
Random Walks on Weighted Graphs, and
Applications to On-line Algorithms (Extended

Abstract)

Don Coppersmith

Peter Doyle
Prabhakar Raghavan

Marc Snir

March 1990
Version 1.0A1 dated 15 September 1994

Abstract

We study the design and analysis of randomized on-line algorithms.

We show that this problem is closely related to the synthesis of random

walks on graphs with positive real costs on their edges.

1 Introduction

Let G be a weighted undirected graph with n nodes {1, . . . , n}; cij = cji > 0
is the cost of the edge connecting nodes i and j, cii = 0. Consider a random
walk on the graph G, executed according to a transition probability matrix
P = (pij); pij is the probability that the walk moves from node i to node j,
and the walk pays a cost cij in the process. Let eij (not in general = eji) be
the expected cost of a random walk starting at node i and ending at node
j (eii is the expected cost of a round trip from i). We say that the random
walk has stretch c if there exists a constant a such that, for any sequence
i0, i1, . . . , iℓ of nodes

∑ℓ
j=1 eij−1ij ≤ c ·

∑ℓ
j=1 cij−1ij +a. We prove the following

tight result:

1

Any random walk on a weighted graph with n nodes has stretch at least
n− 1, and any weighted graph with n nodes has a random walk with stretch
n − 1.

The upper bound proof is constructive, and shows how to compute the
transition probability matrix P from the cost matrix C = (cij). The proof
uses new connections between random walks and effective resistances in net-
works of resistors, together with results from electric network theory. Con-
sider a network of resistors with n nodes, and conductance σij between nodes
i and j (nodes i and j are connected by a resistor with branch resistance
1/σij). Let Rij be the effective resistance between nodes i and j (i.e., 1/Rij

is the current that would flow from i to j if one volt were applied between
i and j; it is known that 1/Rij ≥ σij). Let the resistive random walk be
defined by the probabilities pij = σij/

∑

k σik. In Section 3 we show that this
random walk has stretch n−1 in the graph with costs cij = Rij . Thus, a ran-
dom walk with optimal stretch is obtained by computing the resistive inverse
(σij) of the cost matrix (cij): a network of branch conductances (σij ≥ 0),
so that, for any i, j, cij is the effective (not branch) resistance between i and
j. Unfortunately, not all cost matrices have resistive inverses (with positive
conductances). However, every matrix (cij) has a generalized resistive in-
verse: a network of non-negative branch conductances σij with associated
effective resistances Rij , such that either Rij = cij , or Rij < cij and σij = 0.
In Section 4 we show that the resistive random walk has stretch n−1 for the
graph with costs Rij , and consequently for the graph with costs cij, since it
never traverses those edges whose costs it underestimates.

Chandra et al. [6] use electric networks to analyze a particular random
walk, in which pij = (1/cij)/(

∑

k 1/cik). Traditionally, this is how electric
networks have been used in studying random walks: to analyze a given ran-
dom walk (cf. Doyle and Snell [9]). Here we instead use electric networks to
synthesize a (different, in general) random walk with optimal stretch.

Next, we outline the relevance of this random walk synthesis problem to
the design of on-line algorithms. Consider the following game played between
a cat and a mouse on the graph G. Round r starts with both cat and mouse
on the same node ir−1. The mouse moves to a new node ir not known to the
cat; the cat then walks on the graph until it reaches the mouse at ij , at which
point round j+1 starts. A strategy for the cat is c-competitive if there exists a
constant a such that for any sequence i0, i1, . . . ik of nodes the cat’s expected
cost is ≤ c· (the mouse’s cost) +a. The competitiveness coefficient of the

2

cat-and-mouse game is the infimum of c such that a c-competitive strategy
exists. A random walk with stretch c defines a strategy for the cat that is
c-competitive: in each round, the cat executes a random walk according to P
until it finds the mouse. This strategy is very simple, and memoryless: the
cat need not remember its previous moves, and the next cat move depends
only on its current position.

We show that this cat-and-mouse game is at the core of many other on-
line algorithms that have evoked tremendous interest of late [2, 3, 4, 7, 8, 10,
14, 16, 17, 18]. We consider two settings. The first is the k-server problem,
defined in [14]. An on-line algorithm manages k mobile servers located at the
nodes of a graph G whose edges have positive real lengths; it has to satisfy
a sequence of requests for service at node vi, i = 1, 2, . . ., by moving a server
to vi unless it already has a server there. Each time it moves a server, it pays
a cost equal to the distance moved by that server. We compare the cost of
such algorithm, to the cost of an adversary that, in addition to moving its
servers, also generates the sequence of requests. The competitiveness of an
on-line algorithm is defined with respect to these costs (Section 5) [2, 17]. It
was conjectured in [14] that for every cost matrix there exists a k-competitive
algorithm for this problem. Repeated attempts to prove this conjecture have
succeeded only in a few special cases [7, 8, 17]. We use our optimal random
walk to derive a k-competitive server algorithm in two situations: (1) when
the graph G has a resistive inverse, and (2) when the graph G has k + 1
nodes. This includes all previously known cases where the conjecture was
proven true, as well as many new cases. We do so with a single unified theory
— that of resistive inverses. The algorithm is very simple, and memoryless.

