−6 dx

(b)
∫

18
x2+8x+7 dx

(c)
∫

x+1
(x−1)2 dx

(d)
∫

8x+25
x2+5x dx

(e)
∫

6x2−x+13
(x+1)(x2+4) dx

(f)
∫ (x+2)2

(x+3)3 dx.
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5. (a) Show directly that 2x−3
(x−2)2 can be written in the form A

x−2 + B
(x−2)2 by

first writing 2x−3
(x−2)2 = 2(x−2)+1

(x−2)2 .

(b) Following the method in ??, show that ax+b
(x−k)2 can always be written

A
x−k + B

(x−k)2 , where A and B are constants.

(c) Extend the result in ?? by factoring, completing the square, and dividing
to show directly that

ax2 + bx+ c

(x− k)3
can be written

A

x− k
+

B

(x− k)2
+

C

(x− k)3

where A, B and C are constants.

[Note: Without knowledge of the algebraic theory of partial fractions, it
would not be unreasonable to assume that a decomposition of a rational

function N(x)
P (x)(x−k)3 would necessarily contain fractions A

x−k , Bx+C
(x−k)2 , and

Dx2+Ex+F
(x−k)3 . This problem shows, however, that in the complete decom-

position B = D = E = 0.]

6. Why can there not be an irreducible cubic polynomial with real coefficients?

7. Integrate each of the following.

(a)
∫ (3x+1) dx
x3+2x2+x

(b)
∫ (x2+1) dx

x2−3x+2

(c)
∫ (x−2) dx

(2x+1)(x2+1)

(d)
∫

x2−3x−2
(x−2)2(x−3) dx

(e)
∫

dx
x2+2x+2

(f)
∫ (2x+1) dx

x2+2x+2

(g)
∫

sec2 x dx
tan2 x−4 tan x+3

(h)
∫

sec y tan y dy
2 sec2 y+5 sec y+2

(i)
∫

y2+1
y2+y+1 dy

(j)
∫

10+5z−z2
(z+4)(z2+z+1) dz

(k)
∫ (6x+3) dx

(x−1)(x+2)(x2+x+1)

(l)
∫ (x3+4) dx

(x+1)(x+2)2

(m)
∫

x2+2x+5
(2x−1)(x2+1)2 dx

(n)
∫

dx
(x2+x+5)3 .

8. Prove that the statement in the text, ?? that, since a nonzero polynomial
of degree n has at most n distinct roots, two rational functions with the
same denominator are equal if and only if their numerators are equal. [Hint:

Suppose that N1(x)
D(x) = N2(x)

D(x) , where polynomial D(x) is not the zero function.

Then N1(x)−N2(x)
D(x) = 0, and so the polynomial equation N1(x) − N2(x) = 0

holds for every real number x for which D(x) 6= 0.]
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7.5 Other Substitutions.

We have seen in Section 4 that any rational function N(x)
D(x) can be integrated by the

method of partial fractions. This result can be extended to show that any rational
function of the six trigonometric functions can also be integrated. Such a function

is defined as the result of replacing each occurrence of x in N(x)
D(x) by any one of the

six possibilities: sinx, cosx, tanx, cotx, secx, or cscx. An example is the function
F defined by

F (x) =
sin2 x cosx+ 2 tan2 x+ secx

cos2 x+ 3 cotx+ 1
,

which is obtained in the manner just described from the rational function x3+2x2+x
x2+3x+1 .

Since each one of the four functions tanx, cotx, secx, and cscx is a simple rational
function sinx and cosx,

tanx = sin x
cos x , secx = 1

cos x ,

cotx = cos x
sin x , cscx = 1

sin x ,

it follows that every rational function of the six trigonometric functions is equal to
a rational function of sinx and cosx. Thus, in the above example, we have

F (x) =
sin2 x cosx+ 2 sin2 x

cos2 x + 1
cos x

cos2 x+ 3 cos x
sin x + 1

=
sin3 x cos3 x+ 2 sin3 x+ sinx cosx

sinx cos4 x+ 3 cos3 x+ sinx cos2 x
.

It is therefore sufficient to show that every rational function of sinx and cosx can
be integrated.

Surprisingly enough, a simple substitution will transform any rational function
of sinx and cosx into a rational function of a single variable. The substitution
consists of defining y, a new variable of integration, by the equation

y = tan
x

2
. (7.21)

We can express cosx in terms of y by first writing

cosx = cos 2 · x
2

= cos2
x

2
− sin2 x

2
.

Since cos2 x2 + sin2 x
2 = 1, we have

cosx =
cos2 x2 − sin2 x

2

1
=

cos2 x2 − sin2 x
2

cos2 x2 + sin2 x
2

.

Dividing numerator and denominator by cos2 x2 , we get

cosx =
1− tan2 x

2

1 + tan2 x
2

=
1− y2

1 + y2
.

Thus we have obtained the equation
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cosx =
1− y2

1 + y2
. (7.22)

In a similar fashion,

sinx = sin 2 · x
2

= 2 sin
x

2
cos

x

2

= 2
sin x

2

cos x2
cos2

x

2
= 2 tan

x

2
[
1

2
(1 + cosx)]

= tan
x

2
(1 + cosx)

= y
(

1 +
1− y2

1 + y2

)
=

2y

1 + y2
.

Hence

sinx =
2y

1 + y2
. (7.23)

Finally, since x
2 = arctan y, or, equivalently, x = 2 arctan y, we have

dx =
2dy

1 + y2
. (7.24)

By means of the substitutions given in formulas (2), (3), and (4), any integral of a
rational function of sinx and cosx ean be transformed into an integral of a rational
function of y. Since the latter can be integrated by partial fractions, we have proved
that every rationalfunction of sinx and cosx can be integrated.

Example 157. Integrate
∫

cos x
1+cos x . If we let y = tan x

2 , then, as we have seen, we

may replace cosx by 1−y2
1+y2 , and dx by 2dy

1+y2 . The integral then becomes

∫
cosxdx

1 + cosx
=

∫ 1−y2
1+y2

2dy
1+y2

1 + 1−y2
1+y2

=

∫
2(1− y2)dy

(1 + y2)2 + (1 + y2)(1− y2)

=

∫
2(1− y2)

(1 + y2)
dy =

∫
1− y2

1 + y2
dy.

By division one finds that

1− y2

1 + y2
= −1 +

2

1 + y2
.

Hence

∫
cosxdx

1 + cosx
=

∫ (
−1 +

2

1 + y2

)
dy

= −y + 2 arctan y + c.
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But y = tan x
2 and x = 2 arctan y, and we therefore conclude that∫

cosxdx

1 + cosx
= − tan

x

2
+ x+ c.

We do not recommend that the above substitution formulas be memorized. How-
ever, one should remember the simple fact that any rational function of the six
trigonometric functions is equal to a rational function of the sine and cosine, and
one should also remember that a routine substitution procedure exists by which the
integral of a function of the latter type can be reduced to the integral of a rational
function. For the details, one will probably want to refer directly to formulas (1),
(2), (3), and (4).

There are other substitutions which simplify integrals, but none of them is as

standard and automatic as the one just described. For example,
∫ √xdx

1+
√
x

is not

readily integrated. However, if we define a new variable of integration y by the
equation y =

√
x, the substitution yields a simple integral.

Example 158. Evaluate the indefinite integral
∫ √xdx

1+
√
x

. Let y =
√
x. Then y2 = x

and 2ydy = dx. Substituting for
√
x and dx, we obtain∫ √

xdx

1 +
√
x

=

∫
y · 2ydy
1 + y

=

∫
2y2

1 + y
dy.

Division yields the identity

2y2

1 + y
= 2y − 2 +

2

1 + y
.

Hence

∫ √
xdx

1 +
√
x

=

∫ (
2y − 2 +

2

1 + y

)
dy

= y2 − 2y + 2 ln |1 + y|+ c.

Since
√
x is nonnegative, we have |1 + y| = |1 +

√
x| = 1 +

√
x. Thus∫ √

xdx

1 +
√
x

= x− 2
√
x+ 2 ln(1 +

√
x) + c.

The same integral can be evaluated by a different substitution. Let us define
the variable z by the equation z = 1 +

√
x. Then

√
x = z − 1 and

√
x = (z − 1)2

and, as a result, dx = 2(z − 1)dz. After substitution, the integral becomes

∫ √
xdx

1 +
√
x

=

∫
(z − 1) · 2(z − 1)dz

z

=

∫
2(z2 − 2z + 1)dz

z

=

∫ (
2z − 4 +

2

z

)
dz

= z2 − 4z + 2 ln |z|+ c.
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Again, since
√
x is nonnegative, we have |z| = |1 +

√
x| = 1 +

√
x. Hence, after

substituting back, we get

∫ √
xdx

1 +
√
x

= (1 +
√
x)2 − 4(1 +

√
x) + 2 ln(1 +

√
x) + c

= 1 + 2
√
x+ x− 4− 4

√
x+ 2 ln(1 +

√
x) + c

= x− 2
√
x+ 2 ln(1 +

√
x)− 3 + c.

The two solutions in Example 2 differ by a constant, in accordance with Theorem
(5.4), page 114. The two substitutions differ in the initial goal: In the first, we
decided that the integral would be simpler if we replaced the radical by a new
variable, and in the second we decided to replace the denominator. There is little
to choose between the two methods.

Example 159. Integrate
∫

x2−3
(2x+5)1/3

dx. If we define the variable y by the equation

y = (2x+5)1/3, then y3 = 2x+5 and 3y2dy = 2dx. Hence x = y3−5
2 and dx = 3y2dy

2 .
Substituting, we get

∫
x2 − 3

(2x+ 5)1/3
dx =

∫ [(
y3−5

2

)2
− 3
]

y

3y2dy

2

=
3

2

∫
y
(y6 − 10y3 + 25

4
− 3
)
dy

=
3

8

∫
(y7 − 10y4 + 13y)dy

=
3

8
(
1

8
y8 − 10

5
y5 +

13

2
y2) + c

=
3

64
(2x+ 5)8/3 − 3

4
(2x+ 5)5/3 +

39

16
(2x+ 5)2/3 + c.

There are no universal rules for integration by substitution. In most cases we
are interested in replacing an involved function forming part of the integrand by a
simpler one, frequently by a single new variable.

In this chapter we have developed a number of techniques for finding indefi-
nite integrals, or antiderivatives. However, it is by no means the case that these
techniques will yield an antiderivative for every integrable function. For example,
it is impossible to integrate

∫
e−x

2

dx in the sense that the word “integrate” has

been used in this chapter. (Since e−x
2

is everywhere continuous, an antiderivative
certainly exists. In particular, the function F defined by

F (t) =

∫ t

0

e−x
2

dx, for every real number t,

is an antiderivative as a result of the Fundamental Theorem of Calculus, page
200. However, it can be proved that no antiderivative of e−x

2

can be expressed
algebraically in terms of functions defined by compositions of rational functions,
trigonometric functions, and exponential and logarithmic functions.) Nevertheless,
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the methods discussed in this and the preceding section have significantly increased
the set of functions whose indefinite integrals we can find.

The reader should be aware of the fact that there are in existence excellent
tables of integrals in which frequently encountered integrals are tabulated. No such
table contains all tractable integrals, but some are quite complete, and they are of
immense practical value for those people whose work often leads them to problems
requiring integration.
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Problems

1. (a) Integrate
∫

secx dx by the technique for integrating rational functions
of trigonometric functions.

(b) We have already shown (see ??) that∫
secx dx = ln | secx+ tanx|+ c.

Show that this solution agrees with the one found in ?? for an appropriate
choice of the constant c.

2. (a) Integrate
∫

cscx dx by the technique for integrating rational functions
of trigonometric functions.

(b) The formula
∫

cscx dx = − ln | cscx + cotx| + c is given in Problem
??. Show that this integral agrees with the one obtained in ?? for an
appropriate choice of c.

3. Integrate each of the following.

(a)
∫

x dx
3
√
1+x

(b)
∫

x dx
1+ 3
√
x

(c)
∫

sin x dx
1+sin x

(d)
∫

3 dx
sin x+cos x

(e)
∫

dt
2+cos t

(f)
∫ (1+x)

1
5

(1+x)
1
3
dx

(g)
∫

dy√
y+ 3
√
y

(h)
∫

tan x dx
1+tan2 x

(i)
∫

x2
√
5x+3

dx

(j)
∫

dx
(1+
√
x)5

(k)
∫

ex dx√
1+ex

(l)
∫

dx√
1+ex

.

4. Evaluate each of the following definite integrals.

(a)
∫ π

3
π
6

dx
cos2 x sin x

(b)
∫ 3

0
x dx√
1+x

(c)
∫ π

2

0
sin5 x cos2 x dx

(d)
∫ 64

1
dx

3
√
x+2
√
x

.
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Chapter 8

The Definite Integral
(Continued)

8.1 Average Value of a Function.

Let f be a real-valued function of a real variable which is bounded on the closed
interval [a, b]. Furthermore, let f be integrable over [a, b]. Then the mean, or
average value, of f on the interval [a, b] will be denoted by M b

a(f) and is defined
by

M b
a(f) =

{
1
b−a

∫ b
a
f, if a < b,

f(a), if a = b.

If a < b, then it follows at once from the definition that

(b− a)M b
a(f) =

∫ b

a

f.

This equation is also true if a = b, for then,both sides are equal to zero. We conclude
that

8.1.1. ∫ b

a

f = (b− a)M b
a(f).

If f is nonnegative on [a, b], i.e., if f(x) ≥ 0 for every x such that a ≤ x ≤ b,
then (1.1) yields a good geometric interpretation of the mean M b

a(f). Let P be the
set of all points (x, y) such that a ≤ x ≤ b and 0 ≤ y ≤ f(x), as shown in Figure 1.
Then

area(P ) =

∫ b

a

f = (b− a)M b
a(f).

It follows that M b
a(f) is equal to the height of a rectangle with the same base and

the same area as P .

Example 160. Let f be the function defined by f(x) = x2 − x + 1. Find the
average value of f on the interval [0, 2], draw the graph of f , and show on it the

401
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Figure 8.1:

rectangle with base [0, 2] and area equal to the area under the curve. The graph is
shown in Figure 2. The mean, or average value, of f is given by

M2
0 (f) =

1

2− 0

∫ 2

0

f(x)dx

=
1

2

∫ 2

0

(x2 − x+ 1)dx

=
1

2
(
x3

3
− x2

2
+ x)

∣∣2
0

=
4

3
.

Figure 8.2:

The words “mean” and “average value” are common in our vocabularies and
have intuitive meaning for most of us. To use them as names for M b

a(f) is a
sensible thing to do only if this quantity, as we have defined it, has the properties
we associate with these words. We shall now show that it does.

First, let us verify that the average value of a velocity function agrees with our
earlier definition of average velocity. We consider a particle moving along a straight
line, which we take to be a coordinate axis. The position and instantaneous velocity
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of the particle at time t are denoted by s(t) and v(t), respectively, and we know
that s′(t) = v(t). Suppose that the interval of motion is from time t = a to time
t = b and that a < b. Assuming that v is a continuous function, we have∫ b

a

v(t)dt = s(b)− s(a).

According to the definition on page 104, the average velocity vav is equal to

vav =
s(b)− s(a)

b− a
.

The mean, or average value, of the function v on the interval [a, b] is given by

M b
a(v) =

1

b− a

∫ b

a

v(t)dt

=
s(b)− s(a)

b− a
= vav.

Hence the two definitions agree.
The basic properties of the average value of a function correspond closely to the

basic properties of the definite integral as they are enumerated at the beginning of
Section 4 of Chapter 4. To begin with, we would expect a function which is constant
on an interval to have, on that interval, an average value equal to the constant value
of the function. The following proposition states that this is so.

8.1.2. If f(x) = k for every x in the interval [a, b], then M b
a(f) = k.

The proof is an immediate corollary of the definition of the mean M b
a(f) and of

Theorem (4.1), page 191. The reader should supply the details.
If one function is less than or equal to another function on some interval, then

the lesser one should have the smaller average value. Thus we expect the theorem:

8.1.3. If f and g are integrable over [a, b] and if f(x) ≤ g(x) for every x in [a, b],
then M b

a(f) ≤M b
a(g).

The proof follows easily from Theorem (4.3), page 191.
We introduce the third property of the average value of a function by means of

an example. Suppose that on a 5-hour automobile trip the average velocity is 45
miles per hour during the first 3 hours and 30 during the last 2 hours. What is the
average velocity for the whole trip? To get the answer, we observe that the total
distance traveled is

45 · 3 + 30 · 2 = 195 miles.

The average velocity over 5 hours is, therefore,

195

5
= 39 mph.

If we denote the instantaneous velocity of the automobile by v(t), and assume that
the trip began at time t = 0, then we can express the fact that the average velocity
over the first 3 hours was 45 miles per hour by the equation M3

0 (v) = 45. Similarly,
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we are givenM5
3 (v) = 30 and have shown that M5

0 (v) = 39. Since 3·45+2·30 = 5·39,
we can write

(3− 0)M3
0 (v) + (5− 3)M5

3 (v) = (5− 0)M5
0 (v).

Abstracting from this example, we conclude that the average value of a function
should have the property expressed in the proposition:

8.1.4. If f is integrable over [a, b] and [b, c], then

(b− a)M b
a(f) + (c− b)M c

b (f) = (c− a)M c
a(f).

Proof. Since (b− a)M b
a(f) =

∫ b
a
f , the conclusion of (1.4) is equivalent to the equa-

tion ∫ b

a

f +

∫ c

b

f =

∫ c

a

f.

But this is one of the basic properties of the definite integral [see Theorem (4.2),
page 191], so the proof is complete.

The next theorem states the properties of the mean corresponding to Theorems
(4.4) and (4.5), page 191.

8.1.5. If f and g are integrable over [a, b] and if k is any real number, then

(i) M b
a(kf) = kM b

a(f),

(ii) M b
a(f + g) = M b

a(f) +M b
a(g).

The proofs are left as exercises.

Example 161. Let us see whether the definition of average value of a function
agrees with our intuition in a simple example. Let f be the linear function defined
by

f(x) =
1

2
x+ 1,

whose graph is shown in Figure 3. What is the average value of f between 2 and 6?

Figure 8.3:

We have f(2) = 1
2 · 2 + 1 = 2 and f(6) = 1

2 · 6 + 1 = 4. Since the graph of f
is a straight line, the region below the curve is a trapezoid. It would seem natural
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for the average value of f on the interval to be the length of the median, which is
given by

f(2) + f(6)

2
=

2 + 4

2
= 3.

Computation of M6
2 (f) yields

M6
2 (f) =

1

6− 2

∫ 6

2

(
1

2
x+ 1)dx

=
1

4
(
x2

4
+ x)

∣∣∣6
2

=
1

4
[(

36

4
+ 6)− (

4

4
+ 2)]

=
1

4
(15− 3) = 3.

In motivating the definition of the mean, or average value, of a function, we have
seen its very close connection with the definite integral. Since a beginning student
of calculus probably has a greater feeling for the idea of average than for that of
an integral, it is fruitful to reverse our point of view. That is, if we were to ask the
question “What really is the definite integral of a function?”, one answer is that it

is a weighted average. Specifically, as stated in (1.1), the integral
∫ b
a
f is equal to

the product of b− a and the average value of f on the interval [a, b].
We conclude this section with a theorem which is sometimes called the integral

form of the Mean Value Theorem. It asserts that if f is continuous, the number
M b
a(f), which we have called an average value, is quite literally the value of the

function f for some number between a and b.

8.1.6. INTEGRAE FORM OF MEAN VALUE THEOREM. If a < b and if f is
continuous on the interval [a, b], then there exists a number c such that a < c < b
and M b

a(f) = f(c).

Proof. Since f is continuous at every point of [a, b], it follows by the Fundamental
Theorem of Calculus that the function F , defined by

F (x) =

∫ b

a

f(t)dt, for every x in [a, b],

is differentiable. Furthermore,

F ′(x) = f(x), for every x in [a, b].

A differentiable function is necessarily continuous [see (6.1), page 55], and so F
more than satisfies the hypotheses of the Mean Value Theorem, (5.2), page 113.
That theorem therefore implies that there exists a number c such that a < c < b
and

F (b)− F (a) = (b− a)F ′(c).

But F ′(c) = f(c), and

F (b)− F (a) =

∫ b

a

f(x)dx.
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Hence ∫ b

a

f(x)dx = (b− a)f(c),

and so

f(c) =
1

b− a

∫ b

a

f(x)dx = M b
a(f).

This completes the proof.
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Problems

1. Find the average value M b
a(f) of f on the interval [a, b], where

(a) f(x) = x2 − 2x+ 1 and [a, b] = [0, 2].

(b) f(x) = 2x3 and [a, b] = [−1, 1].

(c) f(x) = 1
x and [a, b] = [1, 2].

(d) f(x) = 1
x and [a, b] = [1, n], where n is a positive integer.

(e) f(x) = sinx and [a, b] = [0, π].

(f) f(x) = lnx and [a, b] = [1, 5].

2. In each of the following find M b
a(f), draw the graph of f , and superimpose

on the graph a rectangle with base [a, b] and area equal to the area under the
curve y = f(x) between a and b.

(a) f(x) = x2, a = −1, and b = 1.

(b) f(x) = x3, a = 0, and b = 1.

(c) f(x) = 4− (x− 1)2, a = 0, and b = 3.

(d) f(x) = ex, a = 0, and b = 2.

(e) f(x) = cosx, a = 0, and b = π
2 .

3. Each of the propositions ??, ??, ??, and ?? corresponds to one of the basic
properties of the definite integral as they are enumerated in Theorems ??
through ??. In general, the proof of each is obtained by checking the special
case a = b separately and then using the formula

M b
a(f) =

1

b− a

∫ b

a

f(x) dx, for a < b,

together with the appropriate property of the integral.

(a) Prove ??

(b) Prove ??

(c) Prove ??.

4. A stone dropped from a cliff 400 feet high falls to the bottom with a constant
acceleration equal to 32 feet per second per second. That is,

a(t) = v′(t) = s′′(t) = 32,

where the direction of increasing s is downward. If the stone is dropped at
time t = 0, find the time it takes to reach the bottom of the cliff, and the
mean velocity during the fall.

5. A typist’s speed over an interval from t = 0 to t = 4 hours increases as she
warms up and then decreases as she gets tired. Measured in words per minute,
suppose that her speed is given by v(t) = 6[42 − (t− 1)2]. Find her speed at
the beginning, at the end, her maximum speed, and her average speed over
the 4-hour interval. How many words did she type during the 4 hours?
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6. A particle moves during the interval of time from t = 1 second to t = 3 seconds
with a velocity given by v(t) = t2 + 2t + 1 feet per second. Find the total
distance that the particle has moved and also the average velocity.

7. For each of the functions and intervals in Problem ??, find a number c such
that a < c < b and M b

a(f) = f(c).

8. An arbitrary linear function f is defined by f(x) = Ax+B for some constants
A and B. Show that

M b
a(f) =

f(a) + f(b)

2
.

9. Let x(t) be the number of bacteria in a culture at time t, and let x0 = x(0).
The number grows at a rate proportional to the number present, and doubles
in a time interval of length T . Find an expression for x(t) in terms of x0
and T , and find the average number of bacteria present over the time interval
[0, T ].
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8.2 Riemann Sums and the Trapezoid Rule.

This section is divided into two parts. The first is devoted to an alternative ap-
proach to the definite integral, which is useful for many purposes. The second is
an application of the first part to the problem of computing definite integrals by
numerical approximations. We begin by reviewing briefly the definitions in Section
1 of Chapter 4. If the function f is bounded on the closed interval [a, b], then, for
every partition σ of [a, b], there are defined an upper sum Uσ and a lower sum Lσ,
which approximate the definite integral from above and below, respectively. The
function f is defined to be integrable over [a, b] if there exists one and only one

number, denoted by
∫ b
a
f , with the property that

Lσ ≤
∫ b

a

f ≤ Uτ ,

for every pair of partitions σ and τ of [a, b].
In the alternative description of the integral, the details are similar, but not

the same. As above, let σ = {x0, ..., xn} be a partition of [a, b], which satisfies the
inequalities

a = x0 ≤ x1 ≤ ... ≤ xn = b.

In each subinterval [xi−1, xi] we select an arbitrary number, which we shall denote
by x∗i . Then the sum

Rσ =

n∑
i=1

f(x∗i )(xi − xi−1)

is called a Riemann sum for f relative to the partition σ. (The name commem-
orates the great mathematician Bernhard Riemann, 1826-1866.) It is important to
realize that since x∗i may be any number which satisfies xi−1 ≤ x∗i ≤ xi, there are in
general infinitely many Riemann sums Rσ for a given f and partition σ. However,
every Rσ lies between the corresponding upper and lower sums Uσ and Lσ. For,
if the least upper bound of the values of f on [xi−1, xi] is denoted by Mi and the
greatest lower bound by mi, then f(x∗i ) is an intermediate value and

mi ≤ f(x∗i ) ≤Mi,

as shown in Figure 4. It follows that

n∑
i=1

mi(xi − xi−1) ≤
n∑
i=1

f(x∗i )(xi − xi−1) ≤
n∑
i=1

Mi(xi − xi−1),

which states that
Lσ ≤ Rσ ≤ Uσ,

for every Riemann sum Rσ for f relative to σ.
Every Riemann sum is an approximation to the definite integral. By taking par-

titions which subdivide the interval of integration into smaller and smaller subin-

tervals, we should expect to get better and better approximations to
∫ b
a
f . One

number which measures the fineness of a given partition σ is the length of the
largest subinterval into which σ subdivides [a, b]. This number is called the mesh



410 CHAPTER 8. THE DEFINITE INTEGRAL (CONTINUED)

Figure 8.4:

of the partition and is denoted by ||σ||. Thus if σ = {x0, ..., xn} is a partition of
[a, b] with

a = x0 ≤ x1 ≤ · · · ≤ xn = b,

then
||σ|| = maximum{(xi − xi−1)}. 1 ≤ i ≤ n

The following definition states precisely what we mean when we say that the Rie-
mann sums approach a limit as the mesh tends to zero. Let the function f be
bounded on the interval [a, b]. We shall write

lim
||σ||→0

Rσ = L,

where L is a real number, if the difference between the number L and any Riemann
sum Rσ for f is arbitrarily small provided the mesh ||σ|| is sufficiently small. Stated
formally, the limit exists if: For any positive real number ε, there exists a positive
real number δ such that, if Rσ is any Riemann sum for f relative to a partition σ
of [a, b] and if ||σ|| < δ, then |Rσ − L| < ε.

The fundamental fact that integrability is equivalent to the existence of the limit
of Riemann sums is expressed in the following theorem.

8.2.1. Let f be bounded on [a, b]. Then f is integrable over [a, b] if and only if

lim||σ||→0Rσ exists. If this limit exists, then it is equal to
∫ b
a
f .

The proof is given in Appendix C.

Example 162. Using the fact that the definite integral is the limit of Riemann
sums, evaluate

lim
n→∞

√
1 +
√

2 + ...+
√
n

n3/2
.

The numerator of this fraction suggests trying the function f defined by f(x) =
√
x.

If σ = {x0, ..., xn} is the partition of the interval [0, 1] into subintervals of length 1
n ,

then
x0 = 0, x1 = 1

n , x2 = 2
n , ..., xi = i

n ,
xi − xi−1 = 1

n , for i = 1, ..., n.
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In each subinterval [xi−1, xi] we take x∗i = xi. Then

f(x∗i ) = f(xi) =

√
i

n
=

√
i√
n
,

and the resulting Riemann sum, denoted by Rn, is given by

Rn =

n∑
i=1

f(x∗i )(xi − xi−1) =

n∑
i=1

√
i√
n

1

n

=
1

n3/2

n∑
i=1

√
i

=

√
1 +
√

2 + ...+
√
n

n3/2
.

The function
√
x is continuous and hence integrable over the interval [0, 1]. Since

||σ|| → 0 as n→∞, it follows from Theorem (2.1) that∫ b

a

f =

∫ 1

0

√
xdx = lim

n→∞
Rn.

Hence

lim
n→∞

√
1 +
√

2 + ...+
√
n

n3/2
=

∫ 1

0

√
xdx

=
2

3
x3/2

∣∣∣1
0

=
2

3
,

and the problem is solved.

Theorem (2.1) shows that it is immaterial whether we define the definite integral
in terms of upper and lower sums (as is done in this book) or as the limit of Riemann
sums. Hence there is no logical necessity for introducing the latter at all. However,
a striking illustration of the practical use of Riemann sums arises in studying the
problem of evaluating definite integrals by numerical methods.

In spite of the variety of techniques which exist for finding antiderivatives and
the existence of tables of indefinite integrals,there are still many functions for which
we cannog find an antiderivative. More often than not, the only way of computing∫ b
a
f(x)dx is by numerical approximation. However, the increasing availability of

high-speed computers has placed these methods in an entirely new light. Evaluating∫ b
a
f(x)dx by numerical approximation is no longer to be regarded as a last resort

to be used only if all else fails. It is an interesting, instructive, and simple task
to write a machine program to do the job, and the hundreds, thousands, or even
millions of arithmetic operations which may be needed to obtain the answer to a
desired accuracy can be performed by a machine in a matter of seconds or minutes.

One of the simplest and best of the techniques of numerical integration is the
Trapezoid Rule, which we now describe. Suppose that the function f is integrable
over the interval [a, b]. For every positive integer n, let σn be the partition which
subdivides [a, b] into n subintervals of equal length h. Thus σn = {x0, ..., xn} and

h =
b− a
n

= xi − xi−1, i = 1, ..., n.
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It is convenient to set
yi = f(xi), i = 0, 1, ..., n.

Then the Riemann sum obtained by choosing x∗i to be the left endpoint of each
subinterval [xi−1, xi], i.e., by choosing x∗i = xi−1, is given by

n∑
i=1

f(x∗i )(xi − xi−1) =

n∑
i=1

f(xi−1)h = h

n∑
i=1

yi−1.

Similarly, the Riemann sum obtained by choosing x∗i to be the right endpoint, i.e.,
by taking x∗i = xi, is

n∑
i=1

f(x∗i )(xi − xi−1) =

n∑
i=1

f(xi)h = h

n∑
i=1

yi.

The approximation to
∫ b
a
f prescribed by the Trapezoid Rule, which we denote by

Tn is by definition the average of these two Riemann sums. Thus

Tn =
h
∑n

i=1
yi−1+h

∑n

i=1
yi

2

= h
2

(∑n
i=1 yi−1 +

∑n
i=1 yi

)
.

(8.1)

The last expression above can be simplified by observing that

n∑
i=1

yi−1 +

n∑
i=1

yi = y0 + 2

n−1∑
i=1

yi + yn.

Hence

Tn = h(
1

2
y0 +

n−1∑
i=1

yi +
1

2
yn). (8.2)

We shall express the fact that Tn is an approximation to the integral
∫ b
a
f by writing∫ b

a
f ≈ Tn. The Trapezoid Rule then appears as the formula

8.2.2. ∫ b

a

f ≈ Tn = h(
1

2
y0 + y1 + · · ·+ yn−1 +

1

2
yn).

Why is this formula called the Trapezoid Rule? Suppose that f(x) ≥ 0 for every
x in [a, b], and observe that∫ b

a

f =

∫ x1

x0

f +

∫ x2

x1

f + · · ·+
∫ xn

xn−1

f.

The area of the shaded trapezoid shown in Figure 5 is an approximation to
∫ xi
xi−1

f .

This trapezoid has bases yi−1 = f(xi−1) and yi = f(xi) and altitude h. By a

well-known formula, its area is therefore equal to h
2 (yi−1 + yi). The integral

∫ b
a
f is

therefore approximated by the sum of the areas of the trapezoids, which is equal to∑ h

2
(yi−1 + yi) =

h

2

( n∑
i=1

yi−1 +

n∑
i=1

yi

)
.

Equation (1) shows that this number is equal to Tn.
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Figure 8.5:

i xi yi = x2i + x3i

0 −1 1− 1 = 0
1 − 3

4
9
16 −

27
64 = 9

64
2 − 2

4
4
16 −

8
64 = 8

64
3 − 1

4
1
16 −

1
64 = 3

64
4 0 0 + 0 = 0
5 1

4
1
16 + 1

64 = 5
64

6 2
4

4
16 + 8

64 = 24
64

7 3
4

9
16 + 27

64 = 63
64

8 1 1 + 1 = 2

Table 8.1:

Example 163. Using the Trapezoid Rule, find an approximate value for
∫ 1

−1(x3 +

x2)dx. We shall subdivide the interval [−1, 1] into n = 8 subintervals each of length
h = 1

4 . The relevant numbers are compiled in Table 1.
Hence

T8 =
1

4
(
1

2
y0 + y1 + · · ·+ y7 +

1

2
y8)

=
1

4

(
0 +

9 + 8 + 3 + 0 + 5 + 24 + 63

64
+ 1
)

=
1

4

176

64
=

11

16
.

With the Fundamental Theorem of Calculus it is easy in this case to compute the
integral exactly. We get∫ 1

−1
(x3 + x2)dx =

(x4
4

+
x3

3

)∣∣∣1
−1

=
2

3
.

The error obtained using the Trapezoid Rule is, therefore,

11

16
− 2

3
=

33

48
− 22

48
=

1

48
.
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In Example 2, the error can be reduced by taking a larger value of n, or, equiva-
lently, a smaller value of h = b−a

n . Indeed, it is easy to show that in any application
of the Trapezoid Rule the error approaches zero as h increases without bound (or
as h approaches zero). That is, we have the theorem

8.2.3.

lim
n→∞

Tn =

∫ b

a

f(x)dx.

Proof. It follows from equation (1) that

Tn =
1

2

(
h

n∑
i=1

yi−1 + h

n∑
i=1

yi

)
Both h

∑n
i=1 yi−1 and h

∑n
i=1 yi are Riemann sums for f . Hence, by Theorem (2.1),

both approach the integral as n→∞. Thus

lim
n→∞

h

n∑
i=1

yi−1 =

∫ b

a

f(x)dx,

lim
n→∞

h

n∑
i=1

yi =

∫ b

a

f(x)dx,

and so

lim
n→∞

Tn =
1

2

[∫ b

a

f(x)dx+

∫ b

a

f(x)dx
]

=

∫ b

a

f(x)dx,

and the proof is complete.

As a practical aid to computation, Theorem (2.3) is actually of little value.
What is needed instead is a method of estimating the error, which is equal to

∣∣ ∫ b

a

f − Tn
∣∣,

for a particular choice of n used in a particular application of the Trapezoid Rule.
For this purpose the following theorem is useful.

8.2.4. If the second derivative f ′′ is continuous at every point of [a, b], then there
exists a number c such that a < c < b and∫ b

a

f = Tn −
b− a

12
f ′′(c)h2.

An outline of a proof of this theorem can be found in J. M. H. Olmsted, Advanced
Calculus, Appleton-Century-Crofts, 1961, pages 118 and 119.

To see how this theorem can be used, consider Example 2, in which f(x) =
x3+x2 and in which the interval of integration is [−1, 1]. In this case f ′′(x) = 6x+2,
from which it is easy to see that

f ′′(x) ≤ 8, for everyx in [−1, 1].
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Applying (2.4), we have∫ 1

−1
(x3 + x2)dx− Tn = −1− (−1)

12
f ′′(c)h2.

Hence the error satisfies∣∣ ∫ 1

−1
(x3 + x2)dx− Tn

∣∣ =
1

6
|f ′′(c)|h2

≤ 1

6
· 8 · h2 =

4

3
h2.

It follows that by halving h, we could have quartered the error. If we were to replace
h by h

10 , which would be no harder with a machine, we would divide the error by
100.
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Problems

1. For each of the following limits, find a function f(x) such that the limit is

equal to
∫ 1

0
f(x) dx. Evaluate the limit.

(a) limn→∞
1+22+32+···+n2

n3 .

(b) limn→∞
(1+n2)+(22+n2)+(32+n2)+···+(n2+n2)

n3 .

(c) limn→∞
√
1+n+

√
2+n+

√
3+n+···+

√
n+n

n
3
2

.

(d) limn→∞
1√
n

(
1√
1+n

+ 1√
2+n

+ 1√
3+n

+ · · ·+ 1√
n+n

)
.

2. Prove that

(a) ln 2 = limn→∞

(
1

n+1 + 1
n+2 + · · ·+ 1

n+n

)
.

(b) π = limn→∞
4
n2

(√
n2 − 1 +

√
n2 − 2 + · · ·+

√
n2 − n2

)
.

(c)
∫ 3

1
(x2 + 1) dx = limn→∞

4
n3

∑n
i=1(n2 + 2in+ 2i2).

(d) π
6 = limn→∞

(
1√

4n2−1 + 1√
4n2−22 + · · ·+ 1√

4n2−n2

)
.

3. Use the Trapezoid Rule with n = 4 to compute approximations to the fol-
lowing integrals. In ??, ??, ??, and ??, compare the approximation obtained
with the true value.

(a)
∫ 1

0
(x2 + 1) dx

(b)
∫ 2

0
(x2 + 1) dx

(c)
∫ 3

−1(4x− 1) dx

(d)
∫ 3

1
1
x2 dx

(e)
∫ 1

0
1

1+xdx

(f)
∫ 1

0
dx

1+x2

(g)
∫ 1

0
e−x

2

dx

(h)
∫ 1

0
1

x2+x+1dx

(i)
∫ 1

0
x2−1
x2+1dx

(j)
∫ π
0

sin x
x dx.

4. Show geometrically, without appealing to Theorem ??, that the approxima-
tion Tn obtained with the Trapezoid Rule has the following properties.

(a) If f ′′(x) ≥ 0 for every x is [a, b], then Tn ≥
∫ b
a
f .

(b) If f ′′(x) ≤ 0 for every x in [a, b], then Tn ≤
∫ b
a
f .

5. For each of the following integrals, use Theorem ?? as the basis for finding the

smallest integer n such that the error |
∫ b
a
f − Tn| in applying the Trapezoid

Rule is less than (i) 1
100 , (ii) 1

10000 , and (iii) 10−8.
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(a)
∫ 4

1
1

6x2 dx

(b)
∫ 1

0
(8x3 − 5x+ 3) dx

(c)
∫ 2

−1(3x+ 1) dx

(d)
∫ 2

1
1
xdx

(e)
∫ 12

0
1

16x+2dx

(f)
∫ 1

0
e−x

2

dx.

6. (For those who have access to a high-speed digital computer and know how
to use it.) Compute the Trapezoid approximation Tn to each of the following
integrals.

(a)
∫ 1

0
1

1+x3 dx, for n = 10, 100, and 1000.

(b)
∫ 1

0
1

1+x2 dx, for successive values of n = 10, 100, 1000, . . ., until the error

is less that 10−6.

(c)
∫ 1

0

√
1 + x3 dx, for n = 5, 50, and 500.

(d)
∫ π
0

sin x
x dx, for n = 2, 4, 8, 16, and 100.

(e)
∫ 1

0
e−x

2

dx, for n = 10, 100, and 1000.
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8.3 Numerical Approximations (Continued).

Two additional methods of integration by numerical approximations, which we shall
describe in this section, are the Midpoint Rule and Simpson’s Rule.

In the Midpoint Rule the approximation to the integral
∫ b
a
f is a Riemann sum∑n

i=1 f(x∗i )(xi−xi−1) in which each x∗i is taken to be the midpoint of the subinterval
[xi−1, xi]. In more detail: Let f be a function which is integrable over [a, b]. For
every positive integer n, let h = b−a

n , and let σn = {x0, ..., xn} be the partition
defined by

xi = a+ ih, i = 0, ..., n.

As a result, it follows that

xi − xi−1 = h, i = 1, ..., n.

If we take x∗i to be the midpoint of the subinterval [xi−1, xi], then

x∗i =
xi−1 + xi

2
, i = 1, ..., n.

The Riemann sum used as the approximation to the integral in the Midpoint Rule
will be denoted by Mn. It is given by

Mn =

n∑
i=1

f(x∗i )(xi − xi−1) = h

n∑
i=1

f
(xi−1 + xi

2

)
.

In studying the Trapezoid Rule, we found it convenient to use the abbreviation
yi = f(xi), for i = 0, ..., n. By analogy, we shall here let

yi−1/2 = f
(xi−1 + xi

2

)
, i = 1, ..., n.

Then

Mn = h

n∑
i=1

yi−1/2 = h(y1/2 + y3/2 + · · ·+ yn−1/2),

and we express the Midpoint Rule for numerical integration by the formula

8.3.1. ∫ b

a

f ≈Mn = h(y1/2 + y3/2 + · · ·+ yn−1/2).

If f(x) ≥ 0 for every x in [a, b], the Midpoint Rule approximates the integral∫ b
a
f , which is the area under the curve, by a sum of areas of rectangles, as illustrated

in Figure 6.
An alternative to approximating the integral by a Riemann sum is to use straight-

line segments which are tangent to the curve y = f(x) at the midpoints of the subin-

tervals. An example is shown in Figure 7, in which
∫ b
a
f is approximated by the

sum of the areas of the three shaded trapezoids. This method yields the so-called
Tangent Formula. It turns out, however, that the Tangent Formula is the same
as the Midpoint Rule. The reason can be seen by looking at Figure 8, in which the
area of the shaded trapezoid with one side tangent to the curve is the ith term in
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Figure 8.6:

Figure 8.7:

the approximating sum used in the Tangent Formula. The area of this trapezoid is
equal to h

2 (y′ + y′′), where y′ and y′′ are the lengths of the bases. However, by ele-
mentary geometry the trapezoid can be seen to have the same area as the rectangle
with base [xi−1, xi] and altitude yi−1/2 The area of the rectangle is h · yi−1/2, and
so

h

2
(y′ + y′′) = h · yi−1/2.

(Incidentally, note that this equation is true regardless of whether y′, y′′, and yi−1/2
are positive, negative, or zero.) Since the product h · yi−1/2 is the ith term in
the midpoint approximation Mn, we conclude that the Tangent Formula and the
Midpoint Rule, although differently motivated, are in fact the same.

Example 164. Approximate
∫ 1

−1(x2 + x3)dx using the Midpoint Rule. This is the
same integral which we evaluated in Section 2 by the Trapezoid Rule. To compare
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Figure 8.8:

the two methods, we shall again take n = 8 and

h =
1− (−1)

8
=

1

4
.

Since, for an arbitrary interval [a, b], we have

xi = a+ ih, i = 0, ..., n,

it follows that

x∗i =
xi−1 + xi

2
=

[a+ (i− 1)h] + (a+ ih)

2

= a+ (i− 1

2
)h

In addition, since yi−1/2 = f(x∗i ), we have a pair of useful formulas:

x∗i = a+ (i− 1
2 )h

yi−1/2 = f(a+ (i− 1
2 )h)

}i = 1, ..., n.

In the present example, a = −1, h = 1
4 , and f(x) = x2 + x3. Hence

x∗i = −1 + (i− 1

2
)
1

4
=

2i− 9

8
,

yi−1/2 =
(2i− 9

8

)2
+
(2i− 9

8

)3
=

8(2i− 9)2 + (2i− 9)3

83

=
(2i− 9)2(2i− 1)

83
.

Table 2 contains the numbers for the computation of M8.
Hence we obtain

M8 =
1

4
(y1/2 + · · ·+ y15/2)
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i yi−1/2 = (2i−9)2(2i−1)
83

1 y1/2 = 49
83

2 y3/2 = 25·3
83 = 75

83

3 y5/2 = 9·5
83 = 45

83

4 y7/2 = 7
83

5 y9/2 = 9
83

6 y11/2 = 9·11
83 = 99

83

7 y13/2 = 25·13
83 = 325

83

8 y15/2 = 49·15
83 = 735

83

Table 8.2:

=
1

4 · 83
(49 + 75 + 45 + 7 + 9 + 99 + 325 + 735)

=
1344

4 · 83
=

21

32

as an approximation to the integral
∫ 1

−1(x2+x3)dx. The value obtained earlier with

the Trapezoid Rule was T8 = 11
16 . Since the true value is given by∫ 1

−1
(x2 + x3)dx =

2

3
,

it follows that the error using the Midpoint Rule is equal to

|2
3
− 21

32
| = 1

96
.

This is one half the error obtained using the Trapezoid Rule with the same value
of h.

In any application of the Midpoint Rule, the error |
∫ b
a
f −Mn| can be made

arbitrarily small by taking n sufficiently large. That is, we assert that

8.3.2.

lim
n→∞

Mn =

∫ b

a

f.

This theorem is easier to prove than the corresponding one for the Trapezoid
Rule because every approximation Mn is, as it stands, a Riemann sum of f relative
to the partition σn of [a, b]. Since ||σn|| → 0 as n → ∞, it is a direct corollary
of the fundamental theorem on the limit of Riemann sums [(2.1), page 414] that

limn→∞Mn =
∫ b
a
f .

A means of estimating the error |
∫ b
a
f −Mn| in a particular application of the

Midpoint Rule is provided by the following theorem:

8.3.3. If the second derivative f ′′ is continuous at every point of [a, b], then there
exists a number c such that a < c < b and∫ b

a

f = Mn +
b− a

24
f ′′(c)h2.
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As with the analogous theorem for the Trapezoid Rule [(2.4), page 419], this
theorem can be proved by first reducing it to the case n = 1. A discussion of the
error term can be found in R. Courant and F. John, Introduction to Calculus and
Analysis, Volume I, Interscience Publishers (Wiley), 1965, pages 486 and 487.

Theorem (3.3) can be used to obtain an upper bound on the error |
∫ b
a
f −Mn|

provided the second derivative f ′′ is bounded on the interval [a, b]. That is, if there
exists a real number K such that

|f ′′(x)| ≤ K, for every x in [a, b],

then, in particular |f ′′(c)| ≤ K, and so∣∣∣ ∫ b

a

f −Mn

∣∣∣ =
(b− a)h2

24
|f ′′(c)|

≤ (b− a)K

24
h2.

For the one integral we computed by both methods, the Midpoint Rule gave a better
approximation than the Trapezoid Rule by a factor of 2. Comparison of Theorem
(3.3) with (2.4) shows that in general this ratio can be expected.

Geometrically, the different methods of numerical integration described thus far
in this and the preceding section are all based on approximating the area under a
curve by a sum of areas of rectangles or trapezoids. Analytically, in each method the

approximation to
∫ b
a
f has been obtained by replacing f over every subinterval by a

linear function. In Simpson’s Rule, however, we shall replace f over each subinterval
by a quadratic polynomial Ax2 + Bx + C. The corresponding area problem is the
simple one of finding the area under a parabola (or a straight line, if A = 0). For
most integrals, Simpson’s Rule gives much greater accuracy for the same value of
h.

Let f be a function which is integrable over the interval [a, b]. The procedure
differs from the others in that we consider only partitions of [a, b] into an even
number of subintervals. Thus for an arbitrary even integer n > 0, we set h = b−a

n ,
and let

xi = a+ ih,

yi = f(xi), for i = 0, ..., n.

Since n is even, there is an integral number of “double” intervals [x2i−2, x2i], i =
1, ..., n2 as illustrated in Figure 9, and

∫ b

a

f(x)dx =

n/2∑
i=1

∫ x2i

x2i−2

f(x)dx.

There exists one and only one polynomial qi(x) = Aix
2+Bix+Ci of degree less than

three whose graph passes through the three points (x2i−2, y2i−2), (x2i−1, y2i−1), and
(x2i, y2i) (see Figure 10). Over each double interval [x2i−2, x2i] we shall approximate
the integral of f by the integral of qi. Let us assume for the moment, and later
prove, the fact that ∫ x2i

x2i−2

qi(x)dx =
h

3
(y2i−2 + 4y2i−1 + y2i). (8.3)
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Figure 8.9:

Figure 8.10:

The sum of these integrals, which we shall denote Sn, is the approximation to
∫ b
a
f

prescribed by Simpson’s Rule. Hence

Sn =
h

3

n/2∑
i=1

(y2i−2 + 4y2i−1 + y2i).

If this sum is expanded, note the pattern of the coefficient of the yi’s: If i is odd,
the coefficient of yi is 4. If i is even, the coefficient is 2, with the exception of y0
and yn, each of which has coefficient 1. Thus Simpson’s Rule is expressed in the
formula

8.3.4. ∫ b

a

f ≈ Sn =
h

3
(y0 + 4y1 + 2y2 + 4y3 + 2y4

+ · · ·+ 2yn−2 + 4yn−1 + yn).

We now prove equation (1). The algebra is significantly simpler if we write qi(x)
in terms of x− x2i−1 instead of x (see Figure 10). Hence we let

qi(x) = αi(x− x2i−1)2 + βi(x− x2i−1) + γi. (8.4)
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i 0 1 2 3 4

yi = 16
16+i2 1 16

17
16
20

16
25

16
32

Table 8.3:

The integral
∫ x2i

x2i−2
qi(x)dx may be computed by substituting u = x − x2i−1 and

using the Change of Variable Theorem for Definite Integrals (see page 215). Since
x2i−2 − x2i−1 = −h and x2i − x2i−1 = h, the result is∫ x2i

x2i−2
qi(x)dx =

∫ h
−h(αiu

2 + βiu+ γi)du

=
(
αiu

3

3 + βiu
2

2 + γiu
)∣∣h
−h

= h
3 (2αih

2 + 6γi).

(8.5)

Setting first x = x2i−1 in equation (2), we obtain

y2i−1 = qi(x2i−1) = αi · 02 + βi · 0 + γi = γi.

Next we let x = x2i−2 and x = x2i to get

y2i−2 = qi(x2i−2) = αih
2 − βih+ γi,

and
y2i = qi(x2i) = αih

2 + βih+ γi.

Adding, we obtain
y2i−2 + y2i = 2αih

2 + 2γi.

Since γi = y2i−1, it follows that

2αih
2 + 6γi = y2i−2 + 4y2i−1 + y2i.

Substituting this result in (3) yields the desired result (1), and the derivation of
Simpson’s Rule is complete.

Example 165. Using n = 4, find an approximate value of
∫ 1

0
1

1+x2 dx by Simpson’s

Rule. We have h = 1−0
4 = 1

4 ,

xi =
i

4
, i = 0, 1, ..., 4,

yi =
1

1 + x2i
=

1

1 + i2

16

=
16

16 + i2
, i = 0, 1, ..., 4.

Table 3 contains the numbers necessary for the computation.
Hence

S4 =
h

3
− (y0 + 4y1 + 2y2 + 4y3 + y4)

=
1

12
(1 +

64

17
+

32

20
+

64

25
+

16

32
)

= 0.785392....
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We know that ∫ 1

0

1

1 + x2
dx = arctanx

∣∣1
0

=
π

4
= 0.785398....

Hence the error |
∫ b
a
f − S4| is approximately 0.000006.

Just as with the other two methods of integration by numerical approximation,

the error |
∫ b
a
f − Sn| can be made arbitrarily small by taking n aufficiently large.

That is, we have the following theorem, which we state without proof.

8.3.5.

lim
n→∞

Sn =

∫ b

a

f.

In addition, the next theorem can be used to estimate the error in a particular
application of Simpson’s Rule.

8.3.6. If the fourth derivative f (4) is continuous at every point of [a, b], then there
exists a number c such that a < c < b and∫ b

a

f = Sn −
b− a
180

f (4)(c)h4.

For an outline of a proof, see J. M. H. Olmsted, Advanced Calculus, Appleton-
Century-Crofts, 1961, page 119.

The fourth derivative of every cubic polynomial is identically zero, for if

f(x) = a3x
3 + a2x

2 + a1x+ a0,

then f (4)(x) = 0. It is therefore a rather surprising corollary of Theorem(3.6) that
Simpson’s Rule will always give the exact value of the integral when applied to any
polynomial of degree less than 4.
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Problems

1. Use the Midpoint Rule with n = 4 to compute approximations to the following
integrals. In ??, ??, ??, ??, and ?? compare the result obtained with the true
value.

(a)
∫ 1

0
(x2 + 1) dx

(b)
∫ 3

−1(6x− 5) dx

(c)
∫ 3

1
1
x2 dx

(d)
∫ 3

0
1

1+xdx

(e)
∫ 3

0

√
1 + x dx

(f)
∫ 2π

0
sin2 x dx

(g)
∫ 1

0
e−x

2

dx

(h)
∫ 1

0

√
1 + x3 dx.

2. ?? through ??. Compare M4, the Midpoint Approximation computed in
Problem ??, to T4, the corresponding Trapezoid Approximation.

3. ?? through ??. Use Simpson’s Rule with n = 4 to compute an approximation
to the corresponding definite integral in Problem ??.

4. Show geometrically that, if the graph of f is concave up at every point of
the interval [a, b], then the Midpoint Approximation is too small and the
Trapezoid Approximation is too big; i.e.,

Mn <

∫ b

a

f < Tn.

5. Do Problem ?? analytically by using the remainder formulas ?? and ??.

6. Show that Simpson’s Approximation is the weighted average of the Trapezoid
Approximation and the Midpoint Approximation. Specifically, for any even
positive integer n = 2m, show that

Sn =
1

3
Tm +

2

3
Mm.

7. Prove Theorem ??, i.e., if f is integrable over [a, b], then

lim
n→∞

Sn =

∫ b

a

f,

by showing that it is a direct corollary of the result of Problem ?? and the

two corresponding theorems, limn→∞ Tn =
∫ b
a
f and limn→∞Mn =

∫ b
a
f .

8. For each of the following integrals and each of the three methods of numerical
integration (Trapezoid Rule, Midpoint Rule, and Simpson’s Rule), find the
smallest integer n such that the error obtained is less that 10−4. As the basis
for finding n, use Theorems ??, ??, and ??.
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(a)
∫ 4

1

(
1

2x2 + x2

2

)
dx

(b)
∫ 2

0
1

2x+1dx.

9. This problem is analogous to Problem ??. Show that, for any positive integer
n,

T2n =
1

2
Tn +

1

2
Mn.

10. Suppose that the graph of f is concave up at every point of the interval [a, b].

(a) Using the results of Problems ?? and ??, show that

T2n − (Tn − T2n) <

∫ b

a

f < T2n,

for every positive integer n.

(b) Hence show that the error |
∫ b
a
f − T2n| in the Trapezoid Approximation

satisfies ∣∣∣∣∣
∫ b

a

f − T2n

∣∣∣∣∣ < |Tn − T2n|.
(c) Show that ?? also holds if the graph of f is concave down at every point

of [a, b].
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8.4 Volume.

In this section we shall use Riemann sums to derive several integral formulas for
the volume of solids. The concept of volume is a familiar one, and we shall not
give a mathematical definition of it. As a result, the formulas will be derived from
properties of volume which seem intuitively natural and which we shall assume. By
a solid we mean a subset of threedimensional space.

A subset Q of three-dimensional space is said to be bounded if there exists a
real number k such that, for any two points p and q in Q, the straightline distance
in space between p and q is less than k. Alternatively, Q is bounded if and only if
there exists a sphere in space which contains Q in its interior. In finding volumes
of solids, we shall restrict ourselves to bounded subsets of three-dimensional space.

Let Q be a bounded solid, such as the one shown in Figure 11. We choose an
arbitrary straight line in space for a coordinate axis. Any point on the line may
be chosen for the origin and either direction as the direction of increasing numbers.
The scale on the line must agree with the scale of distance in space. That is, if two
points on the line correspond to the numbers x and y, then |x− y| must equal the
straight-line distance in space between the two points.

Figure 8.11:

For every number x, let Px be the plane figure which is the intersection of the
solid Q and the plane perpendicular to the coordinate axis at x (see Figure 11).
The second assumption we make about Q is that every set Px has a well-defined
area. We then define a cross-sectional area function A by setting

A(x) = area(Px).

One consequence of the fact that Q is bounded is that there exists an interval [a, b]
such that, for every x outside of [a, b], the set Px is empty and so A(x) = 0. Another
consequence is that the function A is bounded on [a, b].

