
Finite Mathematics

TSILB1

Version 4.0A0, 5 October 1998

1This Space Intentionally Left Blank. Contributors include: John G. Ke-
meny, J. Laurie Snell, and Gerald L. Thompson. Additional work by: Peter
Doyle. Copyright (C) 1998 Peter G. Doyle. Derived from works Copyright
(C) 1957, 1966, 1974 John G. Kemeny, J. Laurie Snell, Gerald L. Thomp-
son. This work is freely redistributable under the terms of the GNU Free
Documentation License.



2



Chapter 2

Sets and subsets

2.1 Introduction

A well-defined collection of objects is known as a set. This concept, in
its complete generality, is of great importance in mathematics since all
of mathematics can be developed by starting from it.

The various pieces of furniture in a given room form a set. So do
the books in a given library, or the integers between 1 and 1,000,000, or
all the ideas that mankind has had, or the human beings alive between
one billion B.C. and ten billion A.D. These examples are all examples
of finite sets, that is, sets having a finite number of elements. All the
sets discussed in this book will be finite sets.

There are two essentially different ways of specifying a set. One
can give a rule by which it can be determined whether or not a given
object is a member of the set, or one can give a complete list of the
elements in the set. We shall say that the former is a description of
the set and the latter is a listing of the set. For example, we can define
a set of four people as (a) the members of the string quartet which
played in town last night, or (b) four particular persons whose names
are Jones, Smith, Brown, and Green. It is customary to use braces
to, surround the listing of a set; thus the set above should be listed
{Jones, Smith,Brown,Green}.

We shall frequently be interested in sets of logical possibilities, since
the analysis of such sets is very often a major task in the solving of a
problem. Suppose, for example, that we were interested in the successes
of three candidates who enter the presidential primaries (we assume
there are no other entries). Suppose that the key primaries will be held
in New Hampshire, Minnesota, Wisconsin, and California. Assume
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4 CHAPTER 2. SETS AND SUBSETS

that candidate A enters all the primaries, that B does not contest in
New Hampshire’s primary, and C does not contest in Wisconsin’s. A
list of the logical possibilities is given in Figure 2.1. Since the New
Hampshire and Wisconsin primaries can each end in two ways, and the
Minnesota and California primaries can each end in three ways, there
are in all 2 · 2 · 3 · 3 = 36 different logical possibilities as listed in Figure
2.1.

A set that consists of some members of another set is called a subset

of that set. For example, the set of those logical possibilities in Figure
2.1 for which the statement “Candidate A wins at least three primaries”
is true, is a subset of the set of all logical possibilities. This subset can
also be defined by listing its members: {P1,P2,P3,P4,P7,P13,P19}.

In order to discuss all the subsets of a given set, let us introduce the
following terminology. We shall call the original set the universal set,
one-element subsets will be called unit sets, and the set which contains
no members the empty set. We do not introduce special names for other
kinds of subsets of the universal set. As an example, let the universal
set U consist of the three elements {a, b, c}. The proper subsets of U are
those sets containing some but not all of the elements of U . The proper
subsets consist of three two-element sets namely, {a, b}, {a, c}, and
{b, c} and three unit sets, namely, {a}, {b}, and {c}. To complete the
picture, we also consider the universal set a subset (but not a proper
subset) of itself, and we consider the empty set ∅, that contains no
elements of U , as a subset of U . At first it may seem strange that we
should include the sets U and ∅ as subsets of U , but the reasons for
their inclusion will become clear later.

We saw that the three-element set above had 8 = 23 subsets. In
general, a set with n elements has 2n subsets, as can be seen in the
following manner. We form subsets P of U by considering each of the
elements of U in turn and deciding whether or not to include it in the
subset P . If we decide to put every element of U into P , we get the
universal set, and if we decide to put no element of U into P , we get
the empty set. In most cases we will put some but not all the elements
into P and thus obtain a proper subset of U . We have to make n
decisions, one for each element of the set, and for each decision we have
to choose between two alternatives. We can make these decisions in
2 · 2 · . . . · 2 = 2n ways, and hence this is the number of different subsets
of U that can be formed. Observe that our formula would not have
been so simple if we had not included the universal set and the empty
set as subsets of U .



2.1. INTRODUCTION 5

Figure 2.1: ♦
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In the example of the voting primaries above there are 236 or about
70 billion subsets. Of course, we cannot deal with this many subsets in
a practical problem, but fortunately we are usually interested in only
a few of the subsets. The most interesting subsets are those which
can be defined by means of a simple rule such as “the set of all logical
possibilities in which C loses at least two primaries”. It would be diffi-
cult to give a simple description for the subset containing the elements
{P1,P4,P14,P30,P34}. On the other hand, we shall see in the next
section how to define new subsets in terms of subsets already defined.

Example 2.1 We illustrate the two different ways of specifying sets in
terms of the primary voting example. Let the universal set U be the
logical possibilities given in Figure 2.1.

1. What is the subset of U in which candidate B wins more primaries
than either of the other candidates?

[Ans. {P11,P12,P17,P23,P26,P28,P29}.]

2. What is the subset in which the primaries are split two and two?

[Ans. {P5,P8,P10,P15,P21,P30,P31,P35}.]

3. Describe the set {P1,P4,P19,P22}.

[Ans. The set of possibilities for which A wins in Minnesota and
California.]

4. How can we describe the set {P18,P24,P27}

[Ans. The set of possibilities for which C wins in California, and
the other primaries are split three ways.]

♦

Exercises

1. In the primary example, give a listing for each of the following
sets.

(a) The set in which C wins at least two primaries.
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(b) The set in which the first three primaries are won by the
same candidate.

(c) The set in which B wins all four primaries.

2. The primaries are considered decisive if a candidate can win three
primaries, or if he or she wins two primaries including California.
List the set in which the primaries are decisive.

3. Give simple descriptions for the following sets (referring to the
primary example).

(a) {P33,P36}.
(b) {P10,P11,P12,P28,P29,P30}.
(c) {P6,P20,P22}.

4. Joe, Jim, Pete, Mary, and Peg are to be photographed. They
want to line up so that boys and girls alternate. List the set of
all possibilities.

5. In Exercise 4, list the following subsets.

(a) The set in which Pete and Mary are next to each other.

(b) The set in which Peg is between Joe and Jim.

(c) The set in which Jim is in the middle.

(d) The set in which Mary is in the middle.

(e) The set in which a boy is at each end.

6. Pick out all pairs in Exercise 5 in which one set is a subset of the
other.

7. A TV producer is planning a half-hour show. He or she wants to
have a combination of comedy, music, and commercials. If each
is allotted a multiple of five minutes, construct the set of possible
distributions of time. (Consider only the total time allotted to
each.)

8. In Exercise 7, list the following subsets.

(a) The set in which more time is devoted to comedy than to
music.
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(b) The set in which no more time is devoted to commercials
than to either music or comedy.

(c) The set in which exactly five minutes is devoted to music.

(d) The set in which all three of the above conditions are satis-
fied.

9. In Exercise 8, find two sets, each of which is a proper subset of
the set in 8a and also of the set in 8c.

10. Let U be the set of paths in Figure ??. Find the subset in which

(a) Two balls of the same color are drawn.

(b) Two different color balls are drawn.

11. A set has 101 elements. How many subsets does it have? How
many of the subsets have an odd number of elements?

[Ans. 2101; 2100.]

12. Do Exercise 11 for the case of a set with 102 elements.

2.2 Operations on subsets

In Chapter ?? we considered the ways in which one could form new
statements from given statements. Now we shall consider an analogous
procedure, the formation of new sets from given sets. We shall assume
that each of the sets that we use in the combination is a subset of some
universal set, and we shall also want the newly formed set to be a subset
of the same universal set. As usual, we can specify a newly formed set
either by a description or by a listing.

If P and Q are two sets, we shall define a new set P ∩Q, called the
intersection of P and Q, as follows: P ∩ Q is the set which contains
those and only those elements which belong to both P and Q. As an
example, consider the logical possibilities listed in Figure 2.1. Let P be
the subset in which candidate A wins at least three primaries, i.e., the
set {P1,P2,P3,P4,P7,P13,P19}; let Q be the subset in which A wins
the first two primaries, i.e., the set {P1,P2,P3,P4,P5,P6}. Then the
intersection P ∩Q is the set in which both events take place, i.e., where
A wins the first two primaries and wins at least three primaries. Thus
P ∩Q is the set {P1,P2,P3,P4}.
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Figure 2.2: ♦

If P and Q are two sets, we shall define a new set P ∪ Q called
the union of P and Q as follows: P ∪ Q is the set that contains those
and only those elements that belong either to P or to Q (or to both).
In the example in the paragraph above, the union P ∪ Q is the set of
possibilities for which either A wins the first two primaries or wins at
least three primaries, i.e., the set {P1,P2,P3,P4,P5,P6,P7,P13,P19}.

To help in visualizing these operations we shall draw diagrams,
called Venn diagrams, which illustrate them. We let the universal set
be a rectangle and let subsets be circles drawn inside the rectangle.
In Figure 2.2 we show two sets P and Q as shaded circles. Then the
doubly crosshatched area is the intersection P ∩Q and the total shaded
area is the union P ∪Q.

If P is a given subset of the universal set U , we can define a new set
P̃ called the complement of P as follows: P is the set of all elements
of U that are not contained in P . For example, if, as above, Q is the
set in which candidate A wins the first two primaries, then Q̃ is the set
{P7,P8, . . . ,P36}. The shaded area in Figure 2.3 is the complement
of the set P . Observe that the complement of the empty set ∅ is the
universal set U , and also that the complement of the universal set is
the empty set.

Sometimes we shall be interested in only part of the complement of a
set. For example, we might wish to consider the part of the complement
of the set Q that is contained in P , i.e., the set P ∩ Q̃. The shaded
area in Figure 2.4 is P ∩ Q̃.

A somewhat more suggestive definition of this set can be given as
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Figure 2.3: ♦

Figure 2.4: ♦
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follows: Let P − Q be the difference of P and Q, that is, the set that
contains those elements of P that do not belong to Q. Figure 2.4 shows
that P ∩ Q̃ and P −Q are the same set. In the primary voting example
above, the set P −Q can be listed as {P7,P13,P19}.

The complement of a subset is a special case of a difference set,
since we can write Q̃ = U −Q. If P and Q are nonempty subsets whose
intersection is the empty set, i.e., P ∩Q = ∅, then we say that they are
disjoint subsets.

Example 2.2 In the primary voting example let R be the set in which
A wins the first three primaries, i e., the set {P1,P2,P3}; let S be the
set in which A wins the last two primaries, i.e., the set {P1,P7,P13,P19,P25,P31}.
Then R∩S = {P1} is the set in which A wins the first three primaries
and also the last two, that is, he or she wins all the primaries. We also
have

R ∪ S = {P1,P2,P3,P7,P13,P19,P25,P31},
which can be described as the set in which A wins the first three pri-
maries or the last two. The set in which A does not win the first three
primaries is R̃ = {P4,P5, . . . ,P36}. Finally, we see that the difference
set R − S is the set in which A wins the first three primaries but not
both of the last two. This set can be found by taking from R the el-
ement P1 which it has in common with S, so that R − S = {P2,P3}.
♦

Exercises

1. Draw Venn diagrams for P ∩Q, P ∩ Q̃, P̃ ∩Q, P̃ ∩ Q̃.

2. Give a step-by-step construction of the diagram for (P̃ − Q) ∪
(P ∩ Q̃).

3. Venn diagrams are also useful when three subsets are given. Con-
struct such a diagram, given the subsets P . Q. and R. Identify
each of the eight resulting areas in terms of P , Q, and R.

4. In testing blood, three types of antigens are looked for: A, B, and
Rh. Every person is classified doubly. He or she is Rh positive if
he or she has the Rh antigen, and Rh negative otherwise. He or
she is type AB, A, or B depending on which of the other antigens
he or she has, with type O having neither A nor B. Draw a Venn
diagram, and identify each of the eight areas.
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Figure 2.5: ♦

5. Considering only two subsets, the set X of people having antigen
A, and the set Y of people having antigen B. define (symbolically)
the types AB, A, B and O.

6. A person can receive blood from another person if he or she has
all the antigens of the donor. Describe in terms of X and Y the
sets of people who can give to each of the four types. Identify
these sets in terms of blood types.

7. The tabulation in Figure 2.5 records the reaction of a number
of spectators to a television show. A11 the categories can be
defined in terms of the following four: M (male), G (grown-up),
L (liked), V (very much). How many people fall into each of the
following categories?

(a) M .

[Ans. 34.]

(b) L.

(c) V .

(d) M ∩ G̃ ∩ L̃ ∩ V .

[Ans. 2.]

(e) M̃ ∩G ∩ L.

(f) (M ∩G) ∪ (L ∩ V ).
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(g) ˜M ∩G.

[Ans. 48.]

(h) M̃ ∪ G̃.

(i) M −G.

(j) [M̃ − (G ∩ L ∩ Ṽ )].

8. In a survey of 100 students, the numbers studying various lan-
guages were found to be: Spanish, 28; German, 30; French, 42;
Spanish and German, 8; Spanish and French, 10; German and
French, 5; all three languages, 3.

(a) How many students were studying no language?

[Ans. 20.]

(b) How many students had French as their only language?

[Ans. 30.]

(c) How many students studied German if and only if they stud-
ied French?

[Ans. 38.]

[Hint: Draw a Venn diagram with three circles, for French, Ger-
man, and Spanish students. Fill in the numbers in each of the
eight areas, using the data given above. Start from the end of the
list and work back.]

9. In a later survey of the 100 students (see Exercise 8) the numbers
studying the various languages were found to be: German only,
18; German but not Spanish, 23; German and French, 8; German,
26; French, 48; French and Spanish, 8; no language, 24.

(a) How many students took Spanish?

[Ans. 18.]

(b) How many took German and Spanish but not French?

[Ans. None.]

(c) How many took French if and only if they did not take Span-
ish?
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[Ans. 50.]

10. The report of one survey of the 100 students (see Exercise 8)
stated that the numbers studying the various languages were: all
three languages, 5; German and Spanish, 10; French and Spanish,
8; German and French, 20; Spanish, 30; German, 23; French, 50.
The surveyor who turned in this report was fired. Why?

2.3 The relationship between sets and com-

pound statements

The reader may have observed several times in the preceding sections
that there was a close connection between sets and statements, and
between set operations and compounding operations. In this section
we shall formalize these relationships.

If we have a number of statements relative to a set of logical pos-
sibilities, there is a natural way of assigning a set to each statement.
First of all, we take the set of logical possibilities as our universal set.
Then to each statement we assign the subset of logical possibilities
of the universal set for which that statement is true. This idea is so
important that we embody it in a formal definition.

Definition. Let U be a set of logical possibilities, let p be a state-
ment relative to it, and let P be that subset of the possibilities for
which p is true; then we call P the truth set of p.

If p and q are statements, then p∨q and p∧q are also statements and
hence must have truth sets. To find the truth set of p ∨ q, we observe
that it is true whenever p is true or q is true (or both). Therefore we
must assign to p ∨ q the logical possibilities which are in P or in Q (or
both); that is, we must assign to p ∨ q the set P ∪ Q. On the other
hand, the statement p ∧ q is true only when both p and q are true, so
that we must assign to p ∧ q the set P ∩Q.

Thus we see that there is a close connection between the logical op-
eration of disjunction and the set operation of union, and also between
conjunction and intersection. A careful examination of the definitions
of union and intersection shows that the word “or” occurs in the defini-
tion of union and the word “and” occurs in the definition of intersection.
Thus the connection between the two theories is not surprising.

Since the connective “not” occurs in the definition of the comple-
ment of a set, it is not surprising that the truth set of ¬p is P̃ . This
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Figure 2.6: ♦

follows since ¬p is true when p is false, so that the truth set of ¬p
contains all logical possibilities for which p is false, that is, the truth
set of ¬p is P̃ .

The truth sets of two propositions p and q are shown in Figure
2.6. Also marked on the diagram are the various logical possibilities
for these two statements. The reader should pick out in this diagram
the truth sets of the statements p ∨ q, p ∧ q, ¬p, and ¬q.

The connection between a statement and its truth set makes it pos-
sible to “translate” a problem about compound statements into a prob-
lem about sets. It is also possible to go in the reverse direction. Given
a problem about sets, think of the universal set as being a set of logical
possibilities and think of a subset as being the truth set of a statement.
Hence we can “translate” a problem about sets into a problem about
compound statements.

So far we have discussed only the truth sets assigned to compound
statements involving ∨, ∧, and ¬. All the other connectives can be
defined in terms of these three basic ones, so that we can deduce what
truth sets should be assigned to them. For example, we know that
p → q is equivalent to ¬p ∨ q (see Figure ??). Hence the truth set of
p → q is the same as the truth set of ¬p∨q, that is, it is P̃∪Q. The Venn
diagram for p → q is shown in Figure 2.7, where the shaded area is the
truth set for the statement. Observe that the unshaded area in Figure
2.7 is the set P − Q = P ∩ Q̃, which is the truth set of the statement

p ∧ ¬q. Thus the shaded area is the set ˜P −Q =
˜

P ∩ Q̃, which is the
truth set of the statement ¬(p∧¬q). We have thus discovered the fact
that p → q, ¬p ∨ q, and ¬(p ∧ ¬q) are equivalent. It is always the
case that two compound statements are equivalent if and only if they
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Figure 2.7: ♦

have the same truth sets. Thus we can test for equivalence by checking
whether they have the same Venn diagram.

Suppose that p is a statement that is logically true. What is its
truth set? Now p is logically true if and only if it is true in every
logically possible case, so that the truth set of p must be U . Similarly,
if p is logically false, then it is false for every logically possible case, so
that its truth set is the empty set ∅.

Finally, let us consider the implication relation. Recall that p im-
plies p if and only if the conditional p → q is logically true. But p → q

is logically true if and only if its truth set is U , that is, ˜(P −Q) = U , or
(P −Q) = ∅. From Figure 2.4 we see that if P −Q is empty, then P is
contained in Q. We shall symbolize the containing relation as follows:
P ⊂ Q means “P is a subset of Q”. We conclude that p → q is logically
true if and only if P ⊂ Q.

Figure 2.8 supplies a “dictionary” for translating from statement
language to set language, and back. To each statement relative to a
set of possibilities U there corresponds a subset of U , namely the truth
set of the statement. This is shown in lines 1 and 2 of the figure. To
each connective there corresponds an operation on sets, as illustrated
in the next four lines. And to each relation between statements there
corresponds a relation between sets, examples of which are shown in
the last two lines of the figure.