The other setting is the metrical task system (MTS), defined in [4]. A
MTS consists of a weighted graph (the nodes of the graph are states, and edge
weights are the costs of moving between states). The algorithm occupies one
state at any time. A task is represented by a vector (c1, . . . , cn), where ci is the
cost of processing the task in state i. The algorithm is presented a sequence
of tasks T = T1, T2, . . . and can move before processing each task. The cost
incurred by the algorithm is the sum of the costs of moving and processing
tasks. A (2n − 1)-competitive on-line algorithm for MTS is presented in
[4], and shown to be optimal. The algorithm is deterministic, but somewhat
complex. In Section 6 we present a simple, memoryless randomized algorithm
for MTS that is (2n − 1)-competitive.

3

2 Lower bound on Stretch

Theorem 2.1 For any n × n cost matrix C and any transition probability
matrix P , the stretch of the random walk defined by P on the graph with
weights given by C is ≥ n − 1.

Proof: We can assume w.l.o.g. that P is irreducible (the underlying
directed graph is strongly connected). Let φi be the ith component of the
left eigenvector of P for the eigenvalue 1 (when P is aperiodic, this is the
stationary probability of node i), so that φj =

∑

i φipij . Let ei =
∑

j pijcij

denote the expected cost of the first move out of node i, and let E =
∑

i φiei =
∑

ij φipijcij be the average cost per move. We have

∑

i,j

(φipij)eji =
∑

i

φi





∑

j

pijeji



 =

∑

i

φi(eii − ei) =
∑

i

φi(E/φi − ei) = (n − 1)E

while
∑

i,j(φipij)cji =
∑

i,j(φipij)cij = E. Thus,
∑

i,j(φipij)eji = (n − 1)
∑

i,j(φipij)cji.
Notice that, if each directed edge (ji) (note the order!) is counted with

multiplicity proportional to φipij , then a flow condition is satisfied: the total
multiplicity of edges leading out of i is equal to that of those leading into i.
Thus, the above equation represents a convex combination of cycles so that
there is some cycle (i1, i2, . . . iℓ, iℓ+1 = i1) with stretch at least n − 1; thus,

ℓ
∑

j=1

eij ij+1
≥ (n − 1)

ℓ
∑

j=1

cij ij+1
.

2

The symmetry of the cost matrix C is necessary for the theorem.

3 Upper bound: resistive case

We next consider the complementary upper bound problem: given C, to
synthesize a matrix P that achieves a stretch of n − 1 on C. In this section

4

we will describe a construction and proof for a class of matrices C known as
resistive matrices.

Let (σij) be a non-negative symmetric real matrix with zero diagonal.
Build the support graph (V, E), with vertex set V = {1, 2, ..., n} and edge
set E = {(i j) | σij > 0}, and let (V, E) be connected. Consider a network
of resistors based on (V, E), such that the resistor between vertices i and j
has branch conductance σij , or branch resistance 1/σij .

Let cij be the effective resistance between vertices i and j. (A unit voltage
between i and j in this network of resistors results in a current of 1/cij.) We
require that the support graph be connected so that the effective resistances
will be finite.

Definition 1 A cost matrix (cij) is resistive if it is the matrix of effective
resistances obtained from a connected non-negative symmetric real matrix
(σij) of conductances. The matrix (σij) is the resistive inverse of C. 2

The following facts are not difficult to prove, and follow from standard
electric network theory [19]. Resistive cost matrices are symmetric, finite,
positive off the diagonal, zero on the diagonal, and satisfy the triangle in-
equality: cij + cjk ≥ cik. A principal submatrix of a resistive cost matrix is
resistive.

Define two (n − 1) × (n − 1) matrices σ̄, C̄ by

σ̄ii =
∑

j≤n,j 6=i

σij , 1 ≤ i ≤ n − 1,

σ̄ij = −σij , i 6= j, 1 ≤ i, j ≤ n − 1,

c̄ij = [cin + cjn − cij]/2, 1 ≤ i, j ≤ n − 1.

Then σ̄ is the inverse of C̄ :

n−1
∑

j=1

σ̄ij c̄jk = δik.

It can happen that a given cost matrix C = (cij) gives rise to a putative
resistive inverse with some negative conductances:

∃i, j : σij < 0

and in this case there is no resistive inverse for C.