Let us now consider a partition σ = {x0, ..., xn} of the interval [a, b] which
satisfies the inequalities

a = x0 ≤ x1 ≤ · · · ≤ xn = b.

In each subinterval [xi−1, xi], we choose an arbitrary number x∗i . The product
A(x∗i )(xi − xi−1) is equal to the volume of a right cylindrical slab with constant
cross-sectional area A(x∗i ) and thickness xi − xi−1. If xi − xi−1 is small, then we
should expect A(x∗i )(xi − xi−1) to be a good approximation to the volume of the
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Figure 8.12:

slice of Q which lies between the parallel planes at xi−1 and xi (see Figure 12).
Hence if the mesh of the partition σ is small, then the Riemann sum

n∑
i=1

A(x∗i )(xi − xi−1)

will be a good approximation to the volume of Q. Moreover, the smaller the mesh,
the better the approximation ought to be. Therefore, we shall assume that if the
volume of Q is defined, then it is given by

vol(Q) = lim
||σ||→0

n∑
i=1

A(x∗i )(xi − xi−1).

It follows immediately from the integrability criterion, Theorem (2.1), page 414,
that

8.4.1.

vol(Q) =

∫ b

a

A(x)dx.

This is a basic integral formula for volume.

Example 166. Find the volume V of a pyramid of height h with a square base of
length a on a side. The pyramid is shown in Figure 13(a). We choose a vertical
x-axis with origin at the apex and which cuts the center of the base at x = h.
The cross-sectional area A(x) of the intersection of the pyramid and the plane
perpendicular to the coordinate axis at x is easily seen from the side view [Figure
13(b)]. Since corresponding parts of similar triangles are proportional, it follows
that

y

x
=
a

h
.
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Figure 8.13:

Hence

A(x) = y2 =
a2x2

h2
,

and so

V =

∫ h

0

A(x)dx =
a2

h2

∫ h

0

x2dx

=
a2

h2
h3

3
=

1

3
a2h.

This is the well-known result that the volume of a pyramid is equal to one third the
product of the height and the area of the base.

Example 167. The axes of two right circular cylinders P and Q of equal radii a
intersect at right angles as shown in Figure 14(a). Find the volume of the intersec-
tion P ∩ Q. We choose an x-axis perpendicular to the axes of both cylinders and
which passes through their point of intersection. This point is chosen for the origin,
and the direction of increasing x is upward. Figure 14(b) helps one to see that the
cross sections of P ∩ Q perpendicular to the x-axis are squares. From the end-on
view in Figure 14(c), it is apparent that the cross section at x is a square with an
edge of length 2

√
a2 − x2. Hence

A(x) = (2
√
a2 − x2)2 = 4(a2 − x2), −a ≤ x ≤ a.

By the integral formula for volume, therefore,

vol(P ∩Q) =

∫ a

−a
A(x)dx = 4

∫ a

−a
(a2 − x2)dx.

Since a2 − x2 is an even function, the integral from −a to a is twice the integral
from 0 to a. Thus

vol(P ∩Q) = 8

∫ a

0

(a2 − x2)dx
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Figure 8.14:

= 8(a2x− x3

3
)
∣∣a
0

= 8(a3 − a3

3
)

=
16a3

3
.

Consider a plane in three-dimensional space containing a region R and a line L.
The solid generated by rotating R in space about L is called a solid of revolution.
Among the solids of revolution are those described by rotating a portion of the
graph of a function in the xy-plane about the x-axis (or the y-axis). We shall give
an integral formula for the volumes of these solids, which is a special case of (4.1).
Let f be a function integrable over the closed interval [a, b], and consider the solid
of revolution Q swept out by rotating about the x-axis the region bounded by the
graph of f , the x-axis, and the y-axis lines x = a and x = b. Such a region is
illustrated in Figure 15(a), and the corresponding solid in Figure 15(b). For every
x in [a, b], the cross section of Q perpendicular to the x-axis at x is a circular disk,
of radius |f(x)|. Hence

A(x) = π|f(x)|2 = π[f(x)]2.

By formula (4.1), therefore, the volume of the solid of revolution Q is given by

8.4.2.

vol(Q) = π

∫ b

a

[f(x)]2dx.
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Figure 8.15:

Example 168. LetR be the region in the upper half-plane bounded by the parabola
y2 = 4x, the x-axis, and the line x = 4. Find the volume of Q, the solid of revolution
obtained by rotating this region about the x-axis. The region and the solid are
drawn in Figure 16. That part of the parabola in the upper half-plane is the set of
all points (x, y) such that y2 = 4x and y ≥ 0. This set is the graph of the equation
y =
√

4x, and we therefore take f(x) =
√

4x in formula (4.2), obtaining

vol(Q) = π

∫ 4

0

[f(x)]2dx = π

∫ 4

0

4xdx

= 4π
x2

2

∣∣4
0

= 32π.

Figure 8.16:

Example 169. Let R be the region in Example 3, and let S be the region bounded
by the parabola y2 = 4x, the y-axis, and the line y = 4. Both regions are shown in
Figure 16(a). Find the volumes of the two solids of revolution Q1 and Q2, obtained
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by rotating S and R, respectively, about the y-axis. The two solids are illustrated
in Figure 17. The easiest way to find the volume of Q1 is to use the counterpart of
formula (4.2) for functions of y. The equation y2 = 4x is equivalent to the equation

x = y2

4 , and the parabola is therefore the graph of the function of y defined by

f(y) = y2

4 . By symmetry therefore,

vol(Q1) = π

∫ 4

0

[f(y)]2dy = π

∫ 4

0

y4

16
dy

=
π

16

y5

5

∣∣4
0

=
64π

5
.

Figure 8.17:

The union of Q1 and Q2 is a right circular cylinder of radius 4 and height 4.
Hence

vol(Q1 ∪Q2) = (π42) · 4 = 64π.

It is obvious that
vol(Q1 ∪Q2) = vol(Q1) + vol(Q2).

Hence

vol(Q2) = vol(Q1 ∪Q2)− vol(Q1)

= 64π − 64π

5
=

256π

5
.

Another way of computing the volumes of certain solids of revolution is the
method of cylindrical shells. It may be used, for example, to find the volume
of the solid Q2 in Figure 17(b) directly, and it constitutes another interesting ap-
plication of the integral as a limit of Riemann sums. Let f be a function which is
nonnegative and continuous at every point of a closed interval [a, b], where a ≥ 0.
Let R be the region bounded by the graph of f , the x-axis, and the lines x = a
and x = b. We shall derive a formula for the volume of P , the solid of revolution
obtained by revolving the region R about the y-axis (see Figure 18).

Consider a partition σ = {x0, ..., xn} of the interval [a, b] such that

a = x0 ≤ x1 ≤ · · · ≤ xn = b,
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Figure 8.18:

Figure 8.19:

and choose numbers x∗i , ..., x
∗
n such that xi−1 ≤ x∗i ≤ xi for each i = 1, ..., n.

Then π(x2i − x2i−1) is the area of the shaded annulus shown in Figure 19(a), and
πf(x∗i )(x

2
i −x2i−1) is the volume of the cylindrical shell of height f(x∗i ) and thickness

xi − xi−1 shown in Figure 19(b). The essential idea in the derivation is that, if
xi − xi−1 is small, then the volume of this shell should be a good approximation to
the volume of that part of the solid P that lies between the two cylinders of radii
xi−1 and xi. Hence if the mesh of the partition σ is small, then the sum of the
volumes of the shells, i.e., the sum

n∑
i=1

πf(x∗i )(x
2
i − x2i−1),

should be a good approximation to the volume of P . Specifically, we shall assume
that
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vol(P ) = lim
||σ||→0

n∑
i=1

πf(x∗i )(x
2
i − x2i−1). (8.6)

On the basis of this assumption we now prove the theorem

8.4.3.

vol(P ) = 2π

∫ b

a

xf(x)dx.

Proof. Since each x∗i may be any number in the subinterval [xi−1, xi], let us for
convenience choose it to be the midpoint. This means that x∗i = xi+xi−1

2 or, equiv-
alently, that xi + xi−1 = 2x∗i . Hence

x2i − x2i−1 = (xi + xi−1)(xi − xi−1)

= 2x∗i (xi − xi−1),

and it follows that

n∑
i=1

πf(x∗i )(x
2
i − x2i−1) =

n∑
i=1

2πx∗i f(x∗i )(xi − xi−1).

By our assumption (1), the left side of this equation approaches vol(P ) as a limit as
the mesh ||σ|| approaches zero. The right side is a Riemann sum for the continuous

function 2πxf(x) and therefore approaches the integral
∫ b
a

2πxf(x)dx as a limit as
||σ|| all approaches zero. This completes the proof.

The region R in Figure 16(a), when rotated about the y-axis, generates the solid
of revolution Q2 illustrated in Figure 17(b). Let us compute the volume of Q2 by
the method of cylindrical shells. The function f in the formula is in this case the
one defined by f(x) =

√
4x = 2x1/2. In addition, a = 0 and b = 4. We therefore

obtain

vol(Q2) = 2π

∫ 4

0

x2x1/2dx

= 4π

∫ 4

0

x3/2dx = 4π · 2

5
· x5/2

∣∣4
0

= 4π · 2

5
· 32 =

256π

5
,

which agrees with the value obtained in Example 4.
It was pointed out in Section 6 of Chapter 4 that the dx which appears in∫

f(x)dx can be legitimately regarded as a differential. Moreover, it was remarked
in Section 6 of Chapter 2 that the traditional attitude toward a differential is that
it represents an infinitesimally small quantity. These ideas are a good aid to the
imagination here, too. Thus, as the meshes of the subdivisions in the Riemann
sums

∑n
i=1 f(x∗i )(xi − xi−1) become infinitesimally small, the differences xi − xi−1

become dx and the summation
∑

becomes the integral
∫

. Consider the following
rough-and-ready derivation of the formula used in the method of cylindrical shells.
We imagine a shell of infinitesimal thickness at each x in the interval [a, b]. The
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Figure 8.20:

radius is x, the thickness dx, and the height f(x) (see Figure 20). The circumference
of the shell is 2πx, and the area of the edge is the product of the circumference and
the thickness, 2πxdx. Multiplying by the height, we get the infinitesimal volume
2πxf(x)dx. The total volume is obtained by adding all the infinitesimal volumes.
We get

∑
2πxf(x)dx or, actually,∫ b

a

2πxf(x)dx = 2π

∫ b

a

xf(x)dx

for the answer.
The derivation of integral formulas by this process of “summing infinitesimals”

is extremely useful both as a guide to memory and in helping one to discover the
right formula in the first place. Of course, any such heuristic approach is just)fied
mathematically only if it can be supplemented by careful analysis.
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Problems

1. A solid Q has a flat base which is the region in the plane bounded by the
parabola y2 = x and the line x = 4. Each cross-section perpendicular to the
x-axis is a square with one edge lying in the base. Find the volume of Q.

2. The solid P has the same base as Q in Problem ??, but each cross-section
perpendicular to the x-axis is a semicircular disk with diameter lying in the
base. Compare vol(P ).

3. A tetrahedron is a solid with for vertices and four flat triangular faces. Let T
be a tetrahedron which has three mutually perpendicular edges of lengths 3,
4, and 10 meeting at a vertex. Draw a picture of T and compute its volume.

4. The graph of the function f(x) =
√
a2 − x2 is a semicircle of radius a. Use

this function and an integral formula for the volume of a solid of revolution
to compute the volume of a sphere of radius a.

5. Find the volume of the ellipsoid of revolution obtained by rotating about the

x-axis the region bounded by the ellipse x2

a2 + y2

b2 = 1.

6. Sketch and find the volume of each of the solids of revolution obtained by
rotating about the x-axis the region bounded by the indicated curves and
lines.

(a) y = x2 − 1, x = 1, x = 2, and the x-axis.

(b) y = 1
2x, x = 8, and the x-axis.

(c) y = 1 + 2x− x2, x = 0, y = 0, and x = 2.

(d) y = 1
x2 , x = 1, x = 2, and the x-axis.

(e) y = 1− x2 and the x-axis.

7. Find the volume of a right circular cone of height h and with a base of radius
a.

8. (a) Find the volume of the solid of revolution obtained by rotating about the
y-axis the region bounded by the x-axis, and the graphs of y = x2 − 1
and y = 3.

(b) Using ??, find the volume generated by rotating the region in Problem
?? about the y-axis. (Use Example ?? as a model.)

9. Using the method of cylindrical shells, find the volume of the solid of revolution
obtained by rotating each of the regions is Problem ?? about the y-axis.

10. Sketch the regionR in the plane which is bounded by the parabola (y−1)2 = x,
the line y = 2, and the x-axis and y-axis. Find the volume of the solid of
revolution obtained by rotating R about the x-axis, using

(a) formula ?? twice, i.e., π
∫ b
a
y2dx once with y − 1 =

√
x and again with

y − 1 = −
√
x.

(b) the counterpart of formula ??, i.e., the method of cylindrical shells, for
functions of y.
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11. Since (x−h)2+y2 = a2 is an equation of the circle with radius a and center at
(h, 0), it follows by solving for y in terms of x that the graph of the function
f(x) =

√
a2 − (x− h)2 is a semicircle.

(a) Assuming that h > a and using the method of cylindrical shells, write a
definite integral for the volume of the solid torus (doughnut) with radii
h and a.

(b) Evaluate the integral in ?? by making the change of variable y = x − h
[see Theorem ??], and using the fact that

∫ a
−a

√
a2 − y2 dy = πa2

2 (area
of a semicircle).

12. In a solid mass of material, the infinitesimal mass dm of an infinitesimal
amount of volume dv located at an arbitrary point is given by

dm = ρ dv,

where ρ is the density of the material at that point.

Consider a cylindrical container of radius a filled to a depth h with a liquid
whose density is greater at the bottom and less at the top. Specifically, at a
point a distance x below the surface the density is given by ρ = 2 + x. What
is the total mass of liquid in the container?

13. Same as Problem ??, but this time the container is a right circular cone (apex
at the bottom) of height h and base of radius a which is filled to the top.
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8.5 Work.

The concept in physics of the work done by a force acting on an object as it moves
a given distance provides another important application of the definite integral.

Throughout this section we shall consider only those situations in which the
object moves in a straight line L, and in which the direction of the force F is also
along L. Mathematically, F is a function, which may or may not be constant. We
shall assume that L is a coordinate axis and that, for every number x on L, the
value of the force F at x is equal to F (x). The sign convention will be as follows:
F (x) > 0 means that the direction of the force at x is in the direction of increasing
numbers on L, and F (x) < 0 means that the direction of the force is in the direction
of decreasing numbers.

We first consider the special case in which the force F is constant as the object
moves along L from a to b. Thus F (x) = k for all x such that a ≤ x ≤ b. Then the
work done by the force denoted by W , is defined by the simple equation

W = k(b− a). (8.7)

Frequently, we wish to speak of the work done against the force which we shall
denote by W∗. This is just the negative of W . Hence

W∗ = −W = (−k)(b− a). (8.8)

Figure 8.21:

Example 170. Compute the work done in raising a 10-pound weight a distance of
50 feet against the force of gravity. We choose a coordinate axis as shown in Figure
21 with the origin at the initial position of the object. The magnitude of the force
is constant and equal to 10 pounds. Thus |F (x)| = 10. By our sign convention,
however, F (x) is negative, and so F (x) = −10. The work done against the force of
gravity in raising the weight is therefore given by

W∗ = (−F (x))(b− a) = (−(−10))(50− 0)

= 500 foot-pounds.
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Next, let us consider the problem of defining the work done by a force F which
is not necessarily constant. We shall assume that the function F is integrable over
the closed interval having endpoints a and b (it may be that a ≤ b or that b < a).
Then the work done by the force F as the object moves from a to b will be
denoted by W (F, a, b) and is defined by

W (F, a, b) =

∫ b

a

F (x)dx. (8.9)

Thus work depends on the function F and the numbers a and b, and hence is a
function of these three quantities. As in (1), we frequently abbreviate W (F, a, b) as
simply W .

Is this definition of work a reasonable one? The answer is yes only if W (F, a, b)
has the properties which correspond to the physical concept we are trying to de-
scribe. For example, we should expect that the work done by a force in moving an
object from a to b plus the work done in moving it from b to c should equal the
work done in moving it from a to c. This property is expressed in the equation

8.5.1.

W (F, a, b) +W (F, b, c) = W (F, a, c),

which is an immediate corollary of the definition of W (F, a, b) and the fundamental
additive property of the integral [see Proposition (4.2), page 191]. Second, the work
done by a greater force acting on an object as it moves from a to b in the direction
of the force should certainly be larger than the work done by a smaller force. This
is expressed in the proposition

8.5.2. If F1(x) ≤ F2(x) for every x such that a ≤ x ≤ b, then

W (F1, a, b) ≤W (F2, a, b).

This is also simply a restatement of one of the fundamental properties of the definite
integral [see Proposition (4.3), page 191]. Finally, we note that the definition is
consistent with the earlier one in equation (1). That is, if the force is constant, then
the work is simply the product of the constant value and the change in position.
Thus

8.5.3. If F (x) = k for every x in the closed interval with endpoints a and b, then

W (F, a, b) = k(b− a).

The proof is just the elementary fact that
∫ b
a
kdx = k(b − a) [see Proposition

(4.1), page 191].

We have just shown that work, as we have defined it, has three natural and
apparently quite basic properties. This suggests that the definition is reasonable.
Actually, we can conclude much more than that. We shall now show that our
definition of W (F, a, b) as a definite integral is the only one which has these three
properties. That is, we have proved that the definition implies the properties, and
we shall now prove, conversely, that the properties imply the definition. This is
such an important fact that we state it as a theorem:
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8.5.4. THEOREM. Let W be a function which assigns to every function F and
any interval [a, b] over which F is integrable a real number W (F, a, b) such that
(5.1), (5.2), and (5.3) hold. Then

W (F, a, b) =

∫ b

a

F (x)dx.

Proof. Let F be a function, and [a, b] an interval over which F is integrable. We
shall first show that, for every partition σ of [a, b], the upper and lower sums, Uσ
and Lσ, satisfy the inequalities

Lσ ≤W (F, a, b) ≤ Uσ. (8.10)

To do this, we let σ = {x0, ..., xn} and assume the usual ordering:

a = x0 ≤ x1 ≤ · · · ≤ xn = b.

As we have done in the past, we denote by Mi the least upper bound of the values
of F on the ith subinterval [xi−1, xi], and by mi the greatest lower bound. Then

mi ≤ F (x) ≤Mi, whenever xi−1 ≤ x ≤ xi.

The two constant functions with values Mi and mi, respectively, are certainly inte-
grable over the subinterval [xi−1, xi]. Following the common practice of denoting a
constant function by its value, we know, as a result of (5.2), that

W (mi, xi−1, xi) ≤W (F, xi−1, xi) ≤W (Mi, xi−1, xi).

Using (5.3), we obtain

W (mi, xi−1, xi) = mi(xi − xi−1),

W (Mi, xi−1, xi) = Mi(xi − xi−1).

Hence
mi(xi − xi−1) ≤W (F, xi−1, xi) ≤Mi(xi − xi−1).

Adding these inequalities for i = 1, ..., n, we get

n∑
i=1

mi(xi − xi−1) ≤
n∑
i=1

W (F, xi−1, xi) ≤
n∑
i=1

Mi(xi − xi−1).

The left and right sides of the inequalities in the preceding equation are precisely
Lσ and Uσ, respectively. It follows from repeated use of (5.1) that

n∑
i=1

W (F, xi−1, xi) = W (F, a, b),

and we have therefore proved that the inequalities (4) do hold.
The proof of Theorem (5.4) is now essentially complete. Let σ and τ be two

arbitrary partitions of [a, b]. The union U ∪T is the partition which is the common
refinement of both. It is shown in the last line of the proof of Proposition (1.1),
page 168, that

Lσ ≤ Lσ∪τ ≤ Uσ∪τ ≤ Uτ .
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It follows from equation (4) that

Lσ∪τ ≤W (F, a, b) ≤ Uσ∪τ ,

and we conclude that

Lσ ≤W (F, a, b) ≤ Uτ , (8.11)

for any two partitions σ and τ of [a, b]. But, by assumption, F is integrable over

[a, b], and that means that there is only one number,
∫ b
a
F (x)dx, which lies between

all lower sums and all upper sums. Hence

W (F, a, b) =

∫ b

a

F (x)dx,

and the proof is complete.

The significance of Theorem (5.4) is more than just its present application to
the definition of work. We can infer from this theorem another, and perhaps more
basic, description of the definite integral. This is a description, or characterization,
of the integral in terms of three of its properties. The theorem states that the

integral
∫ b
a
F is the only function which has these properties. Hence they may be

regarded as a set of axioms for the integral. As such, they are sometimes called a
set of characteristic properties.

In the remainder of the section we shall give a few examples of the work done
by, and also against, a nonconstant force.

Example 171. The physical principle known as Hooke’s Law states that the force
necessary to stretch a spring a distance d from its rest position is proportional
to d. The stretched spring exerts a restoring force which is equal in magnitude,
but opposite in direction, to the force required to stretch it. Consider the spring
shown in Figure 22, which is 1 foot long when under no tension. A 5-pound load
B attached to the end of the spring has stretched it to a length of 2 feet (i.e., an
additional 1 foot from rest position). How much work is done by the restoring force
of the spring if the load is raised 1

2 foot?

Figure 8.22:
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We choose a vertical x-axis with increasing values of x pointing down, and for
convenience take the origin to be the rest position. For x ≥ 0, the restoring force
F (x) of the spring is upward and, therefore, F (x) ≤ 0. It follows by Hooke’s Law
that

F (x) = −kx,

for some positive number k. To find the constant k, we use the fact that the 5-pound
load B has stretched the spring 1 foot. Hence F (1) = −5, from which it follows
that −5 = −k · 1 and so k = 5. Thus

F (x) = −5x.

In raising B a distance of 1
2 foot, the movement is from x = 1 to x = 1

2 . Hence the
work W done by the restoring force F is given by

W =

∫ 1/2

1

F (x)dx =

∫ 1/2

1

(−5x)dx

=

∫ 1

1/2

5xdx = 5
x2

2

∣∣1
1/2

= 5(
1

2
− 1

8
) =

15

8
foot-pounds.

The work done against the force F as the object moves from a to b will be
denoted by W∗(F, a, b), or simply by W∗ as before, and is by definition the negative
of the work done by the force F . Thus

W∗(F, a, b) = −
∫ b

a

F (x)dx. (8.12)

Example 172. Consider the spring in Example 2 loaded as shown in Figure 22.
How many foot-pounds of work are required to pull the load B down an additional
1 foot (i.e., so that the spring is stretched to a total length of 3 feet)? The total, or
resultant, force F (x) acting at x is the sum of two forces: The first is the restoring
force of the spring, which we have computed to be −5x, and the second is the force
of gravity on B, which is equal to 5. (We ignore the weight of the spring.) Hence

F (x) = 5− 5x.

The work required to pull the load B down an additional 1 foot, i.e., to move from
x = 1 to x = 2, will be the work done against the resultant force F . Thus

W∗ = −
∫ 2

1

F (x)dx = −
∫ 2

1

(5− 5x)dx

= (
5x2

2
− 5x)

∣∣2
1

=
5

2
foot-pounds.

Example 173. According to Newton’s Law of Gravitation, two bodies of masses
M and m are attracted to each other by a force equal in magnitude to GMm

r2 where
r is the distance between them and G is a universal constant. If the earth has mass
M , find the work done in projecting a missile of mass m radially outward 500 miles
from the surface of the earth. Let the center of the earth be fixed at the origin of an
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axis along which the missile is projected in the direction of increasing x, as shown
in Figure 23. By Newton’s Law, the gravitational force F (x) acting on the missile
at x is toward the origin and equal in magnitude to GMm

x2 . By our sign convention,
therefore,

F (x) = −GMm

x2
.

Let a = 4000 miles, the radius of the earth, and let b = 4500. The work required
to project the missile from a to b is equal to the work W∗ done against the force F
in moving from a to b.

Figure 8.23:

W∗ = −
∫ b

a

F (x)dx

= −
∫ b

a

−GMm

x2
dx = GMm

∫ b

a

1

x2
dx

= GMm(− 1

x
)
∣∣b
a

= GMm(
1

a
− 1

b
)

= GMm(
1

4000
− 1

4500
).

Suppose that we consider the work required to project the missile from the surface
of the earth to points successively farther and farther away. We find that

lim
b→∞

W∗ = lim
b→∞

GMm(
1

a
− 1

b
)

=
GMm

a
.

This number can be regarded as the work necessary to carry the missile completely
out of the earth’s gravitational field. In this example we have, of course, ignored
the gravitational forces which exist because of the presence of other bodies in the
universe.
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Problems

1. Compute the work in foot-pounds done by the force of gravity when a 50-
pound rock falls 200 feet off a vertical cliff.

2. Compute the work in foot-pounds done against the force of gravity in raising
a 10-pound weight vertically 6 feet from the ground.

3. A car on a horizontal track is attached to a fixed point by a spring, as shown
in Figure ??. The spring has been stretched 2 feet beyond its rest position,
and the car is held there by a force of 10 pounds. If the car is released, how
many foot-pounds of work are done by the restoring force of the spring moving
the car 2 feet back to the rest position?

4. An electron is attracted to a nucleus by a force which is inversely proportional
to the square of the distance r between them; i.e., k

r2 . If the nucleus is fixed,
compute the work done by the attractive force in moving the electron from
r = 2a to r = a.

5. A container holding water is raised vertically a distance of 10 feet at the
constant rate of 10 feet per minute. Simultaneously water is leaking from
the container at the constant rate of 15 pounds per minute. If the empty
container weighs 1 pound and if it holds 15 pounds of water at the beginning
of the motion, find the work done against the force of gravity.

6. Suppose that a straight cylindrical hole is bored from the surface of the earth
through the center and out the other side. An object of mass m inside the
hole and at a distance r from the center of the earth is attracted to the center
by a gravitational force equal in absolute value to mgr

R , where g is constant
and R is the radius of the earth. Compute the work done by this force of
gravity in terms of m, g, and R as the object falls

(a) from the surface to the center of the earth,

(b) from the surface of the earth through the center to a point halfway be-
tween the center and surface on the other side,

(c) all the way through the hole from surface to surface.

[Hint: Let the x-axis be the axis of the cylinder, and the origin the center of
the earth. Define the gravitational force F (x) acting on the object at x so
that: (i) its absolute value agrees with the above prescription, and (ii) its sign
agrees with the convention given at the beginning of ??.]

7. Consider a cylinder and piston as shown in Figure ??. The inner chamber,
which contains gas, has a radius a and lenght b. According to the simplest gas
law, the expansive force of the gas on the piston is inversely proportional to
the volume v of gas; i.e., F = k

v for some constant k. Compute the work done
against this force in compressing the gas to half its initial volume by pushing
in the piston.

8. A rocket of mass m is on its way from the earth to the moon along a straight
line joining their centers. Two gravitational forces act simultaneously on
the rocket and in opposite directions. One is the gravitational pull toward
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earth, equal in absolute value to GM1m
r12 , where G is the universal gravitational

constant, M1 the mass of the earth, and r1 the distance between the rocket
and the center of the earth. The other is the analogous gravitational attraction
toward the moon, equal in absolute value to GM2m

r22 , where M2 is the mass of
the moon and r2 is the distance between the rocket and the center of the moon.
Denote the radii of the earth of the earth and moon by a and b, respectively,
and let d be the distance between their centers.

(a) Take the path of the rocket for the x-axis with the centers of earth and
moon at 0 and d, respectively, and compute F (x), the resultant force
acting on the rocket at x.

(b) Set up the definite integral for the work done against the force F as the
rocket moves from the surface of the earth to the surface of the moon.
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8.6 Integration of Discontinuous Functions.

If a function f is continuous at every point of an interval [a, b], then we know that
f is integrable over [a, b] [see Theorem (5.1), page 199]. Continuity is certainly
the most important criterion for integrability that we have. For example, in the
fundamental theorem of calculus it is assumed that the integrand is continuous
over the interval of integration. However, it is important to realize that a function
does not have to be continuous to be integrable and that there are many simple
discontinuous functions which can be integrated.

We begin with the following theorem:

8.6.1. If f is bounded on [a, b] and is continuous at every point of [a, b] except
possibly at the endpoints, then f is integrable over [a, b].

Proof. If a = b, the conclusion follows at once since
∫ b
a
f =

∫ a
a
f = 0. Hence we

shall assume that a < b. To be specific, we shall furthermore assume that f is
continuous at every point of [a, b] except at a. The necessary mod)fication in the
argument if a discontinuity occurs at b (or at both a and b) should be obvious.
According to the definition of integrability (page 168), it is sufficient to prove that
there exist partitions σ and τ of [a, b] such that Uσ − Lτ , the difference between
the corresponding upper and lower sums, is arbitrarily small. For this purpose, we
choose an arbitrary positive number ε. Since f is bounded on [a, b], there exists a
positive number k such that |f(x)| ≤ k, for every x in [a, b]. We next pick a point
a′ which is in [a, b] and sufficiently close to a that

0 < a′ − a < ε

3k

(see Figure 26). Since f is continuous on the smaller interval [a′, b], we know that
f is integrable over it. Hence there exist partitions σ′ and τ ′ of [a′, b] such that the
upper sum Uσ′ , and lower sum Lτ ′ for f satisfy

|Uσ′ − Lτ ′ | <
ε

3
. (8.13)

Let σ and τ be the partitions of [a, b] obtained from σ′ and τ ′ respectively, by
adjoining the point a; i.e., σ = σ′∪{a} and τ = τ ′∪{a}. Since the maximum value
of |f(x)| on the subinterval [a, a′] is less than or equal to k, it follows that

|Uσ − Uσ′ | ≤ k(a′ − a) < k · ε
3k

=
ε

3
. (8.14)

By the same argument, we have

|Lτ ′ − Lτ | ≤ k(a′ − a) < k · ε
3k

=
ε

3
. (8.15)

Next, consider the algebraic identity

Uσ − Lτ = (Uσ − Uσ′) + (Lτ ′ − Lτ ) + (Uσ′ − Lτ ′).

The sum of three numbers is always less than or equal to the sum of their absolute
values. Using this fact and the inequalities (1), (2), and (3), we obtain

Uσ − Lτ ≤ |Uσ − Uσ′ |+ |Lτ ′ − Lτ |+ |Uσ′ − Lτ ′ |

<
ε

3
+
ε

3
+
ε

3
= ε.



448 CHAPTER 8. THE DEFINITE INTEGRAL (CONTINUED)

Figure 8.24:

Thus there exist upper and lower sums Iying arbitrarily close to each other, and
the proof is complete.

Example 174. Let f be the function defined by

f(x) =

{
sin π

x , if x 6= 0,
0 if x = 0.

This function is continuous everywhere except at 0, and its values oscillate wildly
as x approaches 0. The graph, for values of x in the interval [0, 2], is shown in
Figure 27. Since |f(x)| ≤ 1 for every x, the function is bounded on every interval.
It therefore follows by Theorem (6.1) that f is integrable over [0,2].

Figure 8.25:

An important extension of Theorem (6.1) is the following:
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8.6.2. If f is bounded on [a, b] and is continuous at all but a finite number of points
in the interval, then f is integrable over [a, b]. Furthermore, if a1, ..., an are the
points of discontinuity and if a ≤ a1 ≤ · · · ≤ an ≤ b, then∫ b

a

f =

∫ a1

a

f +

∫ a2

a1

f + · · ·+
∫ b

an

f.

Proof. It is a direct corollary of (6.1) that f is integrable over each subinterval
[a, a1], [a1, a2], ..., [an, b]. By repeated applications of Theorem (4.2), page 191, we
may then conclude that f is integrable over [a, b] and that∫ b

a

f =

∫ a1

a

f + · · ·+
∫
an

abf.

This completes the proof.

Consider the function f , whose graph is shown in Figure 28, and which is defined
by

f(x) =


0 −∞ < x < −1,
2 −1 ≤ x ≤ 2,
3 2 < x ≤ 3,
−1 3 < x <∞.

Figure 8.26:

This function, which is constant over certain intervals, is an example of a step
function. A function whose domain is the entire set of real numbers is a step
function if every bounded interval is the union of a finite number of subintervals on
each of which the function is a constant. A step function is bounded on any bounded
interval and is continuous there at all but possibly a finite number of points. In the
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present example the only discontinuities occur at −1, 2, and 3. Hence, Theorem
(6.2) implies that f is integrable over any interval [a, b]. In particular,∫ 4

0

f =

∫ 2

0

f +

∫ 3

2

f +

∫ 4

3

f.

For each of the three integrals on the right side of the preceding equation, the
integrand f is constant on the interval of integration except possibly at the end-
points. If we think of an integral as area or as an average value, we shall almost
certainly support the conjecture that the value of an integral is not affected by
isolated discontinuities in the integrand. Thus we expect that∫ 4

0

f =

∫ 2

0

f +

∫ 3

2

f +

∫ 4

3

f

= 2 · (2− 0) + 3 · (3− 2) + (−1)(4− 3) = 6.

This conjecture is correct (hence, so is the preceding computation), and is implied
by the next theorem.

8.6.3. Let [a, b] be a subset of the domains of two functions f and g, and let f(x) =
g(x) for all but afinite number of values of x in [a, b]. If f is integrable over [a, b],

then so is g and
∫ b
a
f =

∫ b
a
g.

Proof. It is sufficient to prove this theorem under the assumption that the values
of f and g differ at only a single point c in the interval [a, b] (because the result
can then be iterated). To be specific, we shall assume that f(c) < g(c). The proof
is completed if we can show that there exist upper and lower sums for g which

differ from the integral
∫ b
a
f by an arbitrarily small amount. For this purpose, we

choose an arbitrary positive number ε. Since f is, by hypothesis, integrable over
[a, b], there exists a partition τ of [a, b] such that the corresponding lower sum for
f , which we denote by Lτ (f), satisfies∫ b

a

fLτ (f) < ε.

However, every lower sum for f is also a lower sum for g. Hence we may substitute
Lτ (g) for Lτ (f) in the preceding inequality and obtain∫ b

a

f − Lτ (g) < ε. (8.16)

We next derive a similar inequality involving an upper sum for g. The integrability
of f also implies the existence of a partition σ′ of [a, b] such that the corresponding
upper sum for f satisfies

Uσ′(f)−
∫ b

a

f <
ε

2
.

By possibly adjoining to σ′ a point on either side of c, we can assure ourselves of
getting a partition σ = {x0, ..., xn} of [a, b] with the property that if c lies in the
ith subinterval [xi−1, xi], then

xi − xi−1 <
ε

2[g(c)− f(c)]
. (8.17)
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We have already shown [see the proof of (1.1), page 168] that if one partition σ is
a refinement of another σ′ (i.e., if σ′ is a subset of σ), then Uσ ≤ Uσ′ . Thus Uσ(f)

is, if anything, a better approximation to
∫ b
a
f than Uσ′(f). Hence

Uσ(f)−
∫ b

a

f <
ε

2
(8.18)

Let Mi and Ni be the least upper bounds of the values of f and g, respectively, on
[xi−1, xi]. Since f(x) = g(x) except at c, it follows that

Uσ(g)− Uσ(f) = (Ni −Mi)(xi − xi−1).

But the difference Ni −Mi can be no more than g(c)− f(c). Hence

Uσ(g)− Uσ(f) ≤ [g(c)− f(c)](xi − xi−1),

and this inequality combined with (5) yields

Uσ(g)− Uσ(f) <
ε

2
. (8.19)

Finally, adding the inequalities (6) and (7), we obtain

Uσ(g)−
∫ b

a

f < ε.

This is the analogue of (4) and completes the proof.

Example 175. Let f be the function defined by

f(x) =

 x3 −∞ < x ≤ 0,
2− x2 0 < x ≤ 2,
2x− 5 2 < x <∞.

The graph of f is drawn in Figure 29. The function is clearly continuous except at
0 and at 2, and is bounded on any bounded interval. It follows by Theorem (6.2)
that f is integrable over the interval [−1, 3] and that∫ 3

−1
f =

∫ 0

−1
f +

∫ 2

0

f +

∫ 3

2

f.

For every x in [−1, 0], we have f(x) = x3, and so∫ 0

−1
f =

∫ 0

−1
x3dx =

x4

4

∣∣∣0
−1

= −1

4
.

For every x in [0, 2], we have f(x) = 2 − x2 except that f(0) = 0. Hence, by
Theorem (6.3), ∫ 2

0

f =

∫ 2

0

(2− x2)dx = (2x− x3

3
)
∣∣∣2
0

=
4

3
.
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Figure 8.27:

Similarly, f(x) = 2x − 5 for every x in [2, 3] except that f(2) = −2. Again, by
Theorem (6.3),∫ 3

2

f =

∫ 3

2

(2x− 5)dx = (x2 − 5x)
∣∣3
2

= −6− (−6) = 0.

Hence ∫ 3

−1
f = −1

4
+

4

3
+ 0 =

13

12
.

Example 176. Is each of the following integrals defined?

(a)
∫ 1

0
sin 1

xdx,

(b)
∫ 2

1
ln x
1−xdx,

(c)
∫ π/2
0

tanxdx.

This is the same as asking whether or not each function is integrable over its pro-
posed interval of integration. Strictly speaking, the answer is no in every case,
because each function fails to be defined at one of the endpoints of the interval.
However, Theorem (6.3) shows that this answer is based on a technicality and
misses the real point of the question. If a function f is bounded on an open interval
(a, b) and if f(a) end f(b) are any real numbers whatever, then f is also bounded
on the closed interval [a, b]. Let us suppose, therefore, that f is bounded and con-
tinuous on the open interval (a, b). We may choose values f(a) and f(b) completely
arbitrarily, and the resulting function will be integrable over [a, b] as a result of

Theorem (6.1). Furthermore, by Theorem (6.3), the integral
∫ b
a
f is independent of

the choice of f(a) and f(b). Hence, if f is bounded and continuous on (a, b), we shall
certainly adopbt the point of view that f is integrable over [a, b] and, equivalently,

that
∫ b
a
f is defined.
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Following this convention, we see that the function sin 1
x is bounded and con-

tinuous on (0, 1), and so
∫ 1

0
sin 1

xdx is defined. Using L’Hôpital’s Rule (page 123),
one can easily show that

lim
x→1+

lnx

1− x
= −1.

Hence, ln x
1−x is bounded and continuous on (1, 2), and so

∫ 2

1
ln x
1−xdx exists. On the

other hand,
lim

x→(π/2)−
tanx =∞,

and we therefore conclude that tan x is not integrable over the interval [0, π2 ].
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Problems

1. Determine whether or not each of the following functions is integrable over
the proposed interval (see Example ??). Give a reason for your answer.

(a) cos 1
x , over [0, 1]

(b) x2+x−2
x−1 , over [0, 1]

(c) x2+x−2
x−1 , over [0, 2]

(d) x2+x+2
x−1 , over [0, 2].

2. Is each of the following integrals defined? (See Example ??.) Give a reason
for your answer.

(a)
∫ 1

0
sin x
x dx

(b)
∫ 1

2

0
tan 2x
x dx

(c)
∫ 1

0
1
xdx

(d)
∫ 1
e

0
1

ln xdx

(e)
∫ e
0

lnx dx.

3. Draw the graph of f , and evaluate
∫ b
a
f(x) dx in each of the following exam-

ples.

(a)

 1 if −∞ < x ≤ 0,
5 if 0 < x < 2,
3 if 2 ≤ x <∞,

and [a, b] = [−3, 3].

(b) f(x) =

{
x2 if −∞ < x < 0,
2− x2 if 0 ≤ x <∞,

and [a, b] = [−2, 2].

(c) f(x) = n if n ≤ x < n+ 1 where n is any integer, and [a, b] = [0, 5].

4. Prove that if a function f is bounded on an open interval (a, b) and, if f(a) and
f(b) are any two real number, then f is also bounded on the closed interval
[a, b].

5. Compute

(a) limn→0+

∫ 1

t
1
xdx

(b) limt→1−
∫ t
0

tan π
2x dx.

How does the result give insight into the fact that neither integrand is inte-
grable over the interval [0, 1]?

6. A function f is said to be piecewise continuous on an interval [a, b] if it is
continuous at all but possibly a finite number of points of the interval, and if,
for every point c of discontinuity in the interval, there exist number k and l
such that

lim
x→c+

f(x) = k and lim
x→c−

f(x) = l.



8.6. INTEGRATION OF DISCONTINUOUS FUNCTIONS. 455

Using Theorems ?? and ??, prove that if f is piecewise continuous on [a, b],
then it is integrable over [a, b].
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8.7 Improper Integrals.

It is assumed in the definition of integrability (pages 168f) that if a function is
integrable over an interval, then it is necessarily bounded on that interval. Hence
the function f defined by f(x) = 1

x2 is not integrable over [0, 1] because it satisfies
neither condition for boundedness: The number 0 is not in the domain of f , and
there is no upper bound for f [for values of x near zero f(x) becomes arbitrarily
large]. The fact that f(0) is not defined is not a serious difficulty because, as was
proved in Section 6, the values of a function at any finite set of points can be defined
arbitrarily without affecting the integrability of the function. Thus we could set

f(x) =

{
1
x2 if x 6= 0,
3 if x = 0,

and thereby satisfy the first condition of boundedness. However, there is no way to
make f bounded on [0, 1] by changing a finite number of its values.

In this section we shall show that it is possible to extend the concept of in-
tegrability to include many functions which are not bounded on their intervals of
integration. In addition, the extensions will allow the possibility of integrating over
intervals which are not bounded. These integrals are called improper integrals. Two
examples are ∫ 1

0
1√
x
dx unbounded integrand,∫∞

0
e−xdx unbounded interval.

Let (a, b] be a half-open interval (containing b but not a), and let f be a function
which is integrable over the closed interval [t, b] for every number t in (a, b]. The

integral
∫ b
t
f is thus defined if a < t ≤ b, and our definition will concern the limit

lim lim
t→a+

∫ b

t

f. (8.20)

We consider the following three cases:
(i) The function f is bounded on (a, b]. It is not difficult in this case to prove

that f is integrable over the closed interval [a, b] and, in addition, that the limit (1)

exists and is equal to
∫ b
a
f . [If a is not in the domain of f , we define f(a) arbitrarily.]

(ii) The function f is not bounded on (a, b], but the limit (1) exists. In this case
f is not integrable over [a, b] according to our original dbefinition. Hence we define

the improper integral, which is still denoted by
∫ b
a
f , to be the limit (1).

(iii) The limit (1) does not exist. In this case the integral is not defined.
Thus, if the limit exists, we have the equation∫ b

a

f = lim
t→a+

∫ b

t

f.

If f is bounded on (a, b], the integral is called proper. If f is not bounded on
(a, b], the improper integral exists only if the limit exists. However, the traditional
terminology, which we shall adopt, is that the improper integral is convergent if
the limit exists and divergent if it does not.

In spite of the improper integrals defined in this section, we emphasize that
whenever we say that f is integrable over [a, b] we mean it in the sense of the
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original definition of integrability, in which [a, b] is a bounded interval and f is
bounded on it.

The situation is analogous if [a, b) is a half-open interval and f is integrable over
[a, t] for any t in [a, b). We have∫ b

a

f = lim
t→b−

∫ t

a

f

If f is bounded on [a, b), then f is integrable over [a, b], and
∫ b
a
f is a proper

integral. If f is not bounded, the integral is improper, and it is convergent or
divergent according as the limit does or does not exist.

Example 177. Classify each of the following integrals as proper or improper. If
improper, determine whether convergent or divergent, and, if convergent, evaluate
it.

(a)
∫ 1

0
1√
x
dx, (c)

∫ 2

0
1

2−xdx,

(b)
∫ 1

0
1
x2 dx, (d)

∫ 1

0
sin 1

xdx.

Since 1√
x

takes on arbitrarily large values near 0, we know that
∫ 1

0
1√
x
dx is not

a proper integral. For every t in (0, 1],∫ 1

t

1√
x
dx = 2

√
x
∣∣1
t

= 2(1−
√
t).

Since limt→0+ 2(1−
√
t) exists, we get∫ 1

0

1√
x
dx = lim

t→0+
2(1−

√
t) = 2.

Hence (a) is a convergent improper integral with value 2.
The values of 1

x2 also increase without bound as x approaches zero, and (b) is
therefore not a proper integral. For every t in (0, 1],∫ 1

t

1

x2
dx = − 1

x

∣∣∣1
t

=
1

t
− 1.

However,

lim
t→0+

∫ 1

t

1

x2
dx = lim

t→0+

1

t
− 1 =∞,

and, since the limit does not exist, the improper integral is divergent.
The function 1

2−x is not bounded on [0, 2), and so (c) is also an improper integral.
For every t such that 0 ≤ t < 2, we have∫ t

0

1

2− x
dx = − ln |2− x|

∣∣∣t
0

= − ln(2− t) + ln 2 = ln
2

2− t
.

Hence

lim
t→2−

∫ t

0

1

2− x
dx = lim

t→2−
ln

2

2− t
=∞,
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and we conclude that
∫ 2

0
1

2−xdx is a divergent improper integral.

Since | sin 1
x | ≤ 1 for all nonzero x, the function f defined by f(x) = sin 1

x is
bounded on (0,1]. It is also continuous at every point of that interval. We now
assign a value, say 0, to f(0), and it follows by Theorems (6.1) and (6.3) that f

is integrable over [0, 1], and the value of
∫ 1

0
f(x)dx is independent of the choice of

f(0). As in Section 6, we therefore consider
∫ 1

0
sin 1

xdx to be a proper integral.

We next define improper integrals over unbounded intervals. Let a be a given
real number and f a function which, for every t ≥ a, is integrable over [a, t]. If the

limit limt→∞
∫ t
a
f exists, we define it to be the value of the contvergent improper

integral
∫∞
a
f . Thus ∫ ∞

a

f = lim
t→∞

∫ t

a

f.

If the limit does not exist, the integral of f over [a,∞) also does not exist. Although
it is not defined, we follow tradition and say that the improper integral is divergent.

As before, the analogous definition is given for the unbounded interval (−∞, a].
We have ∫ a

−∞
f = lim

t→−∞

∫ a

t

f,

and the improper integral
∫ a
−∞ f is convergent if the limit exists, and divergent if

it does not.

Example 178. Test the following improper integrals for convergence or divergence,
and evaluate the convergent ones.

(a)
∫∞
0
e−xdx, (c)

∫∞
2

1
x2 dx,

(b)
∫∞
1

1√
x
dx, (d)

∫ t
−∞

1
1+x2 dx

For (a) we have ∫ t

0

e−xdx = −e−x
∣∣∣t
0

= 1− e−t.

Hence ∫ ∞
0

e−xdx = lim
t→∞

(1− e−t) = 1− 0 = 1,

and so the integral is convergent and equal to 1.
Similarly, for (b), ∫ t

1

1√
x
dx = 2

√
x
∣∣∣t
1

= 2
√
t− 2.

However, since limt→∞(2
√
t − 2) = ∞, we conclude that

∫∞
1

1√
x
dx is a divergent

integral.
For (c) we obtain ∫ t

2

1

x2
dx = − 1

x

∣∣∣t
2

=
1

2
− 1

t
.
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From this it follows that
∫∞
2

1
x2 dx is convergent and equal to 1

2 , since∫ ∞
2

1

x2
dx = lim

t→∞
(
1

2
− 1

t
) =

1

2
.

If the integral in (d) exists, its value depends on t. Hence in testing for conver-
gence, we use another variable.∫ t

s

1

1 + x2
dx = arctanx

∣∣∣t
s

= arctan t− arctan s.

Since lims→−∞ arctan s = −π2 , we conclude that∫ t

−∞

1

1 + x2
dx = lim

s→−∞
(arctan t− arctan s)

= arctan t+
π

2
,

and the integral is convergent for all real values of t.

We next enlarge the class of improper integrals to include integrands which are
unbounded near both endpoints of the interval of integration. Let (a, c) be an open
interval (we include the possibility that a = −∞, or c =∞, or both), and let f be a
function which is integrable over every closed subinterval [s, t] of (a, c). Choose an

arbitrary point b in (a, c), and consider the two integrals
∫ b
a
f and

∫ c
b
f . If either of

these is proper, their sum is equal to
∫ c
a
f , and we need no new definition. If both∫ b

a
f and

∫ c
b
f are improper integrals, then we define the improper integral

∫ c
a
f to

be their sum. Furthermore,
∫ c
a
f is defined to be convergent if and only if both

∫ b
a
f

and
∫ c
b
f are convergent; otherwise,

∫ c
a
f is defined to be divergent. Thus, in all

cases, we have the equation ∫ c

a

f =

∫ b

a

f +

∫ c

b

f. (8.21)

For the definition to be a valid one, it is necessary to know that
∫ c
a
f , as defined in

(2), is independent of the choice of b. Hence, we need the following simple theorem,
whose proof is left as an exercise.

8.7.1. If f is integrable ov1er every closed subintercal [s, t] of (a, c), and if b1 and
b2, belong to (a, c), then ∫ b1

a

f +

∫ c

b1

f =

∫ b2

a

f +

∫ c

b2

f.

Example 179. Classify each of the following improper integrals as convergent or
divergent. Evaluate, if convergent.

(a)

∫ ∞
0

1

x2
dx, (b)

∫ ∞
−∞

1

1 + x2
dx.

For (a) we write ∫ ∞
0

1

x2
dx =

∫ 1

0

1

x2
dx+

∫ ∞
1

1

x2
dx
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We have already shown in Example 1(b) that
∫ 1

0
1
x2 dx is divergent, and it follows

that
∫∞
0

1
x2 dx is divergent. For (b) we have∫ ∞

−∞

1

1 + x2
dx =

∫ 0

−∞

1

1 + x2
dx+

∫ ∞
0

1

1 + x2
dx,

and ∫ 0

−∞

1

1 + x2
dx = lim

t→−∞
arctanx

∣∣∣0
t

= lim
t→−∞

(0− arctan t) = −(−π
2

) =
π

2
.

Similarly, ∫ ∞
0

1

1 + x2
dx = lim

t→∞
arctan t =

π

2
.

Hence
∫∞
−∞

1
1+x2 dx is a convergent integral equal to π

2 + π
2 = π.

As a final extension of the class of improper integrals, we include the possibility
that the integrand may be unbounded near a finite number of points in the interior
of the interval of integration. Let (a, b) be an open interval (including possibly
a = −∞, or b =∞, or both), let a1, ..., an be points of (a, b) such that a1 < · · · < an
and let f be a function which is integrable over every closed bounded subinterval
of (a, b) which contains none of the points a1, ..., an. Then the equation∫ b

a

f =

∫ a1

a

f + · · ·+
∫ b

an

f (8.22)

is either a consequence of the theory so far developed, or is taken as the definition

of the improper integral
∫ b
a
f . As before,

∫ b
a
f is divergent if any one of the integrals

on the right is divergent, and is otherwise either convergent or proper.

Example 180. Classify each of the following integrals, and evaluate any which are
not divergent.

(a)
∫ 1

−1
1

x1/3 dx,

(b)
∫ 1

−1
1
xdx,

(c)
∫ 3

0
1

(x−1)(x−3)dx.

Since each integrand has arbitrarily large values near one or more points of the
interval of integration, we conclude that none of the integrals is proper.

For (a) we first observe that∫
1

x1/3
dx =

2

3
x3/2 + c,

from which we obtain∫ 0

−1

1

x1/3
dx = lim

t→0−

∫ t

−1

1

x1/3
dx

= lim
t→0−

3

2
t2/3 − 3

2
= −3

2
,
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and, in the same way,

∫ 1

0

1

x1/3
dx = lim

t→0+

∫ 1

t

1

x1/3
dx

=
3

2
− lim
t→0+

3

2
t2/3 =

3

2
.

From the definition in (3) it follows that∫ 1

−1

1

x1/3
dx =

∫ 0

−1

1

x1/3
dx+

∫ 1

0

1

x1/3
dx

= −3

2
+

3

2
= 0

Hence (a) is a convergent improper integral equal to 0.
If (b) is convergent, it follows from the definition that∫ 1

−1

1

x
dx =

∫ 0

−1

1

x
dx+

∫ 1

0

1

x
dx,

and that both integrals on the right are convergent. However,∫ 1

0

1

x
dx = lim

t→0+

∫ 1

t

1

x
dx

= lim
t→0+

(ln 1− ln t) =∞,

and
∫ 0

−1
1
xdx is similarly divergent. We conclude that

∫ 1

−1
1
xdx is divergent. (Warn-

ing: Failure to note the discontinuity of the function 1
x at 0 can result in the

following incorrect computation:∫ 1

−1

1

x
dx = ln |x|

∣∣∣1
−1

= 0− 0 = 0.)

If the integral (c) is convergent, then it is given by∫ 3

0

1

(x− 1)(x− 3)
dx =

∫ 1

0

1

(x− 1)(x− 3)
dx+

∫ 3

1

1

(x− 1)(x− 3)
dx,

and both integrals on the right are convergent. However, it is easy to show that
neither is convergent. A partial-fractions decomposition yields

1

(x− 1)(x− 3)
= −1

2

1

x− 1
+

1

2

1

x− 3
,

and so ∫
1

(x− 1)(x− 3)
dx = −1

2
ln |x− 1|+ 1

2
ln |x− 3|+ c

=
1

2
ln |x− 3

x− 1
|+ c.
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In particular, therefore,∫ 1

0

1

(x− 1)(x− 3)
dx = lim

t→1−

∫ t

0

1

(x− 1)(x− 3)
dx

=
(

lim
t→1−

1

2
ln
∣∣∣ t− 3

t− 1

∣∣∣)− 1

2
ln 3 =∞,

which is sufficient to establish that (c) is divergent.

We conclude this section with a theorem which gives a convenient test for the
convergence or divergence of improper integrals. Called the Comparison Test for
Integrals, it can frequently be used to classify an improper integral whose integrand
has no simple antiderivative, such as

∫∞
0
e−x

2

dx.

8.7.2. CONIPARISON TEST FOR INTEGRALS. Let f and g be integrable
over every bounded closed subinterval of a not necessarily bounded interval (a, b).

If |(x)| ≤ g(x) for every x in (a, b) and if
∫ b
a
g is either convergent or proper, then∫ b

a
f is also either convergent or proper.

Since an open interval can be split into two pieces, this theorem also holds for
half-open intervals. For simplicity, we shall prove it for the interval (a, b].

Proof. We first prove that
∫ b
a
|f | is either convergent or proper. We shall assume

without proof the theorem which states that if a function f is integrable over an
interval, then so is |f |. [In most applications of (7.2) the function f is continuous
at every point of (a, b]. In this case, |f | is also continuous and the problem does not
arise.] Since

0 ≤ |f(x)| ≤ g(x), (8.23)

for every x in (a, b], it follows that∫ b

t

|f | ≤
∫ b

t

g,

for every t in (a, b]. Since g has nonnegative values,
∫ b
t
g increases as t approaches

a from the right. Hence ∫ b

t

g ≤ lim
t→a+

∫ b

t

g =

∫ b

a

g,

and therefore ∫ b

t

|f | ≤
∫ b

a

g,

for every t in (a, b]. But
∫ b
t
|f | also increases as t approaches a from the right, and

the preceding inequality shows that it is bounded from above by the number
∫ b
a
g.

An increasing bounded function must approach a limit. Hence limt→a+
∫ b
t
|f | exists,

and therefore
∫ b
a
|f | is either convergent or proper.