Example 2.3 Prove by means of a Venn diagram that the statement
[p ∨ (¬p ∨ q)] is logically true. The assigned set of this statement is
[P ∪ (P̃ ∪ Q)], and its Venn diagram is shown in Figure 2.9. In
that figure the set P is shaded vertically, and the set P̃ ∪ Q is shaded
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Figure 2.8: ♦

Figure 2.9: ♦
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Figure 2.10: ♦

horizontally. Their union is the entire shaded area, which is U , so that
the compound statement is logically true. ♦

Example 2.4 Prove by means of Venn diagrams that p ∨ (q ∧ r) is
equivalent to (p ∨ q) ∧ (p ∨ r). The truth set of p ∨ (q ∧ r) is the
entire shaded area in diagram (a) of Figure 2.10, and the truth set of
(p∨ q)∧ (p∨ r) is the doubly shaded area in diagram (b). Since these
two sets are equal, we see that the two statements are equivalent. ♦

Example 2.5 Show by means of a Venn diagram that q implies p → q.
The truth set of p → q is the shaded area in Figure 2.7. Since this
shaded area includes the set Q. we see that q implies p → q. ♦

Exercises

Note. In Exercises 1, 2, and 3, find first the truth set of each
statement.

1. Use Venn diagrams to test which of the following statements are
logically true or logically false.

(a) p ∨ ¬p.
[Ans. logically true.]
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(b) p ∧ ¬p.
[Ans. logically false.]

(c) p ∨ (¬p ∧ q).

(d) p → (q → p).

[Ans. logically true.]

(e) p ∧ ¬(q → p).

[Ans. logically false.]

2. Use Venn diagrams to test the following statements for equiva-
lences.

(a) p ∨ ¬q.
(b) ¬(p ∧ q).

(c) ¬(q ∧ ¬q).
(d) p → ¬q.
(e) ¬p ∨ ¬q.

[Ans. 2a and 2c equivalent; 2b and 2d and 2e equivalent.]

3. Use Venn diagrams for the following pairs of statements to test
whether one implies the other.

(a) p; p ∧ q.

(b) p ∧ ¬q;¬p → ¬q.
(c) p → q; q → p.

(d) p ∧ q; p ∧ ¬q.

4. Devise a test for inconsistency of p and q, using Venn diagrams.

5. Three or more statements are said to be inconsistent if they can-
not all be true. What does this state about their truth sets?

6. Consider these three statements.

If this is a good course, then I will work hard in it.

If this is not a good course, then I shall get a bad grade in it.
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I will not work hard, but I will get a good grade in this course.

(a) Assign variables to the components of each of these state-
ments.

(b) Bring the statements into symbolic form.

(c) Find the truth sets of the statements.

(d) Rest for consistency.

[Ans. Inconsistent.]

Note. In Exercises 7, 8, and 9, assign to each set a statement
having it as a truth set.

7. Use truth tables to find which of the following sets are empty.

(a) (P ∪Q) ∩ (P̃ ∪ Q̃).

(b) (P ∩Q) ∩ (Q̃ ∩R).

(c) (P ∩Q)− P .

(d) (P ∪ R) ∩ (P̃ ∪ Q̃)

[Ans. 7b and 7c.]

8. Use truth tables to find out whether the following sets are all
different.

(a) P ∩ (Q ∪R).

(b) (R −Q) ∪ (Q− R).

(c) (R ∪Q) ∩ ˜(R ∩Q).

(d) (P ∩Q) ∪ (P ∩R).

(e) (P ∩Q ∩ R̃) ∪ (P ∩ Q̃ ∩R) ∪ (P̃ ∩Q ∩ R̃) ∪ (P̃ ∩ Q̃ ∩ R).

9. Use truth tables for the following pairs of sets to test whether one
is a subset of the other.

(a) P ;P ∩Q.

(b) P ∩ Q̃;Q ∩ P̃ .

(c) P −Q;Q− P .
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(d) P ∩ Q̃;P ∪Q.

10. Show, both by the use of truth tables and by the use of Venn
diagrams, that p ∧ (q ∨ r) is equivalent to (p ∧ q) ∨ (p ∧ r).

11. The symmetric difference of P and Q is defined to be (P −Q) ∪
(Q− P ). What connective corresponds to this set operation?

12. Let p, q, r be a complete set of alternatives (see Section ??). What
can we say about the truth sets P,Q,R?

2.4 The abstract laws of set operations

The set operations which we have introduced obey some very simple ab-
stract laws, which we shall list in this section. These laws can be proved
by means of Venn diagrams or they can be translated into statements
and checked by means of truth tables.

The abstract laws given below bear a close resemblance to the ele-
mentary algebraic laws with which the student is already familiar. The
resemblance can be made even more striking by replacing ∪ by + and
∩ by ×. For this reason, a set, its subsets, and the laws of combi-
nation of subsets are considered an algebraic system, called a Boolean

algebra—after the British mathematician George Boole who was the
first person to study them from the algebraic point of view. Any other
system obeying these laws, for example, the system of compound state-
ments studied in Chapter ??, is also known as a Boolean algebra. We
can study any of these systems from either the algebraic or the logical
point of view.

Below are the basic laws of Boolean algebras. The proofs of these
laws will be left as exercises.

The laws governing union and intersection:
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A1. A ∪A = A.
A2. A ∩A = A.
A3. A ∪B = B ∪ A.
A4. A ∩B = B ∩ A.
A5. A ∪ (B ∪ C) = (A ∪ B) ∪ C.
A6. A ∩ (B ∩ C) = (A ∩ B) ∩ C.
A7. A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C).
A8. A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C).
A9. A ∪ U = U .
A10. A ∩ ∅ = ∅.
A11. A ∪ ∅ = A.
A12. A ∩ U = A.

The laws governing complements:

B1. ˜̃A = A.

B2. A ∪ Ã = U .
B3. A ∩ Ã = ∅.
B4. ˜A ∪ B = Ã ∩ B̃.

B5. ˜A ∩ B = Ã ∪ B̃.

B6. Ũ = ∅.
The laws governing set-differences:

C1. A− B = A ∩ B̃.

C2. U − A = Ã.
C3. A− U = ∅.
C4. A− ∅ = A.
C5. ∅ −A = ∅.
C6. A− A = ∅.
C7. (A− B)− C = A− (B ∪ C).
C8. A− (B − C) = (A− B) ∪ (A ∩ C).
C9. A ∪ (B − C) = (A ∪B)− (C − A).
C10. A ∩ (B − C) = (A ∩B)− (A ∩ C).

Exercises

1. Test laws in the group A1–A12 by means of Venn diagrams.

2. “Translate” the A-laws into laws about compound statements.
Test these by truth tables.

3. Test the laws in groups B and C by Venn diagrams.
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4. “Translate” the B- and C-laws into laws about compound state-
ments. Test these by means of truth tables.

5. Derive the following results from the 28 basic laws.

(a) A = (A ∩ B) ∪ (A ∩ B̃).

(b) A ∪B = (A ∩B) ∪ (A ∩ B̃) ∪ (Ã ∩B).

(c) A ∩ (A ∪B) = A.

(d) A ∪ (Ã ∩B) = A ∪B.

6. From the A- and B-laws and from C1, derive C2–C6.

7. Use A1–A12 and C2–C10 to derive B1, B2, B3, and B6.

Supplementary exercises.

Note. Use the following definitions in these exercises: Let + be
symmetric difference (see Exercise 11), × be intersection, let 0 be
∅ and 1 be U .

8. From A2, A4, and A6 derive the properties of multiplication.

9. Find corresponding properties for addition.

10. Set up addition and multiplication tables for 0 and 1.

11. What do A× 0, A× 1, A+ 0, and A+ 1 equal?

[Ans. 0;A;A; Ã.]

12. Show that

A× (B + C) = (A×B) + (A× C).

13. Show that the following equation is not always true.

A+ (B × C) = (A +B)× (A + C).



24 CHAPTER 2. SETS AND SUBSETS

Figure 2.11: ♦

2.5 Two-digit number systems

In the decimal number system one can write any number by using only
the ten digits, 0, 1, 2, . . . , 9. Other number systems can be constructed
which use either fewer or more digits. Probably the simplest number
system is the binary number system which uses only the digits 0 and
1. We shall consider all the possible ways of forming number systems
using only these two digits.

The two basic arithmetical operations are addition and multiplica-
tion. To understand any arithmetic system, it is necessary to know
how to add or multiply any two digits together. Thus to understand
the decimal system, we had to learn a multiplication table and an ad-
dition table, each of which had 100 entries. To understand the binary
system, we have to learn a multiplication and an addition table, each
of which has only four entries. These are shown in Figure 2.11. The
multiplication table given there is completely determined by the two
familiar rules that multiplying a number by zero gives zero, and mul-
tiplying a number by one leaves it unchanged. For addition, we have
only the rule that the addition of zero to a number does not change
that number. The latter rule is sufficient to determine all but one of
the entries in the addition table in Figure 2.11. We must still decide
what shall be the sum 1 + 1.

What are the possible ways in which we can complete the addition
table? The only one-digit numbers that we can use are 0 and l, and
these lead to interesting systems. Of the possible two-digit numbers, we
see that 00 and 01 are the same as 0 and l and so do not give anything
new. The number 11 or any greater number would introduce a “jump”
in the table, hence the only other possibility is 10. The addition tables
of these three different number systems are shown in Figure 2.12, and
they all have the multiplication table shown in Figure 2.11. Each of
these systems is interesting in itself as the interpretations below show.

Let us say that the parity of a positive integer is the fact of its being
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Figure 2.12: ♦

odd or even. Consider now the number system having the addition
table (a) in Figure 2.12 and let 0 represent “even” and 1 represent
“odd”. The tables above now tell how the parity of a combination of
two positive integers is related to the parity of each. Thus 0 ·1 = 0 tells
us that the product of an even number and an odd number is even,
while 1 + 1 = 0 tells us that the sum of two odd numbers is even, etc.
Thus the first number system is that which we get from the arithmetic
of the positive integers if we consider only the parity of numbers.

The second number system, which has the addition table (b) in Fig-
ure 2.12, has an interpretation in terms of sets. Let 0 correspond to the
empty set ∅ and 1 correspond to the universal set U . Let the addition
of numbers correspond to the union of sets and let the multiplication
of sets correspond to the intersection of sets. Then 0 · 1 = 0 tells us
that ∅ ∩ U = ∅ and 1 + 1 = 1 tells us that U ∪ U = U . The student
should give the interpretations for the other arithmetic computations
possible for this number system.

Finally, the third number system, which has the addition table in (c)
of Figure 2.12, is the so-called binary number system. Every ordinary
integer can be written as a binary integer. Thus the binary 0 corre-
sponds to the ordinary 0, and the binary unit 1 to the ordinary single
unit. The binary number 10 means a “unit of higher order” and corre-
sponds to the ordinary number two (not to ten). The binary number
100 then means two times two or four. In general, if bnbn−1 . . . b2b1b0 is a
binary number, where each digit is either 0 or 1, then the corresponding
ordinary integer I is given by the formula

I = bn · 2n + bn−1 · 2n−1 + . . .+ b2 · 22 + b1 · 2 + b0.

Thus the binary number 11001 corresponds to 24+23+1 = 16+8+1 =
25. The table in Figure 2.13 shows some binary numbers and their
decimal equivalents.
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Figure 2.13: ♦

Because electronic circuits are particularly well adapted to perform-
ing computations in the binary system, modern high-speed electronic
computers are frequently constructed to work in the binary system.

Example 2.6 As an example of a computation, let us multiply 5 by
5 in the binary system. Since the binary equivalent of 5 is the number
101, the multiplication is done as follows.

1 0 1
1 0 1
1 0 1

0 0 0
1 0 1
1 1 0 0 1

The answer is the binary number 11001, which we saw above was equiv-
alent to the decimal integer 25, the answer we expected to get. ♦

Exercises

1. Complete the interpretations of the addition and multiplication
tables for the number systems representing

(a) parity,

(b) the sets U and ∅.

2. (a) What are the binary numbers corresponding to the integers
11, 52, 64, 98, 128, 144?

[Partial Ans. 1100010 corresponds to 98.]

(b) What decimal integers correspond to the binary numbers
1111, 1010101, 1000000, 11011011?
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[Partial Ans. 1010101 corresponds to 85.]

3. Carry out the following operations in the binary system. Check
your answer.

(a) 29 + 20.

(b) 9 · 7.

4. Of the laws listed below, which apply to each of the three systems?

(a) x+ y = y + x.

(b) x+ x = x.

(c) x+ x+ x = x.

5. Interpret a + b to be the larger of the two numbers a and b, and
a · b to be the smaller of the two. Write tables of “addition” and
“multiplication” for the digits 0 and 1. Compare the result with
the three systems given above.

[Ans. Same as the U , ∅ system.]

6. What do the laws A1–A10 of Section 2.4 tell us about the second
number system established above?

7. The first number system above (about parity) can be interpreted
to deal with the remainders of integers when divided by 2. An
even number leaves 0, an odd number leaves 1. Construct tables
of addition and multiplication for remainders of integers when
divided by 3. [Hint: These will be 3 by 3 tables.]

8. Given a set of four elements, suppose that we want to number
its subsets. For a given subset, write down a binary number as
follows: The first digit is 1 if and only if the first element is in the
subset, the second digit is 1 if and only if the second element is
in the subset, etc. Prove that this assigns a unique number, from
0 to 15, to each subset.

9. In a multiple choice test the answers were numbered 1, 2, 4, and
8. The students were told that there might be no correct answer,
or that one or more answers might be correct. They were told to
add together the numbers of the correct answers (or to write 0 if
no answer was correct).
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(a) By using the result of Exercise 8, show that the resulting
number gives the instructor all the information he or she
wants.

(b) On a given question the correct sum was 7. Three students
put down 4, 8, and 15, respectively. Which answer was most
nearly correct? Which answer was worst?

[Ans. 15 best, 8 worst.]

10. In the ternary number system, numbers are expressed to the base
3, so that 201 in this system stands for 2 · 32 + 0 · 3 + 1 · 1 = 19.

(a) Write the numbers from 1 through 30 in this notation.

(b) Construct a table of addition and multiplication for the dig-
its 0, 1, 2.

(c) Carry out the multiplication of 5 · 5 in this system. Check
your answer.

11. Explain the meaning of the numeral “2907” in our ordinary (base
10) notation, in analogy to the formula given for the binary sys-
tem.

12. Show that the addition and multiplication tables set up in Exer-
cise 10 correspond to one of our three systems.

2.6 Voting coalitions

As an application of our set concepts, we shall consider the significance
of voting coalitions in voting bodies. Here the universal set is a set
of human beings which form a decision-making body. For example,
the universal set might be the members of a committee, or of a city
council, or of a convention, or of the House of Representatives, etc.
Each member can cast a certain number of votes. The decision as to
whether or not a measure is passed can be decided by a simple majority
rule, or two-thirds majority, etc.

Suppose now that a subset of the members of the body forms a
coalition in order to pass a measure. The question is whether or not
they have enough votes to guarantee passage of the measure. If they
have enough votes to carry the measure, then we say they form a win-
ning coalition. If the members not in the coalition can pass a measure
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of their own, then we say that the original coalition is a losing coalition.
Finally, if the members of the coalition cannot carry their measure, and
if the members not in the coalition cannot carry their measure, then
the coalition is called a blocking coalition.

Let us restate these definitions in set-theoretic terms. A coalition
C is winning if they have enough votes to carry an issue; coalition C
is losing if the coalition C̃ is winning; and coalition C is blocking if
neither C nor C̃ is a winning coalition.

The following facts are immediate consequences of these definitions.
The complement of a winning coalition is a losing coalition. The com-
plement of a losing coalition is a winning coalition. The complement of
a blocking coalition is a blocking coalition.

Example 2.7 A committee consists of six members each having one
vote. A simple majority vote will carry an issue. Then any coalition
of four or more members is winning, any coalition with one or two
members is losing, and any three-person coalition is blocking. ♦

Example 2.8 Suppose in Example 2.7 one of the six members (say
the chair) is given the additional power to break ties. Then any three-
person coalition of which the chair is a member is winning, while the
other three-person coalitions are losing; hence there are no blocking
coalitions. The other coalitions are as in Example 2.7. ♦

Example 2.9 Let the universal set U be the set {x, y,w, z}, where x
and y each has one vote, w has two votes, and z has three votes. Suppose
it takes five votes to carry a measure. Then the winning coalitions are:
{z,w}, {z, x, y}, {z,w, x}, {z,w, y}, and U . The losing coalitions are
the complements of these sets. Blocking coalitions are: {z}, {z, x},
{z, y}, {w, x}, {w, y}, and {w, x, y}. ♦

The last example shows that it is not always necessary to list all
members of a winning coalition. For example, if the coalition {z,w} is
winning, then it is obvious that the coalition {z,w, y} is also winning.
In general, if a coalition C is winning, then any other set that has C as a
subset will also be winning. Thus we are led to the notion of a minimal
winning coalition. A minimal winning coalition is a winning coalition
which contains no smaller winning coalition as a subset. Another way
of stating this is that a minimal winning coalition is a winning coalition
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such that, if any member is lost from the coalition, then it ceases to be
a winning coalition.

If we know the minimal winning coalitions, then we know everything
that we need to know about the voting problem. The winning coalitions
are all those sets that contain a minimal winning coalition, and the
losing coalitions are the complements of the winning coalitions. All
other sets are blocking coalitions.

In Example 2.7 the minimal winning coalitions are the sets contain-
ing four members. In Example 2.8 the minimal winning coalitions are
the three-member coalitions that contain the tie-breaking member and
the four-member coalitions that do not contain the tie-breaking mem-
ber. The minimal winning coalitions in the third example are the sets
{z,w} and {z, x, y}.

Sometimes there are committee members who have special powers
or lack of power. If a member can pass any measure he or she wishes
without needing anyone else to vote with him or her, then we call him
or her a dictator. Thus member x is a dictator if and only if {x} is a
winning coalition. A somewhat weaker but still very powerful member
is one who can by himself or herself block any measure. If x is such a
member, then we say that x has veto power. Thus x has veto power
if and only if {x} is a blocking coalition. Finally if x is not a member
of any minimal winning coalition, we shall call him or her a powerless
member. Thus x is powerless if and only if any winning coalition of
which x is a member is a winning coalition without him or her.

Example 2.10 An interesting example of a decision-making body is
the Security Council of the United Nations. (We discuss the rules
prior to 1966.) The Security Council has eleven members consisting
of the five permanent large-nation members called the Big Five, and
six small-nation members. In order that a measure be passed by the
Council, seven members including all of the Big Five must vote for the
measure. Thus the seven-member sets made up of the Big Five plus
two small nations are the minimal winning coalitions. Then the losing
coalitions are the sets that contain at most four small nations. The
blocking coalitions are the sets that are neither winning nor losing. In
particular, a unit set that contains one of the Big Five as a member
is a blocking coalition. This is the sense in which a Big Five member
has a veto. [The possibility of “abstaining” is immaterial in the above
discussion.]

In 1966 the number of small-nation members was increased to 10.
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A measure now requires the vote of nine members, including all of the
Big Five. (See Exercise 11.) ♦

Exercises

1. A committee has w, x, y, and z as members. Member w has two
votes, the others have one vote each. List the winning, losing,
and blocking coalitions.

2. A committee has n members, each with one vote. It takes a
majority vote to carry an issue. What are the winning, losing,
and blocking coalitions?