5

Examples of resistive cost matrices include:
(1) Any three points with the distances satisfying the triangle inequality.
(2) Points on a line: vertex i is at a real number ri, with cij = | ri − rj |.
(3) The uniform cost matrix cij = d, if i 6= j.
(4) Tree closure: given a spanning tree on n vertices and positive costs for
the tree edges, the distance between any pair of points equals the distance
between them on the tree.
(5) A cost matrix C given by a graph with m + n vertices x1, x2, . . . , xm,
y1, y2, . . . , yn, m, n > 1, where cxi,xj

= 2m, cyi,yj
= 2n, and cxi,yj

= m + n −
1. The associated resistive inverse is a complete bipartite graph Km,n with
resistors of resistance mn on each edge. This example cannot be expressed
as a tree closure (Example (4) above): for if C were a tree closure, then the
midpoint of the tree path joining x1 and x2 would be at distance n− 1 from
both y1 and y2, contradicting cy1,y2 = 2n > 2(n − 1).

If C is a resistive cost matrix, its resistive inverse (σij) provides a way of
synthesizing an optimal random walk P achieving a stretch of n− 1. In fact,
in determining the stretch of a random walk, it suffices to consider sequences
of nodes i1, i2, . . . iℓ, iℓ+1 that form a cycle in G.

Theorem 3.1 Let C = (cij) be a resistive cost matrix and (σij) its resistive
inverse. Let the transition probabilities be pij = σij/(

∑

ℓ 6=i σiℓ). Then every
cycle (v1, v2, ..., vℓ, vℓ+1 = v1) has stretch n − 1 :

ℓ
∑

i=1

evivi+1
= (n − 1) ·

ℓ
∑

i=1

cvivi+1
.

Proof: Following Doyle and Snell [9] we define the escape probability
Pesc(ij) to be the probability that a random walk, starting at vertex i, will
reach vertex j before returning to vertex i. Doyle and Snell [9] show that

Pesc(ij) =
1/cij

∑

k σik

.

On average, out of each
∑

gh σgh steps, the random walk visits vertex i
with frequency

∑

k σik, and the number of traversals of the ordered edge (ij)
is σij . The average cost of

∑

gh σgh steps is

∑

gh

σghcgh = 2(n − 1),

6

from Foster’s Theorem [11, 12]. Of the
∑

k σik round trips to vertex i, the
number visiting vertex j is

Pesc(ij)
∑

k

σik = 1/cij.

So the average cost of a round trip from vertex i to j and back to i is
∑

gh σghcgh

1/cij

= 2(n − 1) · cij = (n − 1) · [cij + cji].

This cost is also, by definition, eij + eji, so that

eij + eji = (n − 1) · [cij + cji].

So the stretch of any two-cycle is n − 1.
We need a bound on the stretch of any cycle, not just two-cycles. The

stationary probability of traversing the directed edge (ij) is σij/
∑

gh σgh,
which is symmetric because σ is symmetric. Thus our random walk is a
reversible Markov chain [13]. For any cycle (v1, v2, ..., vℓ, vℓ+1 = v1), the ex-
pected number of forward traversals of the cycle (not necessarily consecutive)
is the same as the expected number of backward traversals of the cycle, and
the expected cost per forward traversal is the same as the expected cost per
backward traversal. Thus

ℓ
∑

i=1

evivi+1
=

ℓ
∑

i=1

evi+1vi

=
1

2

[

ℓ
∑

i=1

evivi+1
+

ℓ
∑

i=1

evi+1vi

]

=
1

2

ℓ
∑

i=1

[

evivi+1
+ evi+1vi

]

=
1

2

ℓ
∑

i=1

(n − 1)
[

cvivi+1
+ cvi+1vi

]

=
ℓ

∑

i=1

(n − 1)cvivi+1
.

So every cycle has stretch n − 1. 2

7

4 Upper bound: non-resistive case

In this section we prove the existence of a generalized resistive inverse. The
generalized resistive inverse turns out to be the solution to a convex vari-
ational problem, and we present a simple iterative algorithm for finding it.
From the generalized resistive inverse we get an n−1-competitive strategy for
the cat-and-mouse game with an arbitrary positive symmetric cost matrix.

Theorem 4.1 Let C be any positive symmetric cost matrix. Then there is
a unique resistive cost matrix Ĉ with associated conductance matrix σ, such
that ĉij ≤ cij, σij ≥ 0 and ĉij = cij if σij 6= 0.

Thus σ is the generalized resistive inverse of C.
Proof: For simplicity, we will limit the discussion to the case of the

triangle graph, with assigned costs R0 = c1,2, S0 = c1,3, T0 = c2,3, and with
edge conductances a = σ1,2, b = σ1,3, c = σ2,3 and corresponding effective
resistances R = R1,2, S = R1,3, T = R2,3. This case will exhibit all the
features of the general case, and yet allow us to get by without cumbersome
subscripts. Please note, however, that for a triangle graph a cost matrix is
resistive if and only if it satisfies the triangle inequality, while for a general
graph the triangle inequality is necessary but by no means sufficient. Needless
to say, we will make no use of this condition for resistivity in our analysis of
the triangle graph.