Since −f(x) ≤ |f(x)|, it follows that
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0 ≤ f(x) + |f(x)| ≤ 2g(x), (8.24)

for every x in (a, b]. In this part of the proof, the inequalities (5) are the analogues
of (4). In exactly the same way as in the preceding paragraph they imply that∫ b

t

(f + |f |) ≤ 2

∫ b

a

g

and thence that the integral
∫ b
a

(f + |f |) is either proper or convergent. Finally,
therefore, we have

lim
t→a+

∫ b

t

f = lim
t→a+

∫ b

t

(f + |f |)− lim
t→a+

∫ b

t

|f |.

Since both limits on the right exist, so does the one on the left. We conclude that∫ b
a
f if is either proper or convergent, and the proof is complete.

Example 181. Prove that
∫∞
0
e−x

2

dx is convergent. Since x2 ≥ x whenever x ≥ 1,

it follows that e−x
2 ≤ e−x for x ≥ 1. An exponential is never negative, so e−x

2

=
|e−x2 |, and therefore

|e−x
2

| ≤ e−x, for x ≥ 1.

The convergence of
∫∞
0
e−xdx, shown in Example 2, implies the convergence of∫∞

1
e−xdx. It follows by the comparison test, i.e., by Theorem (7.2), that

∫∞
1
e−x

2

dx

is a convergent integral. This, in turn, implies the convergence of
∫∞
0
e−x

2

dx.
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Problems

1. Classify each of the following integrals as proper, improper and convergent,
or improper and divergent. Evaluate any which are convergent if an indefinite
integral can be found.

(a)
∫ 2

0
3

x
2
3
dx

(b)
∫ 2

1
1√
2−xdx

(c)
∫ 3

2
1

(x−2)2 dx

(d)
∫ 1

0
1

x2+x+1dx

(e)
∫ π

2

0
tanx dx

(f)
∫ 1

0
sin x
x dx.

2. Classify each of the following integrals and evaluate any which are not diver-
gent.

(a)
∫∞
2

1
x3 dx

(b)
∫ 2

0
1
x3 dx

(c)
∫∞
−1(x2 − x+ 1) dx

(d)
∫∞
0
xe−x

2

dx

(e)
∫∞
1

sinx dx

(f)
∫ 1

−∞ exdx

(g)
∫∞
0

1
(x+2)2 dx

(h)
∫ 1

0
x lnx dx.

3. Show that the integral
∫ 1

0
1
xs dx is

(a) proper if −∞ < s ≤ 0.

(b) improper and convergent if 0 < s < 1.

(c) improper and divergent if 1 ≤ s <∞.

4. For what values of s is the integral
∫∞
1

dx
xs convergent, and for what values is

it divergent? Give reasons for your answers.

5. Classify each of the following integrals, and evaluate any which are not diver-
gent if an indefinite integral can be found.

(a)
∫ 1

−1
1

x
2
3
dx

(b)
∫ 2

0
1

(x−1)
1
3
dx

(c)
∫ 1

0
tan x
x dx

(d)
∫∞
0

1
xs dx
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(e)
∫ 0

−infty
dx

(x−2)2

(f)
∫ infty
−infty e

−|x|dx

(g)
∫∞
2

1√
x−2dx

(h)
∫ 2

0
1

(x+1)(x−1)dx

(i)
∫∞
1

ln x
x dx

(j)
∫∞
1

ln x
x2 dx.

6. Prove Theorem ??.

7. Using the Comparison Test for Integrals if necessary, classify each of the fol-
lowing integrals.

(a)
∫ 0

−∞ e−x
2

dx

(b)
∫∞
1

1
x2 sinx dx

(c)
∫∞
0
e−x sinx dx

(d)
∫∞
3

1√
(x−1)(x−2)

dx

(e)
∫ 1

0
x sin 1

xdx

(f)
∫ 1

0
1√

(x−1)(x−2)
dx.

8. If F (t) =
∫ t
−∞ e−x

2

dx, find F ′(0) and F ′(1).

9. (a) Show that the area of the region P bounded by the x-axis, the line x = 1,
and the curve y = 1

x is infinite.

(b) Show that the volume of the solid of revolution obtained by rotation the
region P about the x-axis is finite.

10. Prove that if f is bounded on (a, b] and integrable over [t, b] for every t in

(a, b], then f is integrable over [a, b] and limt→a+
∫ b
t
f =

∫ b
a
f . [Hint: The

argument is essentially the same as that in the proof of Theorem ??.]
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Chapter 9

Infinite Series

Addition of real numbers is basically a binary operation: Given any two real num-
bers a and b, there is defined a real number denoted by a+ b and called their sum.
The sum of numbers a1, ..., an, where n ≥ 3, is then defined by repeated applications
of the binary operation. For example, one way of grouping the terms is given by

(· · · (((a1 + a2) + a3) + a4) + · · ·+ an−1) + an.

The Associative Law of Addition implies that the sums obtained by all the different
possible groupings are the same; so we can discard the parentheses and write

n∑
i=1

ai = a1 + · · ·+ an.

Thus addition of any finite number of terms is defined. However, without further
definitions, the sum of an infinite number of terns makes no sense at all. In this
chapter we shall make the necessary definitions and develop the theory of infinite
series. Two examples are

∞∑
i=0

1

2i
= 1 +

1

2
+

1

4
+

1

8
+

1

16
+ · · · ,

∞∑
i=1

(−1)i(2i+ 1) = −3 + 5− 7 + 9− 11 + · · · .

Later in the chapter we shall consider infinite series in which each term contains
the power of an independent variable. An example is the series

1 + x+
x2

2
+
x3

3
+
x4

4
+ · · · ,

which, for every real number x, is an infinite series of real nun bers. We shall
see that many functions can be defined by these power series, and this fact is of
fundamental importance in mathematics and its applications.

467
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9.1 Sequences and Their Limits.

Infinite series are defined in terms of limits of infinite sequences, and make sense
only in these terms. We therefore begin by reviewing the ideas of sequences which
were introduced in Section 2 of Chapter 4. Following that, we shall develop some
additional facts about the limits of infinite sequences. The definition of infinite
series, i.e., of the sum of an infinite number of terms, will be given in Section 2.

An infinite sequence is a function whose domain consists of all integers greater
than or equal to some integer m. In the normal terminology of functions the value
of a sequence s at an integer i in its domain would be denoted by s(i). However, it
is customary with sequences to denote this value by si. Thus

si = s(i), for every integer i ≥ m.

The sequence s itself is frequently denoted by {si} or by an indicated enumeration
of its values: sm, sm+1, sm+2.... In the majority of examples m is either 0 or 1, and
the first term of the sequence is then s0 or s1, respectively.

An infinite sequence s of real numbers is said to converge to a real number L,
or, alternatively, the number L is called the limit of the sequence s, written

lim
n→∞

sn = L,

if the difference sn − L is arbitrarily small in absolute value for every sufficiently
large integer n. The formal definition is therefore: limn→∞ sn = L if, for every
positive real number ε, there exists an integer N such that |sn − L| < ε for every
integer n > N .

Geometrically, a sequence s of real numbers is an indexed set of points on the
real line. If the sequence converges to L, then the points sn of the sequence cluster
ever more closely about L as n increases (see Figure 1). That is, sn lies arbitrarily
close to L if n is aufficiently large.

Figure 9.1:

If the numbers sn become arbitrarily large as n increases, then the sequence does
not converge and no limit exists. In the special case that, for every real number B,
the values sn are all greater than B for sufficiently large n, we shall write

lim
n→∞

sn =∞.

The complete definition is: limn→∞ sn = ∞ if, for every real number B, there
exists an integer N such that sn > B for every integer n > N . A simple example
of a sequence which “converges to infinity” in this way is the sequence of positive
integers 1, 2, 3, 4, 5, .... By reversing the single inequality sn > B in the above
definition, we obtain the analogous definition of

lim
n→∞

sn = −∞.
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lt should not be supposed that if an infinite sequence s of real numbers fails
to converge, then it follows that limn→∞ sn = ±∞. For example, the oscillating
sequence

1,−1, 1,−1, 1,−1, ...

is bounded and does not converge. Another example is the sequence

0, 1, 0, 2, 0, 3, 0, 4, ...,

defined, for every integer n ≥ 1, by

sn =

{
n
2 if n is even,
0 if n is odd.

This sequence is not bounded and does not converge, since, as n increases, there
exist arbitrarily large values sn. However, because of the regular recurrence of the
value 0, it also does not satisfy limn→∞ sn =∞.

The basic algebraic properties of limits of real-valued functions of a real variable,
which are summarized in Theorem (4.1), page 32, also hold for infinite sequences of
real numbers. We have

9.1.1. If sequences {sn} and {tn} converge and if c is a real number, then

(i) limn→∞(sn + tn) = limn→∞ sn + limn→∞ tn.

(ii) limn→∞(csn) = c limn→∞ sn.

(iii) limn→∞(sntn) = (limn→∞ sn)(limn→∞ tn).

(iv) limn→∞
sn
tn

= limn→∞ sn
limn→∞ tn

, provided limn→∞ tn 6= 0.

We give the proof of (i). Let L1 = limn→∞ sn, and L2 = limn→∞ tn, and choose
an arbitrary number ε. To prove (i) we use the fact that there exist integers N1 and
N2, such that

|si − L1| <
ε

2
and |tj − L2| <

ε

2
,

for every integer i > N1 and j > N2. If we set N equal to the larger of N1 and N2,
then, for every integer n > N , we have

|sn − L1| <
ε

2
and |tn − L2| <

ε

2
.

Since (sn + tn)− (L1 + L2) = (sn − L1) + (tn − L2) and since |a+ b| ≤ |a|+ |b| for
any two numbers a and b, it follows that

|(sn + tn)− (L1 + L2)| = |(sn − L1) + (tn − L2)| ≤ |sn − L1|+ |tn − L2|

<
ε

2
+
ε

2
= ε,

for n > N . This completes the proof of (i). The proofs of the other parts of
the theorem are similar, and the methods are exactly the same as those used in
Appendix A to prove (4.1), page 32.

Similar to (1.1) is the following result, whose proof we omit.

9.1.2. If limn→∞ sn is the real number L and if limn→∞ tn = ±∞, then
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(i) limn→∞
sn
tn

= 0.

(ii) limn→∞
tn
sn

=

{
±∞ if L > 0,
∓∞ if L < 0.

Actually we have already used (1.1) and (1.2) in Chapter 4 in evaluating definite
integrals as the limits of upper and lower sums. The following example is included
primarily as a review.

Example 182. Determine whether or not each of the following sequences converges,
and evaluate the limit if it does.

(a) {an} defined by an = 2n2+5n+2
3n2−7 ,

(b) {bi} defined by bi = 2i+1i
(i+1)2i3 ,

(c) {ck} defined by ck = k+1
k2+1 ,

(d) {dk} defined by dk = (−1)k k
2+1
k+1 .

Note that the definition of each of the above sequences is incomplete because we
have neglected to specify the domain. However, the omission does not matter, since
we are concerned only with the question of the limit of each sequence. It follows
immediately from the definition of convergence that the limit of an infinite sequence
is unaffected by dropping or adding a finite number of terms at the beginning.

For (a), after dividing numerator and denominator by n2, we get

2n2 + 5n+ 2

3n2 − 7
=

2 + 5
n + 2

n2

3− 7
n2

.

Using (1.1) and (1.2), we conclude that

lim
n→∞

an = lim
n→∞

2 + 5
n + 2

n2

3− 7
n2

=
2 + 0 + 0

3− 0
=

2

3
.

So the sequence {an} converges to 2
3 .

The ith term of the sequence {bi} can be written

bi =
2i+1i

(i+ 1)2i3
=

2

3(1 + 1
i )
.

Since limi→∞(1 + 1
i ) = 1 + 0 = 1, we have

lim
i→∞

bi =
2

3 limi→∞(1 + 1
i )

=
2

3
.

Hence the sequence {bi} also converges to the limit 2
3 .

For large values of k, the number k + 1 is approximately equal to k, and the
number k2 + 1 is approximately equal to k2. Thus the behavior of the ratio k+1

k2+1 ,
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as k increases, is the same as that of k
k2 = 1

k , which approaches zero. We conclude
that the sequence {ck} converges to zero. A more systematic analysis is obtained
by writing

k + 1

k2 + 1
=

k(1 + 1
k )

k2(1 + 1
k2 )

=
1

k

(1 + 1
k )

(1 + 1
k2 )

,

from which it follows by (1.1) and (1.2) that

lim
k→∞

ck = lim
k→∞

k + 1

k2 + 1
= 0

(1 + 0)

(1 + 0)
= 0.

The sequence obtained by taking the absolute value of each term in (d) is one

which increases without bound. That is, it is clear that |dk| = k2+1
k+1 and that

lim
k→∞

|dk| = lim
k→∞

k2 + 1

k + 1
=∞.

However, the factor (−1)k implies that the terms of the sequence {dk} alternate in
sign, and for this sequence we can conclude only that no limit exists.

A sequence s of real numbers is said to be an increasing sequence if

si+1 ≥ si, (9.1)

for every integer i in the domain of s. If the inequality (1) is reversed so that
si+1 ≤ si, for every i in the domain of s, then we say that s is a decreasing
sequence. A sequence is monotonic if it is either increasing or decreasing. Note
that, just as in the analogous definitions for functions, we use “increasing” and
“decreasing” in the weak sense. That is, an increasing sequence is one which is
strictly speaking nondecreasing, and a decreasing sequence is one which is literally
nonincreasing.

The following two theorems will form the basis of some fundamental conclusions
about infinite series. Both are statements about increasing sequences, and corre-
sponding to each there is an obvious analogous theorem about decreasing sequences.

9.1.3. Let s be an infinite sequence of real numbers. If s is increasing and if
limn→∞ sn = L, then sn ≤ L for every n in the domain of s.

Proof. Suppose that the conclusion is false. Then there exists an integer N such
that sN > L. Let a be the positive number sN−L. Since s is an increasing sequence,
we know that sn ≥ sN for all n ≥ N . It follows that

sn − L ≥ sN − L = a,

for all n ≥ N . Since the difference sn − L is greater than or equal to the positive
constant a, it cannot be arbitrarily small. Hence the sequence cannot approach
L as a limit, contradicting the premise that limn→∞ sn = L. This completes the
proof.

A sequence s of real numbers is said to be bounced above by a real number B
if sn ≤ B for every n in the domain of s. If the inequality is reversed to read B ≤ sn,
we obtain the analogous definition of a sequence s which is bounded below by B.
The second theorem is:
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9.1.4. (1.4) Let s be an infinite sequence of real numbers. If s is increasing and
bounded above by B, then s converges and limn→∞ sn ≤ B.

It is easy to see geometrically that (1.4) must be true. Because the sequence
is increasing, each point sn on the real line lies at least as far to the right as its
predecessor sn−1 (see Figure 2). In addition, we are given that no points lie to the
right of B. Hence the points of the sequence must “pile up” or cluster at some point
less than or equal to B. The proof which follows serves to make these intuitive ideas
precise.

Figure 9.2:

Proof. The range of s, which is the set of all numbers sn has the number B as an
upper bound. By the Least Upper Bound Property (see page 7), this set has a least
upper bound, which we denote by L. Obviously,

L ≤ B. (9.2)

We contend that limn→∞ sn = L. Since L is an upper bound, we have sn ≤ L
for every n in the domain of s. Since L is a least upper bound, there must exist
values sn of the sequence which are arbitrarily close to L. That is, for any ε > 0,
there exists an integer N such that |L − sN | = L − sN < ε. Since the sequence is
increasing, we have sn ≥ sN for all n ≥ N . Hence −sn ≤ −sN and so

|L− sn| = L− sn ≤ L− sN < ε,

for every integer n ≥ N . This proves that limn→∞ sn = L and this fact, together
with the inequality (2) completes the proof.

It should be remarked that the essential ideas of Theorems (1.3) and (1.4) are
not limited to sequences. For example, by making only trivial changes in the proofs,
we obtain the following analogous results about an arbitrary real-valued function
fdefined on an interval [a,∞):

9.1.5. (1.3’) If f is increasing and if limx→∞ f(x) = L, then f(x) ≤ L for every x
in [a,∞).

9.1.6. (1.4’) If f is increasing and if f(x) ≤ B for some number B and for every
x in [a,∞), then limx→∞ f(x) exists and, furthermore, limx→∞ f(x) ≤ B.

The latter asserts that every increasing bounded function must approach a limit,
a result which we assumed without proof in the proof of the Comparison Test for
Integrals on page 469.
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Problems

1. Determine whether or not each of the following sequences converges, and
evaluate the limit if it does.

(a) an = n2−1
n2+1

(b) bk = k2

(k+1)2

(c) sn = n+1
n2

(d) sn = (−1)n n+1
n2

(e) ai =
(
1 + 1

i

)i
(f) si = i sin 1

i .

2. Evaluate each of the following limits.

(a) limn→∞
(n+1)(n+3)

n2+3

(b) limi→∞ e
1
i

(c) limk→∞
k√
k+1

(d) limn→∞ cosn

(e) limn→∞
1
n cosn

(f) limk→∞

(√
k −
√
k + 1

)
.

3. Determine whether or not each of the following sequences {sn} converges,
and, if it does, evaluate the limit.

(a) sn = (−1)n, n = 1, 2, . . . .

(b) sn =

{
1 + 1

n , for every integer n such that 1 ≤ n ≤ 10,
1, for every integer n > 10.

(c) sn =

{
1 + 1

n , if n is a positive even integer,
1, if n is a positive odd integer.

(d) sn =

{
1 + 1

n , for every integer n such that 1 ≤ n ≤ 10,
2, for every integer n > 10.

4. Let s be the sequence defined by s + n = 1
n , for every positive integer n.

Draw an x-axis, and plot on it the first ten points of the sequence. What is
limn→∞ sn?

5. Let r be a real number, and consider the sequence 1, r, r2, r3, . . . . Show that
the sequence converges if and only if −1 < r ≤ 1, and that

lim
n→∞

rn =

 0 if −1 < r < 1,
1 if r = 1,
∞ if r > 1.

What is the behavior of the sequence for r = −1 and for r < −1? (Hint: Let
rn = en ln r, for r > 0.)
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6. Finish the proof of Theorem ??:

(a) Prove ??.

(b) Prove ??.

(c) Prove ??.

7. Let s and t be two infinite sequences and a a real number such that

sn = a+ tn,

for every integer n greater than or equal to some integer k. Prove that

lim
n→∞

sn = a+ lim
n→∞

tn.

[Suggestion: It is easy to prove this result directly from the definition of
convergence. Alternatively, one may consider a constant sequence with the
single value a, and obtain the result as a corollary of Theorem ??.]

8. Consider the sequence {sn} defined by sn = n+(−1)n, for every integer n ≥ 0.

(a) Write the first ten terms of the sequence.

(b) Show that limn→∞ sn =∞, but that {sn} is not an increasing sequence.

(c) Give another example of a sequence {sn} which is not monotonic but for
which limn→∞ sn =∞.
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9.2 Infinite Series: Definition and Properties.

We are now ready to define infinite series. Consider an infinite sequence of real
numbers am, am+1, am+2, .... From this sequence {ai} we construct another sequence
{sn} with the same domain, called the sequence of partial sums and defined by

sm = am,

sm+1 = am + am+1,

sm+2 = am + am+1 + am+2,

...

That is, for every integer n ≥ m, the number sn is given by

sn =

n∑
i=m

ai = am + · · ·+ an. (9.3)

If the sequence {sn} of partial sums converges, we define its limit to be the value
of the infinite series determined by the original sequence {ai}, and we write

∞∑
i=m

ai = lim
n→∞

sn. (9.4)

Example 183. Show that

∞∑
i=0

1

2i
= 1 +

1

2
+

1

4
+

1

8
+ · · · = 2.

For this series the sequence of partial sums is given by

s0 = 1,

s1 = 1 +
1

2
,

s2 = 1 +
1

2
+

1

4
,

...

and, more generally, by

sn = 1 +
1

2
+ · · ·+ 1

2n
.

Note that s0 = 2 − 1, s1 = 2 − 1
2 , and s2 = 2 − 1

4 . It is not hard to show that
sn = 2− 1

2n for every positive integer n. Hence

lim
n→∞

sn = lim
n→∞

(2− 1

2n
) = 2,

and it then follows from the above definition that
∑∞
n=0

1
2i = 2.
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If, for a given sequence of real numbers am, am+1, ..., it happens that the corre-
sponding sequence of partial sums does not converge, then the value of the infinite
series is not defined. In this case we shall follow the customary terminology and say
that the infinite series

∑∞
i=m ai diverges. On the other hand, if the sequence of

partial sums does converge, we shall say that the infinite series
∑∞
i=m ai converges.

Summarizing the above definitions (1) and (2) in a single formula, we obtain the
equation

∞∑
i=m

ai = lim
n→∞

n∑
i=m

ai, (9.5)

in which the series on the left converges if and only if the limit on the right exists.
Our first theorem states that if an infinite series

∑∞
i=m ai converges, then the

sequence {ai} must converge to zero:

9.2.1. If
∑∞
i=m ai converges, then limn→∞ an = 0.

Proof. Let s = {sn} be the sequence of partial sums. Since the infinite series
converges, there exists a real number L such that

∞∑
i=m

ai = lim
n→∞

sn = L.

Let s′ be the sequence defined by s′n = sn−1, for every integer n ≥ m + 1. The
range of the function s′ is the same as that of s, and the order is the same. That
is, enumeration of the terms of both sequences gives the same list of numbers:
sm, sm+1, .... We conclude that

lim
n→∞

s′n = lim
n→∞

sn.

We next observe that, for every integer n ≥ m+ 1,

an = sn − sn−1 = sn − s′n.

Since the limit of the sum or difference of two convergent sequences is the sum or
difference of their limits [see Theorem (1.1), page 475], we have

lim
n→∞

an = lim
n→∞

sn − lim
n→∞

s′n = L− L = 0,

and the proof is complete.

As a result of Theorem (2.1) we see at once that both infinite series

∞∑
i=0

(−1)i2 = 2− 2 + 2− 2 + · · · ,

∞∑
i=1

(2 +
1

i2
) = 3 + 2

1

4
+ 2

1

9
+ 2

1

16
+ · · ·

are divergent. For the first, limn→∞ an = limn→∞(−1)n2, which does not exist,
and for the second, limn→∞ an = limn→∞(2 + 1

n2 ) = 2.
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[Warning: The converse of Theorem (2.1) is false. That is, it is not true that
if limn→∞ an = 0, then

∑∞
i=m ai converges. A well-known counterexample is the

series discussed in the following example.]

Example 184. Show that the infinite series

∞∑
k=1

1

k
= 1 +

1

2
+

1

3
+

1

4
+ · · ·

diverges. This series is called the harmonic series and is particularly interesting
because it diverges in spite of the fact that limn→∞

1
n = 0. To prove divergence, sn

we first observe that sn, the nth partial sum of the series, is given by

sn = 1 +
1

2
+ · · ·+ 1

n
.

Figure 9.3:

Next, consider Figure 3, which shows the graph of the function 1
x between x = 1

and x = n + 1. With respect to the partition σ = {1, 2, ..., n + 1}, the upper sum
Uσ is equal to the sum of the areas of the shaded rectangles and is given by

Uσ = 1 +
1

2
+ · · ·+ 1

n
.

Thus Uσ = sn. Since every upper sum is greater than or equal to the corresponding
definite integral, we obtain

sn = Uσ ≥
∫ n+1

1

1

x
dx = ln(n+ 1).

We know that ln(n+ 1) increases without bound as n increases, hence the same is
true of sn. Thus

lim
n→∞

sn =∞,

which completes the proof that the harmonic series diverges.
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The next theorem states that infinite series have what is commonly called the
property of linearity. The result is a useful one because it shows that convergent
infinite series may be added in the natural way and also multiplied by real numbers.
Note that we have come across the property of linearity before. It is one of the basic
features of finite series and also of definite integrals.

9.2.2. If
∑∞
i=m ai and

∑∞
i=m bi are convergent infinite series and if c is a real

number, then the series
∑∞
i=m(ai + bi) and

∑∞
i=m cai are also convergent, and

(i)
∑∞
i=m(ai + bi) =

∑∞
i=m ai +

∑∞
i=m bi.

(ii)
∑∞
i=m cai = c

∑∞
i=m ai.

Proof. The proofs of (i) and (ii) are direct corollaries of the corresponding parts of
Theorem (1.1), page 475. Let {sn} and {tn}, be the two convergent sequences of
partial sums corresponding to

∑∞
i=m ai and

∑∞
i=m bi, respectively. That is,

sn =

n∑
i=m

ai, tn =

n∑
i=m

bi,

∞∑
i=m

sn = lim
n→∞

sn,

∞∑
i=m

bi = lim
n→∞

tn. (9.6)

By part (i) of Theorem (1.1), we have

lim
n→∞

(sn + tn) = lim
n→∞

sn + lim
n→∞

tn, (9.7)

which shows, first of all, that {sn + tn} is a convergent sequence. The linearity
property of finite sums implies that

sn + tn =

n∑
i=m

ai +

n∑
i=m

bi =

n∑
i=m

(ai + bi),

from which we conclude that {sn+tn} is the sequence of partial sums corresponding
to the series

∑∞
i=m(ai + bi). Hence

∞∑
i=m

(ai + bi) = lim
n→∞

(sn + tn). (9.8)

Substituting from equations (6) and (4) into equation (5), we obtain

∞∑
i=m

(ai + bi) =

∞∑
i=m

ai +

∞∑
i=m

bi,

and this completes the proof of part (i). Part (ii) is proved in the same way, and
we omit the details.

As an application of Theorem (2.2) we may conclude that if a series
∑∞
i=m ai

diverges and if c 6= 0, then
∑∞
i=m cai also diverges. For if the latter series converges,

we know from part (ii) of (2.1) that

1

c

∞∑
i=m

cai =

∞∑
i=m

1

c
cai =

∞∑
i=m

ai.
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and that the series on the right converges, contrary to assumption. For example,
since the harmonic series

∑∞
i=1

1
i diverges, it follows at once that the series

∞∑
i=1

1

5i
=

1

5
+

1

10
+

1

15
+ · · ·

also diverges.
It is an important corollary of the next theorem that the convergence or di-

vergence of an infinite series is unaffected by the addition or deletion of any finite
number of terms at the beginning.

9.2.3. If m < 1, then the series
∑∞
i=m ai converges if and only if

∑∞
i=l ai a con-

verges. lf either converges, then

∞∑
i=m

ai =

l−1∑
i=m

ai +

∞∑
i=l

ai

Proof. Let {sn} and {tn} be the sequences of partial sums for
∑∞
i=m ai and

∑∞
i=l ai,

respectively. Then

sn =

n∑
i=m

ai, for every integer n ≥ m,

tn =

n∑
i=l

ai, for every integer n ≥ l.

If n is any integer greater than or equal to l, then obviously

n∑
i=m

ai =

l−1∑
i=m

ai +

n∑
i=l

ai.

Hence

sn =

l−1∑
i=m

ai + tn, for every integer n ≥ l.

The number
∑l−1
i=m ai does not depend on n, and is fixed throughout the proof.

Thus, for n ≥ l, the sequences {sn} and {tn} differ by a constant. It follows that
one converges if and only if the other does and that

lim
n→∞

sn =

l−1∑
i=m

ai + lim
n→∞

tn,

(see Problem 7, page 481). This completes the proof, since by definition,

lim
n→∞

sn =

∞∑
i=m

ai and lim
n→∞

tn =

∞∑
i=l

ai.
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As an illustration, consider an infinite series
∑∞
i=0 ai whose first thousand terms

we know nothing about, but which has the property that an = 1
2n for every in-

teger n > 1000. We have shown in Example 1 that the series
∑∞
i=0

1
2i converges,

and it follows by Theorem (2.3) that
∑∞
i=1001

1
2i also converges. Since the latter

series is precisely the series
∑∞
i=1001 ai, a second application of (2.3) establishes the

convergence of the original series
∑∞
i=1 ai.

An infinite geometric series is one of the form

∞∑
i=0

ari = a+ ar + ar2 + · · · ,

in which a and r are arbitrary real numbers. For example, by taking a = 1 and
r = 1

2 we obtain the convergent series
∑∞
i=0

1
2i . In studying the question of the

convergence or divergence of geometric series, it is sufficient to take a = 1 and
consider the simpler series

∞∑
i=0

= 1 + r + r2 + · · · . (9.9)

For if this series converges, then so does
∑∞
i=0 ar

i, and

∞∑
i=0

ari = a

∞∑
i=0

ri.

On the other hand, if (7) diverges and a 6= 0, then
∑∞
i=0 ar

i also diverges. The
principal result about the convergence of geometric series is the followIng:

9.2.4. The geometric series (7) converges if and only if −1 < r < 1. If it converges,
then

∞∑
i=0

ri =
1

1− r
.

Proof. If r = 1, the series (7) is the divergent series 1 + 1 + 1 + · · ·. Hence, in what
follows, we shall assume that r 6= 1. The sequence {s} of partial sums is defined by

sn =

n∑
i=0

ri = 1 + r + · · ·+ rn,

for every integer n ≥ 0. Observe that

1 + rsn = 1 + r(1 + r + · · ·+ rn)

= 1 + r + r2 + · · ·+ rn+1 = sn+1.

On the other hand, we have the equation

sn + rn+1 = sn+1.

It follows that 1 + rsn = sn + rn+1 whence 1− rn+1 = sn(1− r), and so

s =
1− rn+1

1− r
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The proof is completed by considering two cases. First of all, suppose that −1 < r <
1. Then limn→∞ rn+1 = limn→∞ rn = 0 (see Problem 5, page 481), and therefore

∞∑
x=0

ri = lim
n→∞

sn =
1− 0

1− r
=

1

1− r
.

Second, suppose that r ≤ −1 or r > 1. For neither of these possibilities does
limn→∞ rn+1 exist (again, see Problem 5, page 481). It follows that limn→∞ sn also
does not exist, and hence the series

∑∞
i=0 r

i diverges. This completes the proof.
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Problems

1. Determine whether or not each of the following infinite series converges, and
evaluate it if it does.

(a)
∑∞
i=0

7
5i

(b)
∑∞
k=1

a
5k

(c)
∑∞
n=1

(
1
2n + 1

n

)
(d)

∑∞
j=0

(
1
2j −

1
3j

)
(e)

∑∞
i=1

5·2i+6i
i2i

(f)
∑∞
k=0

(
3 + 1

3k

)
(g)

∑∞
i=1

i2−1
i2+1

(h)
∑∞
k=0

2k+3k

6k
.

2. Consider the infinite series
∑∞
i=0 ai defined by

a2i = 1
2i , i = 0, 1, 2, . . . ,

a2i+1 = 0, i = 0, 1, 2, . . . .

Write out the sum of the first ten terms. Does the series converge? If so, to
what value?

3. Using Theorem ??, show that if
∑∞
i=m ai converges and if

∑∞
i=m bi diverges,

then
∑∞
i=m(ai + bi) must diverge.

4. Is it true that if the series
∑∞
i=m(ai + bi) converges, then both

∑∞
i=m ai and∑∞

i=m bi must also converge? Give a reason for your answer.

5. Prove that the harmonic series
∑∞
k=1

1
k diverges using the following elementary

argument. Begin by grouping the terms of the series:

∞∑
k=1

1

k
= 1 +

(
1

2
+

1

3

)
+

(
1

4
+

1

5
+

1

6
+

1

7

)

+

(
1

8
+

1

9
+

1

10
+

1

11
+

1

12
+

1

12
+

1

13
+

1

14
+

1

15

)
+ · · · ,

and observe that
1

2
+

1

3
>

1

4
+

1

4
=

1

2
,

1

4
+

1

5
+

1

6
+

1

7
>

1

8
+

1

8
+

1

8
+

1

8
=

1

2
, etc.

6. Consider the infinite series
∑∞
k=1

(
1
k −

1
k+1

)
. By writing out a few terms

of the sequence of partial sums, show that the series converges, and give its
value.
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7. An infinite series of the form
∑∞
i=m(ai− ai+1) is called a telescoping series

(see Problem ??). Prove that it converges if and only if the sequence {sn}
converges. If it does converge, what is its value?

8. Determine whether or not each of the following infinite series converges, and
evaluate it if it does.

(a)
∑∞
k=1

1
k(k+1) .

(b)
∑∞
i=1

2i+1
i2(i2+2i+1) .

(c)
∑∞
k=1 ln

(
k+1
k

)
= ln

(
2
1

)
+ ln

(
3
2

)
+ ln

(
4
3

)
+ · · ·.

(Hint: Look at Problems ?? and ??.)
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9.3 Nonnegative Series.

The theory of convergence of infinite series is in many respects simpler for those se-
ries which do not contain both positive and negative terms. A series which contains
no negative terms is called nonnegative. Thus

∑∞
i=m ai is nonnegative if and only

if ai ≥ 0 for every integer i ≥ m. In this section we shall study two convergence
criteria for such series: The Integral Test and the Comparison Test.

Let
∑∞
i=m ai be an arbitrary infinite series (not necessarily nonnegative), and let

{sn} be the corresponding sequence of partial sums. We recall that sn =
∑n
i=m ai,

for every integer n ≥ m, and that, if {sn} converges, then
∑∞
i=m ai = limn→∞ sn.

We shall extend the convention regarding the symbol ∞ and write

∞∑
i=m

ai =∞ (or −∞)

if and only if limn→∞ sn =∞ (or −∞).
It may very well happen that a series neither converges nor satisfies

∑∞
i=m ai =

±∞. For example, the divergent series

∞∑
i=0

(−1)i = 1− 1 + 1− 1 + 1− · · ·

has for its sequence of partial sums the oscillating sequence 1, 0, 1, 0, 1, .... However,
for nonnegative series, there are only two alternatives:

9.3.1. Every nonnegative series
∑∞
i=m ai either convefges or satisfies

∑∞
i=m ai =∞

.

The proof of this fact follows directly from the following two lemmas:

9.3.2. If
∑∞
i=m ai is a nonnegative series, then the corresponding sequence {s} of

partial sums is an increasing sequence.

Proof. For every integer n ≥ m, we have sn+1 = sn + an+1. Since the series is
nonnegative, it follows that sn+1 − sn = an+1 ≥ 0. Hence

sn+1 ≥ sn, for every integer n ≥ m,

which is the definition of an increasing sequence.

9.3.3. If {sn} is an increasing infinite sequence of real numbers, then either it is
bounded above and therefore converges or else limn→∞ sn =∞.

Proof. If the sequence is bounded above, then it is proved in Theorem ( 1.4), page
479, that it must converge. Suppose it is not so bounded. Then, for every real
number B, there exists an integer N such that sN > B. Since the sequence is
increasing, it follows that sn ≥ sN for every n > N . Hence sn > B, for every integer
n > N , and this is precisely the definition of the expression limn→∞ sn =∞.

We come now to the first of the tests for convergence of nonnegative infinite
series. It is a generalization of the method used in Section 2 to prove the divergence
of the harmonic series.
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9.3.4. INTEGRAL TEST. Let f be a function which is nonnegative and decreasing
on the interval [m,∞). Then the infinite series

∑∞
i=m ai defined by

ai = f(i), for every integer i ≥ m,

is convergent if and only if the improper integral
∫∞
m
f(x)dx is convergent.

Figure 9.4:

Proof. The series
∑∞
i=m ai is nonnegative, and its corresponding sequence {sn} of

partial sums is therefore increasing. Figure 4 illustrates the graph of the function
f over an interval [m,n], where n is an arbitrary integer greater than m. Since f
is decreasing, its maximum value on each subinterval of the partition σ = {m,m+
1, ..., n}, occurs at the left endpoint. Moreover, each subinterval has length 1. Hence
the upper sum Uσ, which is equal to the sum of the areas of the rectangles Iying
above the graph in the figure, is given by

Uσ =

n−1∑
i=m

f(i) =

n−1∑
i=m

ai = sn−1.

Similarly, the lower sum Lσ is equal to

Lσ =

n∑
i=m+1

f(i) =

n∑
i=m+1

ai = sn − am.

As always, we have

Lσ ≤
∫ n

m

f(x)dx ≤ Uσ,

and it follows that

sn − am ≤
∫ n

m

f(x)dx ≤ sn−1. (9.10)

The crux of the proof of the Integral Test is in the inequalities (1). In completing
the argument, we consider the “if” and “only if” parts of the theorem separately.
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“If.” Let
∫∞
m
f(x)dx be a convergent improper integral. That is, limb→∞

∫ b
m
f(x)dx

exists. Since f is nonnegative on [m,∞), the integral
∫ b
m
f(x)dx is an increasing

function of b. Hence∫ n

m

f(x)dx ≤
∫ ∞
m

f(x)dx, for every integer n ≥ m,

[see (1.3’), page 479]. From (1) it follows that

sn ≤ am +

∫ n

m

f(x)dx ≤ am +

∫ ∞
m

f(x)dx,

for every integer n > m. Hence the increasing sequence {sn} is bounded above and
therefore converges. The convergence of the sequence of partial sums is equivalent
to the convergence of the corresponding infinite series, so we conclude that

∑∞
i=m ai

converges.
“Only if.” Suppose that

∑∞
i=m ai converges. Then

sn−1 ≤ sn ≤
∞∑
i=m

ai,

for every integer n > m [see (1.3), page 478]. For any real number b in [m,∞),

choose an integer n > b. Since
∫ b
m
f(x)dx is an increasing function of b, we obtain

from (1) ∫ b

m

f(x)dx ≤
∫ n

m

f(x)dx ≤ sn−1.

Hence ∫ b

m

f(x)dx ≤
∞∑
i=m

ai.

The integral is therefore bounded above, and it follows that limb→∞
∫ b
m
f(x)dx exists

[see (1.4’), page 480]. Hence
∫∞
m
f(x)dx is a convergent improper integral, and the

proof of the Integral Test is complete.

The convergence or divergence of many infinite series can be determined easily
by the Integral Test. Important among these are series of the form

∞∑
i=1

1

ip
= 1 +

1

2p
+

1

3p
+ · · · ,

where p is a positive real number. Such a series is called a p-series. An example is
the divergent harmonic series, for which p = 1. The basic convergence theorem is

9.3.5. The p-series
∑∞
i=1

1
ip converges if and only if p > 1.

Proof. The function f defined by f(x) = 1
xp is nonnegative on the interval [1,∞),

and is also decreasing on that interval since we have made the assumption that
p > 0. Moreover, it is obvious that f(i) = 1

ip for every positive integer i. If p 6= 1,
then ∫

1

xp
dx =

1

1− p
x1−p + c.
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Hence we have the three computations:

0 < p < 1 :

∫ ∞
1

1

xp
dx =

1

1− p
lim
b→∞

(b1−p − 1) =∞,

p = 1 :

∫ ∞
1

1

xp
dx =

∫ ∞
1

1

x
dx = lim

b→∞
ln b =∞,

p > 1 :

∫ ∞
1

1

xp
dx =

1

1− p
lim
b→∞

(
1

bp−1
− 1) =

1

p− 1
.

It follows that
∫∞
1

1
xp dx is convergent if and only if p > 1, and the Integral Test

therefore completes the proof.

Thus the first of the following three p-series diverges, and the last two converge:

∞∑
i=1

1√
i

= 1 +
1√
2

+
1√
3

+ · · · ,

∞∑
i=1

1

k3/2
= 1 +

1

2
√

2
+

1

3
√

3
+ · · · ,

∞∑
i=1

1

j2
= 1 +

1

22
+

1

32
+ · · · .

Example 185. Determine whether the series
∑∞
i=1

1
2k2+1 converges or diverges.

The function f defined by f(x) = 1
2x2+1 is nonnegative and decreasing on the

interval [1,∞), and obviously f(k) = 1
2k2+1 . Since∫

1

2x2 + 1
dx =

1√
2

arctan
√

2x+ c,

we have ∫ ∞
1

1

2x2 + 1
dx =

1√
2

(arctan
√

2b− arctan
√

2)

=
1√
2

(
π

2
− arctan

√
2).

Hence the integral is convergent, and therefore so is the series.

We come now to the second of our convergence tests.

9.3.6. COMPARISON TEST.
∑∞
i=m ai is a nonnegative series and if

∑∞
i=m bi is

a convergent series with ai ≤ bi for every i ≥ m, then
∑∞
i=m ai converges and∑∞

i=m ai ≤
∑∞
i=m bi .

Proof. Let {sn} and {tn} be the sequences of partial sums for
∑∞
i=m ai and

∑∞
i=m bi,

respectively. The hypotheses 0 ≤ ai ≤ bi imply that

sn ≤ tn, for every integer n ≥ m, (9.11)
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and also that both series are nonnegative. Hence both {sn} and {tn} are increas-
ing sequences. The convergence of

∑∞
t=m bi means that {tn} converges and that

limn→∞ tn =
∑∞
i=m bi. It follows that

tn ≤
∞∑
i=m

bi, for every integer n ≥ m

[see (1.3), page 478]. Hence, by (2),

sn ≤
∞∑
i=m

bi, for every integer n ≥ m.

Thus {sn} is increasing and bounded above by
∑∞
i=m bi. The sequence therefore

converges and

lim
n→∞

sn ≤
∞∑
i=m

bi

[see (1.4), page 479]. The convergence of sn implies the convergence of
∑∞
i=m ai

and that the value of the series is limn→∞ sn. Hence

∞∑
i=m

ai ≤
∞∑
i=m

bi,

and the proof is complete.

Example 186. Use the Comparison Test to prove that the series
∑∞
i=0

1
2i2−7 con-

verges. We first observe that the first two terms of the series are negative. However,
2i2 − 7 > 0 provided i ≥ 2, and so the series

∑∞
i=2

1
2i2−7 is nonnegative. It is suf-

ficient to prove the latter series convergent because of the important fact that the
convergence of an infinite series is unaffected by any finite number of terms at the
beginning. As our test series we take the convergent p-series

∑∞
i=1

1
i2 . To use the

Comparison Test, we wish to show that

1

2i2 − 7
≤ 1

i2
, for every integer i ≥ 2. (9.12)

This inequality is equivalent to i2 ≤ 2i2 − 7, which in turn is equivalent to i2 ≥ 7.
The last is clearly true provided i ≥ 3. Thus we have proved

1

2i2 − 7
≤ 1

i2
, for every integer i ≥ 3, (9.13)

which is slightly weaker than (3). However, (4) is certainly sufficient. We know
that the series

∑∞
i=3

1
i2 , converges. It follows from (4) by the Comparison Test

that
∑∞
i=3

1
2i2−7 converges and, as a result, the original series

∑∞
i=0

1
2i2−7 does also.

Example 2 illustrates a useful extension of the Comparison Test: The series∑∞
i=m ai converges if there exists a convergent series

∑∞
i=m bi such that 0 ≤ ai ≤ bi

eventually. The assertion that 0 ≤ ai ≤ bi eventually means simply that there
exists an integer N such that 0 ≤ ai ≤ bi for every integer i ≥ N . The just)fication
for this extension is Theorem (2.3), page 486. A similar observation should be made
about the Integral Test. It may be necessary to drop a finite number of terms from
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the beginning of the series under consideration before a convenient function f can
be found which satisfies the conditions of the test.

The Comparison Test is as useful for proving divergence as convergence. It
is an immediate corollary that if the nonnegative series

∑∞
i=m ai diverges and if

ai ≤ bi for every i ≥ m, then
∑∞
i=m bi also diverges. For if

∑∞
i=m bi converges, the

Comparison Test implies that
∑∞
i=m ai converges, which is contrary to assumption.

Example 187. Determine whether the series
∑∞
k=1

1
(k2+5)1/3

converges or diverges.

If we use the Comparison Test, we must decide whether to look for a convergent
test series with larger terms to prove convergence, or a divergent test series with
smaller terms to prove divergence. To decide which, observe that for large values
of k, the number k2 + 5 is not very different from k2, and therefore 1

(k2+5)1/3
is

approximately equal to 1
k2/3

. Stated more formally, we have

lim
k→∞

(k2 + 5)1/3

k2/3
= lim

k→∞
(
k2 + 5

k2
)1/3

= lim
k→∞

(1 +
5

k2
)1/3 = 1.

This comparison, together with the divergence of the p-series
∑∞
k=1

1
k2/3

, leads us

to believe that the series
∑∞
k=1

1
(k2+5)1/3

diverges. Hence we shall try a divergent

test series. The most obvious candidate,
∑∞
k=1

1
k2/3

, fails to be useful, since the
necessary inequality,

1

k2/3
≤ 1

(k2 + 5)1/3
,

is clearly false for every value of k. However, the series
∑∞
k=1

1
2k2/3

is also divergent,
and we may ask whether or not it is true that

1

2k2/3
≤ 1

(k2 + 5)1/3
(9.14)

This inequality is equivalent to 8k2 ≥ k2+5, and hence to 7k2 ≥ 5, which is certainly
true for every positive integer k. Hence (5) holds for every integer k ≥ 1, and it
therefore follows by the Comparison Test that the series

∑∞
k=1

1
(k2+5)1/3

diverges.
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Problems

1. Test the following infinite series for convergence or divergence.

(a)
∑∞
i=1

1
7i−2

(b)
∑∞
i=1

1
7i2−2

(c)
∑∞
k=1

1√
k

(d)
∑∞
k=1

1√
k+7

(e)
∑∞
k=1

1

k
3
2

(f)
∑∞
k=1

1√
k2+1

(g)
∑∞
n=1

1√
n3+2

(h)
∑∞
i=0

1
1+i2

(i)
∑∞
i=4

1
ei

(j)
∑∞
i=0

1
i2−3i+1 .

2. Using the Integral Test for infinite series and the Comparison Test for integrals
(Theorem ??), determine whether each of the following series converges or
diverges.

(a)
∑∞
k=1 e

−k2

(b)
∑∞
i=1

1
i2 sin 1

i2 .

3. Using the Integral Test, prove the theorem that, for positive r, the geometric
series

∑∞
i=0 r

i converges if and only if r < 1.

4. Let
∑∞
i=m ai and

∑∞
i=m bi be two convergent nonnegative series. Using the

Comparison Test, prove that the series
∑∞
i=m aibi also converges.

5. Prove the following theorem, which is hinted at in Example ??. If
∑∞
i=m bi is

a positive series (i.e., bi > 0 for every integer i ≥ m) and if limn→∞
an
bn

= 1,

then the series
∑∞
i=m ai converges if and only if

∑∞
i=m bi does.
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9.4 Alternating Series.

Special among infinite series which contain both positive and negative terms are
those whose terms alternate in sign. More precisely, we define the series

∑∞
i=m ai to

be alternating if aiai+1 < 0 for every integer i ≥ m. It follows from this definition
that an alternating series is one which can be written in one of the two forms

∞∑
i=1

(−1)ibi or

∞∑
i=m

(−1)i+1bi,

where bi > 0 for every integer i ≥ m. An example is the alternating harmonic
series

∞∑
i=1

(−1)i+1 = 1− 1

2
+

1

3
− 1

4
+

1

5
− · · · .

An alternating series converges under surprisingly weak conditions. The next the-
orem gives two simple hypotheses whose conjunction is sufficient to imply conver-
gence.

9.4.1. The alternuting series
∑∞
i=m ai concerges if:

(i) |an+1| ≤ |an|, foreveryintegern ≥ m, and

(ii) limn→∞ an = 0 (or, equivalently, limn→∞ |an| = 0).

Proof. We shall assume for convenience and with no loss of generality that m = 0
and that ai = (−1)ibi, with bi > 0 for every integer i ≥ 0. The series is therefore∑∞
i=0(−1)ibi, and the hypotheses (i) and (ii) become

(i’) bn+1 ≤ bn, for every integer n ≥ 0, and

(ii’) limn→∞ bn = 0.

The proof is completed by showing the convergence of the sequence {sn} of partial
sums, which is defined recursively by the equations

s0 = (−1)0b0 = b0,

sn = sn−1 + (−1)nbn, n = 1, 2, 3, ....

The best proof that limn→∞ sn, exists is obtained by an illustration. In Figure
5 we first plot the point s0 = b0 and then the point s1 = s0 − b1. Next we plot
s2 = s1 + b2 and observe that, since b2 ≤ b1, we have s2 ≤ s0. After that comes
s3 = s2−b3 and, since b3 ≤ b2 it follows that s1 ≤ s3. Continuing in this way, we see
that the odd-numbered points of the sequence {sn} form an increasing subsequence:

s1 ≤ s3 ≤ s5 ≤ · · · ≤ s2n−1 ≤ · · · , (9.15)

and the even-numbered points form a decreasing subsequence:

s0 ≥ s2 ≥ s4 ≥ · · · ≥ s2n ≥ · · · .

Furthermore, every odd-numbered partial sum is less than or equal to every even-
numbered one. Thus the increasing sequence (1) is bounded above by any one of
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Figure 9.5:

the numbers s2n, and it therefore converges [see (1.4), page 479]. That is, there
exists a real number L such that

lim
n→∞

s2n−1 = L.

For every integer n ≥ 1, we have

s2n = s2n−1 + b2n,

and, since it follows from (ii’) that limn→∞ b2n = 0, we conclude that

lim
n→∞

s2n = lim
n→∞

s2n−1 + lim
n→∞

s2n

= L− 0 = L.

We have shown that both the odd-numbered subsequences {s2n−1} and the
even-numbered subsequence {s2n} converge to the same limit L. This implies that
limn→∞ sn = L. For, given an arbitrary real number ε > 0, we have proved that
there exist integers N1, and N2, such that

|s2n−1 − L| < ε, whenever 2n− 1 > N1,

|s2n − L| < ε, whenever 2n > N2.

Hence, if n is any integer (odd or even) which is greater than both N1 and N2, then
|sn − L| < ε. Thus

L = lim
n→∞

sn =

∞∑
i=0

(−1)ibi,

and the proof is complete.

As an application of Theorem (4.1) consider the alternating harmonic series

∞∑
i=1

(−1)i+1 1

i
= 1− 1

2
+

1

3
− 1

4
+ · · · .

The hypotheses of the theorem are obviously satisfied:

(i) 1
n+1 ≤

1
n , for every integer n ≥ 1, and
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(ii) limn→∞(−1)n+1 1
n = limn→∞

1
n = 0.

Hence it follows that the alternating harmonic series is convergent. It is inter-
esting to compare this series with the ordinary harmonic series

∑∞
i=1

1
i = 1 + 1

2 +
1
3 + 1

4 + · · ·, which we have shown to be divergent. We see that the alternating
harmonic series is a convergent infinite series

∑∞
i=m ai for which the corresponding

series of absolute values
∑∞
i=m |ai| fail diverges.

For practical purposes, the value of a convergent infinite series
∑∞
i=m ai is usually

approximated by a partial
∑∞
i=m ai. The error in the approximation, denoted by

En, is the absolute value of the difference between the true value of the series and
the approximating partial sum; i.e.,

En = |
∞∑
i=m

ai −
n∑

i=m

ai|.

ln general, it is a difficult problem to know how large n must be chosen to cosure
that the error En be less than a given size. However, for those alternating series
which satisfy the hypotheses of Theorem (4.1), the problem is an easy one.

9.4.2. If the ulternating series
∑∞
i=m ai satisfies hypotheses (i) and (ii) of Theorem

(4.1), then the error En is less than or equal to the absolute value of the first omitted
term. That is,

En ≤ |an+1|, for every integer n ≥ m.

Proof. We shall use the same notation as in the proof of (4.1). Thus we assume
that m = 0 and that ai = (−1)ibi where bi > 0 for every integer i ≥ 0. The value
of the series is the number L, and the error En is therefore given by

En = |
∞∑
i=0

ai −
n∑
i=0

ai| = |L− sn|.

Since |an+1| = bn+1, the proof is completed by showing that

|L− sn| ≤ bn+1, for every integer n ≥ 0.

Geometrically, |L − sn| is the distance between the points L and sn and it can be
seen immediately from Figure 5 that the preceding inequality is true. To arrive at
the conclusion formally, we recall that {s2n−1} is an increasing sequence converging
to L, and that {s2n} is a decreasing sequence converging to L. Thus if n is odd,
then n+ 1 is even and

sn ≤ L ≤ sn+1.

On the other hand, if n is even, then n+ 1 is odd and

sn+1 ≤ L ≤ sn.

In either case, we have |L− sn| ≤ |sn+1 − sn|. Hence, for every integer n ≥ 0,

En = |L− sn| ≤ |sn+1 − sn| = |an+1|,

and the proof is complete.

In Table 1 we have computed some partial sums which approximate the value
of the alternating harmonic series. Each entry in the second column is an approxi-
mation, and the corresponding entry in the third column is the upper bound on the
error provided by Theorem (4.2).
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Alternating harmonic series:
∑∞
i=1(−1)i+1 1

i .

Partial sums: sn = 1− 1
2 + 1

3 − · · ·+ (−1)n+1 1
n .

n sn = approximation |an+1| = 1
n+1 = upper bound for error

1 1 1
2

2 1
2

1
3

3 5
6

1
4

4 7
12

1
5

10 0.6460 0.0910
100 0.6882 0.0099

1000 0.6926 0.0010
10,000 0.6931 0.0001

Table 9.1: TABLE 1
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Problems

1. Determine whether each of the following alternating series converges or di-
verges. Give the reasons for your answers.

(a)
∑∞
i=1(−1)i 1√

i

(b)
∑∞
i=1(−1)i 1

i2+1

(c)
∑∞
k=1(−1)k k

2−1
k2+1

(d)
∑∞
k=1(−1)k 1

(k2+1)
1
3

(e)
∑∞
n=2(−1)ne−n

(f)
∑∞
i=2(−1)i 1√

2i3−1

(g)
∑∞
i=0 cos(iπ)

(h)
∑∞
k=1

cos(kπ)
k2 .

2. Prove that, for any infinite sequence {an} of real numbers, limn→∞ an = 0 if
and only if limn→∞ |an| = 0. (Hint: The proof is simple and straightforward.
Go directly to the definition of convergence of an infinite sequence.)

3. For each of the series
∑∞
i=m ai in Problem ??, determine whether or not the

corresponding series of absolute values
∑∞
i=m |ai| converges.

4. Give an example of an alternating series
∑∞
i=m ai which you can show con-

verges, but which fails to satisfy condition (i) of the Convergence Test (??).

5. The first of the following examples comes from the formula for a geometric
series, and the last two follow from the theory developed later in this chapter:

(a) 2
3 = 1

1+ 1
2

=
∑∞
i=0(− 1

2 )i = 1− 1
2 + 1

4 − · · ·.

(b) ln 2 =
∑∞
i=1(−1)i+1 1

i = 1− 1
2 + 1

3 −
1
4 + · · ·.

(c) π = 4 arctan 1 =
∑∞
i=0(−1)i 4

2i+1 = 4− 4
3 + 4

5 −
4
7 + · · ·.

If the value of each of these series is approximated by a partial sum
∑∞
i=m ai,

how large must n be taken to ensure an error no greater than 0.1, 0.01, 0.001,
10−6?
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9.5 Absolute and Conditional Convergence.

An infinite series
∑∞
i=m ai is said to be absolutely convergent if the corresponding

series of absolute values
∑∞
i=m |ai| is convergent. If a series

∑∞
i=m ai converges, but∑∞

i=m |ai| does not, then we say that
∑∞
i=m ai is conditionally convergent. An

example of a conditionally convergent series is the alternating harmonic series: We
have shown that

∞∑
i=1

ai =

∞∑
i=1

(−1)i+1 1

i
= 1− 1

2
+

1

3
− 1

4
+ · · ·

converges, but that

∞∑
i=1

|ai| =
∞∑
i=1

1

i
= 1 +

1

2
+

1

3
+

1

4
+ · · ·

diverges.
There are many examples of series for which both

∑∞
i=m ai and

∑∞
i=m |ai| con-

verge, and also many where both diverge. (In particular, for nonnegative series,
the two are the same.) There is the remaining possibility that

∑∞
i=m |ai| might

converge, and
∑∞
i=m |ai| diverge. However, the following theorem shows that this

cannot happen.