3. Rhe Board of Estimate of New York City consists (that is, con-
sisted at one time) of eight members with voting strength as fol-
lows:

s. Mayor 4 votes
t. Controller 4
u. Council President 4
v. Brooklyn Borough President 2
w. Manhattan Borough President 2
x. Bronx Borough President 2
y. Richmond Borough President 2
z. Queens Borough President 2

A simple majority is needed to carry an issue. List the minimal
winning coalitions. List the blocking coalitions. Do the same if
we give the mayor the additional power to break ties.

4. A company has issued 100,000 shares of common stock and each
share has one vote. How many shares must a stockholder have to
be a dictator? How many to have a veto?

[Ans. 50,001; 50,000.]

5. In Exercise 4, if the company requires a two-thirds majority vote
to carry an issue, how many shares must a stockholder have to
be a dictator or to have a veto?

[Ans. At least 66,667; at least 33,334.]
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6. Prove that if a committee has a dictator as a member, then the
remaining members are powerless.

7. We can define a maximal losing coalition in analogy to the mini-
mal winning coalitions. What is the relation between the maximal
losing and minimal winning coalitions? Do the maximal losing
coalitions provide all relevant information?

8. Prove that any two minimal winning coalitions have at least one
member in common.

9. Find all the blocking coalitions in the Security Council example
(Example 2.10).

10. Prove that if a member has veto power and if he or she together
with any one other member can carry a measure, then the distri-
bution of the remaining votes is irrelevant.

11. Find the winning, losing, and blocking coalitions in the Security
Council, using the revised (1966) structure.
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Chapter 3

Partitions and counting

3.1 Partitions

The problems to be studied in this chapter can be most conveniently
described in terms of partitions of a set. A partition of a set U is a
subdivision of the set into subsets that are disjoint and exhaustive, i.e.,
every element of U must belong to one and only one of the subsets.
The subsets Ai in the partition are called cells. Thus [A1, A2, . . . , Ar]
is a partition of U if two conditions are satisfied: (1) Ai ∩ Aj = ∅ if
i 6= j (the cells are disjoint) and (2) A1 ∪ A2 ∪ . . . ∪ Ar = U (the cells
are exhaustive).

Example 3.1 If U = {a, b, c, d, e}, then [{a, b}, {c, d, e}] and [{b, c, e}, {a}, {d}]
and [{a}, {b}, {c}, {d}, {e}] are three different partitions of U . The last
is a partition into unit sets. ♦

The process of going from a fine to a less fine analysis of a set of
logical possibilities is actually carried out by means of a partition. For
example, let us consider the logical possibilities for the first three games
of the World Series if the Yankees play the Dodgers. We can list the
possibilities in terms cf the winner of each game as

{YYY,YYD,YDY,DYY,DDY,DYD,YDD,DDD}.
We form a partition by putting all the possibilities with the same num-
ber of wins for the Yankees in a single cell,

[{YYY}, {YYD,YDY,DYY}, {DDY,DYD,YDD}, {DDD}].
Thus, if we wish the possibilities to be Yankees win three games, win
two, win one, win zero, then we are considering a less detailed analysis

33
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obtained from the former analysis by identifying the possibilities in each
cell of the partition.

If [A1, A2, . . . , Ar] and [B1, B2, . . . , Bs] are two partitions of the same
set U , we can obtain a new partition by considering the collection of all
subsets of U of the form Ai ∩ Bj (see Exercise 7). This new partition
is called the cross-partition of the original two partitions.

Example 3.2 A common use of cross-partitions is in the problem of
classification. For example, from the set U of all life forms we can form
the partition [P,A] where P is the set of all plants and A is the set
of all animals. We may also form the partition [E, F ] where E is the
set of extinct life forms and F is the set of all existing life forms. The
cross-partition

[P ∩ E, P ∩ F,A ∩ E,A ∩ F ]

gives a complete classification according to the two separate classifica-
tions. ♦

Many of the examples with which we shall deal in the future will
relate to processes which take place in stages. It will be convenient
to use partitions and cross-partitions to represent the stages of the
process. The graphical representation of such a process is, of course,
a tree. For example, suppose that the process is such that we learn in
succession the truth values of a series of statements relative to a given
situation. If U is the set of logical possibilities for the situation, and
p is a statement relative to U , then the knowledge of the truth value
of p amounts to knowing which cell of the partition [P, P̃ ] contains the
actual possibility. Recall that P is the truth set of p, and P̃ is the
truth set of ¬p. Suppose now we discover the truth value of a second
statement q. This information can again be described by a partition,
namely, [Q, Q̃]. The two statements together give us information which
can be represented by the cross-partition of these two partitions,

[P ∩Q,P ∩ Q̃, P̃ ∩Q, P̃ ∩ Q̃].

That is, if we know the truth values of p and q, we also know which
of the cells of this cross-partition contains the particular logical pos-
sibility describing the given situation. Conversely, if we knew which
cell contained the possibility, we would know the truth values for the
statements p and q.

The information obtained by the additional knowledge of the truth
value of a third statement r, having a truth set R, can be represented
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by the cross-partition of the three partitions [P, P̃ ], [Q, Q̃], [R, R̃] This
cross-partition is

[P∩Q∩R,P∩Q∩R̃, P∩Q̃∩R,P∩Q̃∩R̃, P̃∩Q∩R, P̃∩Q∩R̃, P̃∩Q̃∩R, P̃∩Q̃∩R̃].

Notice that now we have the possibility narrowed down to being in one
of 8 = 23 possible cells. Similarly, if we knew the truth values of n
statements, our partition would have 2n cells.

If the set U were to contain 220 (approximately one million) logical
possibilities, and if we were able to ask yes-no questions in such a way
that the knowledge of the truth value of each question would cut the
number of possibilities in half each time, then we could determine in 20
questions any given possibility in the set U . We could accomplish this
kind of questioning, for example, if we had a list of all the possibilities
and were allowed to ask “Is it in the first half?” and, if the answer is
yes, then “Is it in the first one-fourth?”, etc. In practice we ordinarily
do not have such a list, and we can only approximate this procedure.

Example 3.3 In the familiar radio game of twenty questions it is not
unusual for a contestant to try to carry out a partitioning of the above
kind. For example, he or she may know that he or she is trying to guess
a city. He or she might ask, “Is the city in North America?” and if the
answer is yes, “Is it in the United States?” and if yes, “Is it west of
the Mississippi?” and if no, “Is it in the New England states?”, etc. Of
course, the above procedure does not actually divide the possibilities
exactly in half each time. The more nearly the answer to each question
comes to dividing the possibilities in half, the more certain one can be
of getting the answer in twenty questions, if there are at most a million
possibilities. ♦

Exercises

1. If U is the set of integers from 1 to 6, find the cross-partitions of
the following pairs of partitions

(a) [{1, 2, 3}, {4, 5, 6}] and [{1, 4}, {2, 3, 5, 6}].
[Ans. [{1}, {2, 3}, {4}, {5, 6}].]

(b) [{1, 2, 3, 4, 5}, {6}] and [{1, 3, 5}, {2, 6}, {4}].

2. A coin is thrown three times. List the possibilities according to
which side turns up each time. Give the partition formed by
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putting in the same cell all those possibilities for which the same
number of heads occur.

3. Let p and q be two statements with truth set P and Q. What
can be said about the cross-partition of [P, P̃ ] and [Q, Q̃] in the
case that

(a) p implies q.

[Ans. P ∩ Q̃ = ∅.]

(b) p is equivalent to q.

(c) p and q are inconsistent.

4. Consider the set of eight states consisting of Illinois, Colorado,
Michigan, New York, Vermont, Texas, Alabama, and California.

(a) Show that in three “yes” or “no” questions one can identify
any one of the eight states.

(b) Design a set of three “yes” or “no” questions which can be
answered independently of each other and which will serve
to identify any one of the states.

5. An unabridged dictionary contains about 600,000 words and 3000
pages. If a person chooses a word from such a dictionary, is it
possible to identify this word by twenty “yes” or “no” questions?
If so, describe the procedure that you would use and discuss the
feasibility of the procedure. (One approach is the following. Use
12 questions to locate the page, but then you may need 9 questions
to locate the word.)

6. Jones has two parents, each of his or her parents had two parents,
each of these had two parents, etc. Tracing a person’s family tree
back 40 generations (about 1000 years) gives Jones 240 ancestors,
which is more people than have been on the earth in the last 1000
years. What is wrong with this argument?

7. Let [A1, A2, A3] and [B1, B2] be two partitions. Prove that the
cross-partition of the two given partitions really is a partition,
that is, it satisfies requirements (1) and (2) for partitions.



3.1. PARTITIONS 37

8. The cross-partition formed from the truth sets of n statements
has 2n cells. As seen in Chapter ??, the truth table of a state-
ment compounded from n statements has 2n rows. What is the
relationship between these two facts?

9. Let p and q be statements with truth sets P and Q. Form the
partition [P ∩Q,P ∩ Q̃, P̃ ∩Q, P̃ ∩ Q̃]. State in each case below
which of the cells must be empty in order to make the given
statement a logically true statement.

(a) p → q

(b) p ↔ q

(c) p ∨ ¬p
(d) p

10. A partition [A1, A2, . . . , An] is said to be a refinement of the par-
tition [B1, B2, . . . , Bm] if every Aj is a subset of some Bk. Show
that a cross-partition of two partitions is a refinement of each of
the partitions from which the cross-partition is formed.

11. Consider the partition of the people in the United States deter-
mined by classification according to states. The classification ac-
cording to county determines a second partition. Show that this
is a refinement of the first partition. Give a third partition which
is different from each of these and is a refinement of both.

12. What can be said concerning the cross-partition of two partitions,
one of which is a refinement of the other?

13. Given nine objects, of which it is known that eight have the same
weight and one is heavier, show how, in two weighings with a pan
balance, the heavy one can be identified.

14. Suppose that you are given thirteen objects, twelve of which are
the same, but one is either heavier or lighter than the others.
Show that, with three weighings using a pan balance, it is possible
to identify the odd object. (A complete solution to this problem
is given on page 42 of Mathematical Snapshots, second edition,
by H. Steinhaus.)

15. A subject can be completely classified by introducing several sim-
ple subdivisions and taking their cross-partition. Thus, courses
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in college may be partitioned according to subject, level of ad-
vancement, number of students, hours per week, interests, etc.
For each of the following subjects, introduce five or more par-
titions. How many cells are there in the complete classification
(cross-partition) in each case?

(a) Detective stories.

(b) Diseases.

16. Assume that in a given generation x men are Republicans and y
are Democrats and that the total number of men remains at 50
million in each generation. Assume further that it is known that
20 per cent of the sons of Republicans are Democrats and 30 per
cent of the sons of Democrats are Republicans in any generation.
What conditions must x and y satisfy if there are to be the same
number of Republicans in each generation? Is there more than
one choice for x and y? If not, what must x and y be?

[Partial Ans. There are 30 million Republicans.]

17. Assume that there are 30 million Democratic and 20 million Re-
publican men in the country. It is known that p per cent of the
sons of Democrats are Republicans, and q per cent of the sons
of Republicans are Democrats. If the total number of men re-
mains 50 million, what condition must p and q satisfy so that the
number in each party remains the same? Is there more than one
choice of p and q?

3.2 The number of elements in a set

The remainder of this chapter will be devoted to certain counting prob-
lems. For any set X we shall denote by n(X) the number of elements
in the set.

Suppose we know the number of elements in certain given sets and
wish to know the number in other sets related to these by the opera-
tions of unions, intersections, and complementations. As an example,
consider the following problem.

Suppose that we are told that 100 students take mathematics, and
150 students take economics. Can we then tell how many take either
mathematics or economics? The answer is no, since clearly we would
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Figure 3.1: ♦

also need to know how many students take both courses. If we know
that no student takes both courses, i.e., if we know that the two sets
of students are disjoint, then the answer would be the sum of the two
numbers or 250 students.

In general, if we are given disjoint sets A and B, then it is true that
n(A∪B) = n(A)+n(B). Suppose now that A and B are not disjoint as
shown in Figure 3.1. We can divide the set A into disjoint sets A∩ B̃
and A∩B. Similarly, we can divide B into the disjoint sets Ã∩B and
A ∩ B. Thus,

n(A) = n(A ∩ B̃) + n(A ∩ B),

n(B) = n(Ã ∩ B) + n(A ∩ B).

Adding these two equations, we obtain

n(A) + (B) = n(A ∩ B) + n(A ∩ B̃) + n(Ã ∩ B) + 2n(A ∩ B).

Since the sets A ∩ B, A ∩ B̃, and Ã ∩ B are disjoint sets whose union
is A ∪ B, we obtain the formula

n(A ∪ B) = n(A) + n(B)− n(A ∩B),

which is valid for any two sets A and B.

Example 3.4 Let p and q be statements relative to a set U of logical
possibilities. Denote by P and Q the truth sets of these statements.
The truth set of p∨ q is P ∪Q and the truth set of p∧ q is P ∩Q. Thus
the above formula enables us to find the number of cases where p∨ q is
true if we know the number of cases for which p, q, and p ∧ q are true.
♦
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Figure 3.2: ♦

Example 3.5 More than two sets. It is possible to derive formulas for
the number of elements in a set which is the union of more than two
sets (see Exercise 6), but usually it is easier to work with Venn dia-
grams. For example, suppose that the registrar of a school reports the
following statistics about a group of 30 students: l9 take mathematics.
17 take music. 11 take history. 12 take mathematics and music. 7 take
history and mathematics. 5 take music and history. 2 take mathemat-
ics, history, and music. We draw the Venn diagram in Figure 3.2 and
fill in the numbers for the number of elements in each subset working
from the bottom of our list to the top. That is, since 2 students take
all three courses, and 5 take music and history, then 3 take history and
music but not mathematics, etc. Once the diagram is completed we
can read off the number which take any combination of the courses.
For example, the number which take history but not mathematics is
3 + 1 = 4. ♦

Example 3.6 Cancer studies. The following reasoning is often found
in statistical studies on the effect of smoking on the incidence of lung
cancer. Suppose a study has shown that the fraction of smokers among
those who have lung cancer is greater than the fraction of smokers
among those who do not have lung cancer. It is then asserted that the
fraction of smokers who have lung cancer is greater than the fraction
of nonsmokers who have lung cancer. Let us examine this argument.

Let S be the set of all smokers in the population, and C be the
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Figure 3.3: ♦

set of all people with lung cancer. Let a = n(S ∩ C), b = n(S̃ ∩ C),
c = n(S ∩ C̃) and d = n(S̃ ∩ C̃), as indicated in Figure 3.3. The
fractions in which we are interested are

p1 =
a

a+ b
, p2 =

c

c+ d
, p3 =

a

a+ c
, p4 =

b

b+ d
,

where p1 is the fraction of those with lung cancer that smoke, p2 the
fraction of those without lung cancer that smoke, p3 the fraction of
smokers who have lung cancer, and p4 the fraction of nonsmokers who
have cancer.

The argument above states that if p1 > p2, then p3 > p4. The
hypothesis,

a

a+ b
>

c

c+ d

is true if and only if ac + ad > ac + bc, that is, if and only if ad > bc.
The conclusion

a

a+ c
>

b

b+ d

is true if and only if ab + ad > ab + bc, that is, if and only if ad > bc.
Thus the two statements p1 > p2 and p3 > p4 are in fact equivalent
statements, so that the argument is valid. ♦

Exercises

1. In Example 3.5, find

(a) The number of students that take mathematics but do not
take history.
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[Ans. 12.]

(b) The number that take exactly two of the three courses.

(c) The number that take one or none of the courses.

2. In a chemistry class there are 20 students, and in a psychology
class there are 30 students. Find the number in either the psy-
chology class or the chemistry class if

(a) The two classes meet at the same hour.

[Ans. 50.]

(b) The two classes meet at different hours and 10 students are
enrolled in both courses.

[Ans. 40.]

3. If the truth set of a statement p has 10 elements, and the truth
set of a statement q has 20 elements, find the number of elements
in the truth set of p ∨ q if

(a) p and q are inconsistent.

(b) p and q are consistent and there are two elements in the
truth set of p ∧ q.

4. If p is a statement that is true in ten cases, and q is a statement
that is true in five cases, find the number of cases in which both
p and q are true if p ∨ q is true in ten cases. What relation holds
between p and q?

5. Assume that the incidence of lung cancer is 16 per 100,000, and
that it is estimated that 75 per cent of those with lung cancer
smoke and 60 per cent of those without lung cancer smoke. (These
numbers are fictitious.) Estimate the fraction of smokers with
lung cancer, and the fraction of nonsmokers with lung cancer.

[Ans. 20 and 10 per 100,000.]

6. Let A, B, and C be any three sets of a universal set U . Draw a
Venn diagram and show that

n(A ∪ B ∪ C) = n(A) + n(B) + n(C)

−n(A ∩ B)− n(A ∩ C)− n(B ∩ C)

+n(A ∩B ∩ C).
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7. Analyze the data given below and draw a Venn diagram like that
in Figure 3.2. Assuming that every student in the school takes
one of the courses, find the total number of students in the school.

(a) First case:

28 students take English.
23 students take French.
23 students take German.
12 students take English and French.
11 students take English and German.
8 students take French and German.
5 students take all three courses.

(b) Second case:

36 students take English.
23 students take French.
13 students take German.
6 students take English and French.
11 students take English and German.
4 students take French and German.
1 students take all three courses.

(Comment on this result.)

8. Suppose that in a survey concerning the reading habits of students
it is found that:

60 per cent read magazine A; 50 per cent read magazine B; 50
per cent read magazine C; 30 per cent read magazines A and B;
20 per cent read magazines B and C; 30 per cent read magazines
A and C; 10 per cent read all three magazines.

(a) What per cent read exactly two magazines?

[Ans. 50.]

(b) What per cent do not read any of the magazines?

[Ans. 10.]

9. If p and q are equivalent statements and n(P ) = 10, what is
n(P ∪Q)?

10. If p implies q, prove that n(P ∪ Q̃) = n(P ) + n(Q̃).
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11. On a transcontinental airliner, there are 9 boys, 5 American chil-
dren, 9 men, 7 foreign boys, 14 Americans, 6 American males, and
7 foreign females. What is the number of people on the plane?

[Ans. 33.]

Supplementary exercises.

12. Prove that n(Ã) = n(U)− n(A).

13. Show that n(Ã ∩ B̃) = n( ˜A ∪ B) = n(U)− n(A ∪B).

14. In a collection of baseball players there are ten who can play
only outfield positions, five who can play only infield positions
but cannot pitch, three who can pitch, four who can play any
position but pitcher, and two who can play any position at all.
How many players are there in all?

[Ans. 22.]

15. Ivyten College awarded 38 varsity letters in football, 15 in bas-
ketball, and 20 in baseball. If these letters went to a total of 58
men and only three of these men lettered in all three sports, how
many men received letters in exactly two of the three sports?

[Ans. 9.]

16. Let U be a finite set. For any two sets A and B define the “dis-
tance” from A to B to be d(A,B) = n(A ∩ B̃) + n(Ã ∩ B).