We begin by recalling the relevant electrical theory (cf. Weinberg [19] and
Bott and Duffin [5]). The admittance matrix of our network is

K =







a + b −a −b
−a a + c −c
−b −c b + c





 .

If you hook the network up to the world outside so as to establish node
voltages v1, v2, v3, the currents I1, I2, I3 flowing into the network at the three
nodes are given by







I1

I2

I3





 = K







v1

v2

v3





 .

8

The power being dissipated by the network is

(I1v1 + I2v2 + I3v3) =
(

v1 v2 v3

)

K







v1

v2

v3







which is ≥ 0. The matrix K is non-negative definite, with 0-eigenvector
(1, 1, 1). Label its eigenvalues

0 = λ0 ≤ λ1 ≤ λ2.

On the orthogonal complement P = {v1 + v2 + v3 = 0} of (1, 1, 1), K has
eigenvalues λ1, λ2, and the determinant of K|P — that is, the product of the
non-zero eigenvalues of K — is given by the next-to-lowest order coefficient of
the characteristic polynomial of K, which can be expressed using Kirchhoff’s
tree formula:

det K|P = λ1λ2

= λ0λ1 + λ0λ2 + λ1λ2

=

∣

∣

∣

∣

∣

a + b −a
−a a + c

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

a + b −b
−b b + c

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

a + c −c
−c b + c

∣

∣

∣

∣

∣

= (ab + ac + bc) + (ab + ac + bc)

+(ab + ac + bc)

= 3D.

Here the discriminant D = ab + ac + bc is obtained by summing over the
spanning trees of the network the product of the conductivities of the edges
making up the tree (cf. Bott and Duffin [5]). The effective resistances are
obtained by taking the gradient of log D in edge-conductance space:

(R, S, T) = (
∂

∂a
log D,

∂

∂b
log D,

∂

∂c
log D)

= ∇(a,b,c) log D.

That was all ostensibly review. Now then, on the non-negative orthant
Π̄ = {a, b, c ≥ 0} in edge-conductance space the function

log D = log det K|P − log 3

9

is concave; as Gil Strang has pointed out to us, this follows from the fact
that on the set of positive definite matrices the function log D is concave (see
[15]).

Since log D is concave and the effective resistances are its partial deriva-
tives, if conductances a0, b0, c0 induce finite effective resistances R0, S0, T0

then
(a0, b0, c0) = arg max

(a,b,c)∈Π̄
log D − (R0a + S0b + T0c).

Thus if a resistive inverse exists, it is given as the solution to a convex
programming problem. Now for any R0, S0, T0 > 0 this extremal problem
still has a unique solution, i.e., the equation above uniquely determines a
point (a0, b0, c0) ∈ Π̄. The Kuhn-Tucker conditions identify this point as the
unique point where R ≤ R0 with R = R0 if a0 > 0, etc. Thus when (a0, b0, c0)
lies in the interior of Π̄ we have a genuine resistive inverse; when it lies on
the boundary we have a generalized inverse (or a true resistive inverse with
some zero conductances). So we’re all set.

This proof applies as well to the case where we demand that σij = 0 for
certain selected edges (ij), and place no upper bounds on the corresponding
ĉij (i.e. set cij = ∞). 2

If C = (cij) is resistive, the matrix inversion of Section 3 will find the
associated conductance matrix σ, with ĉij = cij . If C is not resistive — or
even if it is — there is an iterative algorithm that converges to the generalized
resistive inverse whose existence is guaranteed by Theorem 4.1. In presenting
this algorithm we will once again limit the discussion to the case where the
graph is a triangle, and use the same notation as above.

By Foster’s theorem aR + bS + cT = 2, (the 2 here being one less than
the number of nodes in the graph), and hence a0R0 + b0S0 + c0T0 = 2. Thus

(a0, b0, c0) = arg max
(a,b,c)∈Σ̄

D,

where Σ̄ is the closure of the open simplex

Σ = {a, b, c > 0; aR0 + bS0 + cT0 = 2}.

To locate the maximum we can use the knee-jerk algorithm, according to
which we iterate the mapping

T (a, b, c) =
(

a
R

R0
, b

S

S0
, c

T

T0

)

.

10

This algorithm is a particular instance of a general method known as the
Baum algorithm. The mapping T takes Σ to itself, and strictly increases the
objective function D for any (a, b, c) (other than (a0, b0, c0)) in Σ. (See Baum
and Eagon [1].) It follows from this that for any starting guess (a, b, c) ∈ Σ the
sequence T n(a, b, c) of iterates converges to the generalized resistive inverse
(a0, b0, c0).

Now let’s return to the cat-and-mouse game.

Corollary 4.2 Let G be any weighted graph with n nodes. The cat has an
(n − 1)-competitive strategy for the cat-and-mouse game on G.