9.5.1. If the infinite series
∑∞
i=m ai is absolutely convergent, then it is convergent.

Proof. Since |ai| ≥ −ai, we have ai + |ai| ≥ 0, for every integer i ≥ m. Hence the
series

∑∞
i=m(ai + |ai|) is nonnegative. Since ai ≤ |ai|, we also have

ai + |ai| ≤ |ai|+ |ai| = 2|ai|, (9.16)

for every integer i ≥ m. The assumption that
∑∞
i=m ai is absolutely convergent

means that the series
∑∞
i=m |ai| converges, and, hence, so does the series

∑∞
i=m 2|ai|.

It therefore follows from (1) by the Comparison Test that the nonnegative series∑∞
i=m(ai + |ai|) is convergent. We conclude from Theorem (2.2), page 485, that

∞∑
i=m

ai =

∞∑
i=m

(ai + |ai|)−
∞∑
i=m

|ai|

and that
∑∞
i=m ai converges. This completes the proof.

Thus the only possibilities for a given series are those illustrated. by the following
scheme:

��
�

PPP

convergent

divergent

��
�

PPP conditionally convergent

absolutely convergent
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Example 188. Classify each of the following infinite series as absolutely convergent,
conditionally convergent, or divergent.

(a)

∞∑
k=1

(−1)k
1√
k + 1

, (b)

∞∑
k=1

(−1)k
1

2k2 − 15
.

If we let ak = (−1)k 1√
k+1

, the alternating series in (a) will converge if:

(i) |ak+1| ≤ |ak|, foreveryintegerk ≥ 1, and

(ii) limk→∞ |ak| = 0.

[See Theorem (4.1), page 498.] We have

|ak| =
1√
k + 1

and |ak+1| =
1√
k + 2

.

Hence condition (i) becomes

1√
k + 2

≤ 1√
k + 1

, for every integer k ≥ 1,

which is certainly true. Condition (ii) is also satisfied, since

lim
k→∞

1√
k + 1

= 0,

and it follows that the series
∑∞
k=1 ak converges. However, it is easy to show that∑∞

k=1 |ak| diverges by either the Comparison Test or the Integral Test. Using the
latter, we consider the function f defined by f(x) = 1√

x+1
, which is nonnegative

and decreasing on the interval [1,∞). We have f(k) = 1√
k+1

= |ak| and

∫ ∞
1

f(x)dx =

∫ ∞
1

1√
x+ 1

dx = lim
b→∞

[2
√
x+ 1|b1]

= lim
b→∞

[2
√
b+ 1− 2

√
2] =∞.

The divergence of the integral implies the divergence of the corresponding series∑∞
k=1 |ak|, and we conclude that the series (a) is conditionally convergent.
For the series in (b), we might apply the same technique: Test first for conver-

gence and then for absolute convergence. However, if we suspect that the series is
absolutely convergent, we may save a step by first testing for absolute convergence.
In this particular case, the corresponding series of absolute values is

∑∞
k=1

1
|2k2−15| .

The latter can be shown to be convergent by the CoMparison Test. For a test series
we choose the convergent series

∑∞
k=1

2
k2 . The condition of the test is that the

inequality

1

|2k2 − 15|
≤ 2

k2

must be true eventually. We shall consider only integers k ≥ 3, since, for these
values, 2k2 ≥ 18 and hence |2k2 − 15| = 2k2 − 15. For those integers for which
k ≥ 3, the inequality
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1

2k2 − 15
≤ 2

k2

is equivalent to k2 ≤ 4k2 − 30, which in turn is equivalent to k2 ≥ 10. The last is
true for every integer k ≥ 4. Hence

1

|2k2 − 15|
≤ 2

k2
, for every integer k ≥ 4.

lt follows that
∑∞
k=1

1
|2k2−15| converges, and therefore that the series (b) is absolutely

convergent.

9.5.2. RATIO TEST. Let
∑∞
i=m ai be an infinite series for which

limn→∞
|an+1|
|an| = q (or ∞).

(i) If q < 1, then the series is absolutely convergent.

(ii) If q > 1 (including q =∞ ), then the series is divergent.

(iii) If q = 1, then the series may either converge or diverge; i.e., the
test fails.

Proof. Suppose, first of all, that limn→∞
|an+1|
|an| = q < 1. This implies that the ratio

|an+1|
|an| is arbitrarily close to q if n is sufficiently large. Hence if we pick an arbitrary

number r such that q < r < 1, then there exists an integer N ≥ m such that

|an+1|
|an|

≤ r, for every integer n ≥ N. (9.17)

We shall show by mathematical induction that (2) implies that

|aN+i| ≤ ri|aN |, for every integer i ≥ 0. (9.18)

If i = 0, then the inequality in (3) becomes |aN+0| ≤ r0|aN |, which is true. In the
second part of an inductive proof we need to show that, if the inequality (3) is true
for i = k, then it is also true for i = k + 1. The assumption. then, is that

|aN+1| ≤ rk|aN |, (9.19)

and we want to prove that

|aN+k+1| ≤ rk+1|aN |.

If we multiply both sides of inequality (4) by the positive number r, we get

r|aN+k| ≤ rk+1|aN |. (9.20)

But, inequality (2) tells us that

|aN+k+1|
|aN+k|

≤ r,

and hence that
|aN+k+1| ≤ r|aN+k| (9.21)
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Combining inequalities (5) and (6) we have

|aN+k+1| ≤ rk+1|aN |,

completing the inductive proof. Since |r| < 1, the geometric series
∑∞
i=0 |aN |ri con-

verges, and it follows from (3) by the Comparison Test that the series
∑∞
i=0 |aN+i|

converges. However,
∞∑
i=0

|aN+i| =
∞∑
i=N

|ai|,

and the convergence of
∑∞
i=N |ai| implies the convergence of

∑∞
i=m |ai|. Hence the

series
∑∞
i=m ai converges absolutely, and the proof of part (i) of the theorem is

complete.
We next assume that limn→∞ |an+1

an
| = q > 1, and let r be an arbitrary number

such that 1 < r < q. Then there exists an integer N ≥ m such that

|an+1|
|an|

≥ r, for every integer n ≥ N.

In the same way in which we proved that (2) implies (3), it follows by induction
from the preceding inequality that

|aN+i| ≥ ri|aN |, for every integer i ≥ 0.

Since r > 1, we know that limi→∞ ri =∞ (see Problem 5, page 481), and therefore
also that

lim
n→∞

|an| = lim
n→∞

|aN+i| =∞.

However, if the series
∑∞
i=m ai converges, then it necessarily follows that limn→∞ |an| =

limn→∞ an = 0. [See Theorem (2.1), page 483, and Problem 2, page 502.] Hence∑∞
i=m ai diverges, and part (ii) is proved.
Part (iii) is proved by giving an example of an absolutely convergent series and

one of a divergent series such that q = 1 for each of them. Consider the convergent
p-series

∑∞
i=1

1
i2 , which, being nonnegative, is also absolutely convergent. Setting

an = 1
n2 , we obtain

an+1 =
1

(n+ 1)2
=

1

n2 + 2n+ 1

and
|an+1|
|an|

=
an+1

an
=

n2

n2 + 2n+ 1
=

1

1 + 2
n + 1

n2

.

Hence

lim
n→∞

|an+1|
|an|

= lim
n→∞

1

1 + 2
n + 1

n2

= 1.

For the second example, we take the divergent harmonic series
∑∞
i=1

1
i . If we let

an = 1
n , then an+1 = 1

n+1 and

|an+1|
|an|

=
an+1

an
=

n

n+ 1
=

1

1 + 1
n

.
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For this series we also get

lim
n→∞

|an+1|
|an|

= lim
n→∞

1

1 + 1
n

= 1.

The Ratio Test is therefore inconclusive if‘q = 1, and this completes the proof.

If n is an arbitrary positive integer, the product n(n − 1) · · · 3 · 2 · 1 is called n
factorial and is denoted by n! Thus 3! = 3 · 2 · 1 = 6 and 5! = 5 · 4 · 3 · 2 · 1 = 120.
Although it may seem strange, 0! is also defined and has the value 1. A convenient
recursive definition of the factorial is given by the formulas

0! = 1,

(n+ 1)! = (n+ 1)n!, for every integer n ≥ 0.

Example 189. Prove that the following series converges:

∞∑
n=0

1

n!
= 1 + 1 +

1

2!
+

1

3!
+ · · · .

We write the series as
∑∞
i=0 an by defining an = 1

n! for every integer n ≥ 0. Then

|an+1|
|an|

=

1
(n+1)!

1
n!

=
n!

(n+ 1)!

=
n!

(n+ 1)n!
=

1

n+ 1
.

Hence

q = lim
n→∞

|an+1|
|an|

= lim
n→∞

1

n+ 1
= 0.

Since q < 1, it follows from the Ratio Test that the series is absolutely convergent.
But absolute convergence implies convergence [Theorem (5.1)], and we conclude
that the series

∑∞
n=0

1
n! converges.

Example 190. Show that the infinite series

∞∑
i=1

iri−1 = 1 + 2r + 3r2 + 4r3 + · · ·

converges absolutely if |r| < 1 and diverges if |r| ≥ 1. This series is related to the
geometric series

∑∞
i=0 r

i = 1 + r+ r2 + · · ·, and in a later section we shall make use
of the relationship. To settle the immediate question of convergence, however, we
set ai = iri−1 for every positive integer i, and write the series as

∑∞
i=1 ai. Observe,

first of all, that if |r| ≥ 1, then |an| = n|r|n−1 and

lim
n→∞

|an| = lim
n→∞

n|r|n−1 =∞.

Hence, if |r| ≥ 1, the series must diverge, since convergence would imply limn→∞ |an| =
0. This proves the second part of what is asked, and we now assume that |r| < 1.
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lf r = 0, the series is absolutely convergent with value 1, so we further assume that
r 6= 0. Then

|an+1|
|an|

=
(n+ 1)|r|n

n|r|n−1
=
n+ 1

n
|r| = (1 +

1

n
)|r|,

and so

lim
n→∞

|an+1|
|an|

= lim
n→∞

(1 +
1

n
)|r| = |r|.

Thus q = |r| < 1, and the Ratio Test therefore implies that the series is absolutely
convergent.

The next theorem, with which we conclude the section, establishes a ttseful
inequality.

9.5.3. If the series
∑∞
i=m ai converges, then |

∑∞
i=m ai| ≤

∑∞
i=m |ai|.

The result is true even if
∑∞
i=m ai is not absolutely convergent, for in that case∑∞

i=m |ai| =∞, and the inequality becomes
∑∞
i=m |ai| ≤ ∞.

Proof. In view of the preceding remark, we shall assume throughout the proof that∑∞
i=m |ai| converges. Let {sn} be the sequence of partial sums corresponding to

the series
∑∞
i=m ai. Then

sn =

∞∑
i=m

ai, for every integer n ≥ m,

and the assumption that
∑∞
i=m ai converges means that the sequence {sn} converges

and that

lim
n→∞

sn =

∞∑
i=m

ai. (9.22)

The general fact that |a + b| ≤ |a| + |b|, for any two real numbers a and b, can be
extended to any finite number of summands, and we therefore have

|sn| = |
n∑

i=m

ai| ≤
n∑

i=m

|ai|.

Furthermore,
n∑

i=m

|ai| ≤
∞∑
i=m

|ai|

[see (3.2), page 490, and (1.3)1 page 478). Hence

|sn| ≤
∞∑
i=m

|ai|, for every integer n ≥ m. (9.23)

It follows from (8) that

| lim
n→∞

sn| ≤
∞∑
i=m

|ai|. (9.24)

[It is easy to see that (8) implies (9) if we regard the numbers sn and
∑∞
i=m |ai| as

points on the line. The geometric statement of (8) is that all the points sn lie in the
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closed interval whose endpoints are −
∑∞
i=m |ai| and

∑∞
i=m |ai|. If (9) were false,

it would mean that limn→∞ sn lay outside this interval, a positive distance away
from it. But this cannot happen, since Sn is arbitrarily close to limn→∞ sn for n
sufficiently large.] Combining (7) and (9), we obtain the in-equality which was to
be proved.
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Problems

1. Classify each of the following infinite series as absolutely convergent, condi-
tionally convergent, or divergent. Show how you obtain your answer starting
from a standard test or series.

(a)
∑∞
i=0(−1)i 1

2i−3

(b)
∑∞
k=1

1

(k3+1)
1
2

(c)
∑∞
k=1(−1)k 1

(k+1)
2
3

(d)
∑∞
i=1

i2i

3i+1

(e)
∑∞
n=1(−1)n 5n

4n+1

(f)
∑∞
k=0

100k

k!

(g)
∑∞
k=1(−1)k k!

100k

(h)
∑∞
i=1(−1)ie−i

2

2. (a) Prove that the series
∑∞
n=0

n
2n is absolutely convergent.

(b) Prove that limn→∞
n
2n = 0.

3. Classify each of the following series as absolutely convergent, conditionally
convergent, or divergent. Show how you obtain your answer.

(a)
∑∞
n=1

lnn
n

(b)
∑∞
n=1(−1)n lnn

n

(c)
∑∞
n=1(−1)n lnn

n3

(d)
∑∞
n=1

lnn
n2 .

4. (a) Prove that, for every positive number a, the series
∑∞
i=0

ai

i! is absolutely
convergent.

(b) Prove that limn→∞
an

n! = 0 for every positive number a.

5. The infinite series
∞∑
n=0

an = 1 +
1

2
+

1

2 · 3
+

1

223
+

1

2232
+

1

2332
+

1

2333
+ · · ·

is defined, for every integer n ≥ 0, by the two equations:

a2n =
1

2n3n

a2n+1 =
1

2n+13n
.

(a) Show that
∑∞
n=0 an is absolutely convergent.

(b) What is limn→∞
|an+1|
|an| ?

6. As a corollary of ??, prove the following extension of the Comparison Test:
The series

∑∞
i=m ai is absolutely convergent if there exists an absolutely con-

vergent series
∑∞
i=m bi such that |ai| ≤ |bi| eventually.
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9.6 Power Series.

Associated with every infinite sequence of real numbers a0, a1, a2, ... and every real
number x, there is the infinite series

∞∑
i=0

aix
i = a0 + a1x+ a2x

2 + · · · .

Such a series is called a power series in x. As a general rule, it will converge for
some values of x, but not all. For example, the geometric series

1 + x+ x2 + x3 + ...

converges and has the same value as 1
1−x for every real number x in absolute value

less than 1, but it diverges for all other values of x. A power series which converges
for some real number c, i.e., which converges if x = c, is commonly said to converge
at c. Note that every power series in x converges at 0, since, if x = 0, then

∞∑
i=0

aix
i = a0 + a10 + a202 + · · · = a0.

The following proposition is the basic theorem in studying the convergence of
power series:

9.6.1. If a power series
∑∞
i=0 aix

i converges for some real number c, then it is
absolutely conuergent for every real number x such that |x| < |c|.

Proof. If c = 0, the result is vacuously true, so we shall assume that c 6= 0. The
fact that the series

∑∞
i=0 aic

i converges implies that limn→∞ anc
n = 0. Hence there

exists a nonnegative integer N such that |ancn| ≤ 1, for every integer n ≥ N . Since
|ancn| = |an||cn|, it follows that

|an| ≤
1

|c|n
,

and thence that

|anxn| = |an||x|n ≤
|x|n

|c|n
,

for every real number x and for every integer n ≥ N . We now impose the restriction

that |x| < |c|, and set r = |x|
|c| . Then r < 1, and

|anxn| ≤ rn, for every integer n ≥ N.

That is, we have shown that |anxn| ≤ rn eventually. Since the geometric series∑∞
i=0 r

i converges if |r| < 1, it follows by the Comparison Test that
∑∞
i=0 |aixi|

converges. This completes the proof.

We shall derive three corollaries of (6.1). The first asserts that the set of all
real n”mbers x at which a power series

∑∞
i=0 aix

i converges is a nonempty interval
on the real line. The set is nonempty because, as is remarked above, it contains
the number 0. A set of real numbers is an interval if, whenever it contains two
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numbers, it contains every number in between those two. Thus we must prove that
if the series converges at a and at c and if a < b < c, then it also converges at b.
This is quickly done. Suppose first that b ≥ 0. Then

|b| = b < c = |c|,

and (6.1) implies that the series converges at b. On the other hand, if b < 0, then

|b| = −b < −a = |a|,

and it again follows from (6.1) that the’series converges at b. This completes the
proof, and, as a result, we call the set of all numbers at which a power series
converges the interval of convergence of the power series.

A number a is called an interior point of a set S of real numbers if there
exists an open interval which contains a and which is a subset of S. The set of all
interior points of S is called the interior of S. For example, if S is itself an open
interval, then all its points are interior points and hence S equals its own interior.
More generally, the interior of an arbitrary interval consists of the interval with its
endpoints deleted.

The second corollary states that a power series converges absolutely at every
interior point of its interval of convergence. The proof is virtually the same as
that of the first corollary. Let b be an arbitrary interior point of the interval of
convergence. Because it is an interior point, we know there exist real numbers a
and c which also lie in the interval and for which a < b < c. As before, if b ≥ 0,
then |b| < |c|, but if b < 0, then |b| < |a|. In either case it follows from (6.1) that
the series converges absolutely at b, and this completes the argument.

The third corollary is the following: The interior of the interval I of convergence
of a power series

∑∞
i=0 aix

i is symmetric about the origin. That is, if b is an interior
point of I, then so is −b. Again, there exist numbers a and c in I such that a < b < c.
Now consider the open interval (−c,−a). It certainly contains −b, and, if we can
show that (−c,−a) is a subset of I, then we shall have proved that −b is an interior
point of I. Let x be an arbitrary number in (−c,−a), that is, −c < x < −a. There
are the, by now familiar, two possibilities: If x ≥ 0, then −a > 0 and

|x| = x < −a = |a|.

If x < 0, then −c < 0, whence c > 0, and

|x| = −x < c = |c|.

For either possibility, the convergence of the series at x is implied by (6.1), and so
the third corollary is proved.

If a power series converges for every real number, then its interval of convergence
is the set of all real numbers. The only other possibility, according to the third
corollary above, is that the interval of convergence is bounded with symmetrically
located endpoints −ρ and ρ. We define the radius of convergence of a power
series

∑∞
i=0 aix

i to be infinite if the interval of convergence is the set (−∞,∞) of
all real numbers, and to be the right endpoint of the interval of convergence if the
interval is bounded. The preceding results are then summarized in Figure 6 below
and in the following theorem:
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Figure 9.6:

9.6.2. lf a power series
∑∞
i=0 aix

i has radius of convergence ρ, then the series
converges absolutely at every x in the open interval (−ρ, ρ). lf ρ is not infinite, then
−ρ and ρ are the endpoints of the interval of convergence.

It is important to realize that, when ρ is finite, we have made no prediction as
to whether the series converges or diverges at ρ and at −ρ. All we know is that
it converges absolutely in the open interval (−ρ, ρ) and diverges outside the closed
interval [−ρ, ρ].

Example 191. Find the interval and radius of convergence of each of the following
power series:

(a)
∑∞
i=0

xi

i! = 1 + x+ x2

2! + x3

3! + · · · .

(b)
∑∞
k=1(−1)k−1 x

k

k = x− x2

2 + x3

3 − · · · .
(c)

∑∞
n=0 n!xn = 1 + x+ 2x2 + 3!x3 + · · · .

In many examples the radius of convergence can be found easily using the Ratio
Test.

For the series in (a), we set ui = xi

i! and form the ratio

|un+1|
|un|

= | x
n+1

(n+ 1)!
|| n!

xn
| = |x| n!

(n+ 1)!
.

Since (n+ 1)! = (n+ 1)n!,
|un+1|
|un|

= |x| 1

n+ 1
.

Hence

lim
n→∞

|un+1|
|un|

= lim
n→∞

|x|
n+ 1

= 0.

It follows from the Ratio Test that the series
∑∞
i=0

xi

i! is absolutely convergent for
every real number x. Hence the interval of convergence is the entire real line, and
the radius of convergence is infinite.

Let uk = (−1)k−1 x
k

k for the series in (b). For every integer k ≥ 1, we have

|uk| = |x|k
k . Hence

|uk+1|
|uk|

=
|x|k+1

k + 1

k

|x|k
= |x| k

k + 1
.

Since

lim
k→∞

k

k + 1
= lim
k→∞

1

1 + 1
k

= 1,
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we obtain

lim
k→∞

|uk+1|
|uk|

= |x| lim
k→∞

k

k + 1
= |x|.

The Ratio Test therefore implies that the series
∑∞
k=0(−1)k−1 x

k

k converges abso-
lutely if |x| < 1 and diverges if |x| > 1. It follows that the endpoints of the interval
of convergence are the numbers −1 and 1 and that the radius of convergence is 1.
If x = 1, the series becomes

∞∑
k=1

(−1)k−1
1

k
= 1− 1

2
+

1

3
− 1

4
+ · · · .

which is the convergent alternating harmonic series. On the other hand, if x = −1,
the series becomes

∞∑
k=1

(−1)k−1
(−1)k

k
=

∞∑
k=1

(−1)2k−1
1

k
.

Since 2k − 1 is always an odd integer, we have (−1)2k−1 = −1, and so

∞∑
k=1

(−1)2k−1
1

k
= −

∞∑
k=1

1

k
,

which diverges. Hence the interval of convergence of the power series
∑∞
k=1(−1)k−1 x

k

k
is the half-open interval (−1, 1].

For the series in (c), let un = n!xn. We then get

|un+1|
|un|

=
|(n+ 1)!xn+1|
|n!xn|

= (n+ 1)|x|.

It follows that

lim
n→∞

|un+1|
|un|

= lim
n→∞

(n+ 1)|x| =
{
∞, if x 6= 0,
0, if x = 0.

From the Ratio Test we conclude that the series
∑∞
n=0 n!xn converges only at x = 0.

The radius of convergence is therefore equal to 0, and the interval of convergence
contains the one number 0.

A significant generalization of the definition of power series can be made as fol-
lows: Consider an arbitrary real number a and an infinite sequence of real numbers
a0, a1, a2, .... For every real number x, a power series in x− a is defined by

∞∑
i=0

ai(x− a)i = a0 + a1(x− a) + a2(x− a)2 + · · · (9.25)

The power series in x studied earlier in this section are simply instances of the
present definition for which a = 0.

Fortunately, it is not necessary to start from the beginning again to develop
the theory of convergence of power series in x − a. Consider the power series in y
obtained by making the substitution x− a = y in the series (1). We obtain
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∞∑
i=0

aiy
i = a0 + a1y + a2y

2 + · · · . (9.26)

Let I be the set of all real numbers y for which (2) converges, i.e., the interval of
convergence of the power series (2). Similarly, let J be the set of all real numbers
x for which (1) converges. Since x − a = y, or equivalently, x = y + a, a number
b will belong to I if and only if b + a belongs to J . Thus the set J consists of all
numbers of the form b+ a, where b belongs to I. Symbolically, we write

J = I + a.

Figure 9.7:

Geometrically, therefore, the set J is obtained by translating the interval I along the
real line a distance |a|, translating to the right if a > 0, and to the left if a < 0 (see
Figure 7). Hence, the set J of all real numbers x for which

∑∞
i=0 ai(x−a)i converges

is also an interval, and is called the interval of convergence of that series. The
corresponding radius of convergence is equal to the radius of convergence of the
series (2), but this time it should be interpreted (if it is not infinite) as the distance
from the number a to the right endpoint of the interval of convergence J . The
interior of J is, of course, symmetric about the number a.

A power series
∑∞
i=0 ai(x − a)i is frequently called a power series about the

number a. If we recall that |x− a| is geometrically equal to the distance between x
and a, we see that the appropriate analogue of theorem (6.2) is:

9.6.3. THEOREM. If the power series
∑∞
i=0 ai(x − a)i has radius of convergence

ρ, then the series converges absolutely at every x such that |x− a| < ρ. If ρ is not
infinite, the series diverges at every x such that |x− a| > ρ.

Example 192. Find the radius and interval of convergence of the power series

∞∑
i=0

1

3i
(x+ 2)i = 1 +

x+ 2

3
+

(x+ 2)2

32
+ · · · .

Observe, first of all, that this is a power series about the number −2. That is, to
put it in the standard form (1), we must write the series as

∞∑
i=0

1

3i
(x− (−2))i.
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Let us set un = 1
3n (x+ 2)n and apply the Ratio Test. For every integer n ≥ 0, we

obtain
|un+1|
|un|

= | (x+ 2)n+1

3n+1
|| 3n

(x+ 2)n
| = |x+ 2|

3
.

Hence

q = lim
n→∞

|un+1|
|un|

=
|x+ 2|

3
.

The series is therefore absolutely convergent if q < 1, or, equivalently, if |x+ 2| < 3,
and it is divergent if q > 1, or, equivalently, if |x+ 2| > 3. Remember that |x+ 2| is
the distance between x and −2. Thus the interior of the interval of convergence is
the set of all real numbers whose distance from −2 is less than 3. Hence the radius
of convergence is equal to 3, and the endpoints of the interval of convergence are
the numbers −5 and 1. If x = −5, the series becomes

∞∑
i=0

1

3i
(−5 + 2)i =

∞∑
i=0

(−3)i

3i

=

∞∑
i=0

(−1)i = 1− 1 + 1− 1 + 1− · · · ,

which diverges. If x = 1, we also obtain a divergent series,

∞∑
i=0

1

3i
(1 + 2)i =

∞∑
i=0

1 = 1 + 1 + 1 + 1 · · · .

It follows that the interval of convergence of the power series

∞∑
i=0

1

3i
(x+ 2)i

is the open interval (−5, 1) (see Figure 8).

Figure 9.8:
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Problems

1. Find the radius of convergence of each of the following power series.

(a)
∑∞
i=0

xi

2i

(b)
∑∞
i=1

xi

i2

(c)
∑∞
k=1

xk√
k

(d)
∑∞
k=0 x

k

(e)
∑∞
k=0(−1)kxk

(f)
∑∞
i=0 2iyi

(g)
∑∞
i=1 ix

i−1

(h)
∑∞
n=0

yn

n(n+1)3n .

2. Find the interval of convergence of each of the power series in Problem ??.

3. Is the following statement true or false: Every power series
∑∞
i=0 aix

i con-
verges absolutely only in the interior of its interval of convergence? Why?

4. Find the radius of convergence of each of the following power series.

(a)
∑∞
i=1

(x−2)i
i

(b)
∑∞
i=0

(x−2)i
i!

(c)
∑∞
k=0

k
k+1 (x+ 2)k

(d)
∑∞
n=0

n!
2n (x− 1)n

(e)
∑∞
k=1

k2

5k
(y + 1)k

(f)
∑∞
k=0(−1)k−1 x2k+1

(2k+1)! .

5. Find the interval of convergence of each of the power series in Problem ??.

6. Prove the following: If limn→∞
|an+1|
|an| = ρ, then the radius of convergence of

the power series
∑∞
i=0 ai(x− a)i is equal to 1

ρ . (Assume that 1
0 =∞ and that

1
∞ = 0.)
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9.7 Functions Defined by Power Series.

For every power series
∞∑
i=0

ai(x− a)i,

the function defined by the power series is the function f which, to every real
number c at which the power series converges, assigns the real number f(c) given
by

f(c) =

∞∑
i=0

ai(c− a)i.

The domain of f is obviously equal to the interval of convergence of the power
series. Speaking more casually, we say simply that the function f is defined by the
equation

f(x) =

∞∑
i=0

ai(x− a)i.

As an example, let f be the function defined by

f(x) =

∞∑
i=0

xi

i!
= 1 + x+

x2

2!
+
x3

3!
+ · · · .

This power series was studied in Example 1 of Section 6 and was shown to converge
for all values of x. Thus the domain of the function which the series defines is the
set of all real numbers.

Functions defined by power series have excellent analytic properties. One of the
most important is the fact that every such function is differentiable and that its
derivative is the function defined by the power series obtained by differentiating the
original series term by term. That is, if

f(x) =

∞∑
i=0

ai(x− a)i = a0 + a1(x− a) + a2(x− a)2 + · · · ,

then

f ′(x) =

∞∑
i=1

iai(x− a)i−1 = a1 + 2a2(x− a) + 3a3(x− a)2 + · · · .

This is not a trivial result. To prove it, we begin with the following theorem:

9.7.1. A power series
∑∞
i=0 ai(x − a)i and its derived series

∑∞
i=1 iai(x − a)i−1

have the same radius of convergence.

In Section 6 we showed that the essential difference between the power series∑∞
i=0 ai(x− a)i and the corresponding series

∑∞
i=0 aix

i is that the interval of con-
vergence of one is obtained from that of the other by translation. In particular, both
series have the same radius of convergence. To prove (7.1), it is therefore sufficient
(and rotationally easier) to prove the same result for power series about the origin
0. We shall therefore prove the following: If the power series

∑∞
i=0 aix

i has radius
of convergence ρ and if the derived series

∑∞
i=1 iaix

i−1 has radius of convergence
ρ′, then ρ = ρ′.
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Proof. Suppose that ρ < ρ′, and let c be an arbitrary real number such that ρ < c <
ρ′. Then the series

∑∞
i=0 aic

i diverges, whereas the series
∑∞
i=1 iaic

i−1 converges
absolutely. Since c is positive,

c

∞∑
i=1

|iaici−1| =
∞∑
i=1

|iaici|,

and it follows that the series
∑∞
i=1 = iaic

i is also absolutely convergent. However,
it is obvious that, for every positive integer i,

|aici| ≤ i|aici| = |iaici|.

The Comparison Test therefore implies that the series
∑∞
i=1 |aici| converges, and

this fact implies the convergence of
∑∞
i=0 aic

i, which is a contradiction. Hence the
original assumption is false, and we conclude that

ρ′ ≤ ρ. (9.27)

Next, suppose that ρ′ < ρ. We shall derive a contradiction from this assumption
also, which, together with the inequality (1), proves that ρ′ = ρ. Let b and c be
any two real numbers such that ρ′ < b < c < ρ. It follows from the definition of ρ′

that the series
∑∞
i=1 iaib

i−1 diverges. Similarly, from the definition of ρ, we know
that the series

∑∞
i=0 aic

i converges, and therefore limi→∞ aic
i = 0. Because c is

positive, it follows that there exists a positive integer N such that, for every integer
i ≥ N ,

|aici| < c.

But |aici| = |ai|ci, and so the preceding inequality becomes |ai|ci < c, or, equiva-
lently,

|ai| <
1

ci−1
.

Hence, since b is also positive, we obtain

|iaibi−1| = ibi−1|ai| < i
bi−1

ci−1
= i
(b
c

)i−1
,

for every integer i ≥ N . Let us set b
c = r. Then 0 < r < 1, and we have shown that

|iaibi−1| < iri−1, for every integer i ≥ N.

However, it is shown in Example 3, page 508, that the series
∑∞
i=1 ir

i−1 converges
if |r| < 1. Hence the preceding inequality and the Comparison Text imply that
the series

∑∞
i=1 |iaibi−1| converges, and this contradicts the above conclusion that∑∞

i=1 iaib
i−1 diverges. This completes the proof that ρ′ = ρ, and, as we have

remarked, also proves (7.1).

Note that Theorem (7.1) does not state that a power series
∑∞
i=0 ai(x− a)i and

its derived series have the same intertval of convergence, but only that they have the
same radius of convergence. For example, in Example 1(b), page 514, the interval

of convergence of the power series
∑∞
k=1(−1)k−1 x

k

k is shown to be the half-open
interval (−1, 1]. However, the derived series is
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∞∑
k=1

(−1)k−1k
xk−1

k
=

∞∑
k=1

(−1)k−1xk−1

= 1− x+ x2 − x3 + · · · ,

which does not converge for x = 1. It is a geometric series having the open interval
of convergence (−1, 1).

Let
∑∞
i=0 ai(x − a)i be a power series, and let f and g be the two functions

defined respectively by f(x) =
∑∞
i=0 ai(x − a)i and by g(x) =

∑∞
i=1 iai(x − a)i−1.

We have proved that there is an interval, which, with the possible exception of its
endpoints, is the common domain of f and g. However, we have not yet proved
that the function g is the derivative of the function f . This fact is the content of
the following theorem.

9.7.2. THEOREM. If the radius of convergence ρ of the power series
∑∞
i=0 ai(x−a)i

is not zero, then the function f defined by f(x) =
∑∞
i=0 ai(x− a)i is differentiable

at ecery x such that |x− a| < ρ and

f ′(x) =

∞∑
i=1

iai(x− a)i−1.

Proof. It is a direct consequence of the Chain Rule that if (7.2) is proved for a = 0,
then it is true in general. We shall therefore assume that f(x) =

∑∞
i=0 aix

i. Let g
be the function defined by g(x) =

∑∞
i=1 iaix

i−1, and let c be an arbitrary number
such that |c| < ρ. We must prove that f ′(c), which can be defined by

f ′(c) = lim
x→c

f(x)− f(c)

x− c
,

exists and is equal to g(c). Hence the proof is complete when we show that

lim
x→c

(f(x)− f(c)

x− c
− g(c)

)
= 0. (9.28)

Let d be an arbitrary real number such that |c| < d < ρ (see Figure 9). Henceforth,

Figure 9.9:

we shall consider only values of x which lie in the closed interval [−d, d]. For every
such x other than c, we have

f(x)− f(c)

x− c
=

1

x− c

( ∞∑
i=0

aix
i −

∞∑
i=0

aic
i
)

=

∞∑
i=1

ai

(xi − ci
x− c

)
.
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For each integer i ≥ 1, we apply the Mean Value Theorem to the function xi, whose
derivative is ixi−1. The conclusion is that, for each i, there exists a real number ci
in the open interval whose endpoints are c and x such that xi − ci = ici−1i (x − c).
Hence

xi − ci

x− c
= ici−1i ,

and so
f(x)− f(c)

x− c
=

∞∑
i=1

iaic
i−1
i .

From this it follows that

f(x)− f(c)

x− c
− g(c) =

∞∑
i=1

iaic
i−1
i −

∞∑
i=1

iaic
i−1

=

∞∑
i=2

iai(c
i−1
i − ci−1).

noindent For each integer i ≥ 2, we now apply the Mean Value Theorem to the
function xi−1, whose derivative is (i− 1)xi−2. We conclude that there exists a real
number bi in the open interval whose endpoints are c and ci such that

ci−1i − ci−1 = (i− 1)bi−2i (ci − c).

Hence
f(x)− f(c)

x− c
− g(c) =

∞∑
i=2

i(i− 1)aib
i−2
i (ci − c).

Since |ci − c| ≤ |x− c|, for every i, we obtain, using Theorem (5.3), page 509,∣∣∣f(x)− f(c)

x− c
− g(c)

∣∣∣ ≤ |x− c| ∞∑
i=2

|i(i− 1)aib
i−2
i |. (9.29)

Two applications of (7.1) imply that the power series
∑∞
i=2 i(i− 1)aix

i−2, which is
the derived series of

∑∞
i=1 iaix

i−1, also has radius of convergence equal to ρ, and it
is therefore absolutely convergent for x = d. Moreover, |bi| < d for each i, and so

|i(i− 1)aib
i−2
i | ≤ |i(i− 1)aid

i−2|,

for every integer i ≥ 2. It follows from the Comparison Test that

∞∑
i=2

|i(i− 1)aib
i−2
i | ≤

∞∑
i=2

|i(i− 1)aid
i−2. (9.30)

The value of the series on the right in (4) does not depend on x, and we denote it
by M . Combining (3) and (4), we therefore finally obtain∣∣∣f(x)− f(c)

x− c
− g(c)

∣∣∣ ≤ |x− c|M.

The left side of this inequality can be made arbitrarily small by taking |x − c|
sufficiently small. But this is precisely the meaning of the assertion in (2), and so
the proof is finished.
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Example 193. (a) Show that

ex =

∞∑
i=0

xi

i!
= 1 + x+

x2

2!
+
x3

3!
+ · · · .

for every real number x, and (b) show that

ln(1 + x) =

∞∑
k=1

(−1)k−1
xk

k
= x− x2

2!
+
x3

3!
− · · · .

for every real number x such that |x| < 1.

For (a), let f be the function defined by f(x) =
∑∞
i=0

xi

i! . We have already shown
that the domain of f is the set of all real numbers; i.e., the radius of convergence is
infinite. It follows from the preceding theorem that

f ′(x) =

∞∑
i=1

i
xi−1

i!
, for every real number x.

Since i
i! = 1

(i−1)! , we obtain

∞∑
i=1

ixi−1

i!
=

∞∑
i=1

xi−1

(i− 1)!
=

∞∑
k=0

xk

k!
,

where the last equation is obtained by replacing i − 1 by k. Thus we have proved
that

f ′(x) = f(x) for every real number x.

The function f therefore satisfies the differential equation dy
dx = y, whose general

solution is y = cex. Hence f(x) = cex for some constant c. But it is obvious from
the series which defines f that f(0) = 1. It follows that c = 1, and (a) is proved.

A similar technique is used for (b). Let f(x) =
∑∞
k=1(−1)k−1 x

k

k . The domain
of f is the half-open interval (−1, 1], and the radius of convergence is 1. Hence

f ′(x) =

∞∑
k=1

(−1)k−1
k − 1

k
=

∞∑
k=1

(−1)k−1xk−1

= 1− x+ x2 − x3 + · · · ,

for |x| < 1. The latter is a geometric series with sum equal to 1
1+x . Hence we have

shown that

f ′(x) =
dx

1 + x
, for every x such that |x| < 1.

Integration yields

f(x) =

∫
dx

1 + x
= ln |1 + x|+ c.

Since |x| < 1, we have |1 + x| = (1 + x). From the series which defines f we see
that f(0) = 0. Hence

0 = f(0) = ln(1 + 0) + c = 0 + c = c.

lt follows that f(x) = ln(1 + x) for every real number x such that |x| < 1, and (b)
is therefore established.
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Example 1 illustrates an important point. The domain of the function f defined

by f(x) =
∑∞
k=1(−1)k−1 x

k

k is the half-open interval (−1, 1]. On the other hand, the
domain of the function ln(1 + x) is the unbounded interval (−1,∞). It is essential
to realize that the equation

ln(1 + x) =

∞∑
k=1

(−1)k−1
xk

k

has been shown to hold only for values of x which are interior points of the interval
of convergence of the power series. It certainly does not hold at points outside the
interval of convergence where the series diverges. As far as the endpoints of the
interval are concerned, it can be proved that a function defined by a power series is
continuous at every point of its interval of convergence. Hence the above equation
does in fact hold for x = 1, and we therefore obtain the following formula for the
sum of the alternating harmonic series:

ln 2 =

∞∑
k=1

(−1)k−1
1

k
= 1− 1

2
+

1

3
− 1

4
+ · · · .

Let
∑∞
i=0 ai(x − a)i be a power series with a nonzero radius of convergence ρ,

and let f be the function defined by the power series

f(x) =

∞∑
i=0

ai(x− a)i,

for every x in the interval of convergence. By iterated applications of Theorem
(7.2), i.e., first to the series, then to the derived series, then to the derived series of
the derived series, etc., we may conclude that f has derivatives of arbitrarily high
order within the radius of convergence. The formula for the nth derivative is easily
seen to be

9.7.3.

f (n)(x) =

∞∑
i=n

i(i− 1) · · · (i− n+ 1)ai(x− a)i−n,

for every x such that |x− a| < ρ.

Is it possible for a function f to be defined by two different power series about
the same number a? The answer is no, provided the domain of f is not just the
single number a. The reason, as the following corollary of Theorem (7.3) shows,
is that the coefficients of any power series about a which defines f are uniquely
determined by the function f .

9.7.4. lf f(x) =
∑∞
i=0 ai(x−a)i and if the radius of convergence of the power series

is not zero, then, for every integer n ≥ 0,

an =
1

n!
f (n)(a).

[By the zeroth derivative f (0) we mean simply f itself. Hence, for n = 0, the
conclusion is the obviously true equation a0 = f(a).]
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Proof. The radius of convergence ρ is not zero, and so the formula in (7.3) holds.
Since i(i− 1) · · · (i− n+ 1) = i!

(i−n)! , we obtain

f (n)(x) =

∞∑
i=n

i!

(i− n)!
ai(x− a)i−n

= n!an + (n+ 1)!an+1(x− a) +
(n+ 2)!

2!
an+2(x− a)2 + · · · ,

for every x such that |x− a| < ρ. Setting x = a, we obtain

f (n)(a) = n!an,

from which the desired conclusion follows.
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Problems

1. Let f be the function defined by

f(x) =

∞∑
i=1

xi

i2
.

(a) Find the radius of convergence of the power series and also the domain
of f .

(b) Write the derived series, and find its radius of convergence directly [i.e.,
verify Theorem ?? for this particular series].

(c) Find the domain of the function defined by the derived series.

2. Let f be the function defined by f(x) =
∑∞
i=1

1
i2i (x−2)i, and follow the same

instructions as in Problem ??.

3. Let f be the function defined by f(x) =
∑∞
i=1

1√
i
(x−2)i, and follow the same

instructions as in Problem ??.

4. Let f be the function defined by f(x) =
∑∞
i=0

(x−1)i√
i+1

, and follow the same

instructions as in Problem ??.

5. Find the domains of the functions f and g defined by the following power
series.

(a) f(x) =
∑∞
i=1

(−1)i−1

(2i−1)! x
2i−1

(b) g(x) =
∑∞
i=0

(−1)i
(2i)! x

2i.

6. If f and g are the two functions defined in Problem ??, show that

(a) f ′(x) = g(x)

(b) g′(x) = −f(x).

7. Let f and g be the two functions defined in Problem ?? (see also Problem
??).

(a) Evaluate f(0), f ′(0), g(0), and g′(0).

(b) Show that f and g are both solutions of the differential equation d2y
dx2 +y =

0.

(c) Write the general solution of the differential equation in ??, and thence,
using the results of part ??, show that f(x) = sinx and that g(x) = cosx.

8. Show as is claimed at the beginning of the proof of Theorem ??, that it is a
direct consequence of the Chain Rule that if this theorem is proved for a = 0,
then it is true for an arbitrary real number a.

9. Prove that every power series can be integrated, term by term. Specifically,
prove the following two theorems.
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(a) A power series
∑∞
i=0 ai(x− a)i and its integrated series

∞∑
i=0

ai
i+ 1

(x− a)i+1

have the same radius of convergence.

(b) If the radius of convergence ρ of the power series
∑∞
i=0 ai(x− a)i is not

zero and if f and F are the functions defined, respectively, by

f(x) =

∞∑
i=0

ai(x− a)i and F (x) =

∞∑
i=0

ai
i+ 1

(x− a)i+1,

then

F (x) =

∫
f(x) dx+ c.

10. Starting from the geometric series

∞∑
i=0

(−1)ix2i = 1− x2 + x4 − x6 + · · ·

and the results of Problem ??, show that

arctanx =

∞∑
i=0

(−1)i

2i+ 1
x2i+1,

for every x such that |x| < 1.

11. (a) Show that the interval of convergence of the integrated series in Problem
?? is the closed interval [−1, 1].

(b) True or false?

π

4
= arctan 1 = arctanx =

∞∑
i=0

(−1)i

2i+ 1
.
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9.8 Taylor Series.

The subject of Section 7 was the function defined by a given power series. In
contrast, in this section we start with a given function and ask whether or not there
exists a power series which defines it. More precisely, if f is a function containing
the number a in its domain, then does there exist a power series

∑∞
i=0 ai(x−a)i with

nonzero radius of convergence which defines a function equal to f on the interval
of convergence of the power series? If the answer is yes, then the power series is
uniquely determined. Specifically, it follows from Theorem (7.4), page 526, that
ai = 1

i!f
(i)(a), for every integer i ≥ 0. Hence

f(x) =

∞∑
i=0

1

i!
f (i)(a)(x− a)i

= f(a) + f ′(a)(x− a) +
1

2!
f ′′(a)(x− a)2 + · · · ,

for every x in the interval of convergence of the power series.
Let f be a function which has derivatives of every order at a. The power series∑∞
i=0

1
i!f

(i)(a)(x−a)i is called the Taylor series of the function f about the number
a. The existence of this series, whose definition is motivated by the preceding
paragraph, requires only the existence of every derivative f (i)(a). However, the
natural inference that the existence of the Taylor series for a given function implies
the convergence of the series to the values of the function is false. In a later theorem
we shall give an additional condition which makes the inference true. Two examples
of Taylor series are the series for ex and the series for ln(1+x) developed in Example
1 of Section 7.

The value of a convergent infinite series can be approximated by its partial sums.
For a Taylor series

∑∞
i=0

1
i!f

(i)(a)(x − a)i, the nth partial sum is a polynomial
in (x − a), which we shall denote by Tn. The definition is as follows: Let n be
a nonnegative integer and f a function such that f (i)(a) exists for every integer
i = 0, ..., n. Then the nth Taylor approximation to the function f about the
number a is the polynomial Tn given by

Tn(x) =
∑n
i=0

1
i!f

(i)(a)(x− a)i

= f(a) + f ′(a)(x− a) + · · ·+ 1
n!f

(n)(a)(x− a)n,
(9.31)

for every real number x.
For each integer k = 0, ..., n, direct computation of the kth derivative at a of the

Taylor polynomial Tn shows that it is equal to f (k)(a). Thus we have the simple
but important result:

9.8.1. The nth Taylor approximation Tn to the function f about a satisfies

T (k)
n (a) = f (k)(a), foreach k = 0, ..., n.

Example 194. Let f be the function defined by f(x) = 1
x . For n = 0, 1, 2, and

3, compute the Taylor polynomial Tn for the function f about the number 1, and
superimpose the graph of each on the graph of f . The derivatives are:
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f(x) = − 1

x2
, whence f ′(1) = −1,

f ′(x) =
2

x3
, whence f ′′(1) = 2,

f ′′′(x) = − 6

x4
whence f ′′′(1) = −6.

From the definition in (1), we therefore obtain

T0(x) = f(1) = 1,

T1(x) = 1− (x− 1),

T2(x) = 1− (x− 1) + (x− 1)2,

T3(x) = 1− (x− 1) + (x− 1)2 − (x− 1)3.

These equations express the functions Tn as polynomials in x − 1 rather than as
polynomials in x. The advantage of this form is that it exhibits most clearly the
behavior of each approximation in the vicinity of the number 1. Each one can, of
course, be expanded to get a polynomial in x. If we do this, we obtain

T0(x) = 1,

T1(x) = −x+ 2,

T2(x) = x2 − 3x+ 3,

T3(x) = −x3 + 4x2 − 6x+ 4.

The graphs are shown in Figure 10. The larger the degree of the approximating
polynomial, the more closely its graph “hugs” the graph of f for values of x close
to 1.

The basic relation between a function f and the approximating Taylor polyno-
mials Tn will be presented in Theorem (8.3). In proving it, we shall use the following
lemma, which is an extension of Rolle’s Theorem (see pages 111 ancl 112).

9.8.2. Let F be a function with the property that the (n+ 1)st derivative F (n+1)(t)
exists for every t in a closed interval [a, b], where a < b. If

(i) F i(a) = 0, for i = 0, 1, ..., n, and

(ii) F (b) = 0,

then there exists a real number c in the open interval (a, b) such that F (n+1)(c) = 0.

Proof. The idea of the proof is to apply Rolle’s Theorem over and over again, start-
ing with i = 0 and finishing with i = n. (In checking the continuity requirements
of Rolle’s Theorem, remember that if a function has a derivative at a point, then it
is continuous there.) A proof by induction on n proceeds as follows: If n = 0, the
result is a direct consequence of Rolle’s Theorem. We must next prove from the
assumption that if the lemma is true for n = k, then it is also true for n = k + 1.
Thus we assume that there exists a real number c in the open interval (a, b) such
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Figure 9.10:

that F (k+1)(c) = 0 and shall prove that there exists another real number c′ in (a, b)
such that F (k+2)(c′) = 0. The hypotheses of (8.2) with n = k + 1 assure us that
F (k+2)(t) exists for every t in [a, b] and that F (k+1)(a) = 0. The function F (k+1)

satisfies the premises of Rolle’s Theorem, since it is continuous on [a, c], differen-
tiable on (a, c), and F (k+1)(a) = F (k+1)(c) = 0. Hence there exists a real number
c′ in (a, c) with the property that F (k+2)(c′) = 0. Since (a, c) is a subset of (a, b),
the number c′ is also in (a, b), and this completes the proof.

We come now to the main theorem of the section:

9.8.3. TAYLOR’S THEOREM. (8.3) Let f be a function wifh the property that the
(n + 1)st derivative f (n+1)(t) exists for every t in the closed interval [a, b], where
a < b. Then there exists a real number c in the open interval (a, b) such that

f(b) =

n∑
i=0

1

i!
f (i)(a)(b− a)i +Rn,

where

Rn =
1

(n+ 1)!
f (n+1)(c)(b− a)n+1.

Using the approximating Taylor polynomials, we can write the conclusion of this
theorem equivalently as

f(b) = Tn(b) +
1

(n+ 1)!
f (n+1)(c)(b− a)n+1. (9.32)
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Note that the particular value of c depends not only on the function f and the
numbers a and b but also on the integer n.

Proof. Let the real number K be defined by the equation

f(b) = Tn(b) +K(b− a)n+1.

The proof of Taylor’s Theorem is completed by showing that

K =
1

(n+ 1)!
f (n+1)(c),

for some real number c in (a, b). For this purpose, we define a new function F by
setting

F (t) = f(t)− Tn(t)−K(t− a)n+1,

for every t in [a, b]. From the equation which defines K it follows at once that

f(b)− Tn(b)−K(b− a)n+1 = 0,

and hence that F (b) = 0. In computing the derivatives of the function F , we observe
that any derivative of K(t− a)n+1 of order less than n+ 1 will contain a factor of
t− a, and therefore

di

dti
K(t− a)n+1|t=a = 0, for i = 0, ..., n.

Since f i(a) = T
(i)
n (a), for every integer i = 0, ..., n, [see (8.1)], we conclude that

F i(a) = f i(a)− T (i)
n (a)− 0 = 0, i = 0, ..., n.

Hence, by Lemma (8.2), there exists a real number c in (a, b) such that

F (n+1)(c) = 0.

Finally, we compute F (n+1)(t) for an arbitrary t in [a, b]. Since the degree of the
polynomial Tn is at most n, its (n + 1)st derivative must be zero. Moreover, the
(n+ 1)st derivative of K(t− a)n+1 is equal to (n+ 1)!K. Hence

F (n+1)(t) = f (n+1)(t)− (n+ 1)!K.

Letting t = c, we obtain

0 = F (n+1)(c) = f (n+1)(c)− (n+ 1)!K,

from which it follows that K = 1
(n+1)!f

(n+1)(c). This completes the proof.

It has been assumed in the statement and proof of Taylor’s Theorem that a < b.
However, if b < a, the same statement is true except that the (n + 1)st derivative
exists in [b, a] and the number c lies in (b, a). Except for the obvious modifications,
the proof is identical to the one given. Suppose now that we are given a function f
such that f (n+1) exists at every point of some interval I containing the number a.
Since Taylor’s Theorem holds for any choice of b in I other than a, we may regard
b as the value of a variable. If we denote the variable by x, we have:
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9.8.4. ALTERNATIVE FORM OF TAYLOR’S THEOREM. If f (n+1)(t) exists for
every t in an interval I containing the number a, then, for every x in I other than
a, there exists a real number c in the open interval with endpoints a and x such that

f(x) = f(a) + f ′(a)(x− a) + · · ·+ 1

n!
f (n)(a)(x− a)n +Rn,

where

Rn =
1

(n+ 1)!
f (n+1)(c)(x− a)n+1.

The conclusion of this theorem is frequently called Taylor’s Formula and Rn is
called the Remainder. As before, using the notation for the approximating Taylor
polynomials, we can write the formula succinctly as

f(x) = Tn(x) +Rn. (9.33)

Example 195. (a) Compute Taylor’s Formula with the Remainder where f(x) =
sinx, a = 0, and n is arbitrary. (b) Draw the graphs of sinx and of the polynomials
Tn(x), for n = 1, 2, and 3. (c) Prove that, for every real number x,

sinx =

∞∑
i=1

(−1)i−1
x2i−1

(2i− 1)!
= x− x3

3!
+
x5

5!
− x7

7!
+ · · · .

The first four derivatives are given by

d

dx
sinx = cosx,

d2

dx2
sinx = − sinx,

d3

dx3
sinx = − cosx,

d4

dx4
sinx = sinx.

Thus the derivatives of sinx follow a regular cycle which repeats after every fourth
derivation. In general, the even-order derivatives are given by

d2i

dx2i
sinx = (−1)i sinx, i = 0, 1, 2, · · · ,

and the odd-order derivatives by

d2i−1

dx2i−1
sinx = (−1)i−1 cosx, i = 1, 2, 3, · · · .

If we set f(x) = sinx, then

f (2i)(0) = (−1)i sin 0 = 0, i = 0, 1, 2, ....
f (2i−1)(0) = (−1)i−1 cos 0 = (−1)i−1, i = 1, 2, 3, ....

Hence the nth Taylor approximation is the polynomial

Tn(x) =

n∑
i=0

1

i!
f (i)(0)xi,
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in which the coefficient of every even power of x is zero. To handle this alternation,
we define the integer k by the rule

k =

{
n
2 , if n is even,
n+1
2 , if n is odd.

(9.34)

It then follows that

Tn(x) =

k∑
i=1

1

(2i− 1)!
(−1)i−1x2i−1 =

k∑
i=1

(−1)i−1
x2i−1

(2i− 1)!
. (9.35)

[If n = 0, we have the exception T0(x) = 0.] For the remainder, we obtain

Rn = 1
(n+1)!f

(n+1)(c)xn+1

=


xn+1

(n+1)! (−1)k cos c, if n is even,

xn+1

(n+1)! (−1)k sin c, if n is odd,

(9.36)

for some real number c (which depends on both x and n) such that |c| < |x|. The
Taylor formula for sinx about the number 0 is therefore given by

sinx =

k∑
i=1

(−1)i−1
x2i−1

(2i− 1)!
+Rn,

where k is defined by equation (4), and the remainder Rn by (6).
For part (b), the approximating polynomials T1, T2, and T3 can be read directly

from equation (5) [together with (4)]. We obtain

T1(x) = x,

T2(x) = x,

T3(x) = x− x3

3!
= x− x3

6
.

Their graphs together with the graph of sinx are shown in Figure 11.

Figure 9.11:

To prove that sinx can be defined by the infinite power series given in (c), we
must show that, for every real number x,
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sinx = lim
n→∞

Tn(x)

= lim
k→∞

k∑
i=1

(−1)i−1
x2i−1

(2i− 1)!
,

where k is the integer defined in (4). Since sinx = Tn(x) + Rn, an equivalent
proposition is

lim
n→∞

Rn = 0.

To prove the latter, we use the important fact that the absolute values of the
functions sine and cosine are never greater than 1. Hence, in the expression for Rn
in (6), we know that | cos c| ≤ 1 and | sin c| ≤ 1. It therefore follows from (6) that

|Rn| ≤
|x|n+1

(n+ 1)!
.

It is easy to show by the Ratio Test [see Problem 4(b), page 510] that limn→∞
|x|n+1

(n+1)! =

0. Hence limn→∞Rn = 0, and we have proved that

sinx = x− x3

3!
+
x5

5!
− x7

7!
+ · · · .

The form of the remainder in Taylor’s Theorem provides one answer to the
question posed at the beginning of the section, which, briefly stated, was: When
can a given function be defined by a power series? The answer provided in the
following theorem is obtained by a direct generalization of the method used to
establish the convergence of the Taylor series for sinx.