(a) Show that d(A,B) ≥ 0. When is d(A,B) = 0?

(b) If A, B, and C are nonintersecting sets, show that

d(A,C) ≤ d(A,B) + d(B,C).

(c) Show that for any three sets A, B, and C

d(A,C) ≤ d(A,B) + d(B,C).
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Figure 3.4: ♦

3.3 Permutations

We wish to consider here the number of ways in which a group of n
different objects can be arranged. A listing of n different objects in
a certain order is called a permutation of the n objects. We consider
first the case of three objects, a, b, and c. We can exhibit all possible
permutations of these three objects as paths of a tree, as shown in
Figure 3.4. Each path exhibits a possible permutation, and there are
six such paths. We could also list these permutations as follows: abc,
bca, acb, cab, bac, cba. If we were to construct a similar tree for n
objects, we would find that the number of paths could be found by
multiplying together the numbers n, n− 1, n− 2, continuing down to
the number 1. The number obtained in this way occurs so often that
we give it a symbol, namely n!, which is read “n factorial”. Thus, for
example, 3! = 3 · 2 · 1 = 6, 4! = 4 · 3 · 2 · 1 = 24, etc. For reasons
which will be clear later, we define 0! = 1. Thus we can say there are

n! different permutations of n distinct objects.

Example 3.7 In the game of Scrabble, suppose there are seven let-
tered blocks from which we try to form a seven-letter word. If the
seven letters are all different, we must consider 7! = 5040 different
orders. ♦

Example 3.8 A quarterback has a sequence of ten plays. Suppose his
or her coach instructs him or her to run through the ten-play sequence
without repetition. How much freedom is left to the quarterback? He
or she may choose any one of 10! = 3, 628, 800 orders in which to call
the plays. ♦
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Example 3.9 How many ways can n people be seated around a cir-
cular table? When this question is asked, it is usually understood that
two arrangements are different only if at least one person has a different
person on the right in the two arrangements. Consider then one person
in a fixed position. There are (n− 1)! ways in which the other people
may be seated. We have now counted all the arrangements we wish to
consider different. ♦

A general principle. There are many counting problems for
which it is not possible to give a simple formula for the number of
possible cases. In many of these the only way to find the number
of cases is to draw a tree and count them (see Exercise 4). In some
problems, the following general principle is useful.

If one thing can be done in exactly r different ways, for each of

these a second thing can be done in exactly s different ways, for each

of the first two, a third can be done in exactly t ways, etc., then the

sequence of things can be done in the product of the numbers of ways

in which the individual things can be done, i.e., r · s · t ways.
The validity of the above general principle can be established by

thinking of a tree representing all the ways in which the sequence of
things can be done. There would be r branches from the starting posi-
tion. From the ends of each of these r branches there would be s new
branches, and from each of these t new branches, etc. The number of
paths through the tree would be given by the product r · s · t.

Example 3.10 The number of permutations of n distinct objects is
a special case of this principle. If we were to list all the possible per-
mutations, there would be n possibilities for the first, for each of these
n − 1 for the second, etc., until we came to the last object, and for
which there is only one possibility. Thus there are n(n − 1) . . . 1 = n!
possibilities in all. ♦

Example 3.11 If there are three roads from city x to city y and two
roads from city y to city z, then there are 3 · 2 = 6 ways that a person
can drive from city x to city z passing through city y. ♦

Example 3.12 Suppose there are n applicants for a certain job. Three
interviewers are asked independently to rank the applicants according
to their suitability for the job. It is decided that an applicant will be
hired if he or she is ranked first by at least two of the three interviewers.
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What fraction of the possible reports would lead to the acceptance of
some candidate? We shall solve this problem by finding the fraction
of the reports which do not lead to an acceptance and subtract this
answer from 1. Frequently, an indirect attack of this kind on a problem
is easier than the direct approach. The total number of reports possible
is (n!)3 since each interviewer can rank the men in n! different ways.
If a particular report does not lead to the acceptance of a candidate,
it must be true that each interviewer has put a different applicant in
first place. This can be done in n(n − 1)(n − 2) different ways by our
general principle. For each possible first choices, there are [(n − 1)!]3

ways in which the remaining men can be ranked by the interviewers.
Thus the number of reports which do not lead to acceptance is n(n −
1)(n− 2)[(n− 1)!]3. Dividing this number by (n!)3 we obtain

(n− 1)(n− 2)

n2

as the fraction of reports which fail to accept a candidate. The fraction
which leads to acceptance is found by subtracting this fraction from 1
which gives

3n− 2

n2

For the case of three applicants, we see that 7
9
of the possibilities lead to

acceptance. Here the procedure might be criticized on the grounds that
even if the interviewers are completely ineffective and are essentially
guessing there is a good chance that a candidate will be accepted on
the basis of the reports. For n equal to ten, the fraction of acceptances
is only .28, so that it is possible to attach more significance to the
interviewers ratings, if they reach a decision. ♦

Exercises

1. In how many ways can five people be lined up in a row for a group
picture? In how many ways if it is desired to have three in the
front row and two in the back row?

[Ans. 120;120.]

2. Assuming that a baseball team is determined by the players and
the position each is playing, how many teams can be made from
13 players if
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(a) Each player can play any position?

(b) Two of the players can be used only as pitchers?

3. Grades of A, B, C, D, or F are assigned to a class of five students.

(a) How many ways may this be done, if no two students receive
the same grade?

[Ans. 120.]

(b) Two of the students are named Smith and Jones. How many
ways can grades be assigned if no two students receive the
same grade and Smith must receive a higher grade than
Jones?

[Ans. 60.]

(c) How many ways may grades be assigned if only grades of A
and F are assigned?

[Ans. 32.]

4. A certain club wishes to admit seven new members, four of whom
are Republicans and three of whom are Democrats. Suppose the
club wishes to admit them one at a time and in such a way that
there are always more Republicans among the new members than
there are Democrats. Draw a tree to represent all possible ways
in which new members can be admitted, distinguishing members
by their party only.

5. There are three different routes connecting city A to city B. How
many ways can a round trip be made from A to B and back?
How many ways if it is desired to take a different route on the
way back?

[Ans. 9;6.]

6. How many different ways can a ten-question multiple-choice exam
be answered if each question has three possibilities, a, b, and c?
How many if no two consecutive answers are the same?

7. Modify Example 3.12 so that, to be accepted, an applicant must
be first in two of the interviewers’ ratings and must be either first
or second in the third interviewers’ rating. What fraction of the
possible reports lead to acceptance in the case of three applicants?
In the case of n?
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[Ans. 4
9
; 4
n2 .]

8. A town has 1240 registered Republicans. It is desired to contact
each of these by phone to announce a meeting. A committee of
r people devise a method of phoning s people each and asking
each of these to call t new people. If the method is such that no
person is called twice,

(a) How many people know about the meeting after the phon-
ing?

(b) If the committee has 40 members and it is desired that all
1240 Republicans be informed of the meeting and that s and
t should be the same, what should they be?

9. In the Scrabble example (Example 3.7), suppose the letters are
Q, Q, U, F, F, F, A. How many distinguishable arrangements are
there for these seven letters?

[Ans. 420.]

10. How many different necklaces can be made

(a) If seven different sized beads are available?

[Ans. 360.]

(b) If six of the beads are the same size and one is larger?

[Ans. 1.]

(c) If the beads are of two sizes, five of the smaller size and two
of the larger size?

[Ans. 3.]

11. Prove that two people in Columbus, Ohio, have the same initials.

12. Find the number of distinguishable arrangements for each of the
following collections of five symbols. (The same letters with dif-
ferent subscripts indicate distinguishable objects.)

(a) A1, A2, B1, B2, B3.

[Ans. 120.]
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(b) A,A,B1, B2, B3.

[Ans. 60.]

(c) A,A,B,B,B.

13. Show that the number of distinguishable arrangements possible
for n objects, n1 of type 1, n2 of type 2, etc., for r different types
is

n!

n1!n2! · · ·nr!
.

Supplementary exercises.

14. (a) How many four digit numbers can be formed from the digits
1, 2, 3, 4, using each digit only once?

(b) How many of these numbers are less than 3000?

[Ans. 12.]

15. How many license plates can be made if they are to contain five
symbols, the first two being letters and the last three digits?

16. How many signals can a ship show if it has seven flags and a signal
consists of five flags hoisted vertically on a rope?

[Ans. 2520.]

17. We must arrange three green, two red, and four blue books on a
single shelf.

(a) In how many ways can this be done if there are no restric-
tions?

(b) In how many ways if books of the same color must be grouped
together?

(c) In how many ways if, in addition to the restriction in 17b,
the red books must be to the left of the blue books?

(d) In how many ways if, in addition to the restrictions in 17b
and 17c, the red and blue books must not be next to each
other?

[Ans. 288.]
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18. A youngster has three shades of nail polish with which to paint
his or her fingernails. In how many ways can he or she do this
(each nail being one solid color) if there are no more than two
different shades on each hand?

[Ans. 8649.]

3.4 Counting partitions

Up to now we have not had occasion to consider the partitions [{1, 2}, {3, 4}]
and [{3, 4}, {1, 2}] of the integers from 1 to 4 as being different parti-
tions. Here it will be convenient to do so, and to indicate this distinc-
tion we shall use the term ordered partition. An ordered partition with

r cells is a partition with r cells (some of which may be empty), with
a particular order specified for the cells.

We are interested in counting the number of possible ordered par-
titions with r cells that can be formed from a set of n objects having a
prescribed number of elements in each cell. We consider first a special
case to illustrate the general procedure.

Suppose that we have eight students, A, B, C, D, E, F, G, and H,
and we wish to assign these to three rooms, Room 1, which is a triple
room, Room 2, a triple room, and Room 3, a double room. In how
many different ways can the assignment be made? One way to assign
the students is to put them in the rooms in the order in which they
arrive, putting the first three in Room 1, the next three in Room 2,
and the last two in Room 3. There are 8! ways in which the students
can arrive, but not all of these lead to different assignments. We can
represent the assignment corresponding to a particular order of arrival
as follows,

|BCA|DFE|HG|.
In this case, B, C, and A are assigned to Room 1, D, F, and E to Room
2, and H and G to Room 3. Notice that orders of arrival which simply
change the order within the rooms lead to the same assignment. The
number of different orders of arrival which lead to the same assignment
as the one above is the number of arrangements which differ from the
given one only in that the arrangement within the rooms is different.
There are 3! · 3! · 2! such orders of arrival, since we can arrange the
three in Room 1 in 3! different ways, for each of these the ones in
Room 2 in 3! different ways, and for each of these, the ones in Room
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3 in 2! ways. Thus we can divide the 8! different orders of arrival into
groups of 3! · 3! · 2! different orders such that all the orders of arrival
in a single group lead to the same room assignment. Since there are
3! · 3! · 2! elements in each group and 8! elements altogether, there are
8!

3!3!2!
groups, or this many different room assignments.

The same argument could be carried out for n elements and r rooms,
with n1 in the first, n2 in the second, etc. This would lead to the
following result. Let n1, n2, . . . , nr be nonnegative integers with

n1 + n2 + . . .+ nr = n.

Then:
The number of ordered partitions with r cells [A1, A2, . . . , Ar] of a

set of n elements with n1 in the first cell, n2 in the second, etc. is

n!

n1!n2! . . . nr!

We shall denote this number by the symbol
(

n!

n1!, n2!, . . . , nr!

)
.

Note that this symbol is defined only if n1 + n2 + . . .+ nr = n.
The special case of two cells is particularly important. Here the

problem can be stated equivalently as the problem of finding the num-
ber of subsets with r elements that can be chosen from a set of n
elements. This is true because any choice defines a partition [A, Ã],
where A is the set of elements chosen and Ã is the set of remaining
elements.

The number of such partitions is n!
r!(n−r)!

and hence this is also the

number of subsets with r elements. Our notation
(

n
r,n−r

)
for this case

is shortened to
(
n
r

)
.

Notice that
(

n
n−r

)
is the number of subsets with n − r elements

which can be chosen from n, which is the number of partitions of the
form [Ã, A] above. Clearly, this is the same as the number of [A, Ã]

partitions. Hence
(
n
r

)
=
(

n
n−r

)
.

Example 3.13 A college has scheduled six football games during a
season. How many ways can the season end in two wins, three losses,
and one tie? From each possible outcome of the season, we form a
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partition, with three cells, of the opposing teams. In the first cell
we put the teams which our college defeats, in the second the teams
to which our college loses, and in the third cell the teams which our
college ties. There are

(
6

2,3,1

)
= 60 such partitions, and hence 60 ways

in which the season can end with two wins, three losses, and one tie. ♦

Example 3.14 In the game of bridge, the hands N, E, S, and W deter-
mine a partition of the 52 cards having four cells, each with 13 elements.
Thus there are 52!

13!13!13!13!
different bridge deals. This number is about

5.3645 · 1028, or approximately 54 billion billion billion deals. ♦

Example 3.15 The following example will be important in probability
theory, which we take up in the next chapter. If a coin is thrown six
times, there are 26 possibilities for the outcome of the six throws, since
each throw can result in either a head or a tail. How many of these
possibilities result in four heads and two tails? Each sequence of six
heads and tails determines a two-cell partition of the numbers from
one to six as follows: In the first cell put the numbers corresponding
to throws which resulted in a head, and in the second put the numbers
corresponding to throws which resulted in tails. We require that the
first cell should contain four elements and the second two elements.
Hence the number of the 26 possibilities which lead to four heads and
two tails is the number of two-cell partitions of six elements which have
four elements in the first cell and two in the second cell. The answer is(
6
4

)
= 15. For n throws of a coin, a similar analysis shows that there are(

n
r

)
different sequences of H’s and T’s of length n which have exactly r

heads and n− r tails. ♦

Exercises

1. Compute the following numbers.

(a)
(
7
5

)

[Ans. 21.]

(b)
(
3
2

)

(c)
(
7
2

)

(d)
(
250
249

)
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[Ans. 250.]

(e)
(
5
0

)

(f)
(

5
1,2,2

)

(g)
(

4
2,0,2

)

[Ans. 6.]

(h)
(

2
1,1,1

)

2. Give an interpretation for
(
n
0

)
and also for

(
n
n

)
. Can you now give

a reason for making 0! = 1?

3. How many ways can nine students be assigned to three triple
rooms? How many ways if one particular pair of students refuse
to room together?

[Ans. 1680; 1260.]

4. A group of seven boys and ten girls attends a dance. If all the
boys dance in a particular dance, how many choices are there for
the girls who dance? For the girls who do not dance? How many
choices are there for the girls who do not dance, if three of the
girls are sure to be asked to dance?

5. Suppose that a course is given at three different hours. If fifteen
students sign up for the course,

(a) How many possibilities are there for the ways the students
could distribute themselves in the classes?

[Ans. 315.]

(b) How many of the ways would give the same number of stu-
dents in each class?

[Ans. 756,756.]

6. A college professor anticipates teaching the same course for the
next 35 years. So as not to become bored with his or her jokes, he
or she decides to tell exactly three jokes every year and in no two
years to tell exactly the same three jokes. What is the minimum
number of jokes that will accomplish this? What is the minimum
number if he or she determines never to tell the same joke twice?
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7. How many ways can you answer a ten-question true-false exam,
marking the same number of answers true as you do false? How
many if it is desired to have no two consecutive answers the same?

8. From three Republicans and three Democrats, find the number
of committees of three which can be formed

(a) With no restrictions.

[Ans. 20.]

(b) With three Republicans and no Democrats.

[Ans. 1.]

(c) With two Republicans and one Democrat.

[Ans. 9.]

(d) With one Republican and two Democrats.

[Ans. 9.]

(e) With no Republicans and three Democrats.

[Ans. 1.]

What is the relation between your answers to the five parts of
this question?

9. Exercise 8 suggests that the following should be true.

(
2n

n

)
=

(
n

0

)(
n

n

)
+

(
n

1

)(
n

n− 1

)
+

(
n

2

)(
n

n− 2

)
+ . . .+

(
n

n

)(
n

0

)
.

Show that it is true.

10. A student needs to choose two electives from six possible courses.

(a) How many ways can he or she make his or her choice?

[Ans. 15.]

(b) How many ways can he or she choose if two of the courses
meet at the same time?

[Ans. 14.]
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(c) How many ways can he or she choose if two of the courses
meet at 10 o’clock, two at 11 o’clock, and there are no other
conflicts among the courses?

[Ans. 13.]

Supplementary exercises.

11. Consider a town in which there are three plumbers, A, B, and
C. On a certain day six residents of the town telephone for a
plumber. If each resident selects a plumber from the telephone
directory, in how many ways can it happen that

(a) Three residents call A, two residents call B, and one resident
calls C?

[Ans. 60.]

(b) The distribution of calls to the plumbers is three, two, and
one?

[Ans. 360.]

12. Two committees (a labor relations committee and a quality con-
trol committee) are to be selected from a board of nine men. The
only rules are (1) the two committees must have no members in
common, and (2) each committee must have at least four men.
In how many ways can the two committees be appointed?

13. A group of ten people is to be divided into three committees of
three, three, and six members, respectively. The chair of the
group is to serve on all three committees and is the only member
of the group who serves on more than one committee. In how
many ways can the committee assignments be made?

[Ans. 756.]

14. In a class of 20 students, grades of A, B, C, D, and F are to be
assigned. Omit arithmetic details in answering the following.

(a) In how many ways can this be done if there are no restric-
tions?

[Ans. 520.]
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(b) In how many ways can this be done if the grades are assigned
as follows: 2 A’s, 3 B’s, 10 C’s, 3 D’s, and 2 F’s?

(c) In how many ways can this be done if the following rules are
to be satisfied: exactly 10 C’s; the same number of A’s as
F’s; the same number of B’s as D’s; always more B’s than
A’s?

[Ans.
(

20
5,10,5

)
+
(

20
1,4,10,4,1

)
+
(

20
2,3,10,3,2

)
.]

15. Establish the identity
(
n

r

)(
r

k

)
=

(
n

k

)(
n− k

r − k

)

for n ≥ r ≥ k in two ways, as follows:

(a) Replace each expression by a ratio of factorials and show
that the two sides are equal.

(b) Consider the following problem: From a set of n people a
committee of r is to be chosen, and from these r people a
steering subcommittee of k people is to be selected. Show
that the two sides of the identity give two different ways of
counting the possibilities for this problem.

3.5 Some properties of the numbers
(n
j

)
.

The numbers
(
n
j

)
introduced in the previous section will play an impor-

tant role in our future work. We give here some of the more important
properties of these numbers.