5 The k-Server Problem

We consider here the k-server problem of Manasse et al. [14] defined in Sec-
tion 1. We compare the performance of an on-line k-server algorithm to
the performance of an adversary with k servers. The adversary chooses the
next request at each step, knowing the current state of the on-line algo-
rithm, and moves one of its servers to satisfy the request (if necessary).
The on-line algorithm then moves one of its servers if necessary, without
knowing the state of the adversary. The algorithm is c-competitive if there
exists a constant a such that, for any adversary and any request sequence,
E[cost on-line algorithm] ≤ c · [cost adversary] + a. Such an adversary is
termed adaptive on-line [2, 17]. One can weaken the adversary by requiring
it to choose the sequence of requests in advance, so that it does not know
of the actual random choices made by the on-line algorithm in servicing
the request sequence; this is an oblivious adversary. Alternatively, one can
strengthen the adversary by allowing it to postpone its decision on its server
moves until the entire sequence of requests has been generated; this is an
adaptive off-line adversary. These three types of adversaries for randomized
algorithms are provably different [2, 10, 17]. However, they all coincide when
the on-line algorithm is deterministic. Furthermore, if there is a randomized
algorithm that is c-competitive against adaptive on-line adversaries, then
there is a c2-competitive deterministic algorithm [2].

Theorem 5.1 Let C be a resistive cost matrix. Then we have a randomized
k-competitive strategy for the k-server problem against an adaptive on-line

11

adversary. More generally, if every (k + 1)-node subgraph of C is resistive,
we have a k-competitive strategy for the k-server problem on C.

Proof: We exhibit a k-competitive on-line algorithm for the more gen-
eral case; we call this algorithm RWALK. If a request arrives at one of
the k vertices that RWALK’s servers cover (let us denote these vertices by
a1, a2, ..., ak), it does nothing. Suppose a request arrives at a vertex ak+1

it fails to cover. Consider the (k + 1)-vertex subgraph C ′ determined by
a1, a2, ..., ak, ak+1. By hypothesis, C ′ is resistive. Let σ′ denote its resistive
inverse. With probability

p′i =
σ′

i,k+1
∑k

j=1 σ′
j,k+1

it selects the server at vertex ai to move to the request at vertex ak+1. Since
C ′ is finite, σ′ is connected, and the denominator

∑k
j=1 σ′

j,k+1 is nonzero, the
probabilities are well defined and sum to 1.

We need to prove that the RWALK is k-competitive. To this end, we
define a potential Φ. (This is not to be confused with an electrical potential.)
Say the RWALK’s servers are presently at vertices a = {a1, a2, ..., ak}, and
the adversary’s servers are presently at vertices b = {b1, b2, ..., bk}, where a

and b may overlap. We define Φ(a,b) as the sum of the costs of all the edges
between vertices currently occupied by RWALK’s servers, plus k times the
cost of a minimum-weight matching between vertices occupied by RWALK’s
servers and the adversary’s servers. That is,

Φ(a,b) =
∑

1≤i<j≤k

cai,aj
+ min

π
k ·

k
∑

i=1

cai,bπ(i)
,

where π ranges over the permutations on {1, 2, ..., k}. We also define a quan-
tity ∆ depending on the present position and the past history:

∆(a,b, History) = Φ(a,b)

+(RWALK’s Cost) − k · (Adversary’s Cost),

where both “Cost”s are cumulative. We will show that the expected value
of ∆ is a non-increasing function of time, and then show how this will imply
the theorem.

12

Let us consider the changes in ∆ due to (i) a move by the adversary
(which could increase Φ), and (ii) a move by RWALK, which (hopefully)
tends to decrease Φ. By showing that in both cases, the expected change
in ∆ is ≤ 0, we will argue that over any sequence of requests the expected
cost of RWALK is at most k times the adversary’s cost plus an additive term
independent of the number of requests.

If the adversary moves one of its servers from bj to b′j , its cumulative cost
is increased by cbj ,b′

j
. The potential Φ can increase by at most k times that

quantity, since the minimum-weight matching can increase in weight by at
most cbj ,b′

j
. (Obtain a new matching π′ from the old one by matching aπ−1(j)

to b′j instead of bj , and note that the weight of this new matching is no more
than cbj ,b′

j
plus the weight of the old one; the new minimum-weight matching

will be no heavier than this constructed matching.) So in this case ∆ does
not increase.

Next, we consider a move made by RWALK, and compare its cost to the
expected change in Φ. First, we suppose that a and b overlap in k−1 places
(later we remove this assumption):

ai = bi, i = 2, 3, ..., k; a1 6= b1.