9.8.5. Let f be a function which has derivatives of every order at every point of an
interval I containing the number a. If the derivatives are uniformly bounded on I,
i.e., if there exists a real number B such that |f (n)(t)| ≤ B, for every integer n ≥ 0
and every t in I, then

f(x) =

∞∑
i=0

1

i!
f (i)(a)(x− a)i,

for every real number x in I.

Proof. Since f(x) = Tn(x) + Rn [see Theorem (8.4) and formula (3)], we must
prove that f(x) = limn→∞ Tn(x), or, equivalently, that limn→∞Rn = 0. Generally
speaking, the number c which appears in the expression for the remainder Rn will be
different for each integer n and each x in I. But since the number B is a bound for
the absolute values of all derivatives of f everywhere in I, we have |f (n+1)(c)| ≤ B.
Hence

|Rn| =
∣∣∣ 1

(n+ 1)!
f (n+1)(c)(x− a)n+1

∣∣∣
=
|x− a|n+1

(n+ 1)!
|f (n+1)(c)| ≤ |x− a|

n+1

(n+ 1)!
B.
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However [see Problem 4(b), page 510],

lim
n→∞

|x− a|n+1

(n+ 1)!
B = 0 ·B = 0,

from which it follows that limn→∞Rn = 0. This completes the proof.

It is an important fact, referred to at the beginning of the section, that the con-
vergence of the Taylor series to the values of the function which defines it cannot be
inferred from the existence of the derivatives alone. In Theorem (8.5), for example,
we added the very strong hypothesis that all the derivatives of f are uniformly
bounded on I. The following function defined by

f(x) =

{
0 if x = 0,

e−1/x
2

if x 6= 0,

has the property that fn(x) exists for every integer n ≥ 0 and every real number
x. Moreover, it can be shown that fn(0) = 0, for every n ≥ 0. It follows that the
Taylor series about 0 for this function is the trivial power series

∑∞
i=0 0 · xi. This

series converges to 0 for every real number x, and does not converge to f(x), except
for x = 0.

When a Taylor polynomial or series is computed about the number zero, as in
Example 2, there is a tradition for associating with it the name of the mathemati-
cian Maclaurin instead of that of Taylor. Thus the Maclaurin series for a given
function is a power series in x, and is simply the special case of the Taylor series in
which a = 0.

Suppose that, for a given n, we replace the values of a function f by those of the
nth Taylor approximation to the function about some number a. How good is the
resulting approximation? The answer depends on the interval (containing a) over
which we wish to use the values of the polynomial Tn. Since f(x) − Tn(x) = Rn,
the problem becomes one of finding a bound for |Rn| over the interval in question.

Example 196. (a) Compute the first three terms of the Taylor series of the function
f(x) = (x+ 1)1/3 about x = 7. That is, compute

T2(x) = f(7) + f ′(7)(x− 7) +
1

2!
f ′′(7)(x− 7)2.

(b) Show that T2(x) approximates f(x) to within 5
34·28 = 0.00024 (approximately)

for every x in the interval [7, 8].
Taking derivatives, we get

f ′(x) =
1

3
(x+ 1)−2/3 =

1

3(x+ 1)2/3
,

f ′′(x) = −2

9
(x+ 1)−5/3 = − 2

9(x+ 1)5/3
,

f ′′′(x) =
2 · 5
9 · 3

(x+ 1)−8/3 =
2 · 5

33(x+ 1)8/3
.

Hence
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f(7) = 81/3 = 2,

f ′(7) =
1

3 · 22
=

1

12
,

f ′′(7) = − 2

9 · 25
= − 1

32 · 24
= − 1

144
,

and the polynomial approximation to f(x) called for in (a) is therefore

T2(x) = 2 +
1

12
(x− 7)− 1

288
(x− 7)2.

For part (b), we have |f(x)− T2(x)| = |R2| and

R2 =
1

3!
f ′′′(c)(x− 7)3,

for some number c which is between x and 7. To obtain a bound for |R2| over the
prescribed interval [7, 8], we observe that in that interval the maximum value of
(x − 7) occurs when x = 8 and the maximum value of |f ′′′| occurs when x = 7.
Hence

|R2| ≤
1

3!
If ′′′(7)||8− 7|3.

Since f ′′′(7) = 2·5
33·28 , we get

|R2| ≤
1

3 · 2
2 · 5

33 · 28
· 13 =

5

34 · 28

Hence for every x in the interval [7, 8], the difference in absolute value between
(x+ 1)1/3 and the quadratic polynomial T2(x) is less than 0.00025.
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Problems

1. For each of the values of n indicated, compute the Taylor polynomial Tn which
approximates the function f near the number a.

(a) f(x) = 1
x+1 , a = 0, n = 0, 1, and 2.

(b) f(x) = 1
1+x2 , a = 0, n = 0, 2, and 4.

(c) f(x) = 1
1+x2 , a = 1, n = 0, 1, and 2.

(d) f(x) =
√
x+ 1, a = 3, n = 1, 2, and 3.

(e) f(x) = sinx, a = π
4 , n = 0, 1, and 2.

2. Compute the formula, for an arbitrary nonnegative integer n, for the approx-
imating Taylor polynomial to the function f about the number a.

(a) f(x) = cosx, a = 0

(b) f(x) = lnx, a = 1.

3. For n = 0, 1, and 2, compute the Taylor polynomial Tn which approximates
the function f near 0. Draw the graphs of the three polynomials together
with the graph of f .

(a) f(x) = ex

(b) f(x) = cosx.

4. Let p be a polynomial in x of degree ≤ m; i.e., the function p is defined by an
equation

p(x) = a0 + a1x+ · · ·+ amx
m,

and let Tn be the Taylor polynomial which approximates p near an arbitrary
real number a. Prove, as a simple consequence of Taylor’s formula with the
remainder, that p(x) = Tn(x), for every real number x provided n ≥ m.

5. For each of the values of n indicated, compute the approximation Tn to the
polynomial p near the number a.

(a) p(x) = x2 + 3x− 1, a = 2, n = 1, 2, and 3.

(b) p(x) = 2x3 − 5x2 + 3, a = 0, n = 1, 2, and 3.

(c) p(x) = x4 + 3x2 + x+ 2, a = 0, n = 3, 4, and 17.

(d) p(x) = x3 − 1, a = 1, n = 2, 3, and 4.

6. Prove that, for every real number x,

cosx =

∞∑
i=0

(−1)i
x2i

(2i)!
= 1− x2

2
+
x4

4!
− x6

6!
+ · · · .

7. For each of the following functions, compute the Taylor series about a.

(a) ex, if a = 0

(b) ex

e2 , if a = 2
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(c) arctanx, if a = 0.

8. (a) Compute the cubic Taylor polynomial p(x) which approximates the func-
tion 1

x+2 for values of x near the number 1.

(b) Show that, for every x in the interval [0, 2], the approximation p(x) differs
in absolute value from 1

x+2 by less that 0.04.

9. Show that sinx differs in absolute value from the approximation x− x3

6 by no

more that π5

15·28 = 0.025 (approximately) for every x in the interval
[
−π2 ,

π
2

]
.

10. The Taylor approximation Tn to a function f about the number a is frequently
called the best polynomial approximation of degree ≤ n to the function f near
a because it can be shown that Tn is the only polynomial of degree ≤ n with
the property that, as x approaches a, the difference f(x)− Tn(x) approaches
zero faster than (x− a)n.

Prove the following part of the above assertion: If f has continuous (n+ 1)st

derivative in an open interval containing a, then limx→a
f(x)−Tn(x)

(x−a)n = 0.

11. What cubic polynomial best approximates x4 − 2x3 + 3x− 3 near x = 2?

12. Another statement of Taylor’s Theorem which gives a different form for the
remainder is the following: Let f be a function with continuous (n + 1)st
derivative at every point of the interval [a, b]. Then

f(b) = f(a) + f ′(a)(b− a) + · · ·+ 1

n!
f (n)(a)(b− a)n

+

∫ b

a

(b− t)n

n!
f (n+1)(t) dt.

(a) Using integration by parts, show that∫ b

a

(b− t)n

n!
f (n+1)(t) dt

= − 1

n!
f (n)(a)(b− a)n +

∫ b

a

(b− t)n−1

(n− 1)!
f (n)(t) dt.

(b) Using induction on n and the result of part ??, prove the above form of
Taylor’s Theorem in which the remainder appears as an integral.

13. Let f have a continuous second derivative at every point of an interval con-
taining the number a in its interior, and let f ′(a) = 0. Show that f has a
local maximum value at a if f ′′(a) < 0, and a local minimum value at a if
f ′′(a) > 0. [Hint: Use the Taylor Formula f(x) = T1(x) + R1 and the fact
that, if a continuous function is positive (or negative) at a, then it is positive
(or negative) near a.]



Chapter 10

Geometry in the Plane

Suppose that we are concerned with the motion of a particle as it moves in a plane.
At any time t during the motion, the position of the particle is given by its two
coordinates, which depend on time, and may therefore be denoted by x(t) and y(t),
respectively. The set of points traced out by the particle as it moves during a given
interval of time is a curve. The function which describes the position of the particle
is called a parametrization, and a curve described by such a function is said to be
parametrized. In the first sections of this chapter we shall develop the mathematical
theory of parametrized curves, abstracting from the picture of a physical particle in
motion. Later we shall return to this application and define the notions of velocity
and acceleration of such particles.

Parametrized curves represent an important generalization of the curves encoun-
tered thus far as the graphs of functions. As we shall see, a parametrized curve is
not necessarily the graph of an equation y = f(x).

10.1 Parametrically Defined Curves.

When we speak of the plane in this book, we assume, unless otherwise stated, that
a pair of coordinate axes has been chosen. As a result, we identify the set of points
in the plane with the set R2 of all ordered pairs of real numbers. A convenient
notation for a function P whose domain is an interval I of real numbers and whose
range is a subset of the plane is P : I → R2. Every function P : I → R2 defines
two coordinate functions, the functions which assign to every t in I the two
coordinates of the point P (t). If we denote the first coordinate function by f , and
the second one by g, then they are defined by the equation

P (t) = (f(t), g(t)), for every t in I. (10.1)

Conversely, of course, every ordered pair of real-valued functions f and g with an
interval I as common domain defines a function P : I → R2 by equation (1).

Since the first and second coordinates of an element of R2 are usually the x-
and y-coordinates, respectively, we may alternatively define a function P : I → R2

by a pair of equations

531
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{
x = f(t),
y = g(t),

where f and g are real-valued functions with domain I. Then, for every t in I,
we have P (t) = (x, y) = (f(t), g(t)). It is also common practice to denote the
coordinate functions themselves by x and y. When this is done, we do not hesitate
to write the equations x = x(t) and y = y(t), and the function P : I → R2 is defined
by

P (t) = (x(t), y(t)), for every t in I.

A function P : I → R2 is said to be continuous at t0 if both coordinate
functions are continuous at t0. If the coordinate functions are denoted by x and y,
then we define

lim
t→t0

P (t) = ( lim
t→t0

x(t), lim
t→t0

y(t)).

As a result, the definition of continuity for P is entirely analogous to that for
a real-valued function: P is continuous at t0 if t0 is in the domain of P and if
limt→t0 P (t) = P (t0). As before, the function P is simply said to be continuous if
it is continuous at every number in its domain.

A curve in the plane is by definition a subset of R2 which is the range of some
continuous function P : I → R2. Every curve is the range of many such functions,
and, as a result, it is necessary to choose our terminology carefully. We shall call a
continuous function P : I → R2, a parametrization of the curve C which is the
range of P , and we shall say that C is parametrically defined by P : I → R2.
The points of the curve C obviously consist of the set of all points P (t), for every t
in I. By a parametrized curve we shall mean the range of a specified continuous
function P : I → R2. Speaking more casually, we shall refer to the curve defined
parametrically by

P (t) = (x(t), y(t)),

or, equivalently, to the curve defined parametrically by the equations{
x = x(t),
y = y(t),

for every t in some interval I which is the common domain of the continuous func-
tions x and y. If t is regarded as an independent variable, it is called the parameter
of the parametrized curve.

Example 197. Draw the curve defined parametrically by

P (t) = (t2, t), −∞ < t <∞.

This is, of course, also the curve defined by the equations{
x = t2,
y = t, −∞ < t <∞.

It is plotted in Figure 1. Since the set of all points (x, y) which satisfy the above
two equations is equal to the set of all points (x, y) such that x = y2, we recognize
the curve as a parabola.



10.1. PARAMETRICALLY DEFINED CURVES. 533

Figure 10.1:

t (x, y)
0 (0, 0)
1 (1, 1)

-1 (1, -1)
2 (4, 2)

-2 (4, -2)

Table 10.1:

It is worth noting that every curve which we have previously encountered as the
graph of a continuous function f can be defined parametrically. The graph is the
set of all points (x, y) such that x is in the domain of f and such that y = f(x).
This set is obviously equal to the set of all points (x, y) such that{

x = t,
y = f(t), and t is in the domain of f .

(10.2)

Hence the graph of f is defined parametrically by equations (2).

A function P : I → R2 is differentiable at t0 if the derivatives of both coordi-
nate functions exist at t0. Moreover, following the usual style, we say that P is a
differentiable function if it is differentiable at every number in its domain. This
terminology is also applied to parametrized curves. That is, a curve defined para-
metrically by P : I → R2 is said to be differentiable at t0, or simply differentiable,
according as P is differentiable at t0, or is a differentiable function.

Example 198. Draw and identify the curve C defined parametrically by

P (t) = (x(t), y(t)) = (4 cos t, 3 sin t),

for every real number t. If (x, y) is an arbitrary point on the curve, then

{ x = 4 cos t,
y = 3 sin t,
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for some value of t. Hence, x4 = cos t and y
3 = sin t, and, consequently,

x2

16
+
y2

9
= cos2 t+ sin2 t = 1.

Thus for every point (x, y) on the curve, we have shown that

x2

16
+
y2

9
= 1. (10.3)

The latter is an equation of the ellipse shown in Figure 2, and it follows that the
curve C is a subset of the ellipse. Conversely, let (x, y) be an arbitrary point on the
ellipse. Then |x| ≤ 4, and so there exists a number t such that x = 4 cos t. Since
cos t = cos(−t) and sin t = − sin(−t), we may choose t so that sin t and y have the
same sign. Then, solving equation (3) for y and setting x = 4 cos t, we obtain

Figure 10.2:

y2 = 9
(

1− x2

16

)
= 9
(

1− 16 cos2 t

16

)
= 9(1− cos2 t)

= 9 sin2 t.

Since y and sin t have the same sign, it follows that y = 3 sin t. We have therefore
proved that, if (x, y) is an arbitrary point on the ellipse, then there exists a real
number t such that

(x, y) = (4 cos t, 3 sin t) = P (t).

That is, every point on the ellipse also lies on C. We have already shown that the
converse is true, and we therefore conclude that the parametrized curve C is equal
to the ellipse.

Consider a curve C defined parametrically by a differentiable function P : I →
R2, and let t0 be an interior point of the interval I. A typical example is shown
in Figure 3. Generally it will not be the case that the whole curve is a function of
x, since there may be distinct points on C with the same x-coordinate. However,
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it can happen that a subset of C containing the point P (t0) is a differentiable
function. Such a subset is shown in Figure 3, drawn with a heavy line. Thus if
P (t) = (x(t), y(t)) for every t in I, then there may exist a differentiable function f
such that

Figure 10.3:

y(t) = f(x(t)), (10.4)

for every t in some subinterval of I containing t0 in its interior. If such a function
does exist, we shall say that y is a differentiable function of x on the parametrized
curve P (t) = (x(t), y(t)) in a neighborhood of the point P (t0). Applying the Chain
Rule to equation (4), we obtain

y′(t) = f ′(x(t))x′(t).

Hence

f ′(x(t)) =
y′(t)

x′(t)
, (10.5)

for every t in the subinterval, for which x′(t) 6= 0. If we write y = f(x) and use the
differential notation for the derivative, formula (5) becomes

dy

dx
=

dy
dt
dx
dt

. (10.6)

It should be apparent that f ′(x(t)), or, equivalently, dy
dx at t, is equal to the slope

of the curve C at the point P (t).

Example 199. Find the slope, when t = π
3 , of the parametrized ellipse in Example

2. The parametrization is defined by the equations{
x = 4 cos t,
y = 3 sin t.
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We shall assume the analytic result that y is defined as a differentiable function of
x in a neighborhood of the point(

4 cos
π

3
, 3 sin

π

3

)
.

Since (
4 cos

π

3
, 3 sin

π

3

)
=
(

4 · 1

2
, 3 ·
√

3

2

)
=
(

2,
3
√

3

2

)
,

one can see by simply looking at Figure 2 that this should certainly be true since
the curve passes smoothly through the point and, in the immediate vicinity of the
point, does not double back on itself. We have

dx

dt
=

d

dt
4 cos t = −4 sin t,

dy

dt
=

d

dt
3 sin t = 3 cos t,

and so

dx

dt

∣∣∣
t=π/3

= −4 sin
π

3
= −4

√
3

2
= −2

√
3,

dy

dt

∣∣∣
t=π/3

= 3 cos
π

3
=

3

2
.

Hence, by formula (6), the slope is equal to

dy

dx

∣∣∣
t=π/3

=

dy
dt

∣∣∣
t=π/3

dx
dt

∣∣∣
t=π/3

=
3
2

−2
√

3
= − 3

4
√

3
.

The problem of giving analytic conditions which imply that y is a differentiable
function of x on a parametrized curve in the neighborhood of a point is akin to
the problem of determining when an equation F (x, y) = c implicitly defines y as a
differentiable function of x in a neighborhood of a point. As mentioned on page 81,
the latter is solved by the Implicit Function Theorem, and the techniques needed
here are similar.

As a final example, let us consider the curve traced by a point fixed on the
circumference of a wheel as the wheel rolls along a straight line. We take the x-axis
for the straight line. The radius of the wheel we denote by a, and the point on
the circumference by (x, y). If we assume that the point passes through the origin
as the wheel rolls by to the right, then the curve is defined parametrically by the
equations {

x = a(θ − sin θ),
y = a(1− cos θ), −∞ < θ <∞,

where the parameter θ is the radian measure of the angle with vertex the center of
the wheel, initial side the half-line pointing vertically downward, and terminal side
the half-line through (x, y) (see Figure 4). (An alternative geometric interpretation
of the parameter is that aθ is the coordinate of the point of tangency of the wheel
on the x-axis.) The curve is called a cycloid. Note that the parametric equations
are quite simple, whereas it would be difficult to express y as a function of x.
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Figure 10.4:
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Problems

1. Draw and identify each of the curves defined by the following parametrizations.

(a) P (t) = (t, t2), −∞ < t <∞.

(b) P (t) = (t− 1, t2), −∞ < t <∞.

(c) P (t) = (t2 − 1, t+ 1), −∞ < t <∞.

(d) P (t) = (2t
1
3 , 3t

1
3 ) −∞ < t <∞.

(e) P (t) = (t− 1, t3), −∞ < t <∞.

(f) P (t) = (3 cos t, 3 sin t), 0 ≤ t ≤ π.

(g) P (s) = (sin s, 2), −∞ < s <∞.

(h) Q(r) = (2 sin r, 3 cos r), −∞ < r <∞.

2. Draw and identify each of the following parametrized curves.

(a)

{
x = t− 1,
y = 2t+ 3, −∞ < t <∞.

(b)

{
x = t2,
y = t− 3, −∞ < t <∞.

(c)

{
2 cos t,
y = cos t, −∞ < t <∞.

(d)

{
x = 3 sec θ,
y = 2 tan θ, −π2 < t < π

2 .

3. Each of the following parametrized curves is a function f of x. [To put it
another way, each is the graph of an equation y = f(x).] Find f(x).

(a) P (t) = (t− 1, t2 + 1), −∞ < t <∞.

(b)

{
x = t,

y = et
2

, −∞ < t <∞.

(c)

{
x = 2 cos t
y = 3 sin t, 0 ≤ t ≤ π.

(d) P (t) = (et, t), −∞ < t <∞.

4. For each of the following parametrization, find an equation F (x, y) = c whose
graph is the parametrized curve

(a) P (t) = (t2, t), −∞ < t <∞.

(b)

{
x = e3t,
y = et, −∞ < t <∞.

(c)

{
x = et + e−t,
y = et − e−t, −∞ < t <∞.

[For ?? and ??, you will need in addition to the equation F (x, y) = c, the
inequality x > 0.]
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5. For the ellipse in Example ?? parametrized by the equations x = 4 cos t and
y = 3 sin t, interpret t geometrically. (Hint: See Figure ??.)

6. Sketch the curve defined by the parametrization{
x = aθ − b sin θ,
y = a− b cos θ, −∞ < θ <∞.

This curve is traced by a point, fixed on a radius of a wheel of radius a at a
distance b from the center, as the wheel rolls along a straight line. There are
two cases.

(a) The curtate cycloid, where a > b. (Think of a point on the spoke of a
wheel.)

(b) The prolate cycloid, where a < b. (Think of a point on the flange of a
railway wheel.)

7. For each of the following parametrized curves, assume that y is defined as a
differentiable function of x in a neighborhood of the points indicated, and find
dy
dx at the point.

(a) P (t) = (2t+ 1, t2), when t = 2.

(b)

{
x = 5 cos s,
y = 3 sin s,when s = π

4 .

(c)

{
x = et,
y = t,when t = 0.

(d)

{
x = et,
y = t,when t = ln 5.

8. Find the slope of each of the following parametrized curves at the point indi-
cated.

(a) P (t) = (t− 1, t3 − 3t2 + 3t− 1), at P (1).

(b)

{
x = 3 cos t,
y = 3 sin t,when t = π

4 .

(c)

{
x = t3 − t+ 1,
y = t2 + t+ 1, at (1, 3).

(d) Q(t) = (t2 − t+ 1, et + 1), at Q(0).

9. (a) Assuming the necessary differentiability conditions on the parametriza-

tion P (t) = (x(t), y(t)), derive a formula for d2y
dx2

(b) For the curve parametrized by the equations x = t2+t+1 and y = t3+3t,

find d2y
dx2 when t = 1.
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10.2 Arc Length of a Parametrized Curve.

The straight-line distance in the plane between two points P = (x1, y1) and Q =
(x2, y2) is defined in Section 2 of Chapter 1 by the formula

distance(P,Q) =
√

(x2 − x1)2 + (y2 − y1)2. (10.7)

In this section we shall consider the harder problem of defining distance, or arc
length, along a parametrized curve.

Let C be a curve parametrically defined by a continuous function P : I → R2,
and let a and b be two numbers in the interval I such that a < b. As we have seen
in Section ??, C is the set of all points

P (t) = (x(t), y(t)), for every t in I.

Consider a partition σ = {t0, ..., tn} of the closed interval [a, b] such that

a = t0 ≤ t1 ≤ · · · ≤ tn = b,

and set P (ti) = Pi, for every i = 0, ..., n. We shall take the number Lσ defined by

Lσ =

n∑
i=1

distance(Pi−1, Pi) (10.8)

as an approximation to the arc length along C from P (a) to P (b). In Figure 6, the
number Lσ is the sum of the lengths of the straight-line segments joining the points
along the curve. Using (1), we may also write

Lσ =

n∑
i=1

√
[x(ti)− x(ti−1)]2 + [y(ti)− y(ti−1)]2.

Figure 10.6:

The principle which motivates the definition of arc length is the fact that if one
partition σ of [a, b] is a subset of another partition τ , then Lτ is in general a better
approximation than Lσ. The basic reason for this is simply that the finer partition
τ determines more points on the curve. As an example, consider Figure 7, in which
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Figure 10.7:

Lσ is the sum of the lengths of the solid straightline segments, and Lτ is the sum
of the lengths of the dashed-line segments. It is clear from the picture that Lτ is
closer than Lσ to our intuitive idea of the arc length of the curve. Moreover,

10.2.1. If one partition σ of [a, b] is a subset of another τ , then Lσ ≤ Lτ .

Proof. This fact is geometrically apparent from Figure 7. The argument can be
reduced to consideration of a single triangle by the realization that, since τ can
be obtained from σ by adjoining one new point at a time, it will be sufficient to
prove the result under the assumption that τ differs from σ by the inclusion of only
one additional point, which we denote by t∗. Let P∗ = P (t∗). For some integer
i, we have ti−1 < t∗ < ti. Then the expressions for Lσ and Lτ are obviously
the same except that the term distance(Pi−1, Pi), in Lσ is replaced by the sum
distance(Pi−1, P∗) + distance(P∗, Pi) in Lτ . Hence

Lτ − Lσ = distance(Pi−1, P∗) + distance(P∗, Pi)− distance(Pi−1, Pi).

It is clear from the triangle in Figure 8 that the right side of the preceding equation
cannot be negative. We conclude that Lτ −Lσ ≥ 0, or, equivalently, that Lτ ≥ Lσ,
and the proof is complete.

Figure 10.8:

Thus partitions with more points result in approximations at least as large.
This brings us to the definition of arc length: Let C be a curve parametrized by a
continuous function P : I → R2, and let a and b be two numbers in I with a ≤ b. We
consider the set of all real numbers Lσ formed from all partitions σ of the interval
[a, b]. This set, denoted by {Lσ}, either has an upper bound or it does not. The
arc length of the parametrized curve C from P (a) to P (b) will be denoted by Lba
and is defined by
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Lba =

{
the least upper bound of the set {Lσ}, if an upper bound exists,
∞, if {Lσ} has no upper bound.

A curve parametrized by a continuous function P : [a, b] → R2 is said to be
rectifiable if its arc length Lba is finite.

The main difficulty with the above definition, like that of the definite integral, is
that it is by no means immediately apparent how to use it to compute the arc lengths
of even very simple rectifiable curves. We shall now show that if the parametrization
satisfies a simple differentiability condition, then the arc length is given by a definite
integral.

10.2.2. THEOREM. Consider a parametrization defined by P (t) = (x(t), y(t)),
for every t in an interval [a, b]. If the derivatives x′ and y′ are continuous functions,
then the curve C parametrized by P is rectifiable and its arc length is given by

Lba =

∫ b

a

√
x′(t)2 + y′(t)2 dt.

(Note that we have used x′(t)2 for [x′(t)]2 and y′(t)2 for [y′(t)]2. This is a
common abbreviation, which we shall not hesitate to use whenever it causes no
ambiguity.)

Proof. If a = b, then Lba is certainly equal to zero, as is the integral; so we assume
that a < b. Let σ = {t0, ..., tn} be a partition of [a, b] with

a = t0 < t1 < · · · < tn = b,

and set Pi = P (ti). In each open subinterval (ti−1, ti) there exist, by the Mean
Value Theorem, numbers ti1 and ti2 such that

x(ti)− x(ti−1) = x′(ti1)(ti − ti−1),

y(ti)− y(ti−1) = y′(ti2)(ti − ti−1).

Hence

distance(Pi−1, Pi) =
√

[x(ti)− x(ti−1)]2 + [y(ti)− y(ti−1)]2

=
√
x′(ti1)2 + y′(ti2)2 (ti − ti−1),

and so

Lσ =

n∑
i=1

√
x′(ti1)2 + y′(ti2)2 (ti − ti−1). (10.9)

The conclusion of the theorem should now seem a natural one. Since x′(t) and y′(t)
are continuous functions, so is

√
x′(t)2 + y′(t)2. We know that continuous functions

are integrable. It is therefore very reasonable to suppose that, for successively
finer and finer partitions, the right side of equation (3) approaches the integral∫ b
a

√
x′(t)2 + y′(t)2dt. If this is so, it follows in a straightforward manner from (2.1)

that the set {Lσ}, for all partitions σ, must have the integral as a least upper bound,
and the proof is then finished.
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To complete the argument, it therefore remains to prove that

lim
||σ||→0

Lσ =

∫ b

a

√
x′(t)2 + y′(t)2 dt.

We recall that the fineness of a partition σ is measured by its mesh ||σ||, defined
on page 413 to be the length of a subinterval of maximum length. Unfortunately,
the preceding equation does not follow directly from the theory of Riemann sums
because Lσ, as it is given by equation (3), is not a Riemann sum for the function√
x′(t)2 + y′(t)2. It fails to be one because, in each subinterval of the partition, we

have chosen two numbers ti1 and ti2 instead of one. To overcome this difficulty,
we shall use a theorem about continuous functions of two variables, whose proof,
although not deep, requires the concept of uniform continuity and we shall omit.
From equation (3), we write the identity

Lσ =

n∑
i=1

√
x′(ti1)2 + y′(ti1)2 (ti − ti−1)

+

n∑
i=1

[√
x′(ti1)2 + y′(ti2)2 −

√
x(ti1)2 + y(ti1)2

]
(ti − ti−1).

The first expression on the right is a Riemann sum for
√
x′(t)2 + y′(t)2 relative to

σ, and we shall abbreviate it by Rσ. Next, let F be the function of two variables
defined by

F (t, s) =
√
x′(t)2 + y′(s)2 −

√
x′(t)2 + y′(t)2,

for every t and s in the interval [a, b]. As a result, we can write the above expression
for Lσ as

Lσ = Rσ +

n∑
i=1

F (ti1, ti2)(ti − ti−1).

Hence

Lσ −Rσ =

n∑
i=1

F (ti1, ti2)(ti − ti−1),

which implies that

|Lσ −Rσ| ≤
n∑
i=1

|F (ti1, ti2)|(ti − ti−1). (10.10)

The function F is continuous, and, as is obvious from its definition, F (t, t) = 0
for every t in [a, b]. As a result, it can be proved that |F (t, s)| is arbitrarily small
provided the difference |t − s| is sufficiently small. This is the theorem which we
shall assume without proof. It follows that, for any positive number ε, there exists
a positive number δ such that, if σ is any partition with mesh less than δ, then

|F (ti1, ti2)| < ε, for every i.

Hence, by the inequality (4), we obtain

|Lσ −Rσ| ≤
n∑
i=1

ε(ti − ti−1) = ε(b− a),
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for every partition a for which ‖ σ ‖< δ. Since ε can be chosen so that ε(b − a) is
arbitrarily small, we may conclude that lim‖σ‖→0(Lσ −Rσ) = 0. The proof is now
virtually finished. We write

Lσ = Rσ + (Lσ −Rσ).

Since Rσ is a Riemann sum, we know that

lim
‖σ‖→0

Rσ =

∫ b

a

√
x′(t)2 + y′(t)2 dt.

Hence

lim
‖σ‖→0

Lσ = lim
‖σ‖→0

Rσ + lim
‖σ‖→0

(Lσ −Rσ)

=

∫ b

a

√
x′(t)2 + y′(t)2 dt+ 0,

and Theorem (2.2) is proved.

Example 200. Compute the arc length of the curve C defined parametrically by
P (t) = (x(t), y(t)), where{

x(t) = a(t− sin t),
y(t) = a(1− cos t), a > 0,

between P (0) = (0, 0) and P (2π) = (2πa, 0). The curve C is the cycloid discussed
at the end of Section ?? and illustrated in Figure 4. We have

x′(t) = a(1− cos t),

y′(t) = a sin t.

These are obviously continuous functions, and the arc length is therefore given by
the integral formula. We obtain

x′(t)2 + y′(t)2 = a2[(1− cos t)2 + sin2 t]

= a2[1− 2 cos t+ cos2 t+ sin2 t]

= a2[1− 2 cos t+ 1] = 2a2[1− cos t].

However, we have the trigonometric identities

cos t = cos 2 · t
2

= cos2
t

2
− sin2 t

2
,

1 = cos2
t

2
+ sin2 t

2
,

from which it follows that

1− cos t = 2 sin2 t

2
.

Hence

x′(t)2 + y′(t)2 = 4a2 sin2 t

2
.
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Since sin t
2 is nonnegative for every t in the interval [0, 2π], we conclude that√

x′(t)2 + y′(t)2 = 2a sin
t

2
, for 0 ≤ t ≤ 2π.

Thus the arc length L = L2π
0 is given by

L =

∫ 2π

0

√
x′(t)2 + y′(t)2 dt =

∫ 2π

0

2a sin
t

2
dt

= −4a cos
t

2

∣∣∣2π
0

= −4a cosπ + 4a cos 0 = 8a.

Suppose that a curve is given as the graph of a continuously differentiable func-
tion. In more detail: Let the derivative f ′ of a function f be continuous at every x
in some interval [a, b]. The graph of the equation y = f(x) is a curve which can be
parametrically defined by {

x(t) = t,
y(t) = f(t), a ≤ t ≤ b.

Then x′(t) = 1 and y′(t) = f ′(t). Since x′ is a constant function, it is certainly
continuous. Since f ′ is by assumption continuous on [a, b] and since y′ = f ′, the
function y′ is also continuous. Hence the arc length Lba is given by

Lba =

∫ b

a

√
x′(t)2 + y′(t)2 dt =

∫ b

a

√
1 + f ′(t)2 dt.

The variable of integration which appears in a definite integral is a dummy variable
(see page 171), and we may therefore replace t by x in the right integral. Thus, we
have proved, as a corollary of Theorem (2.2),

10.2.3. If the derivative of a function f is continuous at every x in an interval
[a, b], then the graph of y = f(x) is a rectifiable curve and its arc length Lba is given
by

Lba =

∫ b

a

√
1 + f ′(x)2 dx.

Example 201. Find the arc length L of the graph of the equation y = x2 from the
point (0, 0) to the point (2, 4). The curve is the familiar parabola shown in Figure
9. Using the result of the preceding theorem, we have

L =

∫ 2

0

√
1 +

(dy
dx

)2
dx.

Since dy
dx = 2x,

L =

∫ 2

0

√
1 + 4x2 dx.

This integral can be evaluated by means of the trigonometric substitution x =
1
2 tan θ, or, equivalently, 2x = tan θ. If x = 0, then θ = 0, and, similarly, if x = 2,
then θ = arctan 4. For convenience we shall set arctan 4 = θ0. The substitution
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Figure 10.9:

yields
√

1 + 4x2 =
√

1 + tan2 θ = sec θ, and dx = 1
2 sec2 θdθ. Hence using the

Change of Variable Theorem for Definite Integrals, we obtain∫ 2

0

√
1 + 4x2 dx =

1

2

∫ θ0

0

sec3 θdθ.

The reduction formula on page 369 gives∫
sec3 θ =

sec θ tan θ

2
+

1

2

∫
sec θdθ,

and also on page 369 we have∫
sec θdθ = ln | sec θ + tan θ|+ c.

It follows that

L =
1

2

∫ θ0

0

sec3 θdθ =

[
sec θ tan θ

4
+

1

4
ln | sec θ + tan θ|

]θ0
0

=
1

4
[sec θ0 tan θ0 + ln | sec θ0 + tan θ0|].

Since θ0 = arctan 4, we have tan θ0 = 4 and sec θ0 =
√

1 + tan2 θ0 =
√

17. Hence
the arc length L is equal to

L =
1

4
[
√

17 · 4 + ln(
√

17 + 4)]

=
√

17 +
1

4
ln(
√

17 + 4)

= 4.64 (approximately).
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Problems

1. Find the arc lengths of the following parametrized curves.

(a)

{
x = t+ 1,

y = t
3
2 , from (2, 1) to (5, 8).

(b)

{
x = t2,

y = 2
3 (2t+ 1)

3
2 , from (x(0), y(0)) = (0, 23 ) to to (x(4), y(4)) = (16, 18).

(c) P (t) = (t2, t3), from P (0) to P (2).

(d)

{
x(θ) = a cos3 θ, a > 0,
y(θ) = a sin3 θ, from (x(0), y(0)) = (a, 0) to

(
x(π2 ), y(π2 )

)
= (0, a).

2. A particle in motion in the plane has position equal to

P (t) =

(
t2 + t,

1

6
(4t+ 3)

3
2

)
at time t. How far does the particle travel along its path from time t = 0 to
time t = 1?

3. Find the arc lengths of the graphs of each of the following functions f between
the points (a, f(a)) and (b, f(b)).

(a) f(x) = x
3
2 , a = 1, and b = 4.

(b) f(x) = 2
3 (x2 + 1)

3
2 , a = 0, and b = 2.

(c) f(x) = x2, a = 0, and b = 1
2 .

(d) f(x) = 1
2 (ex + e−x), a = −1 and b = 1.

4. Show that the circumference of an ellipse with the line segment joining (−a, 0)
and (a, 0) as major axis and the line segment joining (0,−b) and (0, b) as minor
axis is given by an integral

K

∫ 2π

0

√
1 + k sin2 θ dθ.

Evaluate the constants K and k in terms of a and b. (Do not attempt to
evaluate the integral.)

5. (a) Let g be a function which is continuously differentiable on the closed
interval [c, d]. Prove, as a corollary of Theorem ??, that the arc length
Lc

d of the graph of the equation x = g(y) between the points (g(c), c)
and (g(d), d) is given by the formula

Lc
d =

∫ d

c

√
1 + g′(y)2 dy.

(b) Find the arc length of the graph of the equation x = 1
3 (y2 + 2)

3
2 between

the point
(

2
√
2

2 , 0
)

and the point (2
√

6, 2).

(c) Express as a definite integral the arc length of that part of the graph of
the equation x = 2y − y2 for which x ≥ 0.
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6. The coordinates of a particle in motion in the plane are given by{
x = t2,
y = 2

3 t
3 − 1

2 t,

at time t. What is the distance which the particle moves along its path of
motion between the time t = 0 and t = 2?

7. The same curve can be defined by more than one parametrization:

(a) Draw the curve defined parametrically by{
x(t) = t,
y(t) = t, 0 ≤ t ≤ 1.

(b) Draw the curve defined parametrically by{
x(t) = sinπt,
y(t) = sinπt, 0 ≤ t ≤ 1.

(c) Compute the arc lengths from t = 0 to t = 1 for the parametrizations in
?? and ??.

(d) Give a geometric interpretation which explains the difference between
the arc lengths obtained for the two parametrizations.

8. Let P : [a, b] → R2 and Q : [c, d] → R2 be two parametrizations of the same
curve C such that all four coordinate functions are continuously differentiable.
(A function is continuously differentiable if its derivative exists and is con-
tinuous at every number in its domain.) Then P and Q are called equivalent
parametrizations of C if there exists a continuously differentiable function
f with domain [a, b] and range [c, d] which has a continuously differentiable
inverse function, and in addition satisfies

(i) f(a) = c and f(b) = d,

(ii) P (t) = Q(f(t)), for every t in [a, b].

(a) Using the Chain Rule and the Change of Variable Theorem for Defi-
nite Integrals (for the latter, see Theorem ??), prove that equivalent
parametrizations assign the same arc length to C.

(b) Show that

P (t) = (cos t, sin t), 0 ≤ t ≤ π

2
,

Q(s) =

(
1− s2

1 + s2
,

2s

1 + s2

)
, 0 ≤ s ≤ 1,

are equivalent parametrizations of the same curve C, and identify the
curve.

(c) Show that
P (t) = (cos t, sin t), 0 ≤ t ≤ 2π,

and
Q(s) = (cos 5t, sin 5t), 0 ≤ t ≤ 2π,

are nonequivalent parametrizations of the circle.
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9. Prove directly from the least upper bound definition that arc length is additive,
i.e., that La

b + Lb
c = La

c.
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10.3 Vectors in the Plane.

A vector in the plane is an ordered pair (P,Q) of points in the plane. The point P
is called the initial point of the vector and Q the terminal point. Geometrically,
the vector (P,Q) will be represented as a directed line segment, or arrow, from P
to Q, as illustrated in Figure 10. We shall use boldface lower-case letters to denote
vectors. For example, if v is the vector with initial point P and terminal point Q,
then v = (P,Q).

Figure 10.10:

Having identified the plane with the set R2 of all ordered pairs of real numbers,
we see that a vector is determined by four real numbers: two coordinates of its
initial point, and two of its terminal point. Let v be a vector with initial point
P = (a, b) and terminal point Q = (c, d). Then the two numbers v1 and v2 given
by the equations

v1 = c− a,
v2 = d− b, (1)

are defined to be first and second coordinates, respectively, of the vector v in
R2. Thus we have defined coordinates of a vector in R2 as well as coordinates of a
point in R2. The definitions are not the same, although the concepts are certainly
related.

If a vector v has initial point P = (a, b) and coordinates v1 and v2, then equations
(1) tell us that the terminal point Q = (c, d) is given by

Q = (a+ v1, b+ v2).

It follows that a vector is completely determined by its initial point and its coordi-
nates. Hence, another notation for a vector, which we shall use, is

v = (v1, v2)P . (10.2)

[Although it would be consistent with this notation, we shall not write (v1, v2)(a,b)
for the vector with initial point (a, b) and coordinates v1 and v2.]

The length of a vector v = (P,Q) in R2 is denoted by |v| and defined by

|v| = distance(P,Q).

If P = (a, b) and Q = (c, d), then the formula for the distance between two points
implies that

|v| =
√

(c− a)2 + (d− b)2.
From equations (1) it follows that the coordinates of the vector v are the two
numbers v1 = c− a and v2 = d− b. Hence



10.3. VECTORS IN THE PLANE. 551

10.3.1. The length of any vector v = (v1, v2)P is given by

|v| =
√
v21 + v22 .

Thus the length of a vector depends only on its coordinates.

Example 202. Find the terminal point of each of the following vectors. Draw each
one as an arrow in the xy-plane, and compute its length.

(a) v = (1, 2)P , where P = (1, 1),

(b) u = (4,−1)P , where P = (1, 1),

(c) w = (−2, 5)Q, where Q = (0,−1),

(d) x = (3,−4)O, where O = (0, 0).

We have seen that, if P = (a, b), then the terminal point of the vector (v1, v2)P is
the ordered pair (a+ v1, b+ v2). It follows that

terminal point of v = (1 + 1, 1 + 2) = (2, 3),

terminal point of u = (1 + 4, 1 + (−1)) = (5, 0),

terminal point of w = (0 + (−2),−1 + 5) = (−2, 4),

terminal point of x = (0 + 3, 0 + (−4)) = (3,−4).

Figure 10.11:

The vectors are drawn in Figure 11. Their respective lengths, computed from the
formula in (3.1), are
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|v| =
√

12 + 22 =
√

5,

|u| =
√

42 + (−1)2 =
√

17,

|w| =
√

(−2)2 + 52 =
√

29,

|x| =
√

32 + (−4)2 =
√

25 = 5.

We shall denote the set of all vectors in R2 by V. For every point P in R2,
the subset of V consisting of all vectors with initial point P will be denoted by VP .
We shall now define, in each set VP , an operation of addition of vectors and an
operation of multiplication of vectors by real numbers.

Addition in VP is defined as follows: If u = (u1, u2)P and v = (v1, v2)P are any
two vectors in VP , then their sum u + v is the vector defined by

u + v = (u1 + v1, u2 + v2)P . (10.3)

Note that the sum of two vectors in VP is again a vector in VP . Furthermore, if u
is in VP and v is in VQ, then their sum is not defined unless P = Q. That is, the
sum of two vectors is defined if and only if they have the same initial point. For
every vector v = (v1, v2)P , we denote the vector (−v1,−v2)P by −v. In this way,
subtraction of vectors in VP is defined by the equation

u− v = u + (−v),

which implies the following companion formula to (3):

u− v = (u1 − v1, u2 − v2)P . (10.4)

The unique vector in VP with both coordinates equal to zero is called the zero vector
and will be denoted by 0. Thus

0 = (0, 0)P = (P, P ).

Obviously, the equations

v + 0 = v,

v− v = 0

are true for every vector v in VP . Geometrically the zero vector in VP is represented
simply by the point P . Of course, there are as many different zero vectors as there
are points in the plane, and one cannot tell from the notation 0 to which set VP
a given zero vector belongs. It is obvious that every zero vector has length zero.
Conversely, the length of a nonzero vector must be positive, since at least one of its
coordinates is not zero. Hence

10.3.2. A vector v is a zero vector if and only if |v| = 0.

Geometrically, the sum u+v of two nonzero vectors u and v in VP is the vector
in VP which is a diagonal of the parallelogram which has u and v as sides. This is
the famous Parallelogram Law and is illustrated in Figure 12(a). It can be verified in
a straightforward way by computing the slopes of the various line segments, and we
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omit the details. Similarly, the vector −v is represented geometrically as a directed
line segment Iying in the same straight line as v, but in the opposite direction, as
shown in Figure 12(b). Moreover, the vectors v and −v have the same length, since

|v| =
√
v21 + v22 =

√
(−v1)2 + (−v2)2 = | − v|.

Figure 10.12:

The second algebraic operation in VP is defined as follows: For every real number
a and every vector v = (v1, v2)P in VP , we define a vector av, called the product
of a and v, by the equation

av = (av1, av2)P . (10.5)

In traditional vector terminology, the real number a is called a scalar. Note that
we have not defined a product of two vectors. If we compute the length of the
vector av, we find that

|av| =
√

(av1)2 + (av2)2 =
√
a2(v21 + v22)

= |a|
√
v21 + v22 = |a||v|,

a result which we summarize in the statement

10.3.3. |av| = |a| |v|, for every real num ber a and every vector v.

If v is an arbitrary nonzero vector in VP and if a 6= 0, then the slope of the line
segment joining P to the terminal point of v is the same as that joining P to the
terminal point of av. Hence P and the terminal points of v and av lie on the same
straight line. In addition, it is easy to check that the arrows representing v and av
are in the same or opposite direction according as a is positive or negative.

Example 203. Let P = (2,−1) and consider the two vectors u = (1, 5)P and
v = (2,−1)P . Compute and draw each of the following vectors in the same plane
with u and v.
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(a) u + v,

(b) −2v,

(c) u− 2v,

(d) 1
4 (u + v).

The computations are very simple:

u + v = (1, 5)P + (2,−1)P = (3, 4)P ,

−2v = −2(2,−1)P = (−4, 2)P ,

u− 2v = (1, 5)P − 2(2,−1)P

= (1, 5)P + (−4, 2)P = (−3, 7)P ,

1

4
(u + v) =

1

4
(3, 4)P = (

3

4
, 1)P .

Figure 10.13:

The directed line segments representing these vectors, as well as u and v, are shown
in Figure 13. The easiest way to draw them is to make a list of their terminal points.
We recall that a vector with coordinates v1 and v2 and initial point P = (a, b) has
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a terminal point equal to (a+ v1, b+ v2). Hence

terminal point of u = (2 + 1,−1 + 5) = (3, 4),

terminal point of v = (2 + 2,−1− 1) = (4,−2),

terminal point of u + v = (2 + 3,−1 + 4) = (5, 3),

terminal point of − 2v = (2− 4,−1 + 2) = (−2, 1),

terminal point of u− 2v = (2− 3,−1 + 7) = (−1, 6),

terminal point of 1
4 (u + v) = (2 + 3

4 ,−1 + 1) = (2 3
4 , 0).

The next theorem summarizes the algebraic facts about the set VP of all vectors
in the plane with initial point P .

10.3.4. For each point P in R2, vector addition and scalar multiplication in VP
have the following properties:

(i) ASSOCIATIVITY

u + (v + w) = (u + v) + w and (ab)v = a(bv).

(ii) COMMUTATIVITY
u + v = v + u.

(iii) EXISTENCE OF ADDITIVE IDENTITY

There exists a vector 0 in VP with the property that v + 0 = v,
for every vector v in VP .

(iv) EXISTENCE OF SUBTRACTION

For every vector v in VP , there exists a vector −v in VP such that
v + (−v) = 0.

(v) DISTRIBUTIVITY

a(u + v) = au + av and (a+ b)v = av + bv.

(vi) EXISTENCE OF SCALAR IDENTITY

1v = v.

The proof of this theorem follows easily from the definitions of vector addition
and scalar multiplication, from the definitions of 0 and −v, and from the corre-
sponding properties of addition and multiplication of real numbers given on page
2. The importance of the theorem is that every algebraic fact about vectors can be
derived from the six properties listed. In fact, in abstract algebra, these properties
are taken as a set of axioms: An arbitrary set V is called a vector space and
its elements are called vectors if, for every pair of elements u and v in V and
for every real number a, an element u + v and an element av in V are defined so
that conditions (i) through (vi) are satisfied. This definition has proved to be of
enormous value in mathematics and examples of vector spaces occur over and over
again. In particular, Theorem (3.4) asserts that, for each point P in R2, the set VP
is a vector space.
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Example 204. Let v be a nonzero vector in R2. Then the set, which we shall
denote by Rv, consisting of all products tv, where t is a real number, is an example
of a vector space. For, if P is the initial point of v, then v lies in VP , and it follows
that every product tv also lies in VP . Hence the sum of any two vectors in Rv is
defined, and, since

tv + sv = (t+ s)v,

the sum is again in Rv. Similarly, if tv is in Rv and if s is any real number, then

s(tv) = (st)v,

and (st)v is by definition in Rv. Thus vector addition and scalar multiplication are
defined in the set Rv. Conditions (i), (ii), (v), and (vi) are automatically satisfied
because they hold in the larger set VP . Finally, conditions (iii) and (iv) are also
satisfied, since

0 = 0v and − v = (−1)v.

This completes the proof that Rv is a vector space. The terminal points of all the
vectors in Rv form the straight line containing the initial and terminal points of
the vector v.
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Problems

1. Find the terminal point of each of the following vectors. Draw each one as a
directed line segment in the xy-plane, and compute its length.

(a) v = (−3, 4)P , where P = (1, 0),

(b) u = (4,−3)P , where P = (1, 0),

(c) x = (3, 0)Q, where Q = (−1,−1),

(d) a = (4 1
2 , 3

1
2 )O, where O = (0, 0).

2. Let P = (2, 1). Compute the terminal point of each of the following vectors,
and draw each one as an arrow in the xy-plane. The vectors u and v in parts
??, ??, ??, and ?? are defined as in part ??.

(a) u = (3,−2)P and v = (1, 1)P

(b) u + v

(c) u− v

(d) 3v

(e) u + 3v.

3. Let P = (0, 1), and consider the vectors x = (2, 5)P and y = (1, 1)P .

(a) Draw the vectors x, y, and x + y in the xy-plane.

(b) Compute the lengths |x|, |y|, and |x + y|.

4. True or false: If P 6= Q, then VP and VQ are disjoint sets?

5. Let v be a vector in the plane with initial point P , and let θ be the angle
whose vertex is P , whose initial side is the vector (1, 0)P ), and whose terminal
side is v. Show that

v = (|v| cos θ, |v| sin θ)P .

The angle θ is called the direction of the vector v.

6. In physics, the force acting on a particle located at a point P in the plane is
represented by a vector. The length of the vector is the magnitude of the force
(e.g., the number of pounds), and the direction of the vector is the direction
of the force (see Problem ??).

(a) Draw the vector representing a force of 5 pounds acting on a particle at
the point (3, 2) in a direction of π

6 radians.

(b) What are the coordinates of the force vector in ???

7. If a particle located at a point P is simultaneously acted on by two forces u and
v, then the resultant force is the vector sum u + v. The fact that vectors are
added geometrically by constructing a parallelogram implies a corresponding
Parallelogram Law of Forces.

Suppose that a particle at the point (1, 1) is simultaneously acted on by a force
v of 10 pounds in the direction of π

6 radians and a force u of
√

32 pounds in
the direction of −π4 radians.
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(a) Draw the parallelogram of forces, and show the resultant force.

(b) What are the coordinates of the resultant force on the particle?

8. Addition and scalar multiplication are defined in the set R2 of all ordered
pairs of real numbers by the equations

(a, b) + (c, d) = (a+ c, b+ d),

c(a, b) = (ca, cb).

Show that R2 is a vector space with respect to these operations. This fact
shows that the elements of a vector space need not necessarily be interpreted
as arrows. The principal interpretation of R2 is that of the set of points of
the plane.

9. True or false?

(a) The set R of all real numbers is a vector space with respect to ordinary
addition and multiplication.

(b) The set C of all complex numbers is a vector space with respect to
addition and multiplication by real numbers.

(c) The set V of all vectors in the plane is a vector space with respect to
vector addition and scalar multiplication as defined in this section.
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10.4 The Derived Vector of a Parametrized Curve.

Consider a function whose domain is a subset of the set of all real numbers and
whose range is a subset of all vectors in the plane. If we denote this function by v,
then its value at each number t in the domain is the vector v(t). Every such vector-
valued function v of a real variable defines two real-valued coordinate functions
v1 and v2 as follows: For every t in the domain of v, the numbers v1(t) and v2(t)
are the first and second coordinates of the vector v(t), respectively. Hence, if the
initial point of v(t) is P (t), then v1(t) and v2(t) are defined by the equation

v(t) = (v1(t), v2(t))P (t). (10.6)

Limits of vector-valued functions are defined in terms of limits of real-valued
functions. Specifically, the limit of v(t), as t approaches t0, will be denoted by
limt→t0 v(t) and is defined by

lim
t→t0

v(t) = ( lim
t→t0

v1(t), lim
t→t0

v2(t))limt→t0 P (t). (10.7)

[For the definition of limt→t0 P (t), see page 542.] There is the possibility that all
the vectors v(t) have the same initial point P0, i.e., that they all lie in the vector
space VP0 . If this happens, (2) reduces to the simpler equation

lim
t→t0

v(t) = ( lim
t→t0

v1(t), lim
t→t0

v2(t))P0
.

Let C be a curve in the plane defined by a parametrization P : I → R2. If the
coordinate functions of P are denoted by x and y, then C is the set of all points

P (t) = (x(t), y(t))

such that t is in the interval I. A typical example is shown in Figure 14. Consider
a number t0 in I. If t is in I and distinct from t0, then the vector (P (t0), P (t))
represents the change in the value of P from the point P (t0) to the point P (t).
Thus for a change in the value of the parameter from t0 to t, the scalar product

1

t− t0
(P (t0), P (t)) (10.8)

Figure 10.14:
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is the ratio of the corresponding change in the value of P to the difference t − t0.
Hence the vector (3) represents an average rate of change in position with respect
to a change in the parameter. In analogy with the definition of the derivative of a
real-valued function, we define the derived vector of P at t0, denoted by dP (t0),
by the equation

dP (t0) = lim
t→t0

1

t− t0
(P (t0), P (t)).

Since P (t0) = (x(t0), y(t0)) and P (t) = (x(t), y(t)), the coordinate form of the
vector (P (t0), P (t)) is given by

(P (t0), P (t)) = (x(t)− x(t0), y(t)− y(t0))P (t0).

By the definition of the scalar product,

1

t− t0
(P (t0), P (t)) =

(
x(t)− x(t0)

t− t0
,
y(t)− y(t0)

t− t0

)
P (t0)

,

and so

dP (t0) =

(
lim
t→t0

x(t)− x(t0)

t− t0
, lim
t→t0

y(t)− y(t0)

t− t0

)
P (t0)

.

Recall that the derivatives of the functions x and y at t0 are by definition

x′(t0) = lim
t→t0

x(t)− x(t0)

t− t0
,

y′(t0) = lim
t→t0

y(t)− y(t0)

t− t0
,

provided these limits exist. It follows that

10.4.1. The parametrization defined by P (t) = (x(t), y(t)) is differentiable at t0 if
and only if the derived vector dP (t0) exists. If it does exist, then

dP (t0) = (x′(t0), y′(t0))P (t0).

Example 205. Consider the curve parametrized by

P (t) = (x(t), y(t)) = (t2 − 1, 2t+ 1), −∞ < t <∞.

Compute the derived vectors of P at t0 = −1, at t0 = 0, and at t0 = 1. Draw the
curve and the three derived vectors in the xy-plane. As a result of (4.1), we have

dP (t0) = (x′(t0), y′(t0))P (t0) = (2t0, 2)P (t0).

Hence
dP (−1) = (−2, 2)P (−1) and P (−1) = (0,−1),

dP (0) = (0, 2)P (0) and P (0) = (−1, 1),

dP (1) = (2, 2)P (1) and P (1) = (0, 3).
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The terminal points of the three derived vectors are, respectively,

(0− 2,−1 + 2) = (−2, 1),

(−1 + 0, 1 + 2) = (−1, 3),

(0 + 2, 3 + 2) = (2, 5).