A convenient way to obtain these numbers is given by the famous
Pascal triangle, shown in Figure 3.5. To obtain the triangle we first
write the 1’s down the sides. Any of the other numbers in the triangle
has the property that it is the sum of the two adjacent numbers in the
row just above. Thus the next row in the triangle is 1, 6, 15, 20, 15,
6, 1. To find the number

(
n
j

)
we look in the row corresponding to the

number n and see where the diagonal line corresponding to the value of
j intersects this row. For example,

(
4
2

)
= 6 is in the row marked n = 4

and on the diagonal marked j = 2.
The property of the numbers

(
n
j

)
upon which the triangle is based

is (
n + 1

j

)
=

(
n

j − 1

)
+

(
n

j

)
.
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Figure 3.5: ♦

This fact can be verified directly (see Exercise 6), but the following

argument is interesting in itself. The number
(
n+1
j

)
is the number of

subsets with j elements that can be formed from a set of n+1 elements.
Select one of the n+1 elements, x. The

(
n+1
j

)
subsets can be partitioned

into those that contain x and those that do not. The latter are subsets
of j elements formed from n objects, and hence there are

(
n
j

)
such

subsets. The former are constructed by adding x to a subset of j − 1
elements formed from n elements, and hence there are

(
n

j−1

)
of them.

Thus (
n + 1

j

)
=

(
n

j − 1

)
+

(
n

j

)
.

If we look again at the Pascal triangle, we observe that the numbers
in a given row increase for a while, and then decrease. We can prove
this fact in general by considering the ratio of two successive terms,

(
n

j+1

)

(
n
j

) =
n!

(j + 1)!(n− j − 1)!
· j!(n− j)!

n!
=

n− j

j + 1
.

The numbers increase as long as the ratio is greater than 1, i.e., n−j >
j + 1. This means that j < 1

2
(n − 1). We must distinguish the case

of an even n from an odd n. For example, if n = 10, j must be less
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than 1
2
(10 − 1) = 4.5. Hence for j up to 4 the terms are increasing,

from j = 5 on, the terms decrease. For n = 11, j must be less than
1
2
(11− 1) = 5. For j = 5, (11− j)/(j + 1) = 1. Hence, up to j = 5 the

terms increase, then
(
11
5

)
=
(
11
6

)
, and then the terms decrease.

Exercises

1. Extend the Pascal triangle to n = 16. Save the result for later
use.

2. Prove that

(
n

0

)
+

(
n

1

)
+

(
n

2

)
+ . . .+

(
n

n

)
= 2n,

using the fact that a set with n elements has 2n subsets.

3. For a set of ten elements prove that there are more subsets with
five elements than there are subsets with any other fixed number
of elements.

4. Using the fact that
(

n
r+1

)
= n−r

r+1
·
(
n
r

)
, compute

(
30
s

)
for s = 1, 2, 3, 4

from the fact that
(
30
0

)
= 1.

[Ans. 30; 435; 4060; 27,405.]

5. There are
(
52
13

)
different possible bridge hands. Assume that a list

is made showing all these hands, and that in this list the first
card in every hand is crossed out. This leaves us with a list of
twelve-card hands. Prove that at least two hands in the latter list
contain exactly the same cards.

6. Prove that (
n+ 1

j

)
=

(
n

j − 1

)
+

(
n

j

)

using only the fact that

(
n

j

)
=

n!

j!(n− j)!
.
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7. Construct a triangle in the same way that the Pascal triangle
was constructed, except that whenever you add two numbers, use
parity addition (table (a) in Figure 2.12). Construct the triangle
for 16 rows. What does this triangle tell you about the numbers
in the Pascal triangle? Use this result to check your triangle in
Exercise 1.

8. In the triangle obtained in Exercise 7, what property do the rows
1, 2, 4, 8, and 16 have in common? What does this say about the
numbers in the corresponding rows of the Pascal triangle? What
would you predict for the terms in the 32nd row of the Pascal
triangle?

9. For the following table state how one row is obtained from the
preceding row and give the relation of this table to the Pascal
triangle.

1 1 1 1 1 1 1
1 2 3 4 5 6 7
1 3 6 10 15 21 28
1 4 10 20 35 56 84
1 5 15 35 70 126 210
1 6 21 56 126 252 462
1 7 28 84 210 462 924

10. Referring to the table in Exercise 9, number the columns starting
with 0, 1, 2, . . . and number the rows starting with 1, 2, 3, . . .. Let
f(n, r) be the element in the nth column and the rth row. The
table was constructed by the rule

f(n, r) = f(n− 1, r) + f(n, r − 1)

for n > 0 and r > 1, and f(n, 1) = f(0, r) = 1 for all n and r.
Verify that

f(n, r) =

(
n + r − 1

n

)

satisfies these conditions and is in fact the only choice for f(n, r)
which will satisfy the conditions.

11. Consider a set {a1, a2, a3} of three objects which cannot be distin-
guished from one another. Then the ordered partitions with two
cells which could be distinguished are: [{a1, a2, a3}, ∅], [{a1, a2}, {a3}],
[{a1}, {a2, a3}], [∅, {a1, a2, a3}]. List all such ordered partitions
with three cells. How many are there?
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[Ans. 10.]

12. Let f(n, r) be the number of distinguishable ordered partitions
with r cells which can be formed from a set of n indistinguishable
objects. Show that f(n, r) satisfies the conditions

f(n, r) = f(n− 1, r) + f(n, r − 1)

for n > 0 and r > 1, and f(n, 1) = f(0, r) = 1 for all n and r.
[Hint: Show that f(n, r − 1) is the number of partitions which
have the last cell empty and f(n−1, r) is the number which have
at least one element in the last cell.]

13. Using the results of Exercises 10 and 12, show that the number
of distinguishable ordered partitions with r cells which can be
formed from a set of n indistinguishable objects is

(
n+ r − 1

n

)
.

14. Assume that a mail carrier has seven letters to put in three mail
boxes. How many ways can this be done if the letters are not
distinguished?

[Ans. 36.]

15. For n ≥ r ≥ k ≥ s show that the identity
(
n

r

)(
r

k

)(
k

s

)
=

(
n

s

)(
n− s

k − s

)(
n− k

r − k

)
.

holds by replacing each binomial coefficient by a ratio of factorials.

16. Establish the identity in Exercise 15 in another way by showing
that the two sides of the expression are simply two different ways
of counting the number of solutions to the following problem:
From a set of n people a subset of r is to be chosen; from the set
of r people a subset of k is to be chosen; and from the set of k
people a subset of s people is to be chosen.

17. Generalize the identity in Exercises 15 and 16 to solve the problem
of finding the number of ways of selecting a t-element subset from
an s-element subset from a k-element subset from an r-element
subset of an n-element set, where n ≥ r ≥ k ≥ s ≥ t.



62 CHAPTER 3. PARTITIONS AND COUNTING

3.6 Binomial and multinomial theorems

It is sometimes necessary to expand products of the form (x + y)3,
(x+ 2y + 11z)5, etc. In this section we shall consider systematic ways
of carrying out such expansions.

Consider first the special case (x+ y)3. We write this as

(x+ y)3 = (x+ y)(x+ y)(x+ y).

To perform the multiplication, we choose either an x or a y from each
of the three factors and multiply our choices together; we do this for
all possible choices and add the results. We represent a particular set
of choices by a two-cell partition of the numbers 1, 2, 3. In the first
cell we put the numbers which correspond to factors from which we
chose an x. In the second cell we put the numbers which correspond to
factors from which we chose a y. For example, the partition [{1, 3}, {2}]
corresponds to a choice of x from the first and third factors and y from
the second. The product so obtained is xyx = x2y. The coefficient of
x2y in the expansion of (x+ y)3 will be the number of partitions which
lead to a choice of two x’s and one y, that is, the number of two-cell
partitions of three elements with two elements in the first cell and one
in the second, which is

(
3
2

)
= 3. More generally, the coefficient of the

term of the form xjy3−j will be
(
3
j

)
for j = 0, 1, 2, 3. Thus we can write

the desired expansion as

(x+ y)3 =

(
3

3

)
x3 +

(
3

2

)
x2y +

(
3

1

)
xy2 +

(
3

0

)
y3

= x3 + 3x2y + 3xy2 + y3.

The same argument carried out for the expansion (x+ y)n leads to
the binomial theorem of algebra.

Binomial theorem. The expansion of (x+ y)n is given by
(
n

n

)
xn +

(
n

n− 1

)
xn−1y +

(
n

n− 2

)
xn−2y2 + . . .+

(
n

1

)
xyn−1 +

(
n

0

)
yn.

Example 3.16 Let us find the expansion for (a−2b)3. To fit this into
the binomial theorem, we think of x as being a and y as being −2b.
Then we have

(a− 2b)3 = a3 + 3a2(−2b) + 3a(−2b)2 + (−2b)3

= a3 − 6a2b+ 12ab2 − 8b3.
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♦
We turn now to the problem of expanding the trinomial (x+y+z)3.

Again we write

(x+ y + z)3 = (x+ y + z)(x+ y + z)(x+ y + z).

This time we choose either an x or y or z from each of the three factors.
Our choice is now represented by a three-cell partition of the set of num-
bers {1, 2, 3}. The first cell has the numbers corresponding to factors
from which we choose an x, the second cell the numbers corresponding
to factors from which we choose a y, and the third those from which
we choose a z. For example, the partition [{1, 3}, ∅, {2}] corresponds to
a choice of x from the first and third factors, no y’s, and a z from the
second factor. The term obtained is xzx = x2z. The coefficient of the
term x2z in the expansion is thus the number of three-cell partitions
with two elements in the first cell, none in the second, and one in the
third. There are

(
3

2,0,1

)
= 3 such partitions. In general, the coefficient

of the term of the form xaybzc in the expansion of (x+ y + z)3 will be

(
3

a, b, c

)
=

3!

a!b!c!
.

Finding this way the coefficient for each possible a, b, and c, we obtain

(x+y+z)3 = x3+y3+x3+3x2y+3xy2+3yz2+3y2z+3xz2+3x2z+6xyz.

The same method can be carried out in general for finding the ex-
pansion of (x1 + x2 + . . .+ xr)

n. From each factor we choose either an
x1, or x2, . . . , or xr, form the product and add these products for all
possible choices. We will have rn products, but many will be equal. A
particular choice of one term from each factor determines an r-cell par-
tition of the numbers from 1 to n. In the first cell we put the numbers
of the factors from which we choose an x1, in the second cell those from
which we choose x2, etc. A particular choice gives us a term of the form
xn1

1 xn2

2 . . . xnr

r with n1+n2 + . . .+nr = n. The corresponding partition
has n1 elements in the first cell, n2 in the second, etc. For each such
partition we obtain one such term. Hence the number of these terms
which we obtain is the number of such partitions, which is

(
n

n1, n2, . . . , nr

)
=

n!

n1!n2! . . . nr!
.
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Thus we have the multinomial theorem.
Multinomial theorem. The expansion of (x1 + x2 + . . .+ xr)

n is
found by adding all terms of the form

(
n

n1, n2, . . . , nr

)
xn1

1 xn2

2 . . . xnr

r

where n1 + n2 + . . .+ nr = n.

Exercises

1. Expand by the binomial theorem

(a) (x+ y)4.

(b) (1 + x)5.

(c) (x− y)3.

(d) (2x+ a)4.

(e) (2x− 3y)3.

(f) (100− 1)5.

2. Expand

(a) (x+ y + x)4.

(b) (2x+ y − z)3.

(c) (2 + 2 + 1)3. (Evaluate two ways.)

3. (a) Find the coefficient of the term x2y3z2 in the expansion of
(x+ y + z)7.

[Ans. 210.]

(b) Find the coefficient of the term x6y3z2 in the expression (x−
2y + 5z)11

[Ans. -924,000.]

4. Using the binomial theorem prove that

(a)

(
n

0

)
+

(
n

1

)
+

(
n

2

)
+ . . .+

(
n

n

)
= 2n.
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(b)

(
n

0

)
−
(
n

1

)
+

(
n

2

)
−
(
n

3

)
+ . . .±

(
n

n

)
= 0

for n > 0.

5. Using an argument similar to the one in Section 3.6, prove that

(
n + 1

i, j, k

)
=

(
n

i− 1, j, k

)
+

(
n

i, j − 1, k

)
+

(
n

i, j, k − 1

)
.

6. Let f(n, r) be the number of terms in the multinomial expansion
of

(x1 + x2 + . . .+ xr)
n

and show that

f(n, r) =

(
n+ r − 1

n

)
.

[Hint: Show that the conditions of Exercise 10 are satisfied by
showing that f(n, r − 1) is the number of terms which do not
have xr and f(n− 1, r) is the number which do.]

7. How many terms are there in each of the expansions:

(a) (x+ y + z)6?

[Ans. 28.]

(b) (a + 2b+ 5c+ d)4?

[Ans. 35.]

(c) (r + s+ t + u+ v)6?

[Ans. 210.]

8. Prove that kn is the sum of the numbers
(

n
r1,r2,...,rk

)
for all choices

of r1, r2, . . . , rk such that

r1 + r2 + . . .+ rk = n.

Supplementary exercises.



66 CHAPTER 3. PARTITIONS AND COUNTING

9. Show that the problem given in Exercise 15b can also be solved
by a multinomial coefficient, and hence show that

(
n

n− r, r − k, k

)
=

(
n

r

)(
r

k

)
=

(
n

k

)(
n− k

r − k

)
.

10. Show that the problem given in Exercise 16 can also be solved by
a multinomial coefficient, and hence show that
(

n

n− r, r − k, k − s, s

)
=

(
n

r

)(
r

k

)(
k

s

)
=

(
n

s

)(
n− s

k − s

)(
n− k

r − k

)
.

11. If a + b+ c = n, show that
(

n

a, b, c

)
=

(
n

a

)(
n− a

b

)
.

12. If a + b+ c+ d = n, show that
(

n

a, b, c, d

)
=

(
n

a

)(
n− a

b

)(
n− a− b

c

)
.

13. If n1+n2+ . . .+nr = n, guess a formula that relates the multino-
mial coefficient to a product of binomial coefficients. [Hint: Use
the formulas in Exercises 11 and 12 to guide you.]

14. Use Exercises 11, 12, and 13 to show that the multinomial co-
efficients can always be obtained by taking products of suitable
numbers in the first n rows of the Pascal triangle.

3.7 Voting power

We return to the problem raised in Section 2.6. Now we are interested
not only in coalitions, but also in the power of individual members. We
will develop a numerical measure of voting power that was suggested
by L. S. Shapley and M. Shubik. While the measure will be explained
in detail below, for the reasons for choosing this particular measure the
reader is referred to the original paper.

First of all we must realize that the number of votes a member
controls is not in itself a good measure of his or her power. If x has
three votes and y has one vote, it does not necessarily follow that x has
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three times the power that y has. Thus if the committee has just three
members {x, y, z} and z also has only one vote, then x is a dictator and
y is powerless.

The basic idea of the power index is found in considering various
alignments of the committee members on a number of issues. The n
members are ordered x1, x2, . . . , xn according to how likely they are to
vote for the measure. If the measure is to carry, we must persuade x1

and x2 up to xi to vote for it until we have a winning coalition. If
{x1, x2, . . . , xi} is a winning coalition but {x1, x2, . . . , xi−1} is not win-
ning, then xi is the crucial member of the coalition. We must persuade
him or her to vote for the measure, and he or she is the one hardest to
persuade of the i necessary members. We call xi the pivot.

For a purely mathematical measure of the power of a member we
do not consider the views of the members. Rather we consider all
possible ways that the members could be aligned on an issue, and see
how often a given member would be the pivot. That means considering
all permutations, and there will be n! of them. In each permutation
one member will be the pivot. The frequency with which a member is
the pivot of an alignment is a good measure of his or her voting power.

Definition. The voting power of a member of a committee is the
number of alignments in which he or she is pivotal divided by the total
number of alignments. (The total number of alignments, of course, is
n! for a committee of n members.)

Example 3.17 If all n members have one vote each, and it takes a
majority vote to carry a measure, it is easy to see (by symmetry) that
each member is pivot in 1/n of the alignments. Hence each member has
power equal to 1/n. Let us illustrate this for n = 3. There are 3! = 6
alignments. It takes two votes to carry a measure; hence the second
member is always the pivot. The alignments are: 123, 132, 213, 231,
312, 321. The pivots are emphasized. Each member is pivot twice,
hence has power 2

6
= 1

3
. ♦

Example 3.18 Reconsider Example 2.9 of Section 2.6 from this point
of view. There are 24 permutations of the four members. We will list
them, with the pivot emphasized:

wxyz wxzy wyxz wyzx wzxy wzyx
xwyz xwzy xywz xyzw xzwy xzyw
yxwz yxzw ywxz ywzx yzxw yzwx
zxyw zxwy zyxw zywx zwxy zwyx
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We see that z has power of 14
24
, w has 6

24
, x and y have 2

24
each. (Or,

simplified, they have 7
12
, 3

12
, 1

12
, 1

12
power, respectively.) We note that

these ratios are much further apart than the ratio of votes which is
3 : 2 : 1 : 1. Here three votes are worth seven times as much as the
single vote and more than twice as much as two votes. ♦

Example 3.19 Reconsider Example 2.10 of Section 2.6. By an analy-
sis similar to the ones used so far it can be shown that in the Security
Council of the United Nations before 1966, each of the Big Five had
76
385

or approximately .197 power, while each of the small nations had
approximately .002 power. (See Exercise 12.) This reproduces our in-
tuitive feeling that, while the small nations in the Security Council are
not powerless, nearly all the power is in the hands of the Big Five.

The voting powers according to the 1966 revision will be worked
out in Exercise 13. ♦

Example 3.20 In a committee of five each member has one vote, but
the chair has veto power. Hence the minimal winning coalitions are
three-member coalitions including the chair. There are 5! = 120 per-
mutations. The pivot cannot come before the chair, since without the
chair we do not have a winning coalition. Hence, when the chair is in
place number 3, 4, or 5, he or she is the pivot. This happens in 3

5
of the

permutations. When he or she is in position 1 or 2, then the number 3
member is pivot. The number of permutations in which the chair is in
one of the first two posltions and a given member is third is 2 · 3! = 12.
Hence the chair has power 3

5
, and each of the others has power 1

10
. ♦

Exercises

1. A committee of three makes decisions by majority vote. Write
out all permutations, and calculate the voting powers if the three
members have

(a) One vote each.

[Ans. 1
3
, 1
3
, 1
3
.]

(b) One vote for two of them, two votes for the third.

[Ans. 1
6
, 1
6
, 2
3
.]

(c) One vote for two of them, three votes for the third.



3.7. VOTING POWER 69

[Ans. 0, 0, 1.]

(d) One, two, and three votes, respectively.

[Ans. 1
6
, 1
6
, 2
3
.]

(e) Two votes each for two of them, and three votes for the
third.

[Ans. 1
3
, 1
3
, 1
3
.]

2. Prove that in any decision-making body the sum of the powers of
the members is 1.

3. What is the power of a dictator? What is the power of a “pow-
erless” member? Prove that your answers are correct.

4. A large company issued 100,000 shares. These are held by three
stockholders, who have 50,000, 49,999, and one share, respec-
tively. Calculate the powers of the three members.

[Ans. 2
3
, 1
6
, 1
6
.]

5. A committee consists of 100 members having one vote each, plus
a chairman who can break ties. Calculate the power distribution.
(Do not try to write out all permutations!)