Define bk+1 = a1. For convenience, set m = k + 1, and let cij , σij, for i, j
= 1, 2, ..., m be defined by cij = cbi,bj

. Recall the equations relating σ and C,
specialized to the entries of interest:

σ̄11 =
k+1
∑

j=2

σ1j

σ̄1j = −σ1j , 2 ≤ j ≤ k

c̄ji = [cjm + cim − cji]/2
k

∑

j=1

σ̄1j c̄ji = δ1i, i ≤ k

Multiply this last equation by 2 and sum over i = 2, 3, ..., k, noticing that in
this range δ1i = 0. We obtain:

0 = 2
k

∑

i=2

k
∑

j=1

σ̄1j c̄ji

13

= 2
k

∑

i=2



σ̄11c̄1i +
k

∑

j=2

σ̄1j c̄ji





=
k

∑

i=2







k+1
∑

j=2

σ1j [c1m + cim − ci1]

−
k

∑

j=2

σ1j [cjm + cim − cji]







For j = m = k + 1 the latter bracketed expression [cjm + cim − cji] is
zero, so we can include it in the sum, extending the limits of summation to
k + 1 :

0 =
k

∑

i=2







k+1
∑

j=2

σ1j [c1m + cim − ci1]

−
k+1
∑

j=2

σ1j [cjm + cim − cji]







=
k+1
∑

j=2

σ1j

[

(k − 1)c1m +
k

∑

i=2

cim −
k

∑

i=2

ci1

−(k − 1)cjm −
k

∑

i=2

cim +
k

∑

i=2

cji

]

=
k+1
∑

j=2

σ1j

[

kc1m −
m

∑

i=2

ci1 − kcjm +
m

∑

i=2

cji

]

=
k+1
∑

j=2

σ1j

[

kc1m −
m

∑

i=2

ci1 − kcjm

+
∑

1≤i≤m, i6=j

cji − cj1





Defining

τℓ = kcℓm +
∑

1≤i<j≤m, i,j 6=ℓ

cij

= kcℓm +
∑

1≤i<j≤m

cij −
m

∑

i=1

ciℓ

14

we discover
k+1
∑

j=2

σ1j [τ1 − τj − cj1] = 0.

Now it is straightforward to verify that the expected change in ∆, as RWALK
makes its random move with probability (σ1j)/(

∑k+1
i=2 σ1i), is

1
∑m

i=2 σ1i

×
k+1
∑

j=2

σ1j [τ1 − τj − cj1] = 0.

Thus the expected change in ∆ is zero on RWALK’s move.
Finally we verify the case in which a and b overlap in fewer than k −

1 vertices, and RWALK makes a move. Suppose the request is at vertex
b1. Suppose the current minimum-weight matching pairs ai with bi, i =
1, 2, ..., k. Perform the previous analysis as if the adversary’s other servers
b2, ..., bk were presently at the same vertices as our a2, ..., ak. Obtain again

1
∑m

i=2 σ1i

×
m

∑

j=2

σ1j [τ1 − τj − cj1] = 0.

The true potential Φ differs from that of the previous case only in the weight
of the minimum-weight matching. Consider a new matching, not necessarily
of minimum weight, after our current move from aj to b1, obtained from the
old matching by matching a1 to bj , aj to b1, and ai to bi for i 6= 1, j. This
new matching differs from the old one by

ca1,bj
− ca1,b1 − caj ,bj

≤ ca1,aj
− ca1,b1

by the triangle inequality. But the previous analysis guaranteed that the
expected change in ∆ was zero, and for that calculation we used a value of

ca1,aj
− ca1,b1

as the change in Φ. The true change in Φ is less than that, and even less
when we allow the new matching to be of minimum weight, so that again the
expected change in ∆ is non-positive.

So the expected value of ∆(a,b, History) = Φ(a,b)+(RWALK’s Cost)−
k · (Adversary’s Cost) is nonincreasing at every step. Since Φ is positive, we
find that

(RWALK’s Cost) − k · (Adversary’s Cost)

15

remains bounded, in expectation, by the initial value of ∆. So the competi-
tiveness is k. 2

The last result is valid even if the graph is infinite; one only requires
that the cost of a simple path be bounded and every k + 1-node subgraph
be resistive. The potential Φ we developed to prove the last result seems to
be very natural and useful for the server problem. It has been subsequently
used by several authors [7, 8].

As corollaries of Theorem 5.1, we have k-competitive algorithms for the
server problem for k = 2 in any metric space [14], for points on a line [7], for
the weighted cache problem [7, 17], for the uniform cost (caching) case [18]
and for points on a tree [8]. These algorithms are extremely simple, and
memoryless. Berman et al. [3] give an algorithm for 3 servers that achieves
a finite competitiveness in any metric space. With the sole exception of
this result, every special case of the server problem for which any finite
competitiveness is known is in a resistive metric space. Certainly, all known
cases where we know of k-competitive on-line algorithms are in (special cases
of) resistive metric spaces. Thus our theory based on resistive random walks
both unifies and generalizes our current picture of the k-server conjecture,
and implies k2-competitive deterministic algorithms in resistive spaces [2].