The parametrized curve is a parabola, as can be seen by setting{
x = t2 − 1,
y = 2t+ 1.

Solving the second equation for t, we get t = y−1
2 , and substituting this value in

the first, we obtain x = (y−1)2
4 − 1, or, equivalently,

4(x+ 1) = (y − 1)2.

The latter is an equation of a parabola with vertex (-1, 1). If x = 0, then 4 = (y−1)2,
or, equivalently, ±2 = y − 1, which implies that y = −1 or 3. The parametrized
curve together with the three vectors is shown in Figure 15. Note that each of these
vectors is tangent to the parabola.

If a parametrization P : I → R2 is differentiable at t0, then we define a tangent
vector to the resulting parametrized curve at t0 to be any scalar multiple of the
derived vector dP (t0). In particular, the derived vector itself is a tangent vector.
The set of all tangent vectors at t0 is a subset of VP (t0), since every scalar multiple
of dP (t0) has initial point P (t0). Moreover,

Figure 10.15:

10.4.2. The set of all tangent vectors to the parametrized curve P (t) at t0 is a
vector space.
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Proof. This result has nothing to do with any special properties of the derived
vector, since the set of all scalar multiples of any vector u is a vector space. This
result is proved, if u is nonzero, in Example 3 of Section 3. If u is a zero vector, the
result is even simpler: The set of all scalar multiples of a zero vector 0 is the set
having 0 as its only member, and the six conditions for a vector space are trivially
satisfied. This completes the argument.

Consider a parametrization defined by P (t) = (x(f), y(t)), which is differentiable
at t0 and for which the derived vector dP (t0) is nonzero. If we set x′(t0) = d1 and
y′(t0) = d2, then

dP (t0) = (d1, d2)P (t0),

where not both coordinates d1 and d2 are zero. The set of all tangent vectors at to
is the set of all scalar multiples

sdP (t0) = (sd1, sd2)P (t0),

where s is any real number. If P (t0) = (a, b), then the terminal point of sdP (t0) is
equal to

(sd1 + a, sd2 + b).

Hence the set of all terminal points of tangent vectors at t0 is the set of all points
(x, y) such that {

x = sd1 + a,
y = sd2 + b,

(10.9)

where s is any real number and d1 and d2 are not both zero. It is easy to verify that
this set is a straight line (see Problem 4). We conclude that if the derived vector
dP (t0) exists and is nonzero, then the set of all terminal points of the tangent
vectors at to to the curve parametrized by P is a straight line. It is called the
tangent line to the parametrized curve at t0.

Example 206. Consider the ellipse defined parametrically by

P (t) = (x(t), y(t)) = (4 cos t, 2 sin t),

for every real number t. Compute the derived vector at t0 = π
6 , and draw it and the

ellipse in the xy-plane. In addition, write an equation for the tangent line at t0 = π
6 ,

and draw the tangent line in the figure. The derived vector is easily computed:

dP (t0) = (x′(t0), y′(t0))P (t0) = (−4 sin t0, 2 cos t0)P (t0)

=
(
− 4 sin

π

6
, cos

π

6

)
= (−2,

√
3)P (t0),

where

P (t0) =
(

4 cos
π

6
, 2 sin

π

6

)
= (2
√

3, 1).

The terminal point of the derived vector is therefore equal to

(2
√

3− 2, 1 +
√

3).
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The parametrization P can also be written in terms of the equations{
x = 4 cos t,
y = 2 sin t, −∞ < t <∞,

from which it follows that

x2

42
+
y2

22
= cos2 t+ sin2 t = 1.

Hence every point (x, y) on the parametrized curve satisfies the equation

x2

42
+
y2

22
= 1. (10.10)

Conversely, it can be shown (as in Example 2, page 544) that any ordered pair
(x, y) which satisfies (5) also lies on the parametrized curve. We recognize (5) as
an equation of the ellipse shown in Figure 16. The derived vector dP (t0) and the
tangent line at π

6 are also shown in the figure.

Figure 10.16:

If s is an arbitrary real number, then the scalar product sdP (t0) in this example
is the vector

sdP (t0) = s(−2,
√

3)P (t0) = (−2s,
√

3s)P (t0).

The terminal point of this vector, since P (t0) = (2
√

3, 1), is the point

(−2s+ 2
√

3,
√

3s+ 1).

Hence the tangent line at π
6 is parametrically defined by the equations
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{
x = −2s+ 2

√
3,

y =
√

3s+ 1, −∞ < s <∞. (10.11)

Solving the first of these for s, we obtain s = −x+2
√
3

2 . Substitution in the second
then yields

y =
√

3
(−x+ 2

√
3

2

)
+ 1,

y = −
√

3

2
x+ 4. (7)

Thus any point on the tangent line satisfies (7), and it is easy to verify that, for
any x and y which satisfy (7), there is a unique s such that equations (6) hold. We
conclude that (7) is an equation of the tangent line.

It is important to know that the ideas introduced in this section are consis-
tent with related concepts developed earlier. For example, consider a differentiable
parametrization defined by

P (t) = (x(t), y(t)), forevery t insomeinterval I.

Suppose that, for some t0 in I, there exists a differentiable function f such that

y(t) = f(x(t)),

for every t in some subinterval of I containing t0 in its interior. This situation was
described in Section I and was illustrated in Figure 3 (page 545). If such a function
f exists, we say that y is a differentiable function of x on the parametrized curve
P (t) in a neighborhood of P (t0). Formulas (5) and (6), page 546, assert that, for
every t in the subinterval,

dy

dx
= f ′(x(t)) =

y′(t)

x′(t)
,

provided x′(t) 6= 0. Hence y′(t)
x′(t) is the slope of the line tangent to the graph of f at

the point
(x(t), f(x(t))) = (x(t), y(t)) = P (t).

Moreover, in the vicinity of P (t0), the graph of f is the curve parametrized by P .
At every t in the subinterval, the derived vector of P is equal to

dP (t) = (x′(t), y(t))P (t).

This vector is, by definition, a tangent vector to the parametrized curve. Its initial
point is P (t) = (x(t), y(t)) and its terminal point is

Q(t) = (x(t) + x′(t), y(t) + y′(t)).

The slope of the line segment joining these two points is given by

m(P (t), Q(t)) =
(y(t) + y′(t))− y(t)

(x(t) + x′(t))− x(t)
=
y′(t)

x′(t)
,

provided x′(t) 6= 0. We conclude that the concept of tangency, as defined in terms
of the derived vector to a parametrized curve, is consistent with the earlier notion,
defined in terms of the derivative.
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Problems

1. For each of the following parametrizations and values of t0, compute P (t0)
and the derived vector dP (t0). Draw the parametrized curve and each of the
tangent vectors dP (t0) to the curve.

(a) P (t) = (x(t), y(t)) = (t− 1, t2), −∞ < t <∞;

t0 = −1, t0 = 0, and t0 = 2.

(b) P (t) = (x(t), y(t)) = (t2 + 1, t− 1), −∞ < t <∞;

t0 = −1, t0 = 0, and t0 = 1.

(c) P (t) = (t− 1, t3), −∞ < t <∞;

t0 = 0, t0 = 1, and t0 = 2.

(d) P (t) = (x, y) = (et, t), −∞ < t <∞;

t0 = 0 and t0 = ln 2.

(e) P (t) = (3 cos t, 2 sin t), −∞ < t <∞;

t0 = 0, t0 = π
4 , and t0 = π

2 .

(f) P (t) = (x(t), y(t)) = (t− 1, t2), −∞ < t <∞;

t0 = −1, t0 = 0, and t0 = 2.

(g) P (t) = (t2, t3), −∞ < t <∞;

t0 = −1, t0 = 0, and t0 = 2.

(h) P (t) = (t− 1, 2t+ 4), −2 ≤ t ≤ 2;

t0 = −1, t0 = 0, and t0 = 1.

2. For each of the following parametrizations P (t) = (x(t), y(t)), find the derived
vector dP (t) for an arbitrary value of t in the domain. Draw the vectors dP (0),
dP (1), and dP (2) in the xy-plane.

(a)

{
x(t) = t2 − 1,
y(t) = t3, −1 ≤ t ≤ 3.

(b)

{
x(t) = 1

2 (et + e−t),
y(t) = 1

2 (et − e−t), −∞ < t <∞.

(c)

{
x(t) = t2,

y(t) = 2
3 (3t+ 1)

3
2 , − 1

3 ≤ t ≤ 5.

(d)

{
x(t) = t2 + t+ 1,

y(t) = t3

3 + t2 − 1, −∞ < t <∞.

3. The cycloid shown in Figure ?? is defined by a parametrization P (θ) = (x, y)
in which {

x = a(θ − sin θ),
y = a(1− cos θ), −∞ < t <∞.

Compute the derived vector dP (θ). Sketch the curve, and draw the tangent
vectors dP (0), dP

(
π
2

)
, dP (π), and dP (2π).
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4. Prove that the curve defined parametrically by the equations{
x = sd1 + a,
y = sd2 + b, −∞ < s <∞,

where not both d1 and d2 are zero, is a straight line. (Note: Check the
definition of a straight line given in section ??.)

5. Converse of Problem ??: Prove that, if L is a straight line in R2, then it can
be defined by a parametrization P (s) = (x, y) for which{

x = sd1 + a,
y = sd2 + b, −∞ < s <∞,

and not both d1 and d2 are zero.

6. For each of the following parametrizations P (t) = (x(t), y(t)) and values of
t0, compute the derived vector dP (t0). Draw the parametrized curve, the
tangent line at t0, and write an equation in x and y of the tangent line.

(a) P (t) = (t2 + 1, t+ 1), −∞ < t <∞, and t0 = 2.

(b) P (t) = (t2 + 1, t+ 1), −∞ < t <∞, and t0 = 0.

(c) P (t) = (et, t), −∞ < t <∞, and t0 = ln 2.

(d) P (t) = (|t|, t), −∞ < t <∞, and t0 = 0.

7. Let P be the parametrization defined by P (t) = (t2, 12 t
2), for every real num-

ber t.

(a) Write an equation in x and y of the tangent line at t = 2.

(b) Describe the vector space of tangent vectors at t = 2 and at t = 0.

8. Let f be a real-valued function which is differentiable at a.

(a) Write an equation of the line tangent to the graph of f at (a, f(a)).

(b) Consider the parametrization

P (t) = (t, f(t)).

Compute the derived vector dP (a), and write an equation of the tangent
line to the parametrized curve at a.

9. Let P : [a, b] → R2 be a parametrization for which the derivatives x′ and y′

of the coordinate functions are continuous. Prove that the arc length of the
curve parametrized by P is given by

La
b =

∫ b

a

|dP (t)| dt.
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10.5 Vector Velocity and Acceleration.

In this section we shall consider the motion of a particle in the plane during an
interval of time. We shall assume that the particle moves without jumping. As a
result, if P is the function which associates to every instant of time in the interval
the corresponding position of the particle in the plane, then P is continuous; i.e., it
is a parametrization. The points P (t) trace out the parametrized curve over which
the particle moves.

Velocity is a vector concept which combines two ingredients: the number which
measures how fast the particle is moving, and the direction of the motion. If the
position of a particle during an interval of time I is described by a differentiable
parametrization P : I → R2, then the velocity of the particle at any time t during
the interval will be denoted by v(t) and defined to be the derived vector of P at t.
Thus

v(t) = dP (t) (10.12)

Since the derived vector is a tangent vector, the velocity is also one. Specifically,
v(t) is a tangent vector at t to the parametrized curve defined by P . If we write
P (t) = (x(t), y(t)), then it follows from the formula for the derived vector [see (4.1),
page 571] that the velocity vector is given by

v(t) = (x′(t), y′(t))p(t). (10.13)

The speed of the particle at time t is defined to be the length |v(t)| of the velocity
vector. The equation for the length of a vector in terms of its coordinates [see (3.1),
page 561] implies that the speed is equal to

|v(t)| =
√
x′(t)2 + y′(t)2. (10.14)

Example 207. A particle moves in the plane during the time interval [0, 2], and
its position at any time t in this interval is given by

P (t) = (x(t), y(t)) = (cosπt2, sinπt2).

Assume that time is measured in seconds and that the unit of distance in the plane
is 1 foot.

(a) Identify and draw the curve traced out by the particle, and describe its motion
during the interval [0, 2].

(b) Compute the position, velocity, and speed of the particle at t = 0, t = 1
2 , t = 1,

and t = 3
2 . Show these four positions, and draw the corresponding velocity

vectors in the figure in (a).

(c) How does the speed of the particle depend on time during the entire interval
of motion?

The parametrized curve over which the particle moves is the set of all points
(x, y) such that {

x = cosπ2,
y = sinπt2, 0 ≤ t ≤ 2.
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Hence the coordinates of every point (x, y) on the curve satisfy

x2 + y2 = (cosπt2)2 + (sinπt2)2 = 1.

The equation x2 + y2 = 1 is the familiar equation of the circle C with radius 1
and center the origin, and the particle therefore moves on this circle. In accordance
with the definition of the functions sine and cosine in Chapter 6, the quantity πt2

is the arc length along C in the counterclockwise direction from the point (1, 0)
to the point P (t) = (x, y). As t increases from 0 to 2, the values of πt2 increase
monotonically from 0 to 4π, which is twice the circumference of the circle. We
conclude that the particle starts from (1, 0) at time t = 0, moves counterclockwise
around the circle as time increases, and at t = 2 has gone completely around twice
and has come back to its starting position at P (2) = (cos 4π, sin 4π) = (1, 0). The
curve of motion, i.e., the circle C, is shown in Figure 17.

Since P (t) = (cosπt2, sinπt2), the position of the particle at each of the four
values of t given in (b) is easily computed:

P (0) = (cos 0, sin 0) = (1, 0),

P (
1

2
) = (cosπ · 1

4
, sinπ · 1

4
) =

(√2

2
,

√
2

2

)
,

P (1) = (cosπ, sinπ) = (−1, 0),

P (
3

2
) = (cosπ · 9

4
, sinπ · 9

4
) =

(√2

2
,

√
2

2

)
.

The velocity vector is

v(t) = (x′(t), y′(t))P (t)

= (−2πt sinπt2, 2πt cosπt2)P (t).

v(t) = 2πt(− sinπt2, cosπt2)P (t).

Hence

v(0) = 0 = (0, 0)P (0),

v(
1

2
) = 2π

1

2

(
− sin

π

4
, cos

π

4

)
P (1/2)

=
π
√

2

2
(−1, 1)P (1/2),

v(1) = 2π(− sinπ, cosπ)P (1) = 2π(0,−1)P (1),

v(
3

2
) = 2π

3

2

(
− sin

π9

4
, cos

π9

4

)
P (3/2)

=
3π
√

2

2
(−1, 1)P (3/2).

The speed is by definition the length of the velocity vector. If (b, c)P is any vector,
and a any real number, then the length of the scalar product a(b, c)P , is given by

|a(b, c)P | = |a|
√
b2 + c2.

Thus the four speeds are

|v(0)| = 0 feet per second,
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Figure 10.17:

|v(
1

2
)| =

π
√

2

2

√
(−1)2 + 12 = π feet per second,

|v(1)| = 2π
√

02 + (−1)2 = 2π feet per second,

|v(
3

2
)| =

3π
√

2

2

√
(−1)2 + 12 = 3π feet per second.

Since each of the velocity vectors is tangent to the curve at its initial point and
since we know their lengths, they can be drawn without difficulty (see Figure 17).

From the preceding computations it appears that the speed of the particle in-
creases as time goes on. By computing the speed |v(t)| for an arbitrary t in the
interval [0, 2], we can see that this inference is correct. Using equation (4) we get

|v(t)| = 2πt
√

(− sinπt2)2 + (cosπt2)2 = 2πt,

which shows that the speed increases linearly with time over the interval. At t = 0,
the particle is at rest, and 2 seconds later, at t = 2, its speed has increased to 4π
feet per second.

The motion of a particle along a straight line was studied in Section 3 of Chapter
2 and again in Section 8 of Chapter 4. When the motion is restricted to a straight
line, which for convenience we may take to be the x-axis, then the velocity vector
has only one nonzero coordinate, x′(t). In this case velocity may be identified with
x′(t), and it is not necessary to consider it as a vector. In our earlier treatments
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x′(t) was defined to be the velocity and it was denoted by v(t). The distance on
the line which the particle moves during the time interval [a, b] was defined by the
formula

distance
∣∣∣b
a

=

∫ b

a

|v(t)| dt (10.5)

(see page 232). We shall show that this definition is consistent with the more
sophisticated notions of vector velocity and arc length of parametrized curves, which
we are studying in this chapter. Consider a particle in the plane whose position is
given by a parametrization P : [a, b] → R2. By the distance which the particle
moves along the curve parametrized by P during the time interval from t = a to
t = b we shall mean the arc length Lba. Let

P (t) = (x(t), y(t)), for every t such that a ≤ t ≤ b.

We shall assume that the derivatives x′ and y′ exist and are continuous on [a, b].
From Theorem (2.2), page 553, it follows that

Lba =

∫ b

a

√
x′(t)2 + y′(t)2 dt.

The speed of the particle at any t in [a, b] is given by

|v(t)| =
√
x′(t)2 + y′(t)2.

Hence the distance traveled by the particle along the parametrized curve from t = a
to t = b is equal to

10.5.1.

Lba =

∫ b

a

|v(t)| dt.

Formula (5.1) is the generalization of the distance formula (5) from rectilinear
to curvilinear motion.

Example 208. A steel ball is rolling on a plane during an interval from t = 0 to
t = 4 seconds. It has an x-coordinate of velocity which is constant and equal to 2
feet per second. Its y-coordinate of velocity is 1

2 t feet per second, for every t in the
interval. (a) Write a definite integral equal to the distance (in feet) which the ball
rolls during the interval from t = 0 to t = 4 seconds. (b) Identify and draw the
curve on which the ball rolls.

The coordinates of the velocity vector v(t) are x′(t) and y′(t). Hence{
x′(t) = 2,
y′(t) = 1

2 t, 0 ≤ t ≤ 4.
(10.6)

It follows at once from (5.1) that the distance which the ball rolls is equal to

L4
0 =

∫ 4

0

√
4 +

1

4
t2 dt

=
1

2

∫ 4

0

√
16 + t2 dt.
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This answers part (a). Using a table of integrals or integration by trigonometric
substitution, one can obtain∫ 4

0

√
16 + t2 dt = 8

√
2 + 8 ln(1 +

√
2)

= 18.3 (approximately).

Hence the distance the ball rolls is half this quantity, approximately 9.2 feet.

A parametrization which defines the position of the ball may be found by inte-
grating the functions x′ and y′. From equations (6), we get{

x(t) = 2t+ c1,

y(t) = t2

4 + c2, 0 ≤ t ≤ 4.

Nothing in the statement of the problem specifies the position of the ball at t = 0,
so, for simplicity, we shall choose it to be the origin. This choice is equivalent to
setting c1 = c2 = 0. It follows that the parametrized curve in which the ball rolls is
the set of all points (x, y) such that{

x = 2t,

y = t2

4 , 0 ≤ t ≤ 4.

From the first equation, we get t = x
2 . Hence the two equations together with the

inequality are equivalent to

y =
x2

16
, 0 ≤ x ≤ 8.

The graph of this equation is the parabola shown in Figure 18, and the curve over
which the ball rolls is that portion of the parabola indicated by the heavy line.

Figure 10.18:

We next consider what is meant by the acceleration of a moving particle. The
intuitive idea is that acceleration is the rate of change of the velocity vector. To be
more precise: Let the position of the particle during an interval of time I be given
by a differentiable parametrization P : I → R, and let t0 be in I. If t is a number in
I distinct from t0, then the velocity vectors v(t0) and v(t) are tangent vectors with
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initial points P (t0) and P (t), respectively, as illustrated in Figure 19. In defining
the acceleration at t0, we should like to form the scalar product of 1

t−t0 and the
difference v(t)−v(t0), and to take the limit of this product as t approaches t0. The
difficulty is that, since the points P (t) and P (t0) are usually distinct, the difference
v(t) − v(t0) is generally not defined. (Recall that two vectors can be added or
subtracted if and only if they have the same initial point.) It is for this reason
that, before defining acceleration, we introduce the notion of parallel translation of
vectors in R2.

Figure 10.19:

Let P0 be an arbitrary point in R2. We shall define a function TP0 whose domain
is the set V of all vectors in R2 and whose range is the vector space VP0

of all vectors
with initial point P0. The definition is as follows: For every vector u in V, the value
TP0

(u) is the vector with the same coordinates as u, but with initial point P0. Thus

if u = (u1, u2)Q, then TP0(u) = (u1, u2)P0 .

Geometrically, the vector TP0
(u) is obtained from u by moving the arrow repre-

senting the vector u parallel to itself until its initial point coincides with P0. The
process is illustrated in Figure 20, and we call the function TP0

the operation of
parallel translation of vectors to the point P0.

Figure 10.20:

We can now define the acceleration of a moving particle. As before, let the
position be defined by the differentiable parametrization P : I → R2. We consider
t0 in I, and set P (t0) = P0. Then the acceleration of the particle at t0 is the
vector a(t0) defined by

a(t0) = lim
t→t0

1

t− t0
[TP0(v(t))− v(t0)]. (10.7)
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Thus, acceleration, like velocity, is a vector.

We can derive a simple formula for acceleration in terms of the coordinate func-
tions of P . Let P (t) = (x(t), y(t)), as usual. Then

v(t0) = (x′(t0), y′(t0))P (t0),

v(t) = (x′(t), y′(t))P (t),

and, if P0 = P (t0), then

TP0
(v(t)) = (x′(t), y(t))P (t0).

lt follows that

TP0(v(t))− v(t0) = (x′(t)− x′(t0), y′(t)− y′(t0))P (t0),

and thence that

1

t− t0
[TP0

(v(t))− v(t0)] =
(x′(t)− x′(t0)

t− t0
,
y′(t)− y′(t0)

t− t0

)
P(t0)

.

Hence

a(t0) = lim
t→t0

1

t− t0
[TP0

(v(t))− v(t0)]

=
(

lim
t→t0

x′(t)− x′(t0)

t− t0
, lim
t→t0

y′(t)− y′(t0)

t− t0

)
P (t0)

.

If the two limits which are the coordinates of the preceding vector exist, they are by
definition equal to the second derivatives x′′(t0) and y′′(t0), respectively. It follows
that

10.5.2. If P (t) = (x(t), y(t)), then the acceleration vector a(t0) exists if and only
if the second derivatives X,′ (t0) and y′, (t0) exist. lf they do exist, then

a(t0) = (x′′(t0), y′′(t0))P (t0).

Example 209. A particle is moving with constant speed k in a fixed circle of radius
a. Show that, at any time t during the interval of motion, the acceleration vector

a(t) has constant length equal to k2

a and always points directly toward the center
of the circle (see Figure 21).

We shall take the center of the circle to be the origin in the xy-plane. The posi-
tion of the particle can then be defined by a parametrization P (t) = (x(t), y(t)) =
(x, y) for which {

x = a cosu,
y = a sinu,

(10.8)

and u is some function of t having as domain the interval of time of the motion.
To be specific, we shall assume that 0 is in the domain, and that, when t = 0, the
particle is at the point (a, 0) on the circle. Hence u = 0 when t = 0. We shall make
the analytic assumption that the second derivative u′′(t) exists, for every t in the
interval, and it follows that x′′(t) and y′′(t) also exist. Differentiating with respect
to t in equations (8), we obtain
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Figure 10.21:

{
x′ = −au′ sinu,
y′ = au′ cosu.

(10.9)

Thus the speed of the particle is

|v(t)| =
√
x′2 + y′2 =

√
a2u′2(sin2 u+ cos2 u) = a|u′|,

which is assumed to be the constant k. Hence |u′| = k
a . Since u′ is continuous and

has constant positive absolute value, it is either always positive or always negative
(depending on whether the particle is moving counter clockwise or clockwise). We
shall assume the former and conclude that u′ = k

a . Integrating, we obtain

u =
k

a
t+ c.

Since u = 0, when t = 0, it follows that

u =
k

a
t.

Substituting this value back into equations (9), we have

x′ = −ak
a

sin
k

a
t = −k sin

k

a
t,

y′ = a
k

a
cos

k

a
t = k cos

k

a
t.

Hence

x′′ = −k
2

a
cos

k

a
t = −k

2

a
cosu,

y′′ = −k
2

a
sin

k

a
t = −k

2

a
sinu,

or, equivalently,
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x′′ = −k
2

a2
a cosu = −k

2

a2
x,

y′′ = −k
2

a2
a sinu = −k

2

a2
y.

We know from (5.2) that the acceleration vector is given by

a(t) = (x′′, y′′)P (t).

Hence

a(t) =
(
− k2

a2
x,−k

2

a2
y
)
P (t)

=
k2

a2
(−x,−y)P (t).

Since P (t) = (x, y), the terminal point of the vector (−x,−y)P (t) is the point (0,
0). Thus the acceleration vector a(t) is a positive scalar multiple of the vector with
initial point P (t) and terminal point the origin. This proves that a(t) is always
pointing directly toward the center of the circle. The length of the acceleration
vector is easily computed from the preceding equation. We get

|a(t)| =
k2

a2

√
(−x)2 + (−y2) =

k2

a2

√
x2 + y2

=
k2

a2
· a =

k2

a
.

This completes the problem. The acceleration in this example is called centripetal
acceleration, and the force acting on the particle necessary to provide this acceler-
ation is the centripetal force. In the case of a planet moving in orbit, the force is
the force of gravity.
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Problems

1. (a) Draw each of the following vectors.

(i) (0, 5)P0
, where P0 = (−1, 1).

(ii) (4,−1)P1
, where P1 = (1,−1).

(iii) (1, 3)P2 , where P2 = (1, 1).

(iv) (−2,−3)P3 , where P3 = (0, 0).

(b) Let P0 = (−1, 1), and compute and draw the translated vectors TP0
(u),

where u is taken to be each of the four vectors in ??.

2. A particle moves in the plane during the time interval from t = 0 to t = 2 sec-
onds. Its position at any time during this interval is given by the parametriza-
tion

P (t) = (t, t2 − t),
where it will be assumed that the unit of distance in the plane is 1 foot.

(a) Identify and draw the curve which the particle traces out during its
interval of motion.

(b) Compute the velocity vector v(t). Find the position, velocity, and speed
at t = 0, t = 1, and t = 2. Show these positions and draw the velocity
vectors in the figure in part ??.

(c) Compute the acceleration a(t). Find the times and corresponding posi-
tions (if any) when the acceleration and velocity vectors are perpendic-
ular to each other.

(d) Write a definite integral equal to the distance (in feet) which the particle
moves during the interval from t = 0 to t = 2 seconds.

(e) Evaluate the integral in ??.

3. An object is dropped from an airplane which is flying in a straight line over
level ground at a constant speed of 800 feet per second and at an altitude of
10, 000 feet. The horizontal coordinate of the velocity of the object is constant
and equal in magnitude to the speed of the plane. The vertical coordinate
of velocity is initially zero. However, the vertical component of acceleration
(due to gravity) is −32 feet per second per second. (These data are realistic
only if we neglect air resistance, the curvature of the earth, etc.)

(a) Define a parametrization P (t) = (x(t), y(t)) which gives the position of
the particle at time t. Assume that the object was dropped when t = 0
and that P (0) = (0, 0). Compute the velocity and acceleration vectors
v(t) and a(t).

(b) How long does it take the object to fall to the ground?

(c) Identify and draw the curve in which the object falls.

(d) Express the distance traveled along the curve as a definite integral.

4. Consider a particle in motion in the plane from t = 0 to t = 4 seconds. Its
position at any time during this interval is given by

P (t) = (x, y) =
(
(t− 2)2, (t− 2)2

)
,

where it is assumed that the unit of distance in the plane is 1 foot.
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(a) Draw the curve in which the particle moves during the interval.

(b) Complete the velocity v(t) and the speed |v(t)|. What are the minimum
and maximum speeds, and at what times are they attained?

(c) Describe the vector space of tangent vectors to the parametrized curve
at t = 1, and also at t = 2.

(d) Compute the distance traveled by the particle during the motion.

5. The position of a particle in motion in the plane is defined by the parametriza-
tion:

P (t) = (x, y) = (t2, t3), −2 ≤ t ≤ 2.

(a) Draw the curve traced out by the particle during the interval [−2, 2].

(b) Compute the velocity vector v(t). Find the position, velocity, and speed
at t = −2, t = 0, t = 1, and t = 2. Indicate these positions and draw the
velocity vectors in the figure in ??.

(c) Compute the accleration vector a(t). Determine the four specific vectors
a(−2), a(0), a(1), and a(2), and draw them in the figure in ??.

6. The position of a particle in the plane is defined by the parametrization{
x = a cos kt,
y = b sin kt, −∞ < t <∞,

where a, b, and k are positive constants and a > b.

(a) Identify and draw the curve in which the particle moves.

(b) Prove that the particle is never at rest.

(c) Show that the acceleration vector a(t) always points directly toward the
origin.

7. Prove that parallel translation has the following properties:

(a) |TP0
(u)| = |u| for every vector u.

(b) If u is any vector in VP0 , then TP0(u) = u.

(c) If 0 is any zero vector, then TP0
(0) is also a zero vector.

8. Starting at t = 0, a stone at the end of a string is whirled around in a fixed
circle of radius a at ever-increasing speed equal to kt for some positive constant
k. The tension in the string is equal to m|a(t)|, where m is the mass of the
stone and |a(t)| is the length of the acceleration vector. Suppose the string
breaks when the tension exceeds some value T . Compute, in terms of the
constants a, k, m, and T , the moment when the string breaks.
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10.6 Polar Coordinates.

Since the set R2 of all ordered pairs of real numbers has been identified with the
set of all points in the plane, every point is uniquely determined by its x- and y-
coordinates. An alternative way of specifying points in the plane is the following:
To every ordered pair (r, θ) of real numbers, we assign the point P = (x, y) in R2

defined by

x = r cos θ,

y = r sin θ.
(10.10)

The pair (r, θ) is called a pair of polar coordinates of the point P = (x, y).
In giving the geometric interpretation of polar coordinates of a point, we distin-

guish three separate possibilities:
Case 1. r > 0. Then r is the distance between P = (x, y) and the origin, since

distance(P, (0, 0)) =
√
x2 + y2 =

√
r2 cos2 θ + r2 sin2 θ

=
√
r2(cos2 θ + sin2θ) =

√
r2

= r.

The number θ is the radian measure of the angle which has its vertex at the origin,
its initial side the positive x-axis, and its terminal side the line segment joining the
origin to P . An example is shown in Figure 22.

Case 2. r = 0. Then P is the origin regardless of the value of θ, since

P = (x, y) = (0 cos θ, 0 sin θ) = (0, 0).

Figure 10.22:

Case 3. r < 0. In this case the point P = (x, y) is symmetric with respect to the
origin to the point with polar coordinates (|r|, θ). This fact is illustrated in Figure
23. To prove it, we first observe that

−r cos(θ + π) = −r cos θ cosπ + r sin θ sinπ = r cos θ,

−r sin(θ + π) = −r sin θ cosπ − r cos θ sinπ = r sin θ.

In the present situation r is negative. Hence −r is positive, and |r| = −r. The
preceding equations therefore imply
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Figure 10.23:

r cos θ = |r| cos(θ + π),

r sin θ = |r| sin(θ + π).

Thus

P = (x, y) = (r cos θ, r sin θ)

= (|r| cos(θ + π), |r| sin(θ + π)), if r < 0,

and this is precisely what is asserted above.
The major difference between polar coordinates and the familiar x- and y-

coordinates is that if a given point P = (x, y) has one pair of polar coordinates
(r, θ), then it has infinitely many: If n is any integer, then

r cos θ = r cos(θ + 2πn),

r sin θ = r sin(θ + 2πn),

and it therefore follows that, for every integer n, the ordered pair (r, θ + 2πn) is a
pair of polar coordinates for the one point P = (x, y) = (r cos θ, r sin θ). In addition,
as shown in Case 3, we have

−r cos(θ + π) = r cos θ,

−r sin(θ + π) = r sin θ.

Hence (−r, θ + π) is also a pair of polar coordinates of P . We conclude that there
is no such thing as the polar coordinates of a point.

Of course, it is also important to realize that every point P = (x, y) has at least
one pair of polar coordinates (and thence infinitely many). This is not hard to
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Figure 10.24:

show. We set r =
√
x2 + y2. If r = 0, then x = y = 0 and P is the origin. In

this case, (r, θ) = (0, θ) is a pair of polar coordinates of P for any choice of θ. If
r > 0, then P is not the origin, and we let Q be the point on the unit circle (defined
by x2 + y2 = 1) which lies on the half-line emanating from the origin and passing
through P (see Figure 24). From our definition of the functions sine and cosine, we
know that Q = (cos θ, sin θ) for some number θ. It follows that

P = (r cos θ, r sin θ),

and so (r, θ) is a pair of polar coordinates of P .

Example 210. Determine the x- and y-coordinates of the points with the following
polar coordinates, and plot the points in the plane.

P1 : (r, θ) =
(

2,
π

6

)
,

P2 : (r, θ) =
(
− 2,

π

6

)
,

P3 : (r, θ) =
(

2,−π
6

)
,

P4 : (r, θ) =
(

2,
7π

6

)
,

P5 : (r, θ) =
(

3,
10π

6

)
,

P6 : (r, θ) = (0, π).

If (r, θ) is a pair of polar coordinates of a point P , then the x- and y-coordinates of
P are given by

(x, y) = (r cos θ, r sin θ).

Hence, for each of the above, we get

P1 = (x, y) =
(

2 cos
π

6
, 2 sin

π

6

)
= (
√

3, 1),

P2 = (x, y) =
(
− 2 cos

π

6
,−2 sin

π

6

)
= (−

√
3,−1),
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P3 = (x, y) =
(

2 cos(−π
6

), 2 sin(−π
6

)
)

=
(

2 cos
π

6
,−2 sin

π

6

)
= (
√

3,−1),

P4 = (x, y) =
(

2 cos
7π

6
, 2 sin

7π

6

)
=

(
− 2 cos

π

6
− 2 sin

π

6

)
= (−

√
3,−1),

P5 = (x, y) =
(

3 cos
10π

3
, 3 sin

10π

3

)
=

(
3 cos

4π

3
, 3 sin

4π

3

)
=
(
− 3

2
,−3
√

3

2

)
P6 = (x, y) = (0 cosπ, 0 sinπ) = (0, 0).

The points are plotted in Figure 25. Note that P2 = P4 even though the polar
coordinates defining them are different. Although we have found the rectangular
coordinates of each point, these are not necessary for plotting. For example, the

point P1 with polar coordinates
(

2, π6

)
is most easily plotted by drawing from the

origin the line segment of length 2, which makes an angle of π
6 radians with the

positive x-axis.

Figure 10.25:

We next study curves in the plane defined by equations in polar coordinates.
Let F be a real-valued function of two real variables. The set of all points in the
plane whose polar coordinates satisfy the equation

F (r, θ) = 0 (10.11)

will be called the graph in polar coordinates, or simply, the polar graph of the
equation. More formally: The polar graph of equation (2) is the set of all points
P = (x, y) for which there exists a pair (r, θ) such that F (r, θ) = 0 and{

x = r cos θ,
y = r sin θ.
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Frequently, r is explicitly defined as a function of θ. This means that there is a
real-valued function f of one real variable, and we consider the equation

r = f(θ). (10.12)

The polar graph of this equation is that of the equation r − f(θ) = 0, which is a
special case of equation (2) in the preceding paragraph. It follows that the polar
graph of r = f(θ) is the set of all points (x, y) such that{

x = f(θ) cos θ,
y = f(θ) sin θ,

(10.13)

for every θ in the domain of f . If f is a continuous function with domain an interval
of real numbers, then equations (4) constitute a parametrization, and so the polar
graph of r = f(θ) is a parametrized curve.

Example 211. Identify and draw the curve defined by the equation

r = 4 cos θ (10.14)

in polar coordinates. By the curve defined by an equation r = f(θ) in polar coor-
dinates we mean, of course, the polar graph of r = f(θ). A partial list of values of
θ and r which satisfy equation (5) is given in Figure 26, and the points which have
these pairs as polar coordinates are plotted. Since the cosine is an even, function,
i.e., since cos(−θ) = cos θ, it follows that the resulting curce is symmetric about the
x-axis. The periodicity of the cosine implies that we may limit values of θ to an
interval of length 2π. However, we can do considerably better than that. The fact
that

cos(θ + π) = − cos θ

implies that if r = 4 cos θ, then −r = 4 cos(θ + π). But we have already observed
that (r, θ) and (−r, θ + π) are polar coordinates of the same point. lt follows that
all the points of the curve will be included even if the values of θ are limited to the
interval [−π2 ,

π
2 ]. Finally, in view of the symmetry about the x-axis, it is sufficient

in plotting points to consider only values in [0, π2 ].
It appears from Figure 26 that the polar graph of r = 4 cos θ is the circle of

radius 2 with center at the point P = (2, 0). This can be verified as follows: An
equation with the same polar graph is

r2 = 4r cos θ. (10.15)

Since x = r cos θ, y = r sin θ, and x2 + y2 = r2, the polar graph of (6) is the same
as the graph of the equation

x2 + y2 = 4x

in rectangular coordinates. This equation is equivalent to

x2 − 4x+ 4 + y2 = 4,

Figure 26
which is the same as

(x− 2)2 + y2 = 22.
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Figure 10.26:

The latter is the standard form of the equation of the circle of radius 2 with center
at (2, 0).

Example 212. A parabola is by definition the set of all points in the plane which
are equidistant from a fixed line and a fixed point not on the line (see page 136).
The line is called the directrix, and the point the focus. Find an equation in polar
coordinates of the parabola whose focus is the origin and whose directrix is the
vertical line cutting the x-axis in the point (-1, 0). The parabola is drawn in Figure
27.

An equation of a curve in polar coordinates means an equation F (r, θ) = 0
whose polar graph is the given curve. In the present example, let (r, θ), with r > 0,
be a pair of polar coordinates of an arbitrary point on the parabola. Then r is
the distance from the point to the focus, and, as can be seen from the figure, the
distance from the point to the directrix is 1+r cos θ. Hence the geometric condition
which defines the parabola is expressed in polar coordinates by the equation

r = 1 + r cos θ,

which is equivalent to
r(1− cos θ) = 1,

and thence to

r =
1

1− cos θ
. (10.16)

Conversely, if r and θ satisfy equation (7), it is clear that they are the polar coor-
dinates of a point which satisfies the conditions for Iying on the parabola.

Example 213. Draw the curve defined by the equation

r = aθ, −∞ < θ <∞,

in polar coordinates, where a is some positive constant. The polar graph of this
equation is called an Archimedean spiral. If θ = 0, then r = a · 0 = 0, and we
conclude that the origin is a point on the curve. As θ increases from zero, so does
r, and it follows that a spiral is traced out in the counterclockwise direction. This
part of the curve is drawn with a solid line in Figure 28. Thus the curve drawn
with the solid line is the polar graph of the equation

r = aθ, 0 ≤ θ <∞.
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Figure 10.27:

For negative θ, the polar graph of r = aθ is obtained by reflecting the graph for
positive θ about the y-axis. This part of the curve, indicated by a dashed dine in
the figure, is a spiral in the clockwise direction. One way to verify this assertion
of symmetry about the y-axis is to write the equations which define the curve
parametrically. They are{

x = r cos θ = aθ cos θ,
y = r sin θ = aθ sin θ, −∞ < θ <∞.

That is, we have a parametrization

P (θ) = (x(θ), y(θ)) = (aθ cos θ, aθ sin θ),

for every real number θ. Since the functions cosine and sine are, respectively, even
and odd, we obtain

x(−θ) = a(−θ) cos(−θ) = −aθ cos θ = −x(θ),

y(−θ) = a(−θ) sin(−θ) = −aθ(− sin θ) = y(θ).

It follows that the point P (−θ) = (−x(θ), y(θ)) is situated symmetrically across the
y-axis from the point P (θ) = (x(θ), y(θ)), and thus the curve is symmetric about
the y-axis.

Example 214. Draw the curve, called a lemniscate, defined by the equation

r2 = 2a2 cos 2θ, a 6= 0,

in polar coordinates.
We first observe that the polar graph of this equation is symmetric about the

origin; i.e., if the pair (r, θ) satisfies the equation, then so does (−r, θ). This fact is
a consequence of the equations

r2 = 2a2 cos 2θ = (−r)2.
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Figure 10.28:

In addition, if (r, θ) satisfies the equation, then so does (r,−θ), since the cosine
is an even function. Thus the polar graph is also symmetric about the x-axis. It
follows from these observations of symmetry that the entire curve is obtained from
that part which lies in the first quadrant of the xy-plane (those points for which
x ≥ 0 and y ≥ 0) by reflecting about both the x-axis and the y-axis. Moreover, any
point on the curve in the first quadrant has polar coordinates for which r ≥ 0 and
0 ≤ θ ≤ π

2 Finally, if (r, θ) satisfies the equation, then

cos 2θ =
r2

2a2
≥ 0.

However, for values of θ in the interval
[
0, π2

]
, cos 2θ is nonnegative only if 0 ≤ θ ≤ π

4 .

We conclude that the entire curve is obtained by symmetry from those points which
have polar coordinates (r, θ) with r ≥ 0 and 0 ≤ θ ≤ π

4 . A partial list of such pairs
is given in Table 2, and the corresponding points are shown on the curve in Figure
29.
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Figure 10.29:

θ r =
√

2a2 cos 2θ Approximate value

0
√

2 |a| 1.4 |a|

π
12

√
2 |a|

(√
3
2

)1/2
= 4
√

3 |a| 1.3 |a|

π
8

√
2 |a|

(√
2
2

)1/2
= 4
√

2 |a| 1.2 |a|
π
6

√
2 |a| ( 1

2 )1/2 = |a| |a|
π
4 0 0

Table 10.2:
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Problems

1. (a) For each of the following values of θ, find the value of r such that r =
4 sin θ:

θ = 0,
π

6
,
π

4
,
π

2
,

3π

4
,

5π

6
, π.

(b) Plot the seven points with the polar coordinates (r, θ) found in part ??.

(c) Draw and identify the curve defined by the equation r = 4 sin θ in polar
coordinates.

2. (a) For each of the following values of θ, find the value of r such that r =
2(1 + cos θ):

θ = 0,
π

4
,
π

3
,
π

2
,

2π

3
,

5π

6
, π.

(b) Plot the seven points with the polar coordinates (r, θ), found in part ??.

(c) What symmetry property is possessed by the curve defined by the equa-
tion r = 2(1 + cos θ) in polar coordinates?

(d) Draw the curve in part ??.

3. Using a figure and the geometric interpretation of polar coordinates, show
that r = 5

cos θ is an equation in polar coordinates of the vertical line cutting
the x-axis in the point (5, 0).

4. Using a figure and the geometric interpretation of polar coordinates, find an
equation in polar coordinates of the horizontal line cutting the y-axis in the
point (0, 5).

5. Assume the well-known fact that, if one side of a triangle inscribed in a circle
is a diameter, then the triangle is a right triangle. Using this fact and the
geometric interpretation of polar coordinates, show that cos θ = r

2a is an
equation of the circle which passes through the origin and has radius a > 0
and center on the x-axis.

6. Identify and draw the polar graphs of the two equations

(a) r = 7

(b) θ = π
6 .

7. Consider the curves defined by each of the following equations in polar coor-
dinates. Write each curve as the graph of an equation in x- and y-coordinates.
Identify and draw the curve in the xy-plane.

(a) r cos θ = −2

(b) r sin θ = 4

(c) r = −4 cos θ

(d) r = 2
sin θ−2 cos θ

(e) r = 1
1−cos θ (see Example ??)

(f) r = 5
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(g) θ = arcsin 3√
10

(h) r = 1
2−
√
3 cos θ

.

8. Let f be a real-valued function of a real variable. Prove that:

(a) If f is an even function, then the polar graph of the equation r = f(θ)
is symmetric about the x-axis.

(b) If f is an odd function, then the polar graph of the equation r = f(θ) is
symmetric about the y-axis.

9. Let F be a real-valued function of two real variables. Prove that the polar
graph of the equation F (r2, θ) = 0 is symmetric about the origin.

10. Draw the curve defined by each of the following equations in polar coordinates
(the number a is an arbitrary positive constant).

(a) r = a(1 + cos θ) (a cardioid).

(b) r = a(2 + cos θ) (a limaçon).

(c) r = a( 1
2 + cos θ) (a limaçon).

(d) r2 = 2a2 sin 2θ (a lemniscate).

(e) rθ = 2 (a hyperbolic spiral).

11. Consider the Archimedean spiral defined by the equation r = aθ and discussed
in Example ??. Describe the space of tangent vectors to this curve at θ = 0,
and also at θ = π

2 .

12. (a) Show that the equations y = 4 cosx and y2 = 4y cosx are not equivalent.

(b) In spite of part ??, the polar graphs of r = 4 cos θ and of r2 = 4r cos θ
are the same. Explain.

13. (a) If f is a real-valued function of a real variable, prove that the polar graph
of the equation r = f(sin θ) is symmetric about the y-axis.

(b) Draw the curve (a cardioid) defined by the equation r = 2(1 + sin θ) in
polar coordinates.

(c) Draw the curve (a limaçon) defined by the equation r = 1 + 2 sin θ in
polar coordinates.
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10.7 Area and Arc Length in Polar Coordinates.

This section is divided into two parts. In the first, which is the longer of the two, we
shall study the problem of finding the areas of regions bounded by curves defined
by equations in polar coordinates. To solve this problem, an integral formula for
area in polar coordinates will be derived. The second part is concerned with the
computation of the arc lengths of polar curves by applying the methods developed
in Section 2.

Let f be a continuous function which contains the closed interval [a, b] in its
domain. We have already observed that the polar graph of the equation

r = f(θ), (10.17)

where θ takes on all values in the interval [a, b], is the parametrized curve defined
by the equations {

x(θ) = r cos θ = f(θ) cos θ,
y(θ) = r sin θ = f(θ) sin θ, a ≤ θ ≤ b. (10.18)

For the area problem, we shall assume to begin with that the interval [a, b] has
length no greater than 2π, i.e., that

b− a ≤ 2π, (10.19)

and also that f is nonnegative on [a, b]:

f(θ) ≥ 0, for every number θ in [a, b]. (10.20)

Let R be the subset of the plane consisting of all points which have polar coordinates
(r, θ) such that a ≤ θ ≤ b and 0 ≤ r ≤ f(θ). An example is the shaded region R
shown in Figure 30. The problem is to compute the area of R. The effect of the
two assumptions (3) and (4) is that every point of R has precisely one pair of polar
coordinates (r, θ) with a ≤ θ ≤ b (except, if b− a = 2π, for those points of R along
the line defined by θ = a).

Figure 10.30:

To derive a formula for the area of R, we consider an arbitrary partition σ =
{θ0, ..., θn} of [a, b] with the property that

a = θ0 ≤ θ1 ≤ ... ≤ θn = b.
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For each i = 1, ..., n, let mi and Mi be, respectively, the minimum and maximum
values of the function f in the subinterval [θi−1, θi]. In addition, let Ri be the subset
of R consisting of all points with polar coordinates (r, θ) such that θi−1 ≤ θ ≤ θi and
0 ≤ r ≤ f(θ), as illustrated in Figure 31. It follows from the preceding paragraph
that except for their boundaries the sets R1, ..., Rn are pairwise disjoint. Hence

area(R) = area(R1) + +area(Rn). (10.21)

Figure 10.31:

Each set Ri is contained in a sector of the circle of radius Mi and center the origin
with angle equal to θi− θi−1 radians, and it contains a sector of the circle of radius
mi with the same center and the same angle. Since any sector of a circle of radius
ρ and angle α radians has area equal to 1

2ρ
2α, we conclude that

1

2
m2
i (θi − θi−1) ≤ area(Ri) ≤

1

2
M2
i (θi − θi−1),

for each i = 1, ..., n. Adding inequalities and using equation (5), we get

n∑
i=1

(
m2
i

2
(θi − θi−1) ≤ area(R) ≤

n∑
i=1

M2
i

2
(θi − θi−1).

However,
∑n
i=1(

m2
i

2 (θi − θi−1) and
∑n
i=1

M2
i

2 (θi − θi−1) are, respectively, the lower

and upper sums for the function f2

2 relative to the partition σ (see page 165).

Denoting them by Lσ

(
f2

2

)
and Uσ

(
f2

2

)
respectively, we have proved

Lσ

(f2
2

)
≤ area(R) ≤ Uσ

(f2
2

)
, (10.22)

for every partition σ of [a, b]. Since f is continuous, so is f2

2 , and every function
which is continuous on a closed bounded interval is integrable over that interval

[see Theorem (5.1), page 1991. Hence the function f2

2 is integrable over [a, b],
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and it therefore follows immediately from the inequalities (6) and the definition of
integrability on page 168 that

area(R) =

∫ b

a

f2

2
.

Summarizing, we have proved:

10.7.1. lf the function f is continuous and nonnegative at every point of the closed
interval [a, b] and if b− a ≤ 2π, then the area of the region R bounded by the polar
graphs of the equations r = f(θ), θ = a, and θ = b is given by

area(R) =
1

2

∫ b

a

f(θ)2dθ =
1

2

∫ b

a

r2dθ.

Figure 10.32:

Example 215. The curve defined by the equation r = 1+cos θ in polar coordinates,
and drawn in Figure 32, is a cardioid. Compute the area of the region R which it
bounds. Since this curve is symmetric about the x-axis, it is sufficient (but in this
example no easier) to find the area of that part of R lying on or above the x-axis
and to multiply the result by 2. The function f defined by

f(θ) = 1 + cos θ, 0 ≤ θ ≤ π,

is both continuous and nonnegative. It follows from (7.1) that

area(R) = 2

[
1

2

∫ π

0

(1 + cos θ)2dθ

]
=

∫ π

0

(1 + 2 cos θ + cos2 θ)dθ

=

∫ π

0

[1 + 2 cos θ +
1

2
(1 + cos 2θ)]dθ

=

∫ π

0

(
3

2
+ 2 cos θ +

1

2
cos 2θ)dθ



592 CHAPTER 10. GEOMETRY IN THE PLANE

= (
3

2
θ + 2 sin θ +

1

4
sin 2θ)|π0

=
3

2
π.

If f is negative on the interval [a, b], the integral 1
2

∫ b
a
f(θ)2dθ is also equal to an

area. Specifically, let us assume that f is continuous on [a, b], that b− a ≤ 2π, and
that f(θ) ≤ 0 for every θ in [a, b]. Let R be the set of all points which have polar
coordinates (r, θ) such that a ≤ θ ≤ b and f(θ) ≤ r ≤ 0 (see Figure 33). Then the
following formula is still valid:

10.7.2.

area(R) =
1

2

∫ b

a

f(θ)2dθ.

Figure 10.33:

Proof. Let g be the function defined by g(θ) = −f(θ), and let S be the set of all
points with polar coordinates (r, θ) such that a ≤ θ ≤ b and 0 ≤ r ≤ g(θ). The set
S is symmetric about the origin to the set R, and we therefore conclude that

area(R) = area(S).

But, by (7.1),

area(S) =
1

2

∫ b

a

g(θ)2dθ =
1

2

∫ b

a

[−f(θ)]2dθ

=
1

2

∫ b

a

f(θ)2dθ,

which completes the proof.

If the function f can take on both positive and negative values in the interval

[a, b] or if b−a > 2π (or both), then the integral 1
2

∫ b
a
f(θ)2dθ will in general give the

sum of the areas of nondisjoint (i.e., overlapping) regions. It is frequently necessary

to subdivide the interval [a, b] into subintervals and to compute the integrals of f2

2
over these subintervals separately to find a desired area.
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Figure 10.34:

Example 216. The polar graph of the equation r = 1+2 sin θ is the limaçon shown
in Figure ??. The function f defined by f(θ) = 1 + 2 sin θ satisfies the inequalities

f(θ) ≥ 0 if − π
6 ≤ θ ≤ π + π

6 ,
f(θ) ≤ 0 if π

6 − π ≤ θ ≤ −
π
6 .

Let R and S be, respectively, the regions bounded by the outer and inner loops of
the curve, as shown in the figure. Then

area(R) = 2

∫ 7π/6

−π/6
(1 + 2 sin θ)dθ, (10.23)

area(S) = 2

∫ −π/6
−5π/6

(1 + 2 sin θ)dθ. (10.24)

If we integrate 1
2f(θ)2 from 0 to 2π, the result will be equal to the area of R plus

the area of S. That is, we will pick up the area of S twice and get

area(R) + area(S) =
1

2

∫ 2π

0

(1 + 2 sin θ)2dθ. (10.25)

The consistency of equations (??), (??), and (??) can be checked as follows: From
(??), (??), and the additivity of the definite integral, we get

area(S) + area(R) =

[
1

2

∫ −π/6
−5π/6

∫
(1 + 2 sin θ)2dθ +

∫ 7π/6

−π/6
(1 + 2 sin θ)2dθ

]

=
1

2

∫ 7π/6

−5π/6
(1 + 2 sin θ)2dθ.

Since the function (1+2 sin θ)2 has period 2π, its definite integral over every interval
of length 2π will be the same. In particular,
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area(S) + area(R) =
1

2

∫ 7π/6

−5π/6
(1 + 2 sin θ)2dθ

=
1

2

∫ 2π

0

(1 + 2 sin θ)2dθ,

in agreement with (??). Evaluation of the integrals is left to the reader. The results
are

area(R) =
1

2

∫ 7π/6

−π/6
(1 + 2 sin θ)2dθ = 2π +

3

2

√
3,

area(S) =
1

2

∫ −π/6
−5π/6

(1 + 2 sin θ)2dθ = π − 3

2

√
3.

It follows that the area of the region between the two loops of the limaçon is equal
to the difference, π + 3

√
3.

Example 217. Find the area A of the region bounded by the positive y-axis and
the Archimedean spiral r = aθ(a > 0), where 0 ≤ θ ≤ 5π

2 . The region, shown
in Figure 35, is the union of two subsets R1 and R2. The set R1 consists of all
points with polar coordinates (r, θ) which satisfy the inequalities 0 ≤ θ ≤ 2π and
0 ≤ r ≤ aθ; i.e., it is the region bounded by the positive x-axis and that part of the
spiral for which 0 ≤ θ ≤ 2π. We find

area(R1) =
1

2

∫ 2π

0

r2dθ =
1

2

∫ 2π

0

a2θ2dθ

=
a2

2

θ3

3

∣∣∣2π
0

=
4a2π3

3
.

The set R2 consists of all points with polar coordinates (r, θ) which satisfy the
inequalities 2π ≤ θ ≤ 5π

2 and a(θ − 2π) ≤ r ≤ aθ (see Figure 35). This region can
be equivalently described as that bounded by the lines θ = 0 and θ = π

2 and the
two polar curves: {

r1 = aθ,
r2 = a(θ + 2π), 0 ≤ θ ≤ π

2 .

Since 0 ≤ r1(θ) ≤ r2(θ) for every θ on the interval
[
0, π2

]
, the area of R2 is obviously

given by the formula

area(R2) =
1

2

∫ π/2

0

(r22 − r21)dθ

=
1

2

∫ π/2

0

[a2(θ + 2π)2 − a2θ2]dθ

=
a2

2

∫ π/2

0

(4πθ + 4π2)dθ
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Figure 10.35:

= 2πa2
(θ2

2
+ πθ

)∣∣∣π/2
0

= 2πa2
(π2

8
+
π2

2

)
=

5a2π3

4
.

We conclude that

A = aren(R1) + area(R2)

=
4a2π3

3
+

5a2π3

4
=

31a2π3

12
.