6. In Exercise 5, give the chairman a veto instead of the power to
break ties. How does this change the power distribution?

[Ans. The chairman has power 50
101

.]

7. How are the powers in Exercise 1 changed if the committee re-
quires a 3

4
vote to carry a measure?

8. If in a committee of five, requiring majority decisions, each mem-
ber has one vote, then each has power 1

5
. Now let us suppose that

two members team up, and always vote the same way. Does this
increase their power? (The best way to represent this situation is
by allowing only those permutations in which these two members
are next to each other.)

[Ans. Yes, the pair’s power increases from .4 to .5.]
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9. If the minimal winning coalitions are known, show that the power
of each member can be determined without knowing anything
about the number of votes that each member controls.

10. Answer the following questions for a three-man committee.

(a) Find all possible sets of minimal winning coalitions.

(b) For each set of minimal winning coalitions find the distribu-
tion of voting power.

(c) Verify that the various distributions of power found in Ex-
ercises 1 and 7 are the only ones possible.

11. In Exercise 1 parts 1a and 1e have the same answer, and parts 1b
and 1d and Exercise 4 also have the same answer. Use the results
of Exercise 9 to find a reason for these coincidences.

12. Compute the voting power of one of the Big Five in the Security
Council of the United Nations as follows:

(a) Show that for the nation to be pivotal it must be in the
number 7 spot or later.

(b) Show that there are
(
6
2

)
6!4! permutations in which the nation

is pivotal in the number 7 spot.

(c) Find similar formulas for the number of permutations in
which it is pivotal in the number 8, 9, 10, or 11 spot.

(d) Use this information to find the total number of permuta-
tions in which it is pivotal, and from this compute the power
of the nation.

13. Apply the method of Exercise 12 to the revised voting scheme
in the Security Council (10 small-nation members, and 9 votes
required to carry a measure). What is the power of a large nation?
Has the power of one of the small nations increased or decreased?

[Ans. 421
2145

(nearly the same as before); decreased.]

3.8 Techniques for counting

We know that there is no single method or formula for solving all count-
ing problems. There are, however, some useful techniques that can be
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learned. In this section we shall discuss two problems that illustrate
important techniques.

The first problem illustrates the importance of looking for a general
pattern in the examination of special cases. We have seen in Section
3.2 and Exercise 6 of that section, that the following formulas hold for
the number of elements in the union of two and three sets, respectively.

n(A1 ∪ A2) = n(A1) + n(A2)− n(A1 ∩A2),

n(A1 ∪A2 ∪ A3) = n(A1) + n(A2) + n(A3)

−n(A1 ∩A2)− n(A1 ∩ A3)− n(A2 ∩A3)

+n(A1 ∩A2 ∩ A3).

On the basis of these formulas we might conjecture that the number of
elements in the union of any finite number of sets could be obtained by
adding the numbers in each of the sets, then subtracting the numbers in
each possible intersection of two sets, then adding the numbers in each
possible intersection of three sets, etc. If this is correct, the formula for
the intersection of four sets should be

n(A1 ∪ A2 ∪ A3 ∪A4) = n(A1) + n(A2) + n(A3) + n(A4) (3.1)

− n(A1 ∩ A2)− n(A1 ∩ A3)− n(A1 ∩A4)

− n(A2 ∩ A3)− n(A2 ∩ A4)− n(A3 ∩A4)

+ n(A1 ∩A2 ∩A3) + n(A1 ∩ A2 ∩ A4)

+ n(A1 ∩A3 ∩A4) + n(A2 ∩ A3 ∩ A4)

− n(A1 ∩ A2 ∩A3 ∩A4)

Let us try to establish this formula. We must show that if u is an
element of at least one of the four sets, then it is counted exactly once
on the right-hand side of 3.1. We consider separately the cases where
u is in exactly 1 of the sets, exactly 2 of the sets, etc.

For instance, if u is in exactly two of the sets it will be counted twice
in the terms of the right-hand side of 3.1 that involve single sets, once
in the terms that involve the intersection of two sets, and not at all in
the terms that involve the intersections of three or four sets. Again, if
u is in exactly three of the sets it will be counted three times in the
terms involving single sets, twice in the terms involving intersections
of two sets, once in the terms involving the intersections of three sets,
and not at all in the last term involving the intersection of all four sets.
Considering each possibility we have the following table.
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Number of sets that contain u Number of times it is counted
1 1
2 2− 1
3 3− 3 + 1
4 4− 6 + 4− 1

We see from this that, in every case, u is counted exactly once on the
right-hand side of 3.1. Furthermore, if we look closely, we detect a
pattern in the numbers in the righthand column of the above table. If
we put a −1 in front of these numbers we have

1 −1 + 1
2 −1 + 2− 1
3 −1 + 3− 3 + 1
4 −1 + 4− 6 + 4− 1

We now recognize that these numbers are simply the numbers in the
first four rows of the Pascal triangle, but with alternating + and −
signs. Since we put a −1 in each row of the table, we want to show
that the sum of each row is 0. If that is true, it should be a general
property of the Pascal triangle. That is, if we put alternating signs in
the jth row of the Pascal triangle, we should get a sum of 0. But this
is indeed the case, since, by the binomial theorem, for j > 0,

0 = ±(1− 1)j

= 1−
(
j

1

)
+

(
j

2

)
−
(
j

3

)
+ . . .± 1

= −1 +

(
j

1

)
−
(
j

2

)
+

(
j

3

)
− . . .∓ 1.

Thus we have not only seen why the formula works for the case of four
sets, but we have also found the method for proving the formula for the
general case. That is, suppose we wish to establish that the number of
elements in the union of n sets may be obtained as an alternating sum
by adding the numbers of elements in each of the sets, subtracting the
numbers of elements in each pairwise intersection of the sets, adding the
numbers of elements in each intersection of three sets, etc. Consider
an element u that is in exactly j of the sets. Let us see how many
times u will be counted in the alternating sum. If it is in j of the sets,
it will first be counted j times in the sum of the elements in the sets
by themselves. For u to be in the intersection of two sets, we must
choose two of the j sets to which it belongs. This can be done in

(
j
2

)
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different ways. Hence an amount
(
j
2

)
will be subtracted from the sum.

To be in the intersection of three sets, we must choose three of the j
sets containing u. This can be done in

(
j
3

)
different ways. Thus, an

amount
(
j
3

)
will be added to the sum, etc. Hence the total number of

times u will be counted by the alternating sum is

(
j

1

)
−
(
j

2

)
+

(
j

3

)
− . . .± 1

since we have just seen that, if we add −1 to the sum, we obtain 0.
Hence the sum itself must always be 1. That is, no matter how many
sets u is in, it will be counted exactly once by the alternating sum, and
this is true for every element u in the union. We have thus established
the general formula

n(A1 ∪A2 ∪ . . . ∪ An) = n(A1) + n(A2) + . . .+ n(An) (3.2)

−n(A1 ∩ A2)− n(A1 ∩A3)− . . .

+n(A1 ∩A2 ∩A3) + n(A1 ∩A2 ∩ A4) + . . .

− . . .

±n(A1 ∩ A2 ∩ . . . ∩An).

This formula is called the inclusion-exclusion formula for the number
of elements in the union of n sets. It can be extended to formulas for
counting the number of elements that occur in two of the sets, three of
the sets, etc. See Exercises 21, 25, and 27.

Example 3.21 In a high school the following language enrollments are
recorded for the senior class.

English 150
French 75
German 35
Spanish 50

Also, the following overlaps are noted.

Taking English and French 70
Taking English and German 30
Taking English and Spanish 40
Taking French and German 5
Taking English, French and German 2
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If every student takes at least one language, how many seniors are
there?

Let E, F , G, and S be the sets of students taking English, French,
German, and Spanish, respectively. Using formula 3.1 and ignoring
empty sets, we have

n(E ∪ F ∪G ∪ S) = n(E) + n(F ) + n(G) + n(S)

− n(E ∩ F )− n(E ∩G)− n(E ∩ S)− n(F ∩G)

+ n(E ∩ F ∩G)

= 150 + 75 + 35 + 50− 70− 30− 40− 5 + 2

= 167.

Since every student takes at least one language, the total number of
students is 167. ♦

Example 3.22 The four words

TABLE, BASIN, CLASP, BLUSH

have the following interesting properties. Each word consists of five
different letters. Any two words have exactly two letters in common.
Any three words have one letter in common. No letter occurs in all
four words. How many different letters are there?

Letting the words be sets of letters, there are
(
4
1

)
ways of taking

these sets one at a time,
(
4
2

)
ways of taking them two at a time, etc.

Hence formula 3.2 gives

(
4

1

)
· 5−

(
4

2

)
· 2 +

(
4

3

)
· 1−

(
4

4

)
· 0 = 12

as the number of distinct letters. The reader should verify this answer
by direct count. ♦

It often happens that a counting problem can be formulated in a
number of different ways that sound quite different but that are in fact
equivalent. And in one of these ways the answer may suggest itself
readily. To illustrate how a reformulation can make a hard sounding
problem easy, we give an alternate method for solving the problem
considered in Exercise 13.

The problem is to count the number of ways that n indistinguishable
objects can be put into r cells. For instance, if there are three objects
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and three cells, the number of different ways can be enumerated as
follows (Using ◦ for object and bars to indicate the sides of the cells:

| ◦ ◦ ◦ | | |
| ◦◦ | ◦ | |
| ◦◦ | | ◦ |
| ◦ | ◦◦ | |
| ◦ | ◦ | ◦ |
| | ◦ ◦ ◦ | |
| | ◦◦ | ◦ |
| | ◦ | ◦◦ |
| | | ◦ ◦ ◦ |

We see that in this case there are ten ways the task can be accomplished.
But the answer for the general case is not clear.

If we look at the problem in a slightly different manner, the answer
suggests itself. Instead of putting the objects in the cells, we imagine
putting the cells around the objects. In the above case we see that
three cells are constructed from four bars. Two of these bars must
be placed at the ends. The two other bars together with the three
objects we regard as occupying five intermediate positions. Of these
five intermediate positions we must choose two of them for bars and
three for the objects. Hence the total number of ways we can accomplish
the task is

(
5
2

)
=
(
5
3

)
= 10, which is the answer we got by counting all

the ways.
For the general case we can argue in the same manner. We have r

cells and n objects. We need r + 1 bars to form the r cells, but two
of these must be fixed on the ends. The remaining r − 1 bars together
with the n objects occupy r − 1 + n intermediate positions. And we
must choose r − 1 of these for the bars and the remaining n for the
objects. Hence our task can be accomplished in

(
n+ r − 1

r − 1

)
=

(
n + r − 1

n

)

different ways.

Example 3.23 Seven people enter an elevator that will stop at five
floors. In how many different ways can the people leave the elevator if
we are interested only in the number that depart at each floor, and do
not distinguish among the people? According to our general formula,
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the answer is (
7 + 5− 1

7

)
=

(
11

7

)
= 330.

Suppose we are interested in finding the number of such possibilities in
which at least one person gets off at each floor. We can then arbitrarily
assign one person to get off at each floor, and the remaining two can
get off at any floor. They can get off the elevator in

(
2 + 5− 1

2

)
=

(
6

2

)
= 15

different ways. ♦

Exercises

1. The survey discussed in Exercise 8 has been enlarged to include
a fourth magazine D. It was found that no one who reads either
magazine A or magazine B reads magazine D. However, 10 per
cent of the people read magazine D and 5 per cent read both C
and D. What per cent of the people do not read any magazine?

[Ans. 5 per cent.]

2. A certain college administers three qualifying tests. They an-
nounce the following results: “Of the students taking the tests, 2
per cent failed all three tests, 6 per cent failed tests A and B, 5
per cent failed A and C, 8 per cent failed B and C, 29 per cent
failed test A, 32 per cent failed B, and 16 per cent failed C.” How
many students passed all three qualifying tests?

3. Four partners in a game require a score of exactly 20 points to
win. In how many ways can they accomplish this?

[Ans.
(
23
3

)
.]

4. In how many ways can eight apples be distributed among four
boys? In how many ways can this be done if each boy is to get
at least one apple?

5. Suppose we have n balls and r boxes with n ≥ r. Show that the
number of different ways that the balls can be put into the boxes
which insures that there is at least one ball in every box is

(
n−1
r−1

)
.
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6. Identical prizes are to be distributed among five boys. It is ob-
served that there are 15 ways that this can be done if each boy is
to get at least one prize. How many prizes are there?

[Ans. 7.]

7. Let p1, p2, . . . , pn be n statements relative to a possibility space
U . Show that the inclusion-exclusion formula gives a formula
for the number of elements in the truth set of the disjunction
p1∨ p2 ∨ . . .∨ pn in terms of the numbers of elements in the truth
sets of conjunctions formed from subsets of these statements.

8. A boss asks his or her secretary to put letters written to seven
different persons into addressed envelopes. Find the number of
ways that this can be done so that at least one person gets his or
her own letter. [Hint: Use the result of Exercise 7, letting pi be
the statement “The ith person gets his or her own letter”.]

[Ans. 3186.]

9. Consider the numbers from 2 to 10 inclusive. Let A2 be the set of
numbers divisible by 2 and A3 the set of numbers divisible by 3.
Find n(A2 ∪ A3) by using the inclusion-exclusion formula. From
this result find the number of prime numbers between 2 and 10
(where a prime number is a number divisible only by itself and
by 1). [Hint: Be sure to count the numbers 2 and 3 among the
primes.]

10. Use the method of Exercise 9 to find the number of prime numbers
between 2 and 100 inclusive. [Hint: Consider first the sets A2,
A3, A5, and A7.]

[Ans. 25.]

11. Verify that the following formula gives the number of elements in
the intersection of three sets.

n(A1 ∩A2 ∩ A3) = n(A1) + n(A2) + n(A3)

− n(A1 ∪A2)− n(A1 ∪ A3)− n(A2 ∪ A3)

+ n(A1 ∪ A2 ∪ A3).
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12. Show that if we replace ∩ by ∪ and ∪ by ∩ in formula 3.2, we
get a valid formula for the number of elements in the intersection
of n sets. [Hint: Apply the inclusion-exclusion formula to the
left-hand side of

n(Ã1 ∪ Ã2 ∪ . . . ∪ Ãn) = n(U)− n(A1 ∩ A2 ∩ . . . ∩An.]

13. For n ≤ m prove that
(
m

0

)(
n

0

)
+

(
m

1

)(
n

1

)
+

(
m

2

)(
n

2

)
+ . . .+

(
m

n

)(
n

n

)
=

(
m+ n

n

)

by carrying out the following two steps:

(a) Show that the left-hand side counts the number of ways of
choosing equal numbers of men and women from sets of m
men and n women.

(b) Show that the right-hand side also counts the same number
by showing that we can select equal numbers of men and
women by selecting any subset of n persons from the whole
set, and then combining the men selected with the women
not selected.

14. By an ordered partition of n with r elements we mean a sequence
of r nonnegative integers, possibly some 0, written in a definite
order, and having n as their sum. For instance, [1, 0, 3] and [3, 0, 1]
are two different ordered partitions of 4 with three elements. Show
that the number of ordered partitions of n with r elements is(
n+r−1

n

)
.

15. Show that the number of different possibilities for the outcomes
of rolling n dice is

(
n+5
n

)
.

Note. The next few exercises illustrate an important counting
technique called the reflection principle. In Figure 3.6 we show
a path from the point (0, 2) to the point (7, 1). We shall be
interested in counting the number of paths of this type where at
each step the path moves one unit to the right, and either one
unit up or one unit down. We shall see that this model is useful
for analyzing voting outcomes.

16. Show that the number of different paths leading from the point
(0, 2) to (7, 1) is

(
7
3

)
. [Hint: Seven decisions must be made, of

which three moves are up and the rest down.]
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Figure 3.6: ♦

17. Show that the number of different paths from (0, 2) to (7, 1) which
touch the x-axis at least once is the same as the total number of
paths from the point (0,−2) to the point (7, 1). [Hint: Show
that for every path to be counted from (0, 2) that touches the x-
axis, there corresponds a path from (0,−2) to (7, 1) obtained by
reflecting the part of the path to the first touching point through
the x-axis. A specific example is shown in Figure 3.7.]

18. Use the results of Exercises 16 and 17 to find the number of paths
from (0, 2) to (7, 1) that never touch the x-axis.

[Ans. 14.]

19. Nine votes are cast in a race between two candidates A and B.
Candidate A wins by one vote. Find the number of ways the
ballots can be counted so that candidate A is leading throughout
the entire count. [Hint: The first vote counted must be for A.
Counting the remaining eight votes corresponds to a path from
(1, 1) to (9, 1). We want the number of paths that never touch
the x-axis.]

[Ans. 14.]

20. Let the symbol n(k)
r stand for “the number of elements that are

in k or more of the r sets A1, A2, . . . , Ar”. Show that n
(1)
3 =

n(A1 ∪A2 ∪ A3).
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Figure 3.7: ♦

21. Show that

n
(2)
3 = n((A1 ∩ A2) ∪ (A1 ∩A3) ∪ (A2 ∩A3))

= n(A1 ∩ A2) + n(A1 ∩ A3) + n(A2 ∩ A3)− 2n(A1 ∩A2 ∩ A3)

by using the inclusion-exclusion formula. Also develop an inde-
pendent argument for the last formula.

22. Use Exercise 21 to find the number of letters that appear two or
more times in the three words TABLE, BASIN, and CLASP.

23. Give an interpretation for n
(1)
3 − n

(2)
3 .

24. Use Exercise 23 to find the number of letters that occur exactly
once in the three words of Exercise 22.

25. Develop a general argument like that in Exercise 21 to show that

n
(2)
4 = n(A1 ∩A2) + n(A1 ∩ A3) + n(A1 ∩ A4)

+ n(A2 ∩ A3) + n(A2 ∩ A4) + n(A3 ∩ A4)

− 2[n(A1 ∩A2 ∩A3) + n(A1 ∩A2 ∩ A4)

+ n(A1 ∩ A3 ∩A4) + n(A2 ∩A3 ∩ A4)]

+ 3n(A1 ∩A2 ∩ A3 ∩ A4)

26. Use Exercise 25 to find the number of letters used two or more
times in the four words of Example 3.22.
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27. From the formulas in Exercises 21 and 25 guess the general for-
mula for n(2)

r and develop a general argument to establish its
correctness.

Suggested reading.

Shapley, L. S., and M. Shubik, “A Method for Evaluating the Distribu-
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Review 48 (1954), pp. 787–792.

Whitworth, W. A., Choice and Chance, with 1000 Exercises, 1934.

Goldberg, S., Probability: An Introduction, 1960.

Parzen, E., Modern Probability Theory and Its Applications, 1960.
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Chapter 4

Probability theory

4.1 Introduction

We often hear statements of the following kind: “It is likely to rain
today”, “I have a fair chance of passing this course”, “There is an even
chance that a coin will come up heads”, etc. In each case our statement
refers to a situation in which we are not certain of the outcome, but we
express some degree of confidence that our prediction will be verified.
The theory of probability provides a mathematical framework for such
assertions.