Theorem 5.1 can be used to derive competitive k-server algorithms for
non-resistive spaces as well, when these can be approximated by resistive
spaces. A cost matrix C ′ is a λ-approximation for the matrix C if, for all ij,
c′ij ≤ cij ≤ λc′ij. If a server algorithm is c-competitive for the matrix C ′, then
it is λc-competitive for the matrix C. Using this observation, we can derive
a 2k-competitive algorithm for k servers when the nodes are on a circle,
with distances being measured along the circumference. Consider points on
a circle, with the cost cij between two points i, j given as the distance along
the smaller arc joining them. We can construct a 2-approximation C ′ to this
cost C. Each arc of the circle becomes a resistor with resistance equal to the
arc-length. If the smaller and larger arc distances joining two points are α, β
respectively, then the effective resistance c′ is αβ/(α + β) while c = α < β.
Then easily c′ ≤ c ≤ 2c′. In conjunction with results in [2], this implies that
there is a 4k2-competitive deterministic algorithm for k servers on the circle.
No finitely competitive deterministic algorithm was known before for this
problem.

On the other hand, it is not possible to finitely approximate arbitrary
distance matrices derived from the Euclidean plane (proof omitted in this

16

version). Thus, this approximation technique does not solve the server prob-
lem in the plane.

We now turn to the case k = n − 1.

Theorem 5.2 Let C be any cost matrix. If there are n nodes and k = n − 1
servers, we have an (n − 1)-competitive strategy.

The significance of Theorem 5.2 is that it holds even when the cij do not
satisfy the triangle inequality, a case for which no prior result exists [14].

Proof outline: We can assume that servers always occupy distinct
nodes. Both the on-line algorithm and the adversary have one unoccupied
node which we consider, respectively, to be “cat” and “mouse”. Whenever
a server moves from i to j the cat (resp. the mouse) moves from j to i, at
cost cij = cji. We can assume that the adversary always requests the unique
node (cat’s position) which is not occupied by the on-line algorithm. It has
to move one of its own servers to satisfy this request only when the positions
of the cat and of the mouse coincide. This situation corresponds exactly to
the cat-and-mouse game, and the result follows from Corollary 4.2. 2

6 Metrical Task Systems

We now consider Metrical Task Systems, as defined by Borodin et al. [4].
Definitions are omitted here for brevity; the reader is referred to [4].

We compare the performance of an on-line algorithm to the performance
of an adversary. At each step, the adversary chooses the next task, knowing
the current state of the on-line algorithm, and chooses its next position. An
on-line algorithm is c-competitive if there is a constant a such that for any
n and any adversary E[cost of on-line algorithm] ≤ c · [cost of adversary] + a
(where cost includes the task processing cost and the cost of moves).

Borodin et al. [4] define an on-line algorithm for metrical task systems to
be a traversal algorithm if:
(1) the states are visited in a fixed sequence s1, s2, · · · independent of the
input task sequence; and,
(2) there is a sequence of positive threshold costs c1, c2, · · · such that the
transition from sj to sj+1 occurs when the total task processing cost incurred
since entering sj reaches cj. In fact, they set cj = csj ,sj+1

.

17

We extend this definition to randomized traversal algorithms. Condition
(1) is replaced by (1′): the states are visited by a Markov process that is
independent of the input task sequence.

Borodin et al. [4] give a 8(n − 1)-competitive deterministic traversal al-
gorithm, and a more complex (2n − 1)-competitive deterministic algorithm,
which is optimal. We give here a (2n − 1)-competitive randomized traversal
algorithm. The algorithm is very simple, and memoryless. It is based on the
random walks developed in Sections 3 and 4.

Let (cij) be the cost matrix for a metrical task system on a graph with
n nodes. Let (σij) be the generalized resistive inverse of (cij), and let pij

be the transition probabilities for the resistive random walk. The on-line
algorithm makes a transition out of current state i when the expected total
task processing cost since entering state i exceeds a threshold βi (to this
end, Borodin et al. describe a continuous-time view of the process in which
a state-transition can be made at any point in time rather than at discrete
steps; details on how this is done omitted in this version); it then randomly
chooses the next state, where state j is chosen with probability pij.

Theorem 6.1 The on-line algorithm is (2n−1)-competitive against an adap-
tive on-line adversary, for the choice of thresholds βi = 2

∑

j pijcij/(
∑

j σijcij).

Proof outline: One can show that this algorithm corresponds to a
cat-and-mouse game, with the following two modifications: (1) the cat pays
βi whenever it reaches node i; (2) if the mouse is caught at node i by the
cat, then the mouse can either move to a new node j and pay cij, or it
can stay put at node i until the cat catches it again, and pay βi. Using
some additional properties we prove about resistive walks, we show that
the expected total task-processing cost of the cat in the extended game is
n/(n− 1) times the expected total cost of edges traversed by cat. Each non-
trivial loop in the random walk of the cat has a stretch ≤ n − 1. We also
show that eii ≤ (n − 1) · βi. It follows that the expected move cost of the
cat is at most n− 1 times the mouse cost, and the expected total cat cost is
≤ (n − 1) · (1 + n/(n − 1)) = 2n − 1 times the mouse cost. 2

7 Open Problems

In this section we list several open problems raised by our work.