An alternative way of finding the answer is to realize that the integral

1

2

∫ 5π/2

0

r2dθ =
1

2

∫ 5π/2

0

a2θ2dθ

is equal to the area A except for the fact that it counts twice the area bounded by
the lines θ = 0 and θ = π

2 and the curve r = aθ for 0 ≤ θ ≤ π
2 . Hence we also

obtain

A =
1

2

∫ 5π/2

0

a2θ2dθ − 1

2

∫ π/2

0

a2θ2dθ

=
31a2π3

12
.

The second topic of this section is the computation of the arc length of a curve
defined by an equation in polar coordinates. No new methods are needed, since the
problem is simply a special case of the more general one of finding the arc length
of a parametrized curve. As noted in the second paragraph of this section, if f is a
continuous function containing the interval [a, b] in its domain, then the polar graph
of the equation

r = f(θ), with a ≤ θ ≤ b,
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is a parametrized curve [see equations (2)]. Specifically, the curve is the range of
the parametrization P : [a, b]→ R2 defined by

P (θ) = (x(θ), y(θ)) = (f(θ) cos θ, f(θ) sin θ),

for every θ in [a, b]. We shall make the assumption that the derivative f ′ is a
continuous function on [a, b], and this implies that the derivatives x′ and y′ are also
continuous. It then follows directly from Theorem (2.2), page 553, that the arc
length of the curve from P (a) to P (b) is given by

Lba =

∫ b

a

√
x′(θ)2 + y′(θ)2 dθ.

Since

x′(θ) = f ′(θ) cos θ − f(θ) sin θ,

y′(θ) = f ′(θ) sin θ + f(θ) cos θ,

we find that

x′(θ)2 + y′(θ)2 = f ′(θ)2 cos2 θ − 2f ′(θ)f(θ) sin θ cos θ + f(θ)2 sin2 θ

+f ′(θ)2 sin2 θ + 2f ′(θ)f(θ) sin θ cos θ + f(θ)2 cos2 θ

= f ′(θ)2 + f(θ)2.

Thus we obtain the following integral formula for the arc length Lba of the polar
graph of the equation r = f(θ), in which a ≤ θ ≤ b:

10.7.3. (7.3)

Lba =

∫ b

a

√
f ′(θ)2 + f(θ)2 dθ.

Alternatively, if we set r = f(θ) in the formula and write f ′(θ) = dr
dθ , we have

10.7.4. (7.3’)

Lba =

∫ b

a

√(dr
dθ

)2
+ r2 dθ.

Example 218. Find the arc length of the cardioid defined in polar coordinates by
the equation r = 1 + cos θ. This curve is shown in Figure 32, and the area of the
region which it bounds is computed in Example 1. We have

dr

dθ
= − sin θ,

r2 = (1 + cos θ)2 = 1 + 2 cos θ + cos2 θ.

Hence

r2 +
(dr
dθ

)2
= 1 + 2 cos θ + cos2 θ + sin2 θ

= 2(1 + cos θ).
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The trigonometric identity

cos2
θ

2
=

1

2
(1 + cos θ)

implies that

r2 +
(dr
dθ

)2
= 4 cos2

θ

2
,

and it follows from the integral formula (7.3’) that the arc length L of the cardioid
is given by

L =

∫ 2π

0

√
4 cos2

θ

2
dθ = 2

∫ 2π

0

∣∣∣ cos
θ

2

∣∣∣ dθ.
However, because the cardioid is symmetric about the x-axis, we conclude that

L = 2

∫ π

0

√
4 cos2

θ

2
dθ = 4

∫ π

0

∣∣∣ cos
θ

2

∣∣∣ dθ.
lf 0 ≤ θ ≤ π, then cos θ2 ≥ 0 and so

∣∣∣ cos θ2

∣∣∣ = cos θ2 . Hence the arc length L is equal

to

L = 4

∫ π

0

cos
θ

2
dθ = 8 sin

θ

2

∣∣∣π
0

= 8.
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Problems

1. In each of the following, draw the curve defined by the equation r = f(θ) in
polar coordinates. Show the region R bounded by the curve and the lines
θ = a and θ = b, and compute its area.

(a) r = 4 cos θ, a = 0 and b = π
2 .

(b) r = 3(1 + cos θ), a = 0 and b = π.

(c) r = 3(1 + sin θ), a = 0 and b = π
2 .

(d) r = 2
cos θ , a = −π4 and b = π

4 .

2. For each of the following equations r = f(θ) and pairs of numbers a and b,
draw the region R consisting of all points with polar coordinates (r, θ) such
that a ≤ θ ≤ b and 0 ≤ r ≤ f(θ). Compute area(R).

(a) r = 4 sin θ, a = 0 and b = π.

(b) r = 4
sin θ , a = π

4 and b = 3π
4 .

(c) r = 2θ, a = π and b = 2π.

(d) r = 1
2 cos θ+3 sin θ , a = 0 and b = π

2 .

(e) r =
√

2 cos 2θ, a = 0 and b = π
4 . (See Example ??.)

3. Identify and draw the curve defined by the equation r = 4 sin θ in polar
coordinates, and show the region R bounded by the curve. Is it true in this
case that

area(R) =
1

2

∫ 2π

0

r2 dθ?

Explain your answer.

4. Each of the following curves, defined by an equation r = f(θ) in polar coor-
dinates, bounds a region R in the plane. Draw the curve and find the area of
R.

(a) r = a(1 + cos θ), a > 0

(b) r = a(1 + sin θ), a > 0

(c) r = 5

(d) r = 2 + cos θ

(e) r = 4 sin θ

(f) r = −4 cos θ.

5. The curve defined by the equation r = 1
1+cos θ in polar coordinates is a

parabola similar to the one discussed in Example ??.

(a) Draw the parabola, and show the region R bounded by this curve and
the line θ = π

2 .

(b) Express area(R) as a definite integral using the integral formula for area
in polar coordinates.



10.7. AREA AND ARC LENGTH IN POLAR COORDINATES. 599

(c) Evaluate the integral in part ?? using the trigonometric substitution
z = tan θ

2 (see equation (??)) and the Change of Variable Theorem for
Definite Integrals.

(d) Write this curve as the graph of an equation in x- and y-coordinates, and
thence compute area(R).

6. Find the area of the region which lies between the two loops of the limaçon
r = 1 + 2 cos θ.

7. Find the area of the region bounded by the lemniscate r2 = 2a2 cos 2θ.

8. Find the area A of the region which lies inside the cardioid r = 2(1 + cos θ)
and outside the circle r = 3.

9. The region R bounded by the cardioid r = 4(1 + sin θ) is cut into two regions
R1 and R2 by the polar graph of the equation r = 3

sin θ . Compute the areas
of R, R1, and R2.

10. Find the arc length of the cardioid defined by the equation r = a(1 + cos θ),
where a is an arbitrary positive constant.

11. Consider the spiral defined in polar coordinates by the equation r = e2θ.
Compute the arc length of this curve from θ = 0 to θ = ln 10.

12. (a) Using the integral formula for arc length in polar coordinates, compute
the arc length of the polar graph of the equation r = 2 sec θ from θ = −π4
to θ = π

4 .

(b) Identify and draw the curve in part ??, and verify from the geometry the
value obtained for the arc length.

13. Consider the curve defined by the equation r = 2 cos2 θ2 in polar coordinates.

(a) Find the arc length of this curve from θ = 0 to θ = π.

(b) Find the arc length of this curve from θ = 0 to θ = 2π.
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Chapter 11

Differential Equations

11.1 Review.

This section is primarily a review of the differential equations studied in Section
5 of Chapter 5 and also in Section 8 of Chapter 6. We begin by recalling the
definition of a first-order differential equation (see page 272): Consider an equation
F (x, y, z) = 0 in which not all the variables need occur, but at least z does. The
equation

F
(
x, y,

dy

dx

)
= 0, (11.1)

obtained by substituting dy
dx for z, is a first-order differential equation. By a solution

of (1) is meant any differentiable function f for which the equation

F (x, f(x), f ′(x)) = 0

is true for every x in the domain of f . If f is a solution, we write

y = f(x).

The general problem, given a differential equation, is to find all its solutions. A
more specialized problem is to find a particular solution y = f(x) which has a
specified value b at some specified number a, i.e., a solution for which b = f(a).

The simplest first-order differential equations are those of the type dy
dx = f(x),

where f is some given function (not to be confused with the solutions f discussed
in the preceding paragraph). Every solution of this differential equation can be
written

y =

∫
f(x)dx+ c,

for some real number c. Hence if c is left as an arbitrary undetermined constant of
integration, we call

∫
f(x)dx+ c the general solution.

We next considered differential equations of the form dy
dx = f(x)

g(y) , in which f

and g are given functions. Equations of this type are called separable, since, if
we use the fact that the derivative is equal to the ratio of two differentials, we

601
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can “separate” the expression containing x from that containing y by writing the
equivalent differential equation

g(y)dy = f(x)dx.

Integrating both sides, we get the equation∫
g(y)dy =

∫
f(x)dx+ c,

which defines the general solution y implicitly as a function of x. Note that the
differential equation dy

dx = f(x) discussed in the preceding paragraph is a separable
equation in which g(y) = 1.

Of special interest among separable equations is the first-order linear differential
equation dy

dx + ky = 0, in which k is a constant. This is the type of differential
equation which describes the rate of decay of a radioactive substance and also the
rate of growth of bacteria in a culture. lt can be solved without difficulty as a
separable differential equation (see pages 276 and 277). However, this equation
occurs sufficiently often and has such an obvious general solution that most people
recognize it at sight. The general solution is

y = ce−kx.

Example 219. Find the general solution of each of the following differential equa-
tions:

(a) dy
dx = tan4 x sec2 x,

(b) dy
dx = ex+y,

(c) dy
dx + 14y = 0.

In (b) find the particular solution y = f(x) such that f(0) = − ln 2, and in (c)
find the particular solution which has value 5 when x = 0.

The general solution of (a) can be obtained directly by integrating:

y =

∫
tan4 x sec2 xdx+ c

=
1

5
tan5 x+ c.

Equation (b) is separable, since dy
dx = ex+y = exey. Hence we may write

e−ydy = exdx.

Integrating both sides, we obtain the equation

−e−y = ex + c,

which defines y implicitly as a function of x. In this case, it is not difficult to solve
for y explicitly. We first get ey = 1

−c−ex . Replacing the arbitrary constant −c by
simply c, and taking logarithms, we then obtain

y = ln
1

c− ex
(11.2)
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as the general solution. To find the particular solution y = f(x) for which f(0) =
− ln 2, we substitute these values in equation (2) and solve the resulting equation
for c. Thus

− ln 2 = ln
1

c− 1
.

Since − ln 2 = ln 1
2 , it follows that 2 = c − 1, and so c = 3. Hence the particular

solution required is

y = ln
1

3− ex
.

The general solution of (c) can be written down on inspection. It is

y = ce−14x.

The particular solution which has value 5 when x equals 0 is obtained by writing

5 = ce−14·0 = c.

Hence the particular solution is

y = 5e−14x.

The definition of an nth-order differential equation, n ≥ 1, is entirely analogous
to that of a first-order equation. Let F (x, y0, y1, ...., yn) = 0 be an equation in
n+ 2 variables in which not all the variables occur, but at least yn does. Then the
equation

F
(
x, y,

dy

dx
,
d2y

dx2
, ...,

dny

dxn

)
= 0, (11.3)

obtained by substituting the ith derivative diy
dxi for yi (where it is understood tliat

d0y
dx0 = y), is an nth-order differential equation. A solution is any n-timesdifferentiable
function f such that the equation

F (x, f(x), f ′(x), f ′′(x), ..., f (n)(x)) = 0

is true for every x in the domain of f .
Our study of higher-order differential equations has thus far been Ihnited to

those of the type
d2y

dx2
+ a

dy

dx
+ by = 0, (11.4)

where a and b are constants. Such an equation is a second-order, linear, homo-
geneous differential equation with constant coefficients (see page 344). It is called
“linear” because y and its derivatives occur to no power higher than the first, “ho-
mogeneous,” because the right side is zero, and “with constant coefficients,” because
a and b are constants.

You will recall that the form of the general solution of the differential equation (4)
is determined by the nature of the roots of its characteristic equation t2+at+b = 0.
The roots of this equation are given by the quadratic formula

r1, r2 =
−a±

√
a2 − 4b

2
,
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and there are three cases depending on the discriminant a2 − 4b.

Case 1. If a2 − 4b is positive, then there are two distinct real roots r1 and r2 In
this case the general solution of (4) is

y = c1e
r1x + c2e

r2x,

where c1 and c2, are arbitrary constants.

Case 2. If a2 − 4b = 0, then r1 = r2 = r and the general solution of the
differential equation (4) is

y = (c1x+ c2)erx,

where c1 and c2, are arbitrary constants.

Case 3. If a2 − 4b is negative, then r1 and r2 are distinct conjugate complex
numbers, i.e., r1 = α+ iβ, r2 = α− β, and β 6= 0. In this case the general solution
of (4) is

y = eαx(c1 cosβx+ c2 sinβx),

where c1 and c2, are arbitrary constants.
The above statements imply that, if y is any solution of the differential equation

(4), then there exist real numbers c1 and c2 such that

y = c1e
r1x + c2e

r2x if a2 − 4b > 0,
y = (c1x+ c2)erx if a2 − 4b = 0,
y = eαx(c1 cosβx+ c2 sinβx) if a2 − 4b < 0.

This fact, first stated in Section 8 of Chapter 6, has not yet been proved, but will
be in Section 4.

Although we have thus far not used the letter D to denote the derivative, this
notation is quite useful in the study of differential equations. We write Dy for dy

dx

and D2y for d2y
dx2 . We then combine these symbols and the conventions of algebra to

write (D2 + aD + b)y for D2y + aDy + by. In so doing we have defined a function,
denoted by D2 + aD + b, which has the set of twice-differentiable functions as its
domain and a set of functions as its range. This function assigns to each function
y in its domain the function

(D2 + aD + b)y =
d2y

dx2
+ a

dy

dx
+ by

as value. Such a function is an example of a differential operator. Using it, the

differential equation d2y
dx2 + a dydx + by = 0 can be written

(D2 + aD + b)y = 0. (4’)

Note the similarity between the operator and the characteristic equation of the
differential equation. The latter is the equation obtained by replacing D in the
operator by t and setting the resulting quadratic polynomial equal to zero.

Example 220. Find the general solution of each of the following differential equa-
tions:
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(a) d2y
dx2 − 5 dydx + 6y = 0,

(b) (D2 + 6D + 9)y = 0,

(c) (D2 − 6D + 10)y = 0.

For the first, the characteristic equation is t2 − 5t + 6 = 0, which is equivalent
to (t − 2)(t − 3) = 0. Hence the two roots are 2 and 3, and the general solution is
given by

y = c1e
2x + c2e

3x.

In (b), the characteristic equation is t2 + 6t + 9 = 0, which is equivalent to
(t + 3)2 = 0. Thus there is only one root, −3. The solutions of the differential
equation are therefore all functions

y = (c1x+ c2)e−3x,

where c1, and c2 are arbitrary constants.
The characteristic equation for (c) is t2− 6t+ 10 = 0 and, since its discriminant

is equal to −4, the roots are not real. Solving the quadratic equation, we find that
the roots are 3 + i and 3− i. Hence the general solution is

y = e3x(c1 cosx+ c2 sinx).

Example 221. Find the particular solution of the differential equation D(D −
5)y = 0 which has value equal to 2 and derivative equal to −15 when x = 0. The
characteristic equation is t(t − 5) = 0, whose roots are obviously 0 and 5. The
general solution is therefore

y = c1e
0x + c2e

5x = c1 + c2e
5x.

The derivative is

y′ = 5c2e
5x.

When x = 0, we are told that y = 2 and y′ = −15. Substituting these values in the
preceding equations, we obtain

2 = c1 + c2e
5·0 = c1 + c2,

−15 = 5c2e
5·0 = 5c2.

It follows that c2 = −3 and thence that c1 = 5. Hence the required solution is

y = 5− 3e5x.

It is extremely useful to recognize alternative forms of the general solution of
the differential equation (D2 + aD + b)y = 0 in the case where the roots of the
characteristic equation are the complex numbers α+ iβ and α− iβ. In particular,
it is easy to verify that the functions

y = ceαx sin(βx+ k), (11.5)

y = ceαx cos(βx+ k), (11.6)
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where c and k are arbitrary real numbers, are both solutions. To see that this is
so, we expand (5) using the trigonometric identity for the sine of the sum of two
numbers. The result is

y = ceαx(sinβx cos k + cosβx sin k)

= eαx[(c sin k) cosβx+ (c cos k) sinβx].

Setting c1 = c sin k and c2 = c cos k, we obtain y = eαx(c1 cosβx+ c2 sinβx), which
we know to be a solution. The proof for (6) is analogous.

Conversely, any solution y = eαx(c1 cosβx + c2 sinβx) can be written in the
forms (5) and (6). For if both c1 = c2 = 0, then y = 0, and we need only set c = 0
in (5) and (6). If c1 and c2 are not both zero, then

√
c21 + c22 6= 0, and we can write

y =
√
c21 + c22 e

αx
[ c1√

c21 + c22
cosβx+

c2√
c21 + c22

sinβx
]
.

To put this equation in the form of (5), we set c =
√
c21 + c22 and observe that, since( c2√

c21 + c22

)2
+
( c1√

c21 + c22

)2
= 1,

it follows from our definition of the functions sine and cosine that there exists a real
number k such that cos k = c2√

c21+c
2
2

and sin k = c1√
c21+c

2
2

. Hence we get

y = ceαx(sin k cosβx+ cos k sinβx)

= ceαx sin(βx+ k).

Again, by an analogous argument, the solution can also be written in the form of
equation (6).

An advantage in using the forms (5) and (6) for the general solution is that it
is easy to see what the graphs of such functions look like. As the next example
illustrates, they are all sinusoidal curves lying between the graphs of y = ceαx end
y = −ceαx.

Example 222. Find and draw the graph of the particular solution of the differential
equation (D2 + 2D + π2 + 1)y = 0 which has value

√
2 and derivative equal to

(π − 1)
√

2 when x = 0. The characteristic equation is t2 + 2t + π2 + 1 = 0, which
has roots −1 + iπ and −1− iπ. Hence one form of the general solution is

y = ce−x sin(πx+ k).

lts derivative is

dy

dx
= −ce−x sin(πx+ k) + cπe−x cos(πx+ k).

Substituting the given values of y and dy
dx when x = 0 into the preceding two

equations, we get

√
2 = c sin k,

(π − 1)
√

2 = −c sin k + cπ cos k.
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Figure 11.1:

Hence, (π − 1)
√

2 = −
√

2 + cπ cos k, from which we obtain

√
2 = c cos k.

Since c cos k does not equal zero, it follows that

tan k =
c sin k

c cos k
=

√
2√
2

= 1,

and so k = π
4 . This implies that c = 2, and we conclude that the particular solution

is
y = 2e−x sin

(
πx+

π

4

)
.

The graph of this equation is drawn in Figure 1. Such a curve is frequently called
an “exponentially damped sine wave.”
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Problems

1. Find the general solution of each of the following differential equations.

(a) dy
dx = x3 + 2ex

(b) x dydx = 6x3 + 5x+ 1

(c) dy
dx = (y2 + 1)(2x+ 3)

(d) dy
dx = xy + x

(e) 2xy2 + dy
dx − 4x3y2 = 0

(f) y dydx = lnx

(g) x dydx = lnx

(h) dy
dx + 16y = 0

(i) d2y
dx2 + 16y = 0

(j) d2y
dx2 = 16y

(k) y′′ − 19y′ − 20y = 0

(l) (D2 + 10D + 16)y = 0

(m) 2 d
2y
dx2 − 14 dydx = −20y

(n) d2y
dx2 + a2y = 2a dydx

(o) (D2 + 4D + 29)y = 0

(p) (y + 5) dydx = 7x− e−x

(q) dy
dx = x

y

(r) dy
dx = y

x

(s) dy
dx = −xy

(t) 1
y
d2y
dx2 = 49

(u) (3x+ 4) dt+ (4t+ 3) dx = 0

(v) dy
dx = cot y

(w) 1
t
dy
dt = e3t

2+4

(x) dy
dx = 3 sin2 x cos2 x

(y) dy
dx = 3 sin2 x cos2 y

(z) d2y
dx2 = 6x2 − 4x+ 2.

2. Find the particular solution of each of the following differential equations
which satisfies the given conditions.

(a) dy
dx = 3y, y = 5 when x = 0.

(b) d2y
dx2 = 12x2 + 1, graph passes through the point (1,−1) with a slope
of 3.

(c) y dydx = −x, graph passes through the point (−3,−4).
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(d) d2s
dt2 = −gconstant, when t = 0, dsdt = v0 and s = s0.

(e) (D2 − 2D − 3)y = 0, y = 7 and dy
dx = 1 when x = 0.

(f) (D2 − 4D + 13)y = 0, graph passes through (0, 5) with a slope of 2.

(g) (x+ 2) dydx = 1, y = ln 9 when x = 1.

(h) (D2 − 12D + 36)y = 0, y = 3 and dy
dx = 7 when x = 0.

3. (a) Sketch the graph of y = e
x
2 cos

(
x+ π

4

)
.

(b) Find a second-order, linear, homogeneous differential equation with con-
stant coefficients of which the function in ?? is a solution.

4. (a) Find the general solution of the differential equation (4D2+8D+5)y = 0.

(b) Find the particular solution of the differential equation in ?? whose graph

passes through the point
(

0,
√
2
2

)
with a slope of − 3

√
2

4 .

(c) Sketch the graph of the function in ??.

5. (a) Find the general solution of the differential equation (4D2−8D+5)y = 0.

(b) Find the particular solution of the differential equation in ?? whose graph

passes through the point
(

0,
√
2
2

)
with a slope of

√
2
4 .

(c) Sketch the graph of the function in ??.

6. (a) Find the general solution of the differential equation (D2 + 1
4 )y = 0.

(b) Find the particular solution of the differential equation in ?? whose graph

passes through the point
(

0,
√
2
2

)
with a slope of −

√
2
4 .

(c) Sketch the graph of the function in ??.

7. Find the general solution of the differential equation (D2−2αD+α2+1)y = 0,
and sketch the graph for

(a) α > 0

(b) α = 0

(c) α < 0.

[See equations (??) and (??).]
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11.2 First-Order Linear Differential Equations.

A differential equation which can be written in the form

a1(x)
dy

dx
+ a0(x)y = b(x),

where a1, a0, and b are given functions of x and where a1 is not the zero function, is
a first-order linear ditTerential equation. In this section we shall show how to
obtain the general solution of equations of this type. Since a1 is by assumption not
the zero function, we can divide both sides of the above equation by a1(x). Setting
a0(x)
a1(x)

= P (x) and b(x)
a1(x)

= Q(x), we therefore obtain the differential equation

dy

dx
+ P (x)y = Q(x), (11.7)

which is the form we shall use in deriving the solution. We shall assume that the
functions P and Q are continuous, thus assuring ourselves that they have antideriva-
tives.

Let us suppose that the function y = f(x) is a solution to the differential equa-
tion (1). We shall derive a formula which expresses y in terms of P and Q and a
constant c of integration. Conversely, it will be a simple matter to verify that any
function y defined by this formula is a solution to (1). Hence the formula gives the
general solution to the differential equation.

The derivative of the product of y and a function ϕ is given by

d

dx
(ϕ(x)y) = ϕ(x) + ϕ′(x)y. (11.8)

Note that the first term on the right has dy
dx as a factor and the second has y as

a factor, and that the same is true of the two terms on the left side of equation
(1). This fact suggests seeking a function ϕ which has the property that, if both
sides of (1) are multiplied by ϕ(x), then the left side of the resulting equation is the
derivative of the product ϕ(x)y. If both sides of (1) are multiplied by an arbitrary
ϕ(x), the result is

ϕ(x)
dy

dx
+ ϕ(x)P (x)y = ϕ(x)Q(x). (11.9)

Comparison of this equation with (2) shows that its left side is equal to d
dx (ϕ(x)y)

provided ϕ(x)P (x)y = ϕ′(x)y, which will in turn be true provided

ϕ(x)P (x) = ϕ′(x). (11.10)

However, it is easy to find a function ϕ which satisfies (4), since, as a differential
equation with ϕ the unknown function, it is separable. Solving it, we obtain

ϕ′(x)

ϕ(x)
= P (x)

Whence ∫
ϕ′(x)

ϕ(x)
dx =

∫
P (x)dx,
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which implies

ln |ϕ(x)| =
∫
P (x)dx+ c,

and so

|ϕ(x)| = e
∫
P (x)dx+c.

Since we are only seeking a solution to (4), and not the most general form of
the solution, we may assume that ϕ(x) is positive and also ignore the constant of
integration. We conclude that if

ϕ(x) = e
∫
P (x)dx, (11.11)

then the left side of eguation (3) is equal to d
dx (ϕ(x)y).

With (5), equation (3) therefore becomes

d

dx
(ϕ(x)y) = ϕ(x)Q(x).

integration yields

ϕ(x)y =

∫
ϕ(x)Q(x)dx+ c,

and so

y =
1

ϕ(x)

[ ∫
ϕ(x)Q(x)dx+ c

]
,

for some real number c. Replacing ϕ(x) by e
∫
P (x)dx, we obtain the promised

formula:

11.2.1.

y = e−
∫
P (x)dx

[ ∫
e
∫
P (x)dxQ(x)dx+ c

]
.

Suppose next that c is an arbitrary constant and that the function y is dcfined
by (2.1). Then

ye
∫
P (x)dx =

∫
e
∫
P (x)dxQ(x) + c.

The derivative of the right side of this equation is e
∫
P (x)dxQ(x) and that of the left

side is
dy

dx
e
∫
P (x)dx + yP (x)e

∫
P (x)dx.

Hence

e
∫
P (x)dx

[dy
dx

+ P (x)y
]

= e
∫
P (x)dxQ(x),

which implies at once that dy
dx + P (x)y = Q(x); i.e., y is a solution to (1). We

conclude that formula (2.1) gives the general solution to the differential equation
(1).

We strongly recommend that no one memorize (2.1). The important fact to
remember is that, if the first-order linear differential equation dy

dx +P (x)y = Q(x) is

multiplied through by ϕ(x) = e
∫
P (x)dx, then the left side of the resulting equation
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is equal to the derivative of the product ϕ(x)y. Consequently, the new equation can
be integrated to give

ϕ(x)y =

∫
ϕ(x)Q(x)dx+ c,

which can then be solved for y. This function ϕ(x) = e
∫
P (x)dx, which enables

us to change a seemingly nonintegrable sum into the derivative of a product by
multiplication, is called an integrating factor.

Example 223. Solve the differential equation

x2
dy

dx
− 3xy − 2x2 = 4x4.

To put this in the form of (1), we add 2x2 to both sides and then divide by x2. The
result is

dy

dx
− 3

x
= 4x2 + 2, (11.12)

where P (x) = − 3
x and Q(x) = 4x2 + 2. An antiderivative of P (x) is given by∫

P (x)dx =

∫
− 3

x
dx = −3 ln |x| = ln |x−3|,

and it follows that the function

ϕ(x) = e
∫
P (x)dx = eln |x

−3| = |x−3|

is an integrating factor. Equation (4) shows that if ϕ(x) is an integrating factor,
then so also is −ϕ(x). Hence we may drop the absolute values and write simply

ϕ(x) = x−3.

Multiplying both sides of (6) by x−3, we obtain

x−3
dy

dx
− 3x−4y = 4x−1 + 2x−3,

It is easy to see that the left side of this equation is equal to d
dx (x−3y). Hence

d

dx
(x−3y) = 4x−1 + 2x−3,

and so

x−3y =

∫
(4x−1 + 2x−3)dx+ c

= 4 ln |x|+ 2
x−2

−2
+ c

= 4 ln |x| − 1

x2
+ c,

where c is an arbitrary constant. It follows that

y = 4x3 ln |x| − x+ cx3

is the general solution.
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Example 224. Find the general solution of the differential equation

dy

dx
+ 3y = 2 sinx.

Note that this is a first-order linear differential equation with constant coefficients,
but that it is not homogeneous, because the right side is not the zero function. In
this example we have P (x) = 3 and Q(x) = 2 sinx. Hence∫

P (x)dx =

∫
3dx = 3x,

and an integrating factor is

ϕ(x) = e
∫
P (x)dx = e3x.

lt follows that
d

dx
(e3xy) = 2e3x sinx,

and so

e3xy =

∫
2e3x sinxdx+ c. (11.13)

To evaluate
∫

2e3x sinxdx = 2
∫
e3x sinxdx, we use integration by parts twice:∫

e3x sinxdx = −
∫
e3xd cosx

= −e3x − cosx+

∫
cosxde3x

= −e3x cosx+ 3

∫
e3x cosxdx.∫

e3x cosxdx =

∫
e3xd sinx

= e3x sinx−
∫

sinxde3x

= e3x sinx− 3

∫
e3x sinxdx.

Combining these results, we get∫
e3x sinxdx = −e3x cosx+ 3e3x sinx− 9

∫
e3x sinxdx,

whence

10

∫
e3x sinxdx = e3x(3 sinx− cosx),

and so

2

∫
e3x sinxdx =

e3x

5
(3 sinx− cosx).

Returning to (7), we have

e3xy =
e3x

5
(3 sinx− cosx) + c,



614 CHAPTER 11. DIFFERENTIAL EQUATIONS

and consequently the general solution of the differential equation is given by

y =
1

5
(3 sinx− cosx) + ce−3x, (11.14)

where c is an arbitrary constant.

Note that the above solution (8) of the differential equation of Example 2 is
the sum of two terms. The second, which is ce−3x, is thc general solution of the
homogeneous differential equation dy

dx + 3y = 0. The first term, 1
5 (3 sinx − cosx),

is one particular solution of the nonhomogeneous differential equation dy
dx + 3y =

2 sinx. As we shall see, this situation is typical of the solutions of linear differential
equations.
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Problems

1. Find the general solution of each of the following differential equations.

(a) dy
dx −

2
xy = 3x2 + 4

(b) x dydx + 3y + x = 0

(c) 7y + 2x dydx = x7 + 2

(d) dy
dx + 2xy = 5x

(e) dy
dx − 8y = e2x + 4

(f) 6x2y + dy
dx = x2

(g) y cosx+ dy
dx = cosx

(h) dy
dx + (2x+ 3)y = 8x+ 12

(i) dy
dx + 2y = 3 cosx

(j) dy
dx + y

x = 2e−x

(k) 11y + x dydx = ax2 + bx+ c

(l) (D + 9)y = π

(m) dy
dx + 3

xy = e2x

x3

(n) x2 dydx + 5xy = cos x
x3 .

2. (a) Find the general solution of yh of the homogeneous differential equation
dy
dx + 2xy = 0.

(b) Show that the general solution of the nonhomogeneous equation dy
dx +

2xy = 3xe−x
2

is equal to the solution yh in part ?? plus a particular
solution to the nonhomogeneous equaton.

3. This problem is the general version of the preceding one. Let P and Q be
continuous functions of x.

(a) Find the general solution yh of the homogeneous differential equation
dy
dx + Py = 0.

(b) Show that the general solution of the nonhomogeneous equation dy
dx +

Py = Q is equal to the solution yh in part ?? plus a particular solution
to the nonhomogeneous equation.
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11.3 Linear Differential Operators.

This section is divided into three parts. In the first, we shall systematically develop
and extend the differential operators D2 +aD+ b which were introduced in Section
1. In the second part we shall use these operators to obtain directly the general
solutions of certain linear differential equations with constant coefficients. Finally,
we shall show how these methods can be used to solve any linear differential equation
with constant coefficients (whether homogeneous or not) provided we extend our
range of functions to include those whose values may be complex numbers.

By a linear operator we shall mean any function L whose domain and range
are sets of numerical-valued functions and which satisfies the equations

L(y1 + y2) = L(y1) + L(y2), (11.1)

L(ky) = kL(y), (11.2)

for every real number k and every y, y1, and y2 in the domain of L. [The function
L(y) is frequently written simply Ly.] An important example is the function D,

which, to every differentiable function y, assigns its derivative Dy = dy
dx . Another

example is the operation of multiplication by a real number. That is, for any real
number a, the function L defined by

Ly = ay

obviously satisfies (1) and (2) and hence is a linear operator.
If L1 and L2 are linear operators, then their sum is the function L1 +L2 defined

by
(L1 + L2)y = L1y + L2y, (11.3)

for every y which is in the domains of both L1 and L2. lt is easy to show that

11.3.1. If L1 and L2 nre linear operato’s, then the sum L1 + L2 is also a linear
operator.

Proof. We shall show that L1 + L2, satisfies equation (1) by using successively the
definition of L1 + L2, the linearity of L1 and L2, separately, the commutative law
of addition for functions, and finally the definition again. Thus

(L1 + L2)(y1 + y2) = L1(y1 + y2) + L2(y1 + y2)

= L1y1 + L1y2 + L2y1 + L2y2

= (L1y1 + L2y1) + (L1y2,+L2y2)

= (L1 + L2)y1 + (L1 + L2)y2.

The proof that L1 + L2 satisfies (2) is similar:

(L1 + L2)(ky) = L1(ky) + L2(ky)

= kL1y + kL2y

= k(L1y + L2y)

= k(L1 + L2)y,

and this completes the proof.
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If L1 and L2 are linear operators, then the composition of L2, followed by L1

is the function denoted by L1L2 and defined by

(L1L2)y = L1(L2y), (11.4)

for every y for which the right side is defined. The proof of the following proposition
is entirely analogous to that of (3.1) and is left to the reader as an exercise.

11.3.2. If L1 and L2 are linear operators, then the composition L1L2 is also a
/inear operator.

The composition L1L2 is also called the product of L1 and L2. There is no
reason to suppose from the definition that the commutative law of multiplication
holds, and, for linear operators in general, L1L2 6= L2L1. However, the distributive
laws hold:

11.3.3. {
(L1(L2 + L3) = L1L2 + L1L3,
(L1 + L2)L3 = L1L3 + L2L3.

Proof. The first of these is proved as follows:

(L1(L1 + L3))y = L1((L2 + L3)y)

= L1(L2y + L3y)

= L1(L2y) + L1(L3y)

= (L1L2)y + (L1L3)y

= (L1L2 + L1L3)y.

The proof of the second is similar and is left as an exercise.

An important example of the product of linear operators is the composition of
a linear operator L followed by the operation of multiplication by a real number a.
This product, denoted aL, assigns to every y in the domain of L the value (aL)y
which is equal to the product of a with the function Ly. That is,

11.3.4. (aL)y = a(Ly).

The composition in the other order is the product La. Here we have (La)y =
L(ay), and the latter quantity, by the linearity of L is equal to a(Ly). Combining
this with (3.4), we obtain the equation (La)y = (aL)y. Thus the operators La and
aL are equal, and we have proved the following special case of the commutative law:

11.3.5. aL = L a.

Another example of the product, already encountered, is the operator D0, which
is the composition D2 = DD of D with itself. More generally, for every integer
n > 1, we define the operator Dn inductively by

Dn = DDn−1.

The domain of Dn is the set of all e-times differentiable functions, and, for each
such function y, we have

Dny =
dny

dxn
.
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By repeated applications of (3.1) and (3.2), we may conclude that any function
formed in a finite number of steps by taking sums and products of linear operators
is itself a linear operator. As an example, consider a polynomial p(t) of degree n;
i.e.,

p(t) = ant
n + an−1t

n−1 + · · ·+ a1t+ a0,

where a0, ..., an are real numbers and an an 6= 0. Then the function

p(D) = anD
n + an−1D

n−1 + · · ·+ a1D + a0

is a linear operator. To every n-times differentiable function y, it assigns as value
the function

p(D)y = anD
ny + an−1D

n−1y + · · ·+ a1Dy + a0y

= an
dny

dxn
+ an−1

dn−1y

dxn−1
+ · · ·+ a1

dy

dx
+ a0y.

We call p(D) a linear differential operator of order n. It is the natural general-
ization of the differential operators of order 2, of the form D2 + aD+ b, which were
discussed in Section 1. [Linear differential operators of types more general than
p(D) certainly exist; e.g., see Problem 9. They are of importance in more advanced
treatments of differential equations, but we shall not study them here.]

The polynomial differential operators p(D) can be added and multiplied just
like ordinary polynomials. In particular, the following theorem follows from the
distributive laws (3.3) and the commutative law (3.5):

11.3.6. If p(t) and q(t) are polynomials and if p(t)q(t) = r(t), then

p(D)q(D) = r(D).

As an illustration, observe how (3.3) and (3.5) are used to prove the special case
of this theorem in which p(t) = at+ b and q(t) = ct+ d. First of all, we have

r(t) = p(t)q(t) = (at+ b)(ct+ d)

= act2 + bct+ adt+ bd.

Then

p(D)q(D) = (aD + b)(cD + d)

= (aD + b)cD + (aD + b)d

= aDcD + bcD + aDd+ bd

= acD2 + bcD + adD + bd

= r(D).

The proof is the same in principle for arbitrary polynomials p(t) and q(t).

It is a corollary of (3.6) that polynomial differential operators satisfy the com-
mutative law of multiplication. Thus

11.3.7. p(D)q(D) = q(D)p(D).
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For, since p(t)q(t) = q(t)p(t) = r(t), both sides of (3.7) are equal to r(D).

We begin the second part of the section by considering the differential equation

d2y

dx2
− 2

dy

dx
− 3y = e−x,

which, with the notation of differential operators, can be written

(D2 − 2D − 3)y = e−x. (11.5)

We have thus far defined the characteristic equation only for homogeneous, second-
order, linear differential equations with constant coefficients. The generalization
to nonhomogeneous and higher-order equations is: For any polynomial p(t) and
function F (x), the characteristic equation of the differential equation

p(D)y = F (x)

is the equation p(t) = 0, and the polynomial p(t) is its characteristic polynomial.
Returning to (5), we see that the characteristic polynomial, which is t2− 2t− 3,

factors into the product (t − 3)(t + 1). It follows from (3.6) that D2 − 2D − 3 =
(D − 3)(D + 1), and (5) can therefore be written

(D − 3)(D + 1)y = e−x.

Let us define the function u by setting (D+ 1)y = u. Then (5) becomes equivalent
to the pair of first-order linear equations{

(D − 3)u = e−x, (6)
(D + 1)y = u. (7)

To solve (6), we use the technique developed in Section 2. For this equation, P (x) =

−3 and Q(x) = e−x. Hence an integrating factor is e
∫
P (x)dx = e−3x, and therefore

d

dx
(e−3xu) = e−3xe−x = e−4x.

Integrating, we obtain

e−3xu =

∫
e−4xdx+ c1 = −1

4
e−4x + c1,

whence

u = e3x(−1

4
e−4x + c1) = −1

4
e−x + c1e

3x.

We now substitute this value for u in equation (7) to obtain the first-order linear
equation

(D + 1)y = −1

4
e−x + c1e

3x.

Here, P (x) = 1 and the integrating factor is ex. Accordingly, we have

d

dx
(exy) = ex(−1

4
e−x + c1e

3x)

= −1

4
+ c1e

4x.
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integration yields

exy = −1

4
x+

c1
4
e4x + c2.

Replacing c1
4 by c1, and multiplying both sides by e−x, we get finally

y =
1

4
xe−x + c1e

3x + c2e
−x.

This, where c1 and c2 are arbitrary real constants, is the general solution to the
differential equation

d2y

dx2
− 2

dy

dx
− 3y = e−x.

This example illustrates the fact that we can in principle solve any secondorder,
linear differential equation with constant coefficients provided the characteristic
polynomial is the product of linear factors. Thus, if we are given

(D2 + aD + b)y = F (x),

and if t2 + at+ b = (t− r1)(t− r2), then the differential equation can be written

(D − r1)(D − r2)y = F (x).

If u is defined by setting (D − r2)y = u, then the original second-order equation is
equivalent to the two first-order linear differential equations{

(D − r1)u = F (x),
(D − r2)y = u,

and these can be solved successively to find first u and then y.
The same technique can be applied to higher-order equations. Consider an

arbitrary polynomial

p(t) = tn + an−1t
n−1 + · · ·+ a1t+ a0,

where n > 1 and a0, ..., an−1, are real constants. In addition, we assume that p(t)
is the product of linear factors; i.e.,

p(t) = (t− r1)(t− r2) · · · (t− rn).

Let F(x) be given and consider the differential equation

p(D)y = F (x), (11.8)

which is the same as

dny

dxn
+ an−1

dn−1y

dxn−1
+ · · ·+ a1

dy

dx
+ a0y = F (x).

Since the factorization of p(t) is assumed, the differential equation can also be
written

(D − r1)(D − r2) · · · (D − rn)y = F (x).
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The functions u1, ..., un−1 are defined by

u1 = (D − r2) · · · (D − rn)y,

u2 = (D − r3) · · · (D − rn)y,

...

un−1 = (D − rn)y.

Then (8) is equivalent to the following set of first-order linear differential equations
(D − r1)u1 = F (x),
(D − r2)u2 = u1,
...
(D − rn)y = un−1,

which can be solved successively to finally obtain y.

ln Section 4 of Chapter 7 use was made of the fact that any polynomial with
real coefficients and degree at least 1 can be written as the product of linear and
irreducible quadratic factors (see page 386). Suppose ct2+dt+e is irreducible. This
is equivalent to the assertion that the discriminant d2 − 4ce is negative. According
to the quadratic formula, the two roots of the equation ct2 + dt + e = 0 are equal

to r1 = α+ iβ and r2 = α− iβ, where α = − d
2c and β =

√
4ae−d2
2c . By multiplying

and substituting these values, one can then easily verify the equation

c(t− r1)(t− r2) = ct2 + dt+ e.

Thus any irreducible quadratic polynomial with real coefficients is the product of
two linear factors with complex coefficients. It follows that, for any polynomial

p(t) = ant
n + an−1t

n−1 + · · ·+ a1t+ a0,

with real coefficients ai und with n ≥ 1 and an 6= 0, we have

p(t) = an(t− r1)(t− r2) · · · (t− rn),

where roots which are complex occur in conjugate pairs.
It is this fact which introduces the third part of this section. lt is very natural to

ask the following: If the class of possible solutions is enlarged to include complex-
valued functions of a real variable, can we proceed to solve linear differential equa-
tions with constant coefficients just as before, but with the added knowledge that
now the characteristic polynomial can always be factored into linear factors? The
answer is yes!

To justify this answer, we must of course know the definition of the derivative.
Let f be a function whose domain Q is a subset of the real numbers and whose
range is a subset of the complex numbers. Then two real-valued functions f1 and
f2 with domain Q are defined by

f1(x) = real part of f(x),

f2(x) = imaginary part of f(x).



622 CHAPTER 11. DIFFERENTIAL EQUATIONS

That is, we have f(x) = f1(x) + if2(x), for every x in Q. The derivative f ′ is
defined simply by the equation

f ′(x) = f ′1(x) + if ′2(x),

for every x for which both f ′1(x) and f ′2(x) exist. Alternatively, if we write y =
f(x), u = f1(x), and v = f2(x), then y = u+ iv, and we also use the notations

f ′(x) =
dy

dx
=
du

dx
+ i

dv

dx
= Dy = Du+ iDv.

Logically, we must now go back and check that all the formal rules for differentiation
and finding antiderivatives are still true for complex-valued functions, and the same
applies to several theorems (see, for example, Problems 10 and 11). Much of this
work is purely routine, and, to avoid an interruption of our study of differential
equations, we shall omit it.

It now follows, by factoring the operator p(D) into linear factors, that any linear
differential equation

p(D)y = F (x)

with constant coefficients can be solved. That is, it can first be replaced by an
equivalent set of first-order linear differential equations. For each of these an ex-

plicit integrating factor e
∫
P (x)dx exists, and by solving them successively, we can

eventually obtain the general solution y.

Example 225. Solve the differential equation (D2 + 1)y = 2x. Since t2 + 1 =
(t+ i)(t− i), we have

(D + i)(D − i)y = 2x.

Let (D − i)y = u, and consider the first-order equation

(D + i)u = 2x.

Since P (x) = i, an integrating factor is eix, and we obtain

d

dx
(eixu) = eix2x,

from which it follows by integrating that

eixu = 2

∫
xeixdx+ c1.

By integration by parts it can be verified that∫
xeaxdx =

xeax

a
− eax

a2
. (11.9)

In this case, a = i and we know that 1
i = −i and that i2 = −1. Hence

eixu = −2ixeix + 2eix + c1,

and so
u = −2ix+ 2 + c1e

−ix.
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It therefore remains to solve the differential equation

(D − i)y = −2ix+ 2 + c1e
−ix.

This time, an integrating factor is e−ix. Hence

d

dx
(e−ixy) = −2ixe−ix + 2e−ix + c1e

−2ix.

Integration [with a second application of (9)] yields

e−ixy = 2xe−ix − c1
2i
e−i2x + c2.

Replacing the constant − c12i by simply c1, and multiplying both sides by eix, we
obtain

y = 2x+ c1e
−ix + c2e

ix.

If the function y is real-valued, then it is easy to prove that c1 and c2 are complex
conjugates [see (4.3), page 644]. In this case c1e

−ix + c2e
ix may be replaced by

c1 cosx+c2 sinx, where now the constants c1 and c2 denote arbitrary real numbers.
We conclude that

y = 2x+ c1 cosx+ c2 sinx

is the general real-valued solution to the original differential equation

d2y

dx2
+ y = 2x.

The computations in this section were long and involved. The important fact
we have shown is that the equations can be solved by an iteration of routine steps.
As a practical matter, however, it is clear that some general computationally simple
techniques are badly needed. These will be developed in the next two sections by
breaking the problem into a homogeneous part and a nonhomogeneous part and
attacking each one separately.
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Problems

1. Find the general solution of each of the following differential equations.

(a) d2y
dx2 + dy

dx − 2y = 5e−x

(b) (D + 2)(D − 1)y = 6e−2x

(c) (D2 − 3D + 2)y = 4x+ 3

(d) d2y
dx2 + y = ex

(e) (D2 + 1)y = x2 + 1.

2. Using equations (??) and (??), prove that, if L is a linear operator, then

L(y1 − y2) = L(y1)− L(y2).

3. Show that equations (??) and (??) can be replaced by a single equation. That
is, prove that a function L is a linear operator if and only if

L(ay1 + by2) = aLy1 + bLy2.

4. Prove ??; i.e., if L1 and L2 are linear operators, then the composition L1L2

is also a linear operator.

5. Prove the second equation in ??, i.e., the distributive law (L1 + L2)L3 =
L1L3 + L2L3.

6. It might at first seem more natural to define the product of two linear operators
L1 and L2 by the equation

(L1L2)y = (L1y)(L2y).

(This is the way the product of two real-valued functions is defined.) Using
this definition, show that, if D is the derivative, the D2 is not a linear operator.

7. Let f(x) be a given function and L a linear operator. Define f(x)L by the
equation

(f(x)L)y = f(x)(Ly).

Show that f(x)L satisfies equations (??) and (??) and hence is a linear oper-
ator.

8. (a) Show that the operation of multiplication by a given function f(x) is a
linear operator. That is, prove that, if M is defined by

My = f(x)y,

then M is the linear operator.

(b) Show that the composition of a linear operator L followed by the op-
eration of multiplication by f(x) is just the operator f(x)L defined in
Problem ??.
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9. (See Problems ?? and ??.) If f(x) is a differentiable function and if D is
the derivative, then both linear operators f(x)D and Df(x) are examples of
linear differential operators more general than the type discussed in the
text. Show that

xD 6= Dx,

by applying both sides to the function y = x. Thus the commutative law of
multiplication fails.

10. Let f and g be differentiable complex-valued functions of a real variable. Show
that the ordinary product rule for differentiation is still valid; i.e., prove that

d

dx
(f(x)g(x)) =

(
d

dx
f(x)

)
g(x) + f(x)

(
d

dx
g(x)

)
.

[Hint: Let f(x) = f1(x) + if2(x) and g(x) = g1(x) + ig2(x), and apply the
definitions of the derivative and of multiplication of complex numbers.]

11. (a) Let f be a complex-valued function of a real variable which is differen-
tiable at every point x of an interval I. Show that if f ′(x) = 0, for every
x in I, then f(x) is a constant on I.

(b) Let f and g be two complex-valued functions of a real variable with
f ′(x) = g′(x) at every point x of some interval I. Show that there exists
a complex number c such that f(x) = g(x) + c, for every x in I.

12. Find the general solution of each of the following differential equations.

(a) (D − 1)2(D + 2)y = 0

(b) d3y
dx3 − d2y

dx2 − 4 dydx + 4y = 0.
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11.4 Homogeneous Differential Equations.

For a given function F (x) and a given polynomial

p(t) = tn + an−1t
n−1 + · · ·+ a1t+ a0,

let us consider the differential equation

p(D)y = F (x). (11.10)

The simplification of the theory gained by enlarging the set of possible solutions to
include complex-valued functions of a real variable was demonstrated in Section 3,
and we shall continue to use this technique. Nevertheless, our primary concern is still
that of finding real-valued solutions to real differential equations. For this reason,
we shall assume throughout that the coefficients a0, · · · , an−1 of the polynomial
p(t) are real numbers and that F (x) is a real-valued function. Associated with the
differential equation (1) is the homogeneous differential equation

p(D)y = 0, (11.11)

called the associated homogeneous equation of p(D)y = F (x). A theorem of
basic importance is the following:

11.4.1. If y0 is any particular solution of (1) and if y is the general solution of (2),
then y + y0 is the general solution of (1).

Proof. Once the statement of this theorem is understood, its proof becomes almost
a triviality. First, one should realize that, strictly speaking, the general solution of
a differential equation is the set of all its solutions. Referring to a function y as
the general solution is actually a common and very convenient misuse of language.
What it really means is that y depends not only on x; but also on one or more other
variables which are arbitrary constants of integration and can take on any real, or
complex, values. That is, we have a function ϕ(x, u1, · · · , un), and, for every set of
real (or complex) numbers c1, · · · , cn, the function y defined by

y = ϕ(x, c1, · · · , cn)

is a solution of the differential equation. Conversely, corresponding to every solution
f(x), there exist numbers c1, ..., cn such that f(x) = ϕ(x, c1, · · · , cn). Thus y, as
expressed in the above equation, does exhibit the set of all solutions.

With this understanding, it follows that (4.1) is equivalent to the following
proposition. Let y0 be an arbitrary solution of equation (1). Then:

(i) If y1 is any solution of (1), then there exists a solution y2 of (2) such that
y1 = y2 + y0

(ii) If y2 is any solution of (2), then y2 + y0 is a solution of (1).

The proofs use only the fact that p(D) is a linear operator. To prove (i), we set
y2 = y1 − y0 and check that y2 is a solution of (2). We get

P (D)y2 = p(D)(y1 − y0) = p(D)y1 − p(D)y0

= F (x)− F (x) = 0.
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For (ii), we need only verify that y2 + y0 is a solution of (1). We have

P (D)(y2 + yy0) = P (D)y2 + p(D)y0

= 0 + F (x) = F (x),

and the proof of (4.1) is complete.

As a result of this theorem, our approach to the problem of solving the differen-
tial equation p(D)y = F (x) will be divided into two parts. We shall first concentrate
on finding the general solution of the associated homogeneous equation p(D)y = 0,
and then consider methods of finding a particular solution to the original nonho-
mogeneous equation. The remainder of this section will be devoted to the first
part.

We begin with the second-order linear homogeneous differential equation with
constant coefficients:

(D2 + aD + b)y = 0. (11.12)

The general solution of this equation has been presented earlier (see page 617),
but without proof. We shall supply the proof now by factoring the linear operator
D2 + aD + b and solving the equation by the iterative technique of Section 3. The
characteristic polynomial can be written as the product

t2 + at+ b = (t− r1)(t− r2),

where the roots r1 and r2 are either both real or distinct conjugate complex numbers.
Equation (3) can therefore be written

(D − r1)(D − r2)y = 0. (11.13)

11.4.2. The general solution of the differential equation (3) [or equivalently, of (4)]
is:

(i) y = c1e
r1x + c2e

r2x, if r1 6= r2, or

(ii) y = (c1x+ c2)erx, if r1 = r2 = r,

where c1 and c2 are arbitrary complex numbers.

Note that these solutions include all the real-valued ones, since the set of all real
numbers is a subset of the set of all complex numbers.

Proof. Let y be an arbitrary solution of (4). We define the function u by setting
u = (D − r2)y. Then (4) is equivalent to the two first-order linear equations:{

(D − r1)u = 0,
(D − r2)y = u.

An integrating factor for the first of these is e−r1x, because, in the notation of
first-order linear equations, we have P (x) = −r1. It follows that

d

dx
(e−r1xu) = 0.
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Integration yields e−r1xu = c1, whence

u = c1e
−r1x, for some complex number c1.

Substituting the expression for u into the second differential equation above, we
obtain

(D − r2)y = c1e
r1x.

This time an integrating factor is e−r2x, and so

d

dx
(e−r2xy) = c1e

(r1−r2)x. (11.14)

We now distinguish two cases.
Case 1. r1 6= r2. Integration of (5) yields

e−r2xy =
1

r1 − r2
c1e

(r1−r2)x + c2,

for some complex number c2. Multiplying both sides by er2x and replacing c1
r1−r2

by simply c1, we get
y = c1e

r1x + c2e
r2x.

Case 2. r1 = r2 = r. Then e(r1−r2)x = e0 = 1, and (5) reduces to

d

dx
(e−rxy) = c1.

Integrating, we obtain e−rxy = c1x+c2, for some complex number c2, and it follows
that

y = (c1x+ c2)erx.

We have now proved that, if y is an arbitrary solution of the original differential
equation (4), then there exist complex numbers c1 and c2 (either or both of which
may perfectly well be real every real number is a special case of a complex number)
such that y is of form (i) if r1 6= r2 and of form (ii) if r1 = r2 = r. Conversely, it is
a simple matter to check by substitution that, for any complex numbers c1 and c2,
the function c1e

r1x + c2e
r2x is a solution if r1 6= r2 and the function (c1x + c2)erx

is a solution if r1 = r2 = r. This completes the proof of the theorem.

How can we use Theorem (4.2) to obtain the general real-valued solution of the
differential equation (D2 + aD + b)y = (D − r1)(D − r2)y = 0? Suppose, to begin
with, that r1 and r2 are both real and that r1 6= r2. It follows from part (i) of
Theorem (4.2) that the function defined by

y = c1e
r1x + c2e

r2x, for any two real numbers c1 and c2, (11.15)

is a solution, and it is certainly real-valued. There is only one obstacle in the way
of the conclusion that (6) is the general real-valued solution. This is the a priori
possibility that there might exist complex numbers c1 and c2, which are not both
real, but are such that c1e

r1x+c2e
r1x is a real-valued function. This, in fact, cannot

happen, as the following argument shows: Let c1 = γ1,+iδ1, and c2 = γ2 + iδ2.
Since

(γ1 + iδ1)er1x + (γ2 + iδ2)er2x
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is by assumption real-valued, then so is

(γ1 + iδ1)er1x + (γ2 + iδ2)er2x − γ1er1x − γ2er2x = i(δ1e
r1x + δ2e

r2x).

Hence

δ1e
r1x + δ2e

r2x = 0,

and so

δ1e
(r1−r2)x = −δ2.

This equation holds for all real values of x. But, since r1 − r2 6= 0, the left side
has constant value only if δ1 = 0, which in turn immediately implies that δ2 = 0.
Hence δ1 = δ2 = 0, and the argument is complete. With this problem disposed of,
it now follows from (4.2)(i) that, if r1 and r2 are real and unequal, then the general
real-valued solution of the differential equation is given by (6).