Consider an experiment whose outcome is not known. Suppose that
someone makes an assertion p about the outcome of the experiment,
and we want to assign a probability to p. When statement p is consid-
ered in isolation, we usually find no natural assignment of probabilities.
Rather, we look for a method of assigning probabilities to all conceiv-
able statements concerning the outcome of the experiment. At first this
might seem to be a hopeless task, since there is no end to the state-
ments we can make about the experiment. However we are aided by a
basic principle:

Fundamental assumption. Any two equivalent statements will
be assigned the same probability. As long as there are a finite number
of logical possibilities, there are only a finite number of truth sets, and
hence the process of assigning probabilities is a finite one. We proceed
in three steps: (l) we first determine U , the possibility set, that is, the
set of all logical possibilities, (2) to each subset X of U we assign a
number called the measure m(X), (3) to each statement p we assign
m(P ), the measure of its truth set, as a probability. The probability of
statement p is denoted by Pr[p].

83
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The first step, that of determining the set of logical possibilities,
is one that we considered in the previous chapters. It is important to
recall that there is no unique method for analyzing logical possibilities.
In a given problem we may arrive at a very fine or a very rough analysis
of possibilities, causing U to have many or few elements.

Having chosen U , the next step is to assign a number to each sub-
set X of U , which will in turn be taken to be the probability of any
statement having truth set X . We do this in the following way.

Assignment of a measure. Assign a positive number (weight) to
each element of U , so that the sum of the weights assigned is 1. Then
the measure of a set is the sum of the weights of its elements. The
measure of the set ∅ is 0.

In applications of probability to scientific problems, the analysis of
the logical possibilities and the assignment of measures may depend
upon factual information and hence can best be done by the scientist
making the application.

Once the weights are assigned, to find the probability of a particular
statement we must find its truth set and find the sum of the weights
assigned to elements of the truth set. This problem, which might seem
easy, can often involve considerable mathematical difficulty. The de-
velopment of techniques to solve this kind of problem is the main task
of probability theory.

Example 4.1 An ordinary die is thrown. What is the probability that
the number which turns up is less than four? Here the possibility set is
U = {1, 2, 3, 4, 5, 6}. The symmetry of the die suggests that each face
should have the same probability of turning up. To make this so, we
assign weight 1

6
to each of the outcomes. The truth set of the statement

“The number which turns up is less than four” is {1, 2, 3}. Hence the
probability of this statement is 3

6
= 1

2
, the sum of the weights of the

elements in its truth set. ♦

Example 4.2 A gambler attends a race involving three horses A, B,
and C. He or she feels that A and B have the same chance of winning
but that A (and hence also B) is twice as likely to win as C is. What is
the probability that A or C wins? We take as U the set {A,B,C}. If we
were to assign weight a to the outcome C, then we would assign weight
2a to each of the outcomes A and B. Since the sum of the weights must
be l, we have 2a + 2a + a = 1, or a = 1

5
. Hence we assign weights 2

5
,

2
5
, 1

5
to the outcomes A, B, and C, respectively. The truth set of the
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statement “Horse A or C wins” is {A,C}. The sum of the weights of
the elements of this set is 2

5
+ 1

5
= 3

5
. Hence the probability that A or

C wins is 3
5
. ♦

Exercises

1. Assume that there are n possibilities for the outcome of a given
experiment. How should the weights be assigned if it is desired
that all outcomes be assigned the same weight?

2. Let U = {a, b, c}. Assign weights to the three elements so that
no two have the same weight, and find the measures of the eight
subsets of U .

3. In an election Jones has probability 1
2
of winning, Smith has prob-

ability 1
3
, and Black has probability 1

6
.

(a) Construct U .
(b) Assign weights.

(c) Find the measures of the eight subsets.

(d) Give a pair of nonequivalent predictions which have the same
probability.

4. Give the possibility set U for each of the following experiments.

(a) An election between candidates A and B is to take place.

(b) A number from 1 to 5 is chosen at random.

(c) A two-headed coin is thrown.

(d) A student is asked for the day of the year on which his or
her birthday falls.

5. For which of the cases in Exercise 4 might it be appropriate to
assign the same weight to each outcome?

6. Suppose that the following probabilities have been assigned to the
possible results of putting a penny in a certain defective peanut-
vending machine: The probability that nothing comes out is 1

2
.

The probability that either you get your money back or you get
peanuts (but not both) is 1

3
.
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(a) What is the probability that you get your money back and
also get peanuts?

[Ans. 1
6
.]

(b) From the information given, is it possible to find the proba-
bility that you get peanuts?

[Ans. No.]

7. A die is loaded in such a way that the probability of each face is
proportional to the number of dots on that face. (For instance, a
6 is three times as probable as a 2.) What is the probability of
getting an even number in one throw?

[Ans. 4
7
.]

8. If a coin is thrown three times, list the eight possibilities for the
outcomes of the three successive throws. A typical outcome can
be written (HTH). Determine a probability measure by assigning
an equal weight to each outcome. Find the probabilities of the
following statements.

(a) r: The number of heads that occur is greater than the num-
ber of tails.

[Ans. 1
2
.]

(b) s: Exactly two heads occur.

[Ans. 5
8
.]

(c) t: The same side turns up on every throw.

[Ans. 1
4
.]

9. For the statements given in Exercise 8, which of the following
equalities are true?

(a) Pr[r ∨ s] = Pr[r] + Pr[s]

(b) Pr[s ∨ t] = Pr[s] + Pr[t]

(c) Pr[r ∨ ¬r] = Pr[r] + Pr[¬r]
(d) Pr[r ∨ t] = Pr[r] + Pr[t]



4.2. PROPERTIES OF A PROBABILITY MEASURE 87

10. Which of the following pairs of statements (see Exercise 8) are
inconsistent? (Recall that two statements are inconsistent if their
truth sets have no element in common.)

(a) r, s

[Ans. consistent.]

(b) s, t

[Ans. inconsistent.]

(c) r,¬r
[Ans. inconsistent.]

(d) r, t

[Ans. consistent.]

11. State a theorem suggested by Exercises 9 and 10.

12. An experiment has three possible outcomes, a, b, and c. Let p be
the statement “the outcome is a or b”, and q be the statement
“the outcome is b or c”. Assume that weights have been assigned
to the three outcomes so that Pr[p] = 2

3
and Pr[q] = 5

6
. Find the

weights.

[Ans. 1
6
, 1
2
, 1
3
.]

13. Repeat Exercise 12 if Pr[p] = 1
2
and Pr[q] = 3

8
.

4.2 Properties of a probability measure

Before studying special probability measures, we shall consider some
general properties of such measures which are useful in computations
and in the general understanding of probability theory.

Three basic properties of a probability measure are

(A) m(X) = 0 if and only if X = ∅.
(B) 0 < m(X) < 1 for any set X .

(C) For two sets X and Y ,

m(X ∪ Y ) = m(X) +m(Y )

if and only if X and Y are disjoint, i.e., have no elements in common.
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The proofs of properties (A) and (B) are left as an exercise (see
Exercise 16). We shall prove (C). We observe first that m(X) +m(Y )
is the sum of the weights of the elements of X added to the sum of the
weights of Y . If X and Y are disjoint, then the weight of every element
of X ∪ Y is added once and only once, and hence m(X) + m(Y ) =
m(X ∪ Y ). Assume now that X and Y are not disjoint. Here the
weight of every element contained in both X and Y , i.e., in X ∩ Y ,
is added twice in the sum m(X) + m(Y ). Thus this sum is greater
than m(X ∪ Y ) by an amount m(X ∩ Y ). By (A) and (B), if X ∩ Y
is not the empty set, then m(X ∩ Y ) > 0. Hence in this case we have
m(X) + m(Y ) > m(X ∩ Y ). Thus if X and Y are not disjoint, the
equality in (C) does not hold. Our proof shows that in general we have

(C′) For any two sets X and Y , m(X∪Y ) = m(X)+m(Y )−m(X∩Y ).

Since the probabilities for statements are obtained directly from the
probability measurem(X), any property ofm(X) can be translated into
a property about the probability of statements. For example, the above
properties become, when expressed in terms of statements,

(a) Pr[p] = 0 if and only if p is logically false.

(b) 0 < Pr[p] < 1 for any statement p.

(c) The equality
Pr[p ∨ q] = Pr[p] + Pr[q]

holds and only if p and q are inconsistent.

(c′) For any two statements p and q,

Pr[p ∨ q] = Pr[p] + Pr[q]− Pr[p ∧ q].

Another property of a probability measure which is often useful in
computation is

(D) m(X̃) = 1−m(X),

or, in the language of statements,

(d) Pr[¬p] = 1− Pr[p].

The proofs of (D) and (d) are left as an exercise (see Exercise 17).
It is important to observe that our probability measure assigns prob-

ability 0 only to statements which are logically false, i.e., which are false
for every logical possibility. Hence, a prediction that such a statement
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will be true is certain to be wrong. Similarly, a statement is assigned
probability 1 only if it is true in every case, i.e., logically true. Thus
the prediction that a statement of this type will be true is certain to be
correct. (While these properties of a probability measure seem quite
natural, it is necessary, when dealing with infinite possibility sets, to
weaken them slightly. We consider in this book only the finite possibil-
ity sets.)

We shall now discuss the interpretation of probabilities that are not
0 or 1. We shall give only some intuitive ideas that are commonly
held concerning probabilities. While these ideas can be made mathe-
matically more precise, we offer them here only as a guide to intuitive
thinking.

Suppose that, relative to a given experiment, a statement has been
assigned probability p. From this it is often inferred that if a sequence of
such experiments is performed under identical conditions, the fraction
of experiments which yield outcomes making the statement true would
be approximately p. The mathematical version of this is the “law of
large numbers” of probability theory (which will be treated in Section
4.10). In cases where there is no natural way to assign a probability
measure, the probability of a statement is estimated experimentally.
A sequence of experiments is performed and the fraction of the ex-
periments which make the statement true is taken as the approximate
probability for the statement.

A second and related interpretation of probabilities is concerned
with betting. Suppose that a certain statement has been assigned prob-
ability p. We wish to offer a bet that the statement will in fact turn
out to be true. We agree to give r dollars if the statement does not
turn out to be true, provided that we receive s dollars if it does turn
out to be true. What should r and s be to make the bet fair? If it were
true that in a large number of such bets we would win s a fraction p
of the times and lose r a fraction 1 − p of the time, then our average
winning per bet would be sp−r(1−p). To make the bet fair we should
make this average winning 0. This will be the case if sp = r(1 − p)
or if r/s = p/(1 − p). Notice that this determines only the ratio of r
and s. Such a ratio, written r : s, is said to give odds in favor of the
statement.

Definition. The odds in favor of an outcome are r : s (r to s), if the
probability of the outcome is p, and r/s = p/(1−p). Any two numbers
having the required ratio may be used in place of r and s. Thus 6 : 4
odds are the same as 3 : 2 odds.
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Example 4.3 Assume that a probability of 3
4
has been assigned to a

certain horse winning a race. Then the odds for a fair bet would be
3
4
: 1
4
. These odds could be equally well written as 3 : 1, 6 : 2 or 12 : 4,

etc. A fair bet would be to agree to pay $3 if the horse loses and receive
$1 if the horse wins. Another fair bet would be to pay $6 if the horse
loses and win $2 if the horse wins. ♦

Exercises

1. Let p and q be statements such that Pr[p ∧ q] = 1
4
, Pr[¬p] = 1

3
,

and Pr[q] = 1
2
. What is Pr[p ∨ q]?

[Ans. 11
12
.]

2. Using the result of Exercise 1, find Pr[¬p ∧ ¬q].

3. Let p and q be statements such that Pr[p] = 1
2
and Pr[q] = 2

3
. Are

p and q consistent?

[Ans. Yes.]

4. Show that, if Pr[p] + Pr[q] > 1, then p and q are consistent.

5. A student is worried about his or her grades in English and Art.
The student estimates that the probability of passing English is
.4, the probability of passing at least one course with probability
.6, but that the probability of 1 of passing both courses is only
.1? What is the probability that the student will pass Art?

[Ans. .3.]

6. Given that a school has grades A, B, C, D, and F, and that a
student has probability .9 of passing a course, and .6 of getting a
grade lower than B, what is the probability that the student will
get a C or D?

[Ans. 1
2
.]

7. What odds should a person give on a bet that a six will turn up
when a die is thrown?
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8. Referring to Example 4.2, what odds should the man be willing
to give for a bet that either A or B will come in first?

9. Prove that if the odds in favor of a given statement are r : s, then
the probability that the statement will be true is r/(r + s).

10. Using the result of Exercise 9 and the definition of “odds”, show
that if the odds are r : s that a statement is true, then the odds
are s : r that it is false.

11. A gambler is willing to give 5 : 4 odds that the Dodgers will win
the World Series. What must the probability of a Dodger victory
be for this to be a fair bet?

[Ans. 5
9
.]

12. A statistician has found through long experience that if he or she
washes the car, it rains the next day 85 per cent of the time.
What odds should the statistician give that this will occur next
time?

13. A gambler offers 1 : 3 odds that A will occur, 1 : 2 odds that B
will occur. The gambler knows that A and B cannot both occur.
What odds should he or she give that A or B will occur?

[Ans. 7 : 5.]

14. A gambler offers 3 : 1 odds that A will occur, 2 : 1 odds that B
will occur. The gambler knows that A and B cannot both occur.
What odds should he or she give that A or B will occur?

15. Show from the definition of a probability measure that m(X) = 1
if and only if X = U .

16. Show from the definition of a probability measure that properties
(A), (B) of the text are true.

17. Prove property (D) of the text. Why does property (d) follow
from this property?

18. Prove that if R, S, and T are three sets that have no element in
common,

m(R ∪ S ∪ T ) = m(R) +m(S) +m(T ).
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19. If X and Y are two sets such that X is a subset of Y , prove that
m(X) ≤ m(Y ).

20. If p and q are two statements such that p implies q, prove that
Pr[p] ≤ Pr[q].

21. Suppose that you are given n statements and each has been as-
signed a probability less than or equal to r. Prove that the prob-
ability of the disjunction of these statements is less than or equal
to nr.

22. The following is an alternative proof of property (C′) of the text.
Give a reason for each step.

(a) X ∪ Y = (X ∩ Ỹ ) ∪ (X ∩ Y ) ∪ (X̃ ∩ Y ).

(b) m(X ∪ Y ) = m(X ∩ Ỹ ) +m(X ∩ Y ) +m(X̃ ∩ Y ).

(c) m(X ∪ Y ) = m(X) +m(Y )−m(X ∩ Y ).

23. If X , Y , and Z are any three sets, prove that, for any probability
measure,

m(X ∪ Y ∪ Z) = m(X) +m(Y ) +m(Z)

−m(X ∩ Y )−m(Y ∩ Z)−m(X ∩ Z)

+m(X ∩ Y ∩ Z).

24. Translate the result of Exercise 23 into a result concerning three
statements p, q, and r.

25. A man offers to bet “dollars to doughnuts” that a certain event
will take place. Assuming that a doughnut costs a nickel, what
must the probability of the event be for this to be a fair bet?

[Ans. 20
21
.]

26. Show that the inclusion-exclusion formula 3.2 is true is n is re-
placed by m. Apply this result to

Pr[p1 ∨ p2 ∨ . . . ∨ pn].
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4.3 The equiprobable measure

We have already seen several examples where it was natural to assign
the same weight to all possibilities in determining the appropriate prob-
ability measure. The probability measure determined in this manner
is called the equiprobable measure. The measure of sets in the case of
the equiprobable measure has a very simple form. In fact, if U has n
elements and if the equiprobable measure has been assigned, then for
any set X , m(X) is r/n, where r is the number of elements in the set
X . This is true since the weight of each element in X is 1/n, and hence
the sum of the weights of elements of X is r/n.

The particularly simple form of the equiprobable measure makes
it easy to work with. In view of this, it is important to observe that
a particular choice for the set of possibilities in a given situation may
lead to the equiprobable measure, while some other choice will not. For
example, consider the case of two throws of an ordinary coin. Suppose
that we are interested in statements about the number of heads which
occur. If we take for the possibility set the set U = {HH,HT,TH,TT}
then it is reasonable to assign the same weight to each outcome, and
we are led to the equiprobable measure. If, on the other hand, we
were to take as possible outcomes the set U = {no H, one H, two H},
it would not be natural to assign the same weight to each outcome,
since one head can occur in two different ways, while each of the other
possibilities can occur in only one way.

Example 4.4 Suppose that we throw two ordinary dice. Each die can
turn up a number from 1 to 6; hence there are 6 · 6 possibilities. We
assign weight 1

36
to each possibility. A prediction that is true in j cases

will then have probability j/36. For example, “The sum of the dice is
5” will be true if we get 1 + 4, 2 + 3, 3 + 2, or 4 + 1. Hence the
probability that the sum of the dice is 5 is 4

36
= 1

9
. The sum can be 12

in only one way, 6 + 6. Hence the probability that the sum is 12 is 1
36
.

♦

Example 4.5 Suppose that two cards are drawn successively from a
deck of cards. What is the probability that both are hearts? There
are 52 possibilities for the first card, and for each of these there are
51 possibilities for the second. Hence there are 52 · 51 possibilities for
the result of the two draws. We assign the equiprobable measure. The
statement “The two cards are hearts” is true in 13 · 12 of the 52 · 51
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possibilities. Hence the probability of this statement is 13·12/(52·51) =
1
17
. ♦

Example 4.6 Assume that, on the basis of a predictive index applied
to students A, B, and C when entering college, it is predicted that after
four years of college the scholastic record of A will be the highest, C the
second highest, and B the lowest of the three. Suppose, in fact, that
these predictions turn out to be exactly correct. If the predictive index
has no merit at all and hence the predictions amount simply to guessing,
what is the probability that such a prediction will be correct? There
are 3! = 6 orders in which the men might finish. If the predictions were
really just guessing, then we would assign an equal weight to each of the
six outcomes. In this case the probability that a particular prediction is
true is 1

6
. Since this probability is reasonably large, we would hesitate

to conclude that the predictive index is in fact useful, on the basis
of this one experiment. Suppose, on the other hand, it predicted the
order of six men correctly. Then a similar analysis would show that,
by guessing, the probability is 1

6!
= 1

720
that such a prediction would be

correct. Hence, we might conclude here that there is strong evidence
that the index has some merit. ♦

Exercises

1. A letter is chosen at random from the word “random”. What is
the probability that it is an n? That it is a vowel?

[Ans. 1
6
;1
3
.]

2. An integer between 3 and 12 inclusive is chosen at random. What
is the probability that it is an even number? That it is even and
divisible by three?

3. A card is drawn at random from a pack of playing cards.

(a) What is the probability that it is either a heart or the king
of clubs?

[Ans. 7
26
.]

(b) What is the probability that it is either the queen of hearts
or an honor card (i.e., ten, jack, queen, king, or ace)?
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[Ans. 5
13
.]

4. A word is chosen at random from the set of words

U = {men, bird, ball, field, book}.