18

We do not know what stretch can be achieved by random walks when the
cost matrix C is not symmetric.

It would be interesting to study the cat-and-mouse game under a wider
class of strategies. For instance, on the circumference of a circle, it is easy
to give a deterministic algorithm for the cat that achieves a constant com-
petitiveness. Moreover, one can consider randomized algorithms other than
those based on random walks. In fact, a simple (though not memoryless)
randomized algorithm achieves a competitiveness of n/2 when the graph is
the complete graph on n nodes with the same cost on every edge.

We have no results for the k server problem in general metric spaces.
We would like to prove that the resistive random walk yields a server algo-
rithm that achieves a competitiveness that is a function of k alone, in any
metric space (against an adaptive on-line adversary). This would yield [2]
a deterministic algorithm having finite competitiveness in an arbitrary met-
ric space. We can prove that the resistive server algorithm is (2k − 1)-
competitive against a lazy adaptive on-line adversary that moves only when
it must: whenever there is a node occupied by an adversary server that is
not occupied by an on-line algorithm’s server, the adversary requests such
node. The lazy adversary conjecture is that the resistive on-line algorithm
achieves its worst performance against a lazy adversary. A proof of this con-
jecture would show that the resistive algorithm is (2k − 1)-competitive in
every metric space.

19

References

[1] L.E. Baum and J.A. Eagon. An inequality with applications to statistical
estimation for probabilistic functions of Markov processes and to a model
for ecology. Bull. Amer. Math. Soc., 73:363–363, 1967.

[2] S. Ben-David, A. Borodin, R.M. Karp, G. Tardos, and A. Wigderson.
On the power of randomization in on-line algorithms. Algorithmica,
11(1):2–14, 1994.

[3] P. Berman, H.J. Karloff, and G. Tardos. A competitive 3-server algo-
rithm. In Proceedings 1st ACM-SIAM Symposium on Discrete Algo-
rithms, pages 280–290, 1990.

[4] A. Borodin, N. Linial, and M. Saks. An optimal online algorithm for
metrical task systems. Journal of the ACM, 39:745–763, 1992.

[5] R. Bott and R. J. Duffin. On the algebra of networks. Trans. Amer.
Math. Soc., 74:99–109, 1953.

[6] A. K. Chandra, P. Raghavan, W.L. Ruzzo, R. Smolensky, and P. Tiwari.
The electrical resistance of a graph captures its commute and cover
times. In Proceedings of the 21st Annual ACM Symposium on Theory
of Computing, pages 574–586, Seattle, May 1989.

[7] M. Chrobak, H.J. Karloff, T. Payne, and S. Vishwanathan. New results
on server problems. In Proceedings of the 1st ACM-SIAM Symposium
on Discrete Algorithms, pages 291–300, 1990.

[8] M. Chrobak and L.L. Larmore. An optimal online algorithm for k servers
on trees. SIAM Journal on Computing, 20:144–148, 1991.

[9] P.G. Doyle and J.L. Snell. Random Walks and Electric Networks. The
Mathematical Association of America, 1984.

[10] A. Fiat, R. M. Karp, M. Luby, L. A. McGeoch, D. D. Sleator, and
N. Young. Competitive paging algorithms. Journal of Algorithms,
12:685–699, 1991.

20

[11] R. M. Foster. The average impedance of an electrical network. In Con-
tributions to Applied Mechanics (Reissner Anniversary Volume), pages
333–340. Edwards Bros., Ann Arbor, Mich., 1949.

[12] R. M. Foster. An extension of a network theorem. IRE Trans. Circuit
Theory, 8:75–76, 1961.

[13] J.G. Kemeny, J. L. Snell, and A.W. Knapp. Denumerable Markov
Chains. The University Series in Higher Mathematics. Van Nostrand,
Princeton, NJ, 1966.

[14] M.S. Manasse, L.A. McGeoch, and D.D. Sleator. Competitive algo-
rithms for server problems. Journal of Algorithms, 11:208–230, 1990.

[15] A. W. Marshall and I. Olkin. Inequalities: Theory of Majorization and
Its Applications. Academic Press, New York, 1979.

[16] C.H. Papadimitriou and M. Yanakakis. Shortest paths without a map.
Theoretical Computer Science, 84:127–150, 1991.

[17] P. Raghavan and M. Snir. Memory versus randomization in on-line
algorithms. In 16th International Colloquium on Automata, Languages,
and Programming, volume 372 of Lecture Notes in Computer Science,
pages 687–703. Springer-Verlag, July 1989. Revised version available as
IBM Research Report RC15840, June 1990.

[18] D.D. Sleator and R.E. Tarjan. Amortized efficiency of list update and
paging rules. Communications of the ACM, 28:202–208, February 1985.

[19] L. Weinberg. Network Analysis and Synthesis. McGraw-Hill, New York,
1962.

21