A similar situation arises if r1 = r2 = r. In this case r must be a real number,
and it is a corollary of part (ii) of Theorem (4.2) that the function defined by

y = (c1x+ c2)erx, for any two real numbers c1 and c2, (11.16)

is a solution, and, of course, it is real-valued. Again, we must show that it is not
possible to have complex numbers c1 and c2, not both real, such that (c1x+ c2)erx

is a real-valued function. The proof of this fact is similar to that of the analogous
result in the preceding paragraph, and we leave it as an exercise. It then follows
from (4.2)(ii) that the general real-valued solution is given by (7).

The third and final possibility is that the roots r1 and r2 of the characteristic
polynomial are distinct conjugate complex numbers. In this case, we need the
lemma:

11.4.3. If r1 = α+ iβ, r2 = α− iβ, and β 6= 0, then the function defined by

y = c1e
r1x + c2e

r2x for arbitrary complex numbers c1 and c2,

is real-valued if and only if c1 and c2 are complex conjugates. Moreover, if c1 = γ+iδ
and c2 = −iδ, then

y = eαx(2γ cosβx− 2δ sinβx).

A proof in the “if” direction is given in detail in (8.3) on page 347. In addition,
the above equation giving y in terms of α, β, γ, and δ, is also derived there. The
“only if” direction can be proved in the same direct manner as the analogous results
for the other two cases: Let c1 = γ1 + iβ1 and c2 = γ2 + iδ2, substitute these values
into c1e

r1x + c2e
r2x, and impose the condition that y is real-valued. It will then

follow that γ1 = γ2 and that δ1 = −δ2. Again, we leave this task as an exercise.
Let us replace the real constants 2γ and −2δ which appear in the equation in the

last line of (4.3) by c1 and c2, respectively. It is then a corollary of (4.3) and (4.2)(i)
that the general real-valued solution of the differential equation (D2 + aD + b)y =
(D − r1)(D − r2)y = 0 is

y = eαx(c1 cosβx+ c2 sinβx), for any two real numbers c1 and c2, (11.17)

provided r1 = α+ iβ, r2 = α− iβ, and β 6= 0.
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This completes the proof that second-order, homogeneous, linear differential
equations with real constant coefficients have the general solutions first described
in Section 8 of Chapter 6 and again in Section 1 of this chapter.

The higher-order homogeneous equations can be solved in the same way. If

p(t) = tn + an−1t
n−1 + · · ·+ a1t+ a0,

then the general solution of the differential equation p(D)y = 0 can be obtained
by first factoring p(D) to obtain an equivalent set of n first-order linear differential
equations which are then solved successively to find y. As an illustration, we shall
solve a third-order equation by this method. Following this example, we shall give
(without proof) the form of the general real-valued solution for arbitrary order n.

Example 226. Find the general solution of the differential equation

d3y

dx3
− 3

d2y

dx2
+ 4y = 0.

The characteristic polynomial is p(t) = t3−3t2 + 4. Substituting -1 for t, we obtain
p(−1) = 0, from which it follows that (t + 1) is a factor of p(t). Dividing, we find
that

t3 − 3t2 + 4 = (t+ 1)(t2 − 4t+ 4) = (t+ 1)(t− 2)2.

Hence the differential equation can be written

(D + 1)(D − 2)2y = 0.

We set u1 = (D − 2)2y and u2 = (D − 2)y and, by so doing, obtain the equivalent
set of three first-order equations (D + 1)u1 = 0,

(D − 2)u2 = u1,
(D − 2)y = u2.

The general solution of the first of these is u1 = c1e
−x, and the second equation is

therefore
(D − 2)u2 = c1e

−x.

An integrating factor is e−2x, and so

d

dx
(e−2xu2) = e−2xc1e

−x = c1e
−3x.

Hence
e−2xu2 = −c1

3
e−3x + c2,

from which it follows by multiplying both sides by e2x and replacing − c13 by simply
c1 that

u2 = c1e
−x + c2e

2x.

The third equation is now seen to be

(D − 2)y = c1e
−x + c2e

2x.
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Again, e−2x is an integrating factor, and we have

d

dx
(e−2xy) = e−2x(c1e

−x + c2e
2x) = c1e

−3x + c2.

Integration yields

e−2xy = −c1
3
e−3x + c2x+ c3.

Multiplying both sides by e2x and replacing − c13 by simply c1 again, we have

y = c1e
−x + (c2x+ c3)e2x,

where c1, c2, and c3 are arbitrary real constants. This is the general realvalued
solution and completes the example.

We now give the general solution for arbitrary order n. Let

p(t) = tn + an−1t
n−1 + · · ·+ a1t+ a0,

and suppose that factorization into real-valued irreducible factors yields the product

p(t) = (t− r1)m1 · · · (t− rk)mk(t2 + c1t+ d1)n1 · · · (t2 + clt+ dl)
nl,

where m1, ...,mk and n1, ..., nl are positive integers, the factors t−ri are all distinct,
and the factors t2 + cjt + dj are all distinct. For each factor (t − ri)mi , define the
function

fi(x) = (ci1x
mi−1 + ci2x

mi−2 + · · ·+ Cimi)e
rix,

for arbitrary real numbers Ci1, ..., Cimi . (9)

For each factor (t2+cjt+dj)
nj , let αj+iβj and αj−iβj be the roots of t2+cjt+dj ,

and define the function

gj(x) = (Aj1x
nj−1 +Aj2x

nj−2 + · · ·+Ajnj)e
αjx cosβjx

+ (βj1x
nj−1 +Bj2x

nj−2 + · · ·+Bjnj )e
αjx sinβjx,

for arbitrary real numbers Aj1, ..., Ajnj and Bj1, ..., Bjnj . (10)

Then it can be proved that

11.4.4. The general real-valued solution of the homogeneous differential equation
p(D)y = 0 is the sum

y = f1(x) + · · ·+ fk(x) + g1(x) + · · ·+ gl(x).

Note that, since m1 + · · ·+mk + 2n1 + · · ·+ 2nl = n, the number of arbitrary
constants in the general solution is equal to n, the order of the differential equation.

Example 227. Find the general solution of the differential equation

(D + 2)(D − 5)3(D2 +D + 1)2y = 0.
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This is an equation of order 8. The polynomial t2 + t + 1 is irreducible with roots

equal to − 1
2 + i

√
3
2 and − 1

2 − i
√
3
2 . It follows directly from (4.4) that the general

real-valued solution is

y = C1e
−2x + (C2x

2 + C3x+ C4)e5x

+(C5x+ C6)e−(1/2)x cos

√
3

2
x+ (C7x+ C8)e−(1/2)x sin

√
3

2
x,

for any set of real numbers C1, C2, . . . , C8.
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Problems

1. Find the general real-valued solution of each of the following differential equa-
tions.

(a) d2y
dx2 − 6 dydx − 7y = 0

(b) d2y
dx2 + 6 dydx + 9y = 0

(c) (D2 + 6D + 5)y = 0

(d) (D2 − 2D + 10)y = 0

(e) (4D2 + 4D − 3)y = 0

(f) d2y
dx2 + 6 dydx = 0

(g) (D2 + 2D + 6)y = 0

(h) 4 d
2y
dx2 + 4 dydx + y = 0

(i) d2y
dt2 + 4dydt + 5y = 0

(j) d2x
dt2 + dx

dt + x = 0.

2. Show by substitution that the function defined by y = (c1x + c2)erx is a
solution of the differential equation (D − r)2y = 0.

3. Let r be a real number, and c1 and c2 complex numbers. Prove that, if
(c1x+ c2)erx is a real-valued function, then c1 and c2 must both be real.

4. Let r1 = α+ iβ and r2 = α− iβ, where α and β are real numbers and β 6= 0.
Prove that, for any two complex numbers c1 and c2, if the function

c1e
r1x + c2e

r2x

is real-valued, then c1 and c2 are complex conjugates of each other.

5. For each of the following differential equations, find the general real-valued
solution by first finding an equivalent set of first-order linear differential equa-
tions and then solving these successively to find y.

(a) (D + 1)(D − 2)(D − 3)y = 0.

(b) (D − 2)(D2 − 6D + 9)y = 0.

(c) (D− a)(D− b)(D− c)y = 0, where a, b, and c are distinct real numbers.

6. Find the general real-valued solution of the differential equation

(D2 + 4)(D − 3)y = 0

by solving an equivalent pair of equations. Use the fact that we have already
derived the general real-valued solution of the second-order, homogeneous,
linear differential equation with constant coefficients.

7. Using Theorem ??, which gives the general real-valued solution of the nth-
order differential equation p(D)y = 0, solve each of the following.

(a) (D − 2)(D + 1)2y = 0
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(b) d3y
dx3 − 7 dydx + 6y = 0

(c) (D − 3)2(D + 1)(D − 5)y = 0

(d) D(D2 + 3D − 4)y = 0

(e) (D + 2)3(D − 1)y = 0

(f) (D + 3)2(D2 + 3)y = 0

(g) d3y
dx3 + d2y

dx2 − 2 dydx = 0

(h) (D2 + 2D + 2)2y = 0

(i) (D + 1)(D2 + 2D + 2)2y = 0

(j) D2(D2 + 2D + 2)2y = 0

(k) d4y
dx4 − 81y = 0

(l) d3y
dx3 + d2y

dx2 + dy
dx + y = 0.
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11.5 Nonhomogeneous Equations.

We continue to consider a given real-valued function F (x), a given polynomial

p(t) = tn + an−1t
n−1 + · · ·+ a1t+ a0,

with real coefficients, and the resulting differential equation

p(D)y = F (x). (11.18)

In this section our objective is to develop techniques for solving many examples of
(1) quickly. This is in contrast to Section 3, where it is demonstrated that (1) can
always be solved by successively solving first-order linear equations. The task of
solving all these first-order equations can be extremely tedious, and we therefore
look for a simpler method.

The technique to be discussed is based on two premises. The first is the fact,
demonstrated in Section 4, that one can write down the general solution of the
associated homogeneous equation

p(D)y = 0 (11.19)

immediately, once p(t) has been factored into irreducible polynomials. The second
is Theorem (4.1), page 640, which asserts that the general solution of (1) is equal
to the general solution of (2) plus any particular solution of (1). Hence the problem
of solving (1) reduces to that of finding any one solution.

As an introductory example, consider the differential equation

(D2 + 4D + 3)y = 3x2 + 2x− 6. (11.20)

The characteristic polynomial is t2 + 4t + 3, which factors into the product (t +
1)(t+ 3). The associated homogeneous equation is therefore

(D + 1)(D + 3)y = 0,

and its general solution, which we shall denote by yh, is given by

yh = c1e
−x + c2e

−3x,

for arbitrary real numbers c1 and c2. To obtain the general solution of (3), it remains
to find a particular solution yp, and any one is as good as any other. If we can find
one, it follows by Theorem (4.1) that yh + yp is the general solution of (3).

Since the derivatives of polynomials are polynomials and since the right side of
(3) is the polynomial 3x2 + 2x− 6, it is natural to seek a polynomial solution. Let
us set

yp = Anx
n +An−1x

n−1 + · · ·+A0, with An 6= 0,

and try to find n and coefficients An, ..., A0 so that (D2 + 4D+ 3)yp = 3x2 + 2x−6.
Since Dyp is a polynomial of degree n−1, and D2yp is a polynomial of degree n−2,
it follows that (D2 + 4D+ 3)yp is a polynomial of degree n. If this polynomial is to
equal 3x2 + 2x− 6, for every x, then it must be the case that n = 2. Hence we let

yp = Ax2 +Bx+ C.
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Then

Dyp = 2Ax+B,

D2yp = 2A,

and so

(D2 + 4D + 3)yp = 2A+ 4(2Ax+B) + 3(Ax2 +Bx+ C)

= 3Ax2 + (8A+ 3B)x+ 2A+ 4B + 3C.

The right side of the preceding equation is equal to 3x2+2x−6, for all real numbers
x, if and only if

3 = 3A,

2 = 8A+ 3B,

−6 = 2A+ 4B + 3C.

Solving these equations, we get A = 1, B = −2, and C = 0. The function

yp = x2 − 2x

is therefore a particular solution of (3). It follows from Theorem (4.1) that

y = yh + yp = c1e
−x + c2e

−3x + x2 − 2x

is the general solution, where c1, and c2 are arbitrary real numbers.
A second example is the differential equation

(D2 + 4)y = 3e5x. (11.21)

The characteristic polynomial t2 + 4 is irreducible with roots 2i and −2i, and the
general solution yh of the associated homogeneous equation (D2 + 4)y = 0 is there-
fore given by

yh = c1 cos 2x+ c2 sin 2x,

for arbitrary real numbers c1 and c2. A particular solution yp of (4) will be any
function with the property that its second derivative plus four times itself is equal
to 3e5x. Since the derivative of an exponential function is again an exponential
function, an intelligent guess is that a particular solution might be a function of the
form

yp = Ae5x.

Trying this, we obtain

Dyp = 5Ae5x,

D2yp = 25Ae5x,

and so
(D2 + 4)yp = 25Ae5x + 4Ae5x = 29Ae5x.

Obviously, 29Ae5x = 3e5x if and only if A = 3
29 . Hence a particular solution of the

differential equation (D2 + 4)y = 3e5x is

yp =
3

29
e5x,
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and it is a consequence of Theorem (4.1) that the general solution is

y = yh + yp = c1 cos 2x+ c2 sin 2x+
3

29
e5x,

where c1 and c2 are arbitrary real constants.
The method of finding particular solutions used in the above two examples is

sometimes called the method of undetermined coefficients. For a third example,
consider the differential equation

(D2 + 4)y = 7 sin 2x. (11.22)

The associated homogeneous equation (D2 + 4)y = 0 is the same as for equation
(4), and its general solution is

yh = c1 cos 2x+ c2 sin 2x.

In attempting to find a particular solution of (5), one might reason from the expe-
rience of the preceding examples as follows: The right side is the function 7 sin 2x.
Since the derivatives of any function which is a linear combination of sines and
cosines are functions of the same type, a reasonable candidate for a particular so-
lution is some function yp of the form

yp = A sin 2x+B cos 2x.

However, when we try to determine values of the coefficients A and B which will
make yp a solution, we find that (D2 + 4)yp = 0. This is actually not surprising,
since any function of this type has already been shown to be a solution of the
associated homogeneous equation. Hence we must try some other form for yp.

With some ingenuity and willingness to experiment, it is not at all impossible to
discover a particular solution to (5). Nevertheless, this example serves to illustrate
the desirability of analyzing our technique to reduce the amount of inspiration
necessary. For this purpose, we again consider the differential equation (1); i.e.,

p(D)y = F (x)

with given function F (x) and polynomial p(t) of degree n. To apply the method of
undetermined coefficients, it is necessary that the right side of (1) is itself a solution
of a homogeneous linear differential equation with constant coefficients. Hence in
the discussion which follows, we make the assumption that there exists a polynomial
q(t) of degree m such that q(D)F (x) = 0.

Such a linear differential operator q(D) is sometimes called an annihilator of
the right side of (1). For the differential equation (3), a suitable annihilator is the
operator D3, since

D3(3x2 + 2x− 6) = 0.

For equation (5), whose right side is the function 7 sin 2x, we have D(7 sin 2x) =
14 cos 2x and D2(7 sin 2x) = D(14 cos 2x) = −4(7 sin 2x). Hence

(D2 + 4)7 sin 2x = 0,

and thus D2 + 4 is an annihilator of the right side. Similarly, it is easy to see that

(D − 5)3e5x = 0,
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from which it follows that D − 5 is an annihilator of the right side of equation (4).
Returning to the general case, we first observe that, if y is an arbitrary solution

of the differential equation (1), then

q(D)p(D)y = q(D)F (x) = 0.

That is, every solution of (1) is also a solution of the equation

q(D)p(D)y = 0, (11.23)

which is homogeneous and of order m+n. Let us denote by y∗ the general solution
of (6), and by yh the general solution of the associated homogeneous equation of
(1), i.e., of the equation p(D)y = 0. It is clear that yh is also a solution of (6). We
know that y∗ contains m+ n arbitrary constants and that yh contains n. It follows
from the form of the general solution of a homogeneous linear differential equation
with constant coefficients, as presented in Theorem (4.4), page 646, that we can
write

y∗ = yh + u, (11.24)

where u contains m arbitrary constants. It will follow that these are the “undeter-
mined coefficients” of the particular solution we are seeking.

Let y1 be a solution of (1); i.e., y is some function with the property that
p(D)y1 = F (x). Then yis also a solution of (6), and so there exists a set of values
for the n constants in yh and for the m constants in u such that, with these values
substituted, we have

y1 = yh + u.

Hence

F (x) = p(D)y1 = p(D)(yh + u)

= p(D)yh + p(D)u

= 0 + p(D)u

= p(D)u.

Thus we have proved that there exists a set of values for the m constants in u such
that, with these values substituted, the resulting function u is a solution of the
differential equation (1). Moreover, it can be proved that there is only one such
set of values. Hence, as the following examples will illustrate, these “undetermined
coefficients” are uniquely determined by the equation

p(D)u = F (x). (11.25)

We take for the particular solution yp the function u specified by equations (7) and
(8).

Example 228. Find the general solution of the differential equation (5), i.e., of

(D2 + 4)y = 7 sin 2x.

As indicated earlier, the general solution of the associated homogeneous equation
(D2 + 4)y = 0 is

yh = c1 cos 2x+ c2 sin 2x.
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Moreover, we have observed that (D2 + 4)7 sin 2x = 0, and therefore the operator
D2 + 4 is an annihilator of the right side. Hence we consider the homogeneous
fourth-order equation

(D2 + 4)(D2 + 4)y = (D2 + 4)2y = 0.

The general solution of this equation is given by

y∗ = (Ax+B) cos 2x+ (Cx+D) sin 2x

= B cos 2x+D sin 2x+Ax cos 2x+ Cx sin 2x,

for arbitrary real numbers, A,B,C, and D. It is clear that

yh = B cos 2x+D sin 2x,

and we therefore set
u = Ax cos 2x+ Cx sin 2x.

It follows that

Du = A cos 2x− 2Ax sin 2x+ C sin 2x+ 2Cx cos 2x,

and

D2u = −2A sin 2x− 2A sin 2x− 4Ax cos 2x

+ 2C cos 2x+ 2C cos 2x− 4Cx sin 2x

= (4C − 4Ax) cos 2x+ (−4A− 4Cx) sin 2x.

Hence

(D2 + 4)u = (4C − 4Ax+ 4Ax) cos 2x+ (−4A− 4Cx+ 4Cx) sin 2x

= 4C cos 2x− 4A sin 2x.

Setting (D2 + 4)u = 7 sin 2x, we obtain

4C cos 2x− 4A sin 2x = 7 sin 2x.

Since this equation is to be true for all real values of x, we conclude that 4C = 0
and −4A = 7. Thus C = 0 and A = − 7

4 . It follows that the function u, with these
values substituted for the constants, is a solution of the given differential equation.
We therefore set

yp = −7

4
x cos 2x,

and obtain

y = yh + yp = c1 cos 2x+ c2 sin 2x− 7

4
x cos 2x

as the general solution.

Example 229. Find the general solution of the differential equation

d2y

dx2
+
dy

dx
− 2y = 5e−2x.
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The characteristic polynomial is t2 + t − 2 = (t + 2)(t − 1), and the differential
equation can therefore be written

(D2 +D − 2)y = (D + 2)(D −Dy = 5e−2x.

The general solution of the associated homogeneous equation

(D + 2)(D − 1)y = 0

is given by

yh = c1e
−2x + c2e

−2x.

The right side of the nonhomogeneous equation is the function 5e−2x. SinceD(5e−2x) =
−2(5e−2x), it follows that

(D + 2)5e−2x = 0,

and so D+ 2 is an annihilator. We therefore consider the third-order homogeneous
equation

(D + 2)(D + 2)(D − 1)y = (D + 2)2(D − 1)y = 0,

whose general solution is

y∗ = (Ax+B)e−2x + Cex,

for any real numbers A,B, and C. Recognizing that Be−2x + Cex = yh, we set

u = Axe−2x.

The constant A is evaluated by setting (D2 + D − 2)u = 5e−2x. Differentiating to
obtain the left side, we get

Du = Ae−2x − 2Axe−2x,

D2u = −2Ae−2x − 2Ae−2x + 4Axe−2x

= −4Ae−2x + 4Axe−2x.

Hence

(D2 +D − 2)u = −4Ae−2x + 4Axe−2x +Ae−2x − 2Axe−2x − 2Axe−2x

= −3Ae−2x.

We therefore obtain the equation −3Ae−2x = 5e−2x, which implies that A = − 5
3 .

Hence the function u obtained by substituting this value for A is a particular solu-
tion. Thus we take

yp = −5

3
xe−2x,

and it follows that the general solution is given by

y = yh + yp = c1e
−2x + c2e

x − 5

3
xe−2x,

for arbitrary real numbers c1 and c2.
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Example 230. Solve the differential equation

D3(D + 2)y = 8x+ 1.

The characteristic polynomial is t3(t + 2), whose roots 0 and −2 occur with mul-
tiplicities three and one, respectively. It follows that the general solution of the
associated homogeneous equation is

yh = (c1x
2 + c2x+ c3)e0x + c4e

−2x

= c1x
2 + c2x+ c3 + c4e

−2x.

The right side of the given nonhomogeneous equation is 8x + 1, and the operator
D2 is an annihilator, since D2(8x + 1) = 0. Hence we consider the sixth-order
homogeneous equation

D2D3(D + 2)y = D5(D + 2)y = 0,

the general solution of which is

y∗ = Ax4 +Bx3 + Cx2 +Dx+ E + Fe−2x.

It is obvious that yh = Cx2 +Dx+ E + Fe−2x, and we set

u = Ax4 +Bx3.

It follows that

Du = 4Ax3 + 3Bx2,

D2u = 12Ax2 + 6Bx,

D3u = 24Ax+ 6B,

D4u = 24A,

and so

D3(D + 2)u = D4u+ 2D3u

= 24A+ 48Ax+ 12B

= 48Ax+ 24A+ 12B.

Setting D3(D + 2)u = 8x+ 1, we obtain the equation

48Ax+ 24A+ 12B = 8x+ 1,

which is true for all real values of x if and only if A = 1
6 and B = − 1

4 . It follows
that a particular solution of the differential equation

D3(D + 2)y = 8x+ 1

is defined by

yp =
1

6
x4 − 1

4
x3,

and the general solution is, therefore,

y = yh + yp = c1x
2 + c2x+ c3 + c4e

−2x +
1

6
x4 − 1

4
x3,

for arbitrary real numbers c1, c2, and c3, and c4.
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The method of undetermined coefficients which we have studied in this section
is not applicable to all linear differential equations with constant coefficients. For
example, it will not work for the equation (D2 + 2)y = tanx, because there is no
polynomial q(t) with the property that q(D) tanx = 0. Of course, this equation
can be solved by replacing it by two first-order linear equations and solving these
successively as in Section 3. It can also be solved by another well-known technique,
called the method of variation of parameters, which we shall not discuss in this
book. Finally, it is important to realize that there exist tables in which particular
solutions of the equation p(D)y = F (x) are tabulated for a variety of functions F (x).
In particular, see pages 112 to 114 of the book by E. J. Cogan and R. Z. Norman,
Handbook of Calculus, Difference and Differential Equations, Prentice-Hall, 2nd ed.,
1963.
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Problems

1. For each of the following differential equations, a particular solution can be
found by inspection. Obtain such a solution yp, and also find the general
solution.

(a) (D2 + 3D − 10)y = 5

(b) (D2 + 1)y = 2x

(c) d2y
dx2 − 4y = 12x− 20

(d) d2y
dx2 + dy

dx − 2y = −2x2 + 6x− 4

(e) (D2 − 2D − 3)y = ex

(f) d2y
dx2 − 2 dydx + y = 8e3x

(g) D(D2 − 9)y = 2e−x

(h) (D2 + 4)y = 3 sinx

(i) (D2 + 4)y = 3 sinx+ 4x+ 8

(j) d2y
dx2 + 3 dydx = 5 cosx− 5 sinx

(k) (D2 + 3)y = 5 cos 3x

(l) (D2 + 2D − 2)y = 13 cos 2x.

2. Find the particular solution f(x) of the differential equation (D2 + 1)y = 2x
which has the property that f(0) = 3 and f ′(0) = 2. (Hint: Find the general
solution first and then apply the given boundary conditions to find the values
of the constants.)

3. Find the particular solution y(x) of the differential equation

d2y

dx2
+ 2

dy

dx
+ 2y = 5e2x

with the property that y(0) = 1
2 and y′(0) = 1

2 .

4. The current i in a given alternating-current circuit is a function of time t and
is governed by the differential equation

d2i

dt2
+
di

dt
+ 5i = 12e−t.

Find i as a function of t, if i = 0 and di
dt = 6 when t = 0.

5. Find the general solution of each of the following differential equations.

(a) (D − 2)2y = 4x2 − 5

(b) (D2 − 3D + 2)y = 4x+ 3

(c) d2y
dx2 + dy

dx − 2y = 5e−x

(d) D(D − 2)y = 6x2 + 2x− 6

(e) (D2 +D − 2)y = 6e−2x



644 CHAPTER 11. DIFFERENTIAL EQUATIONS

(f) (D2 +D − 2)y = 6e−2x + 2x− 4

(g) (D2 +D − 2)y = 6e−2x + 15ex

(h) D2(D + 3)y = 5x− 2

(i) d2y
dx2 + 4y = 5 cos 3x

(j) d2y
dx2 + 9y = 2 sin 3x

(k) (D2 + 1)y = 10 sinx+ 3e−x

(l) (D2 + 1)y = 4 sinx+ 8 cosx

(m) (D2 − 2D + 1)y = 3ex sinx

(n) (D2 + 2D + 2)y = 3ex cosx.
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11.6 Hyperbolic Functions.

In solving linear differential equations, we have encountered many combinations of
er1x and er2x. Among these, two particular linear combinations occur sufficiently
often that they have been given special names. These are the two functions 1

2e
x +

1
2e
−x and 1

2e
x − 1

2e
−x.

Let us look at some of the properties of these two functions, which motivate
their names. First, we observe that each is the derivative of the other:

d

dx
(
1

2
ex +

1

2
e−x) =

1

2
ex − 1

2
e−x,

d

dx
(
1

2
ex − 1

2
e−x) =

1

2
ex +

1

2
e−x.

This fact implies, of course, that each function is its own second derivative. There
is a clear analogy here with the trigonometric functions cosine and sine, each of
which is, up to sign, the derivative of the other and each of which is the negative
of its own second derivative.

The result of squaring these two functions is

(
1

2
ex +

1

2
ex)2 =

1

4
e2x +

1

2
+

1

4
e−2x,

(
1

2
ex − 1

2
ex)2 =

1

4
e2x +

1

2
+

1

4
e−2x,

from which it follows that

(
1

2
ex +

1

2
e−x)2 − (

1

2
ex − 1

2
e−x)2 = 1. (11.26)

Thus the difference of their squares is equal to 1, and this fact is analogous to the
trigonometric identity cos2 x+ sin2 x = 1. It is a consequence of equation (1) that,
for every real number t, the ordered pair

(x, y) = (
1

2
et +

1

2
e−t,

1

2
et − 1

2
e−t)

satisfies the equation x2 − y2 = 1 of an equilateral hyperbola. Similarly, we know
that, for every real number t, the ordered pair

(x, y) = (cos t, sin t)

is a point on the unit circle x2 + y2 = 1. With this motivation, we define the
hyperbolic cosine, abbreviated cosh, and the hyperbolic sine, abbreviated sinh,
by setting

coshx = 1
2e
x + 1

2e
−x,

sinhx = 1
2e
x − 1

2e
x, for every real number x.

(11.27)

It is trivial to verify that

11.6.1.

cosh(−x) = coshx,

sinh(−x) = − sinhx, for every real number x.
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Thus, like their respective trigonometric counterparts, the hyperbolic cosine is an
even function, and the hyperbolic sine is an odd function.

Equation (1) now becomes the identity

11.6.2.
cosh2 x− sinh2 x = 1, for every real number x,

and we have also already established the two derivative formulas

11.6.3.
d

dx
coshx = sinhx,

and

11.6.4.
d

dx
sinhx = coshx.

Sinee each of the two functions, cosh and sinh, is equal to its own second deriva-
tive, eaeh is a solution of the differential equation (D2 − 1)y = 0. More generally,
the functions cosh kx and sinh kx, where k is an arbitrary real constant, are both
solutions of the differential equation

(D2 − k2)y = 0. (11.28)

From the linearity of the differential operator D2 − k2 it follows that the function
defined by

y = c1 cosh kx+ c2 sinh kx, (11.29)

for any two real numbers c1 and c2, is also a solution. In fact, (4) is an alternative
form of the general solution of the differential equation (3).

To prove this faet, let y0 be an arbitrary solution of (3). The characteristic
polynomial is t2 − k2, which equals the product (t − k)(t + k). Henee there exist
real numbers A and B such that

y0 = Aekx +Be−kx.

However, we have

cosh kx+ sinh kx =
ekx

2
+
e−kx

2
+
ekx

2
− e−kx

2
= ekx,

cosh kx− sinh kx =
ekx

2
+
e−kx

2
− ekx

2
+
e−kx

2
= e−kx

It follows that

y0 = A(cosh kx+ sinh kx) +B(cosh kx− sinh kx)

= (A+B) cosh kx+ (A−B) sinh kx,

which is of the form of (4). This completes the proof.
In drawing the graphs of the hyperbolic functions, we make use of the fact that

cosh is an even function, and sinh is an odd function. In addition, each of the
following simple results follows quickly from the definition of the relevant function:
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11.6.5. 

(i) cosh 0 = 1,

(ii) sinh 0 = 0,

(iii) coshx > 0, for every real number x,

(iv) sinhx = 0 if and only if x = 0,

(v) sinhx > 0, for every x > 0.

Applying these facts to the first and second derivatives, we conclude that the
graph of sinh x has positive slope everywhere, has therefore no local maximum or
minimum points, and passes through the origin with slope 1. Moreover, it is concave
upward if x is positive, is concave downward if x is negative, and as a result has
one point of inflection at the origin. Similarly, the graph of cosh x has positive
slope if x is positive, negative slope if x is negative, and one critical point at (0, 1).
It is concave upward everywhere, from which it follows that there are no points of
inflection and the critical point at (0, 1) is a local minimum. The graphs of the two
functions are drawn in the same xy-plane in Figure 2.

The curve which is the graph of the equation y = coshx is called a catenary.
More generally, a catenary is the graph of an equation of the form y = a cosh(xa ),
where a is a nonzero constant. The word comes from the a latin word meaning
“chain,” and it can be shown that, if a chain or cable with a uniform weight per unit
length is suspended between two points, then it hangs in the shape of a catenary.

In a manner completely analogous to that for defining the other four trigono-
metric functions from the sine and cosine, we define four other hyperbolic functions.
They are the hyperbolic tangent, denoted by tanh; the hyperbolic secant, de-
noted by sech; the hyperbolic cosecant, denoted by csch; and the hyperbolic
cotangent, denoted by cotta. The definitions are

tanhx = sinh x
cosh x , sech x = 1

cosh x

cothx = cosh x
sinh x , csch x = 1

sinh x .
(11.30)

In the problems at the end of the section you are asked to find the derivatives of
these functions. These derivative formulas, and also the many identities among the
hyperbolic functions, are all closely akin to those for the trigonometric functions.

The inverse hyperbolic functions are also defined. For example, y is the inverse
hyperbolic cosine of x if and only if x is the hyperbolic cosine of y. That is,

y = arccosh x if and only if x = cosh y.

The domain of the inverse hyperbolic cosine arccosh is the set of all real numbers
greater than or equal to 1, and the range is chosen to be the set of all nonnegative
real numbers. The definitions of the other inverse hyperbolic functions follow the
same pattern.
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Figure 11.2:
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Problems

1. Find the following derivatives.

(a) d
dx cosh 5x

(b) d
dx (cosh2 3x+ sinh2 3x)

(c) d
dx ln cosh(x2 + 1)

(d) d
dx sinh

√
x2 + 1

(e) d
dx tanhx

(f) d
dx sech x

(g) d
dxcsch x

(h) d
dx cothx

(i) d
dt tanh frac11 + t2

(j) d
dxa cosh

(
x
a

)
.

2. Find the following integrals.

(a)
∫

sinh 7x dx

(b)
∫

cosh t
2 dt

(c)
∫

sinh 3x cosh3 3x dx

(d)
∫

tanhx dx

(e)
∫

sech 2x
tanh x dx

(f)
∫

2x sinh(2x2 + 1) dx

(g)
∫

tanh5 2xsech 22x dx

(h)
∫

cothx ln sinhx dx

(i)
∫

cosh2 x dx

(j)
∫

sinh2 x dx.

3. Prove the following identities.

(a) cosh 2x = cosh2 x+ sinh2 x

(b) sinh 2x = 2 sinhx coshx

(c) 1− tanh2 x = sech 2x

(d) coth2 x− 1 = csch 2x.

4. Prove that coshx is an even function and that sinhx is an odd function.

5. Find the general solution of each of the following differential equations in
terms of the hyperbolic functions.

(a) d2y
dx2 = 4y

(b) (D2 − 7)y = 0

(c) d2y
dx2 − 9y = 5e2x
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(d) (D2 − k2)y = x+ sinx

(e) (D2 − 16)y = 5 sinh 8x

(f) (D2 − 16)y = 5 cosh 4x.

6. Prove that sinhx = 0 if and only if x = 0.

7. Find limx→∞
sinh x
cosh x .

8. Identify and draw the curve defined parametrically by{
x(t) = cosh t,
y(t) = sinh t, −∞ < t <∞.

9. (a) Draw the region R bounded by the x-axis, the hyperbola x2−y2 = 1, and
the straight line joining the origin to the point (x, y) on the hyperbola
defined by x = cosh t and y = sinh t, for an arbitrary t > 0.

(b) Compute the area of the region R.

10. Find the arc length of the graph of the equation y = 3 cosh
(
x
3

)
from the point

(0, 3) to the point (6, 3 cosh 2).

11. Compute the following derivatives.

(a) d
dxarctanh x

(b) d
dxarcsinh x.

12. Sketch the graph of the following equations.

(a) y = tanhx

(b) y = arccosh x.



Appendix A. Properties of
Limits

In this appendix we shall establish the fundamental properties of limits stated with-
out proof in Theorem ??. Before restating the theorem and giving the proof, we
recall one of the basic facts about inequalities and absolute values, which we shall
use. Called the triangle inequality, it asserts that, for any two real numbers a
and b,

|a± b| ≤ |a|+ |b|.

This result is stated and proved for a+ b in ??. It holds equally well for a− b, since

|a− b| = |a+ (−b)| ≤ |a|+ | − b| = |a|+ |b|.

The theorem, which we shall prove, is the following:

11.6.6. If limx→a f(x) = b1, and limx→a g(x) = b2, then

(i) limx→a[f(x) + g(x)] = b1 + b2.

(ii) limx→a cf(x) = cb1.

(iii) limx→a f(x)g(x) = b1b2.

(iv) limx→a
f(x)
g(x) = b1

b2
provided b2 6= 0.

According to the definition of limit, the hypotheses tell us that, for any positive
number ε, there exist positive numbers δ1, and δ2 such that if x is in the domains
of both f and g and if 0 < |x − a| < δ1 and 0 < |x − a| < δ2, then |f(x) − b1| < ε
and |g(x)− b2| < ε. Where it is relevant in the proofs which follow, we shall assume
without explicitly stating it the condition that x lies in the appropriate domain of
f or g (or both).

Proof of (i). Let ε be an arbitrary positive number. Then there exist positive
numbers δ1 and δ2 such that |f(x) − b1| < ε

2 whenever 0 < |x − a| < δ1, and
|g(x) − b2| < ε

2 , whenever 0 < |x − a| < δ2. (It is legitimate to write ε
2 in these

inequalities, since the definition specifies the existence of δ′s for any positive number
ε. Given a choice of ε, we can then take ε

2 to be the number which implies the
existence of δ1 and δ2.) We set

δ = minimum {δ1, δ2}.

651
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Let us now suppose that 0 < |x − a| < δ. It follows that 0 < |x − a| < δ1 and
0 < |x− a| < δ2, and thence that |f(x)− b1| < ε

2 and |g(x)− b2| < ε
2 . Clearly,

|[f(x) + g(x)]− [b1 + b2]| = |[f(x)− b1|] + [g(x)− b2]|.

Hence, using the triangle inequality, we obtain

|[f(x) + g(x)]− [b1 + b2]| < |f(x)− b1|+ |g(x)− b2| <
ε

2
+
ε

2
= ε.

Thus we have shown that, for any ε > 0, there exists a δ > 0 such that, whenever
0 < |x − a| < δ, then |[f(x) + g(x)] − [b1 + b2]| < ε. By the definition of limit we
have therefore proved that

lim
x→a

[f(x) + g(x)] = b1 + b2,

which is the result (i).

Proof of (ii). Suppose first that c = 0. Then cf is the constant function with value
0, and cb1 = 0. Hence

|cf(x)− cb1| = |0− 0| = 0,

for every x in the domain of f . Thus, for any two positive numbers ε and δ, it is
trivially true that

|cf(x)− cb1| < ε, whenever 0 < |x− a| < δ,

and (ii) is therefore proved in this special case. We next assume that c 6= 0, and
choose an arbitrary positive number ε. There then exists a positive number δ such
that

|f(x)− cb1| <
ε

|c|
, whenever 0 < |x− a| < δ.

It follows immediately that

|cf(x)− cb1| = |c[f(x)− b1]| = |c||f(x)− b1| < |c|
ε

|c|
= ε

whenever 0 < |x− a| < δ. This completes the proof of (ii).

Proof of (iii). Let ε be an arbitrary positive number. Select a positive number M
such that |b1| < M and |b2| < M . Then there exist positive numbers δ1, δ2, and δ3
such that

|f(x)− b1| < ε
2M , provided 0 < |x− a| < δ1,

|g(x)− b2| < ε
2M , provided 0 < |x− a| < δ2,

|g(x)− b2| < M − |b2|, provided 0 < |x− a| < δ3.

We set
δ = minimum {δ1, δ2, δ3},

and in the remainder of the argument we assume that 0 < |x − a| < δ. It then
follows that all three of the above inequalities hold. Using the last one together
with the triangle inequality, we first observe that

|g(x)| = |(g(x)− b2) + b2| ≤ |g(x)− b2|+ |b2| < (M − |b2|) + |b2| = M.
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Next we obtain

|f(x)g(x)− bib2| = |f(x)g(x)− b1g(x) + b1g(x)− b1b2|
= |g(x)[f(x)− b1] + b1[g(x)− b2]|
≤ |g(x)[f(x)− b1]|+ |b1[g(x)− b2]|
= |g(x)||f(x)− b1|+ |b1||g(x)− b2|.

Finally, therefore,

|f(x)g(x)− b1b2| < M
ε

2M
+M

ε

2M
=
ε

2
+
ε

2
= ε,

and the proof of (iii) is finished.

Proof of (iv). We shall prove the simpler statement:

lim
x→a

1

g(x)
=

1

b2
, provided b2 6= 0. (1)

This fact, together with (iii), then implies

lim
x→a

f(x)

g(x)
= lim
x→a

f(x)
1

g(x)
= b1

1

b2
=
b1
b2
,

which is the result (iv). Since it is assumed that b2 6= 0, there exists a number m
such that 0 < m < |b2|. Hence there exists a positive number δ1 such that

|g(x)− b2| < |b2| −m,

whenever 0 < |x− a| < δ1. But

|b2| = | − b2| = |(g(x)− b2)− g(x)|
≤ |g(x)− b2|+ |g(x)|.

Hence, if 0 < |x− a| < δ1, we have

|g(x)| > |b2| − |g(x)− b2| > |b2| − (|b2| −m) = m.

Taking reciprocals, we therefore obtain

1

|g(x)|
<

1

m
, whenever 0 < |x− a| < δ1.

Now let ε be an arbitrary positive number. There exists a positive number δ2 such
that

|g(x)− b2| < m|b2|ε, whenever 0 < |x− a| < δ2.

We set

δ = minimum {δ1, δ2}.

It follows that, if 0 < |x− a| < δ, then
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∣∣∣ 1

g(x)
− 1

b2

∣∣∣ =
∣∣∣b2 − g(x)

b2g(x)

∣∣∣
=

1

|g(x)|
1

|b2|
|g(x)− b2|

<
1

m

1

|b2|
|g(x)− b2|

<
1

m|b2|
m|b2|ε = ε.

Thus (1) is proved, and, as we have seen, (1) and (iii) imply (iv). This completes
the proof of the theorem.



Appendix B. Properties of
the Definite Integral

Five basic properties of the definite integral are listed at the beginning of Section
4 of Chapter 4. Of these, two are proved in the text and one is left as an exercise.
The remaining two will be proved here.

Let f be a function which is bounded on a closed interval [a, b]. This implies
that [a, b] is contained in the domain of f and that there exists a positive number B
such that |f(x)| < B for all x in [a, b]. We recall that, for every partition σ of [a, b],
there are defined the upper and lower sums for f relative to σ, which are denoted
by Uσ and Lσ, respectively. Moreover, it has been shown (see page 168) that

Lσ ≤ Lσ∪τ ≤ Uσ∪τ ≤ Uτ , (1)

for any two partitions σ and τ of [a, b]. The function f is defined to be integrable

over [a, b] if there exists one and only one number, denoted
∫ b
a
f , with the property

that

Lσ ≤
∫ b

a

f ≤ Uτ ,

for any two partitions σ and τ of [a, b]. It is an immediate consequence of this
definition and the inequalities (1) that f is integrable over [a, b] if and only if, for
any positive number ε, there exists a partition σ of [a, b] such that Uσ − Lσ < ε. A
similar corollary, which we shall also usebin the subsequent proofs, is the statement

that f is integrable over [a, b] and
∫ b
a
f = J if and only if, for every positive number

ε, there exists a partition σ of [a, b] such that |Uσ − J | < ε and |J − Lσ| < ε.
The first property of the definite integral, which we shall establish in this section,

is presented in the following theorem:

THEOREM 1. The function f is integrable over the intervals [a, b] and [b, c] if
and only if it is integrable over their union [a, c]. Furthermore,∫ b

a

f +

∫ c

b

f =

∫ c

a

f.

Proof. We first assume that f is integrable over [a, b] and over [b, c]. Let ε be an
arbitrary positive number. Then there exists a partition σ1 of [a, b], and a partition
σ2 of [b, c] such that the following inequalities hold:∣∣∣Uσ1

−
∫ b

a

f
∣∣∣ < ε

2
,
∣∣∣ ∫ b

a

−Lσ1f
∣∣∣ < ε

2
,

655
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∣∣∣Uσ2
−
∫ c

b

f
∣∣∣ < ε

2
,
∣∣∣ ∫ c

b

−Lσ2
f
∣∣∣ < ε

2
.

It follows from these that

∣∣∣(Uσ1
+ Uσ2

)−
(∫ b

a

f +

∫ c

b

f
)∣∣∣ < ε,∣∣∣( ∫ b

a

f +

∫ c

b

f
)
−
(
Lσ1 + Lσ2

)∣∣∣ < ε.

Let us set σ1 ∪ σ2 = σ. This union is a partition of [a, c], and it is obvious that

Uσ1 + Uσ2 = Uσ,

Lσ1 + Lσ2 = Lσ.

Hence ∣∣∣Uσ − (∫ b

a

f +

∫ c

b

f
)∣∣∣ ≤ ε,∣∣∣( ∫ b

a

f +

∫ c

b

f
)
− Lσ

∣∣∣ ≤ ε.
These inequalities imply that f is integrable over [a, c] and also that∫ c

a

f =

∫ b

a

f +

∫ c

b

f.

It remains to prove that, if f is integrable over [a, c], then it is integrable over
[a, b] and over [b, c]. We choose an arbitrary positive number ε. Since f is integrable
over [a, c], there exists a partition σ of [a, c] such that Uσ − Lσ < ε. Let us form a
refinement of the partition σ by adjoining the number b. That is, we set

σ′ = σ ∪ {b}.

(It is, of course, possible that σ already contains b, in which case σ′ = σ.) Then

Lσ ≤ Lσ′ ≤ Uσ′ ≤ Uσ′ ,

from which it follows that Uσ′ − Lσ′ , < ε. But, since b belongs to σ′, we can write
σ′ = σ1∪σ2, where σ1 is a partition of [a, b] and σ2 is a partition of [b, c]. Moreover,

Uσ′ = Uσ1
+ Uσ2

,

Lσ′ = Lσ1
+ Lσ2

.

Hence
(Uσ1

− Lσ1
) + (Uσ2

− Lσ2
) = Uσ′ − Lσ′ < ε,

Since Uσ1
− Lσ1

and Uσ2
− Lσ2

are both nonnegative, it follows that

Uσ1
− Lσ1

< ε,

Uσ2
− Lσ2

< ε.
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The first of these inequalities implies that f is integrable over [a, b], and the second
that f is integrable over [b, c]. This completes the proof of Theorem 1.

The second result to be proved is the following:

THEOREM 2. If f and g are integrable over [a, b], then so is their sum and∫ b

a

(f + g) =

∫ b

a

f +

∫ b

a

g.

Proof. Let ε be an arbitrary positive number. By taking, if necessary, the common
refinement σ1 ∪ σ2 of two partitions of [a, b], we may select a partition σ of [a, b]
such that ∣∣∣U (f)

σ −
∫ b
a
f
∣∣∣ < ε

2 ,
∣∣∣ ∫ ba f − L(f)

σ

∣∣∣ < ε
2 ,∣∣∣U (g)

σ −
∫ b
a
g
∣∣∣ < ε

2 ,
∣∣∣ ∫ ba g − L(g)

σ

∣∣∣ < ε
2 ,

where U
(f)
σ and L

(f)
σ are, respectively, the upper and lower sums for f relative to

σ, and U
(g)
σ and L

(g)
σ are the same for g. We conclude from the above inequalities

that ∣∣∣(U (f)
σ + U (g)

σ )−
(∫ b

a

f +

∫ b

a

g
)∣∣∣ < ε, (2)

∣∣∣( ∫ b

a

f +

∫ b

a

g
)
− (L(f)

σ + L(g)
σ )
∣∣∣ < ε. (3)

Let [xi−1, xi] be the ith subinterval of the partition σ. We denote by M
(f)
i and

M
(g)
i the least upper bounds of the values of f and of g, respectively, on [xi−1, xi],

and by m
(f)
i and m

(g)
i the analogous greatest lower bounds. Then

m
(f)
i +m

(g)
i ≤ f(x) + g(x) ≤M (f)

i +M
(g)
i ,

for every x in [xi−1, xi]. It follows that

m
(f)
i +m

(g)
i ≤ m

(f+g)
i ≤M (f+g)

i ≤M (f)
i +M

(g)
i ,

where m
(f+g)
i and M

(f+g)
i are, respectively, the greatest lower bound and the least

upper bound of the values of f + g on [xi−1, xi]. By multiplying each term in the
preceding chain of inequalities by (xi − xi−1) and then summing on i, we obtain

L(f)
σ + L(g)

σ ≤ L(f+g)
σ ≤ U (f+g)

σ ≤ U (f)
σ + U (g)

σ , (4)

where U
(f+g)
σ and L

(f+g)
σ are the upper and lower sums, respectively, for f + g

relative to σ. The inequalities (2), (3), and (4) imply that

∣∣∣U (f+g)
σ −

(∫ b

a

f +

∫ b

a

g
)∣∣∣ < ε,∣∣∣( ∫ b

a

f +

∫ b

a

g
)
− L(f+g)

σ

∣∣∣ < ε.
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It follows from these two inequalities that the function f + g is integrable over [a, b]
and that ∫ b

a

(f + g) =

∫ b

a

f +

∫ b

a

g.

This completes the proof of Theorem 2.



Appendix C. Equivalent
Definitions of the Integral

The purpose of this section is to prove that the definite integral
∫ b
a
f , defined on

page 169 in terms of upper and lower sums, can be equivalently defined as the limit
of Riemann sums. The fact that these two approaches to the integral are the same
is stated without proof in Theorem (2.1), page 414, and we shall now supply the
details of the argument. The “if” and the “only if” directions of the proof wil1 be
treated separately.

Let f be a real-valued function which is bounded on the closed interval [a, b].
This implies, according to our definition of boundedness, that [a, b] is contained in
the domain of f . Let σ = {x0, ..., xn} be a partition of [a, b] such that

a = x0 ≤ x1 ≤ · · · ≤< xn = b.

If an arbitrary number x∗i is chosen in the ith subinterval [xi−1, xi], then the sum

Rσ =

n∑
i=1

f(x∗i )(xi − xi−1)

is a Riemann sum for f relative to σ. The fineness of a partition σ is measured by
its mesh, which is denoted by ‖σ‖ and defined by

‖σ‖ = maximum1≤i≤n{(xi − xi−1)}.

The first of the two theorems is:

THEOREM 1. If f is bounded on [a, b] and if lim‖σ‖→0Rσ = L, then f is

integrable over [a, b] and
∫ b
a
f = L.

Proof. We assume that a < b, since otherwise L = 0 =
∫ a
a
f and the result is trivial.

It is a consequence of the definition of integrability that the conclusion of Theorem
1 is implied by the following proposition: For any positive number ε, there exists
a partition σ of [a, b] such that, where Uσ and Lσ are, respectively, the upper and
lower sums for f relative to σ, then |Uσ − L| < ε and |L − Lσ| < ε. It is this that
we shall prove.

We first prove that, if Uσ is the upper sum for f relative to any partition σ of

[a, b], then there exists a Riemann sum R
(1)
σ for f relative to σ such that |Uσ−R(1)

σ |
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is arbitrarily small. Let σ = {x0, ..., xn} be the partition with the usual proviso
that

a = x0 ≤ x1 ≤ · · · ≤ xn = b,

and let ε be an arbitrary positive number. For each i = 1, ..., n, set Mi equal to the
least upper bound of the values of f in the subinterval [xi−1, xi]. Then there exists
a number x∗i in [xi−1, xi] such that

0 ≤Mi − f(x∗i ) ≤
ε

2(b− a)
.

Hence
0 ≤Mi(xi − xi−1)− f(x∗i )(xi − xi−1) ≤ ε

2(b− a)
(xi − xi−1),

and so

0 ≤
n∑
i=1

Mi(xi − xi−1)−
n∑
i=1

f(x∗i )(xi − xi−1) ≤ ε

2(b− a)

n∑
i=1

(xi − xi−1)

However,

n∑
i=1

Mi(xi − xi−1) = Uσ,

ε

2(b− a)

n∑
i=1

(xi − xi−1) =
ε

2(b− a)
(b− a) =

ε

2
.

Moreover,
∑n
i=1 f(x∗i )(xi − xi−1) is a Riemann sum for f relative to σ, which we

denote by R
(1)
σ . Thus the preceding inequalities become

0 ≤ Uσ −R(1)
σ ≤

ε

2
, (1)

which proves the assertion at the beginning of the paragraph.
In an entirely analogous manner, we can prove that, if Lσ is the lower sum

relative to an arbitrary partition σ of [a, b] and if ε is any positive number, then

there exists a Riemann sum R
(2)
σ such that

0 ≤ R(2)
σ − Lσ ≤

ε

2
. (2)

We are now ready to use the premise of Theorem 1 — the fact that lim‖σ‖→0Rσ = L.
Let ε be an arbitrary positive number. Then there exists a positive number δ such
that, if σ is any partition of [a, b] with mesh less than 3, then

|Rσ − L| <
ε

2
,

for every Riemann sum Rσ. Accordingly, let σ be a partition of [a, b] with ‖σ‖ < δ,
and let Uσ and Lσ be, respectively, the upper and lower sums for f relative to this
partition. It follows from the preceding two paragraphs that there exist Riemann

sums R
(1)
σ and R

(2)
σ , for f relative to σ such that

|Uσ −R(1)
σ | ≤

ε

2
,

|R(2)
σ − Lσ| ≤

ε

2
,
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[see inequalities (1) and (2)]. Since the mesh of σ is less than δ, we have

|R(1)
σ − Lσ| <

ε

2
,

|Lσ −R(2)
σ | = |R(2)

σ − Lσ| <
ε

2
.

Hence

|Uσ − L| = |(Uσ −Rσ) + (Rσ − L)|
≤ |Uσ −Rσ + IRσ − L|

<
ε

2
+
ε

2
= ε,

and, similarly,

|L− Lσ| = |(L−R(2)
σ ) + (R(2)

σ − Lσ)

≤ |L−R(2)
σ |+ |R(2)

σ − L|

<
ε

2
+
ε

2
= ε.

Thus both |Uσ − L| and |L − Lσ| are less than ε, and the proof of Theorem 1 is
complete.

The converse proposition is the following:

THEOREM 2. If f is integrable over [a, b], then lim‖σ‖→0Rσ =
∫ b
a
f.

Proof. We assume from the outset that a < b. Let ε be an arbitrary positive
number. Since f is integrable, there exist partitions of [a, b] with upper and lower

sums arbitrarily close to
∫ b
a
f . By taking, if necessary, the common refinement σ∪τ

of two partitions σ and τ (see the inequalities Lσ ≤ Lσ∪τ ≤ Uσ∪τ ≤ Uτ on page
168), we may choose a partition σ0 = {x0, ..., xn} of [a, b] such that

Uσ0
−
∫ b

a

f <
ε

2
,∫ b

a

f − Lσ0 <
ε

2
.

The assumption of integrability implies that the function f is bounded on [a, b].
Thus there exists a positive number B such that If(x)l ≤ B for every x in [a, b].
We define

δ =
ε

4Bn
.

Next, let σ be any partition of [a, b] with mesh less than δ. Consider the common
refinement σ ∪ σ0. Since

Lσ0
≤ Lσ∪σ0

≤
∫ b

a

f ≤ Uσ∪σ0
≤ Uσ0

,

we have

Uσ∪σ0 −
∫ b

a

f <
ε

2
, (3)
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∫ b

a

f − Lσ∪σ0
<
ε

2
. (4)

The partition σ∪σ0 may be regarded as having been obtained from σ by the addition
of at most n−1 new points of σ0. Hence at most n−1 of the subintervals of σ have
been further partitioned by the inclusion of points of σ0 in their interiors. Each
of these further partitioned subintervals has length less than b. It follows that, on
each of them, the contribution to the difference Uσ−Uσ∪σ0 is less than the product
δ(2B). On those subintervals of σ which have not been hit by points of σ0 in their
interiors, the corresponding terms of Uσ and of Uσ∪σ0

are the same. We conclude
that

Uσ − Uσ∪σ0
< (n− 1)δ(2B),

and, similarly,
Lσ∪σ0

− Lσ < (n− 1)δ(2B).

However,

(n− 1)δ(2B) = (n− 1)
ε

4nB
(2B) <

ε

2
.

Hence

Uσ − Uσ∪σ0
<

ε

2
,

Lσ∪σ0
− Lσ <

ε

2
.

Combining these inequalities with (3) and (4), we conclude that

Uσ −
∫ b

a

f < ε, (5)

∫ b

a

f − Lσ < ε. (6)

for every partition σ with mesh less than b.
Finally, let Rσ be an arbitrary Riernann sum for f relative to a partition σ of

[a, b] with mesh less than δ. We know that

Lσ ≤ Rσ ≤ Uσ

(see page 413). These inequalities together with those in (5) and (6) immediately
imply that

|Rσ −
∫ b

a

f | < ε.

Hence lim||σ||→0Rσ =
∫ b
a
f and the proof of Theorem 2 is complete.

The conjunction of Theorems 1 and 2 is equivalent to Theorem (2.1), page 414.
We have therefore proved that the definite integral defined in terms of upper and
lower sums is the same as the limit of Riemann sums.