Let p, q, and r be the statements:

p: The word has two vowels.

q: The first letter of the word is b.

r: The word rhymes with cook.

Find the probability of the following statements.

(a) p.

(b) q.

(c) r.

(d) p ∧ q.

(e) (p ∨ q) ∧ ¬r.
(f) p → q.

[Ans. 4
5
.]

5. A single die is thrown. Find the probability that

(a) An odd number turns up.

(b) The number which turns up is greater than two.

(c) A seven turns up.

6. In the Primary voting example of Section 2.1, assume that all 36
possibilities in the elections are equally likely. Find

(a) The probability that candidate A wins more states than ei-
ther B or C.

[Ans. 7
18
.]

(b) That all the states are won by the same candidate.

[Ans. 1
36
.]

(c) That every state is won by a different candidate.



96 CHAPTER 4. PROBABILITY THEORY

[Ans. 0.]

7. A single die is thrown twice. What value for the sum of the two
outcomes has the highest probability? What value or values of
the sum has the lowest probability of occurring?

8. Two boys and two girls are placed at random in a row for a
picture. What is the probability that the boys and girls alternate
in the picture?

[Ans. 1
3
.]

9. A certain college has 500 students and it is known that

300 read French.
200 read German.
50 read Russian.
20 read French and Russian.
30 read German and Russian.
20 read German and French.
10 read all three languages.

If a student is chosen at random from the school, what is the
probability that the student

(a) Reads two and only two languages?

(b) Reads at least one language?

10. Suppose that three people enter a restaurant which has a row
of six seats. If they choose their seats at random, what is the
probability that they sit with no seats between them? What is
the probability that there is at least one empty seat between any
two of them?

11. Find the probability of obtaining each of the following poker
hands. (A poker hand is a set of five cards chosen at random
from a deck of 52 cards.)

(a) Royal flush (ten, jack, queen, king, ace in a single suit).

[Ans. 4/
(
52
5

)
= .0000015.]

(b) Straight flush (five in a sequence in a single suit, but not a
royal flush).
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[Ans. (40− 4)/
(
52
5

)
= .000014.]

(c) Four of a kind (four cards of the same face value).

[Ans. 624/
(
52
5

)
= .00024.]

(d) Full house (one pair and one triple of the same face value).

[Ans. 3744/
(
52
5

)
= .0014.]

(e) Flush (five cards in a single suit but not a straight or royal
flush).

[Ans. (5148− 40)/
(
52
5

)
= .0020.]

(f) Straight (five cards in a row, not all of the same suit).

[Ans. (10, 240− 40)/
(
52
5

)
= .0039.]

(g) Straight or better.

[Ans. .0076.]

12. If ten people are seated at a circular table at random, what is
the probability that a particular pair of people are seated next to
each other?

[Ans. 2
9
.]

13. A room contains a group of n people who are wearing badges
numbered from 1 to n. If two people are selected at random, what
is the probability that the larger badge number is a 3? Answer
this problem assuming that n = 5, 4, 3, 2.

[Ans. 1
5
; 1
3
; 2
3
; 0.]

14. In Exercise 13, suppose that we observe two men leaving the room
and that the larger of their badge numbers is 3. What might we
guess as to the number of people in the room?

15. Find the probability that a bridge hand will have suits of

(a) 5, 4, 3, and 1 cards.

[Ans.
4!(13

5
)(13

4
)(13

3
)(13

1
)

(52
13
)

= .129.]
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(b) 6, 4, 2, and 1 cards.

[Ans. .047.]

(c) 4, 4, 3, and 2 cards.

[Ans. .216.]

(d) 4, 3, 3, and 3 cards.

[Ans. .105.]

16. There are
(
52
13

)
= 6.5 × 1011 possible bridge hands. Find the

probability that a bridge hand dealt at random will be all of one
suit. Estimate roughly the number of bridge hands dealt in the
entire country in a year. Is it likely that a hand of all one suit
will occur sometime during the year in the United States?

Supplementary exercises.

17. Find the probability of not having a pair in a hand of poker.

18. Find the probability of a “bust” hand in poker. [Hint: A hand
is a “bust” if there is no pair, and it is neither a straight nor a
flush.]

[Ans. .5012.]

19. In poker, find the probability of having

(a) Exactly one pair.

[Ans. .4226.]

(b) Two pairs.

[Ans. .0475.]

(c) Three of a kind.

[Ans. .0211.]

20. Verify from Exercises 11, 18, 19 that the probabilities for all pos-
sible poker hands add up to one (within a rounding error).

21. A certain French professor announces that he or she will select
three out of eight pages of text to put on an examination and that
each student can choose one of these three pages to translate.
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(a) What is the maximum number of pages that a student should
prepare in order to be certain of being able to translate a
page that he or she has studied?

(b) Smith decides to study only four of the eight pages. What
is the probability that one of these four pages will appear on
the examination?

4.4 Two nonintuitive examples

There are occasions in probability theory when one finds a problem for
which the answer, based on probability theory, is not at all in agreement
with one’s intuition. It is usually possible to arrange a few wagers that
will bring one’s intuition into line with the mathematical theory. A
particularly good example of this is provided by the matching birthdays
problem.

Assume that we have a room with r people in it and we propose
the bet that there are at least two people in the room having the same
birthday, i.e., the same month and day of the year. We ask for the
value of r which will make this a fair bet. Few people would be willing
to bet even money on this wager unless there were at least 100 people
in the room. Most people would suggest 150 as a reasonable number.
However, we shall see that with 150 people the odds are approximately
4,100,000,000,000,000 to 1 in favor of two people having the same birth-
day, and that one should be willing to bet even money with as few as
23 people in the room.

Let us first find the probability that in a room with r people, no two
have the same birthday. There are 365 possibilities for each person’s
birthday (neglecting February 29). There are then 365r possibilities
for the birthdays of r people. We assume that all these possibilities
are equally likely. To find the probability that no two have the same
birthday we must find the number of possibilities for the birthdays
which have no day represented twice. The first person can have any of
365 days for his or her birthday. For each of these, if the second person
is to have a different birthday, there are only 364 possibilities for his
or her birthday. For the third person, there are 363 possibilities if he
or she is to have a different birthday than the first two, etc. Thus the
probability that no two people have the same birthday in a group of r
people is

qr =
365 · 364 · . . . · (365− r + 1)

365r
.
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Figure 4.1: ♦

The probability that at least two people have the same birthday is
then pr = 1− qr. In Figure 4.1 the values of pr and the odds for a fair
bet, pr : (1− pr) are given for several values of r.

We consider now a second problem in which intuition does not lead
to the correct answer. A hat-check clerk has checked n hats, but they
have become hopelessly scrambled. The clerk hands back the hats at
random. What is the probability that at least one head gets its own
hat? For this problem some people’s intuition would lead them to
guess that for a large number of hats this probability should be small,
while others guess that it should be large. Few people guess that the
probability is neither large nor small and essentially independent of the
number of hats involved.
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Let pj be the statement “the jth head gets its own hat back”. We
wish to find Pr[p1 ∨ p2 ∨ . . . ∨ pn]. We know from Exercise 26 that
a probability of this form can be found from the inclusion-exclusion
formula. We must add all probabilities of the form Pr[pi], then subtract
the sum of all probabilities of the form Pr[pi ∧ pj], then add the sum of
all probabilities of the form Pr[pi ∧ pj ∧ pk], etc.

However, each of these probabilities represents the probability that
a particular set of heads get their own hats back. These probabilities
are very easy to compute. Let us find the probability that out of n
heads some particular m of them get back their own hats. There are n!
ways that the hats can be returned. If a particular m of them are to get
their own hats there are only (n−m)! ways that it can be done. Hence
the probability that a particular m heads get their own hats back is

(n−m)!

n!
.

There are
(
n
m

)
different ways we can choose m heads out of n. Hence

the mth group of terms contributes

(
n

m

)
· (n−m)!

n!
=

1

m!

to the alternating sum. Thus

Pr[p1 ∨ p2 ∨ . . . ∨ pn] = 1− 1

2!
+

1

3!
− 1

4!
+ . . .± 1

n!
,

where the + sign is chosen if n is odd and the − sign if n is even. In
Figure 4.2, these numbers are given for the first few values of n.

It can be shown that, as the number of hats increases, the proba-
bilities approach a number 1 − (1/e) = .632121 . . ., where the number
e = 2.71828 . . . is a number that plays an important role in many
branches of mathematics.

Exercises

1. What odds should you be willing to give on a bet that at least
two people in the United States Senate have the same birthday?

[Ans. 3, 300, 000 : 1.]
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Figure 4.2: ♦

2. What is the probability that in the House of Representatives at
least two men have the same birthday?

3. What odds should you be willing to give on a bet that at at least
two of the Presidents of the United States have had the same
birthday? Would you win the bet?

[Ans. More than 4 : 1; Yes. Polk and Harding were born on
Nov. 2.]

4. What odds should you be willing to give on the bet that at least
two of the Presidents of the United States have died on the same
day of the year? Would you win the bet?

[Ans. More than 2.7 : 1; Yes. Jefferson, Adams, and Monroe all
died on July 4.]

5. Four men check their hats. Assuming that the hats are returned
at random, what is the probability that exactly four men get their
own hats? Calculate the answer for 3, 2, 1, 0 men.

[Ans. 1
24
; 0; 1

4
; 1
3
; 3
8
.]

6. A group of 50 knives and forks a dance. The partners for a dance
are chosen by lot (knives dance with forks). What is the approx-
imate probability that no knife dances with its own fork?
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7. Show that the probability that, in a group of r people, exactly
one pair has the same birthday is

tr =

(
r

2

)
365 · 364 . . . (365− r + 2)

365r
.

8. Show that tr =
(
r
2

)
qr

366−r
, where tr is defined in Exercise 7, and qr

is the probability that no pair has the same birthday.

9. Using the result of Exercise 8 and the results given in Figure 4.1,
find the probability of exactly one pair of people with the same
birthday in a group of r people, for r = 15, 20, 25, 30, 40, 50.

[Ans. .22; .32; .38; .38; .26; .12.]

10. What is the approximate probability that there has been exactly
one pair of Presidents with the same birthday?

Supplementary exercises.

11. Find a formula for the probability of having more than one coin-
cidence of birthdays among n people, i.e., of having at least two
pairs of identical birthdays, or of three or more people having
the same birthday. [Hint: Take the probability of at least one
coincidence, and subtract the probability of having exactly one
pair.]

12. Compute the probability of having more than one coincidence of
birthdays when there are 20, 25, 30, 40, or 50 people in the room.

13. What is the smallest number of people you need in order to have
a better than even chance of finding more than one coincidence
of birthdays?

[Ans. 36.]

14. Is it very surprising that there was more than one coincidence of
birthdays among the dates on which Presidents died?

15. A game of solitaire is played as follows: A deck of cards is shuffled,
and then the player turns the cards up one at a time. As the
player turns the cards, he or she calls out the names of the cards
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in a standard order—say “two of clubs”, “three of clubs”, etc.
The object of the game is to go through the entire deck without
once calling out the name of the card one turns up. What is the
probability of winning? How does the probability change if one
uses a single suit in place of a whole deck?

4.5 Conditional probability

Suppose that we have a given U and that measures have been assigned
to all subsets of U . A statement p will have probability Pr[p] = m(P ).
Suppose we now receive some additional information, say that state-
ment q is true. How does this additional information alter the proba-
bility of p?

The probability of p after the receipt of the information q is called its
conditional probability, and it is denoted by Pr[p|q], which is read “the
probability of p given q”. In this section we will construct a method of
finding this conditional probability in terms of the measure m.

If we know that q is true, then the original possibility set U has
been reduced to Q and therefore we must define our measure on the
subsets of Q instead of on the subsets of U . Of course, every subset X
of Q is a subset of U , and hence we know m(X), its measure before q
was discovered. Since q cuts down on the number of possibilities, its
new measure m′(X) should be larger.

The basic idea on which the definition of m′ is based is that, while
we know that the possibility set has been reduced to Q, we have no
new information about subsets of Q. If X and Y are subsets of Q, and
m(X) = 2 · m(Y ), then we will want m′(X) = 2 · m′(Y ). This will
be the case if the measures of subsets of Q are simply increased by a
proportionality factor m′(X) = k · m(X), and all that remains is to
determine k. Since we know that 1 = m′(Q) = k · m(Q), we see that
k = 1/m(Q) and our new measure on subsets of U is determined by
the formula

m′(X) =
m(X)

m(Q)
. (4.1)

How does this affect the probability of p? First of all, the truth set
of p has been reduced. Because all elements of Q have been eliminated,
the new truth set of p is P ∩Q and therefore

Pr[p|q] = m′(P ∩Q) =
m(P ∩Q)

m(Q)
=

Pr[p ∧ q]

Pr[q]
. (4.2)
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Note that if the original measure m is the equiprobable measure, then
the new measure m′ will also be the equiprobable measure on the set
Q.

We must take care that the denominators in 4.1 and 4.2 be different
from zero. Observe that m(Q) will be zero if Q is the empty set, which
happens only if q is self-contradictory. This is also the only case in
which Pr[q] = 0, and hence we make the obvious assumption that our
information q is not self-contradictory.

Example 4.7 In an election, candidate A has a .4 chance of winning,
B has .3 chance, C has .2 chance, and D has .1 chance. Just before the
election, C withdraws. Now what are the chances of the other three
candidates? Let q be the statement that C will not win, i.e., that A or B
or D will win. Observe that Pr[q] = .8, hence all the other probabilities
are increased by a factor of 1/.8 = 1.25. Candidate A now has .5 chance
of winning, B has .375, and D has .125. ♦

Example 4.8 A family is chosen at random from the set of all families
having exactly two children (not twins). What is the probability that
the family has two boys, if it is known that there is a boy in the family?
Without any information being given, we would assign the equiprobable
measure on the set U = {BB,BG,GB,GG}, where the first letter of
the pair indicates the sex of the younger child and the second that of
the older. The information that there is a boy causes U to change to
{BB,BG,GB}, but the new measure is still the equiprobable measure.
Thus the conditional probability that there are two boys given that
there is a boy is 1

3
. If, on the other hand, we know that the first

child is a boy, then the possibilities are reduced to {BB,BG} and the
conditional probability is 1

2
. ♦

A particularly interesting case of conditional probability is that in
which Pr[p|q] = Pr[p]. That is, the information that q is true has no
effect on our prediction for p. If this is the case, we note that

Pr[p ∧ q] = Pr[p]Pr[q]. (4.3)

And the case Pr[q|p] = q leads to the same equation. Whenever equa-
tion 4.3 holds, we say that p and q are independent. Thus if q is not a
self-contradiction, p and q are independent if and only if Pr[p|q] = Pr[p].
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Example 4.9 Consider three throws of an ordinary coin, where we
consider the eight possibilities to be equally likely. Let p be the state-
ment “A head turns up on the first throw” and q be the statement,
“A tail turns up on the second throw”. Then Pr[p] = Pr[q] = 1

2
and

Pr[p ∧ q] = 1
4
and therefore p and q are independent statements. ♦

While we have an intuitive notion of independence, it can happen
that two statements, which may not seem to be independent, are in
fact independent. For example, let r be the statement “The same side
turns up all three times”. Let s be the statement “At most one head
occurs”. Then r and s are independent statements (see Exercise 10).

An important use of conditional probabilities arises in the following
manner. We wish to find the probability of a statement p. We observe
that there is a complete set of alternatives q1, q2, . . . , qn such that the
probability Pr[qi] as well as the conditional probabilities Pr[p|qi] can be
found for every i. Then in terms of these we can find Pr[p] by

Pr[p] = Pr[q1]Pr[p|q1] + Pr[q2]Pr[p|q2] + . . .+ Pr[qn]Pr[p|qn].

The proof of this assertion is left as an exercise (see Exercise 13).

Example 4.10 A psychology student once studied the way mathe-
maticians solve problems and contended that at times they try too
hard to look for symmetry in a problem. To illustrate this she asked a
number of mathematicians the following problem: Fifty balls (25 white
and 25 black) are to be put in two urns, not necessarily the same num-
ber of balls in each. How should the balls be placed in the urns so as
to maximize the chance of drawing a black ball, if an urn is chosen at
random and a ball drawn from this urn? A quite surprising number of
mathematicians answered that you could not do any better than 1

2
by

the symmetry of the problem. In fact one can do a good deal better by
putting one black ball in urn 1, and all the 49 other balls in urn 2. To
find the probability in this case let p be the statement “A black ball is
drawn”, q1 the statement “Urn 1 is drawn” and q2 the statement “Urn
2 is drawn”. Then q1 and q2 are a complete set of alternatives so

Pr[p] = Pr[q1]Pr[p|q1] + Pr[q2]Pr[p|q2].

But Pr[q1] = Pr[q2] =
1
2
and Pr[p|q1] = 1, Pr[p|q2] = 24

49
. Thus

Pr[p] =
1

2
· 1 + 1

2
· 24
49

=
73

98
= .745.
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When told the answer, a number of the mathematicians that had said
1
2
replied that they thought there had to be the same number of balls

in each urn. However, since this had been carefully stated not to be
necessary, they also had fallen into the trap of assuming too much
symmetry. ♦

Exercises

1. A card is drawn at random from a pack of playing cards. What
is the probability that it is a 5, given that it is between 2 and 7
inclusive?

2. A die is loaded in such a way that the probability of a given
number turning up is proportional to that number (e.g., a 6 is
three times as likely to turn up as a 2).

(a) What is the probability of rolling a 3 given that an odd
number turns up?

[Ans. 1
3
.]

(b) What is the probability of rolling an even number given that
a number greater than three turns up?

[Ans. 2
3
.]

3. A die is thrown twice. What is the probability that the sum of
the faces which turn up is greater than 10, given that one of them
is a 6? Given that the first throw is a 6?

[Ans. 3
11
; 1
3
.]

4. Referring to Exercise 9, what is the probability that the students
selected studies German if

(a) He or she studies French?

(b) He or she studies French and Russian?

(c) He or she studies neither French nor Russian?

5. In the primary voting example of Section 2.1, assuming that the
equiprobable measure has been assigned, find the probability that
A wins at least two primaries, given that B drops out of the
Wisconsin primary.
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[Ans. 7
9
.]

6. If Pr[¬p] = 1
4
and Pr[q|p] = 1

2
, what is Pr[p ∧ q]?

[Ans. 3
8
.]

7. A student takes a five-question true-false exam. What is the
probability that the student will get all answers correct if

(a) The student is only guessing?

(b) The student knows that the instructor puts more true than
false questions on his or her exams?

(c) The student also knows that the instructor never puts three
questions in a row with the same answer?

(d) The student also knows that the first and last questions must
have the opposite answer?

(e) The student also knows that the answer to the second prob-
lem is “false”?

8. Three persons, A, B, and C, are placed at random in a straight
line. Let r be the statement “B is to the right of A” and let s be
the statement “C is to the right of A”.

(a) What is the Pr[r ∧ s]?

[Ans. 1
3
.]

(b) Are r and s independent?

[Ans. No.]

9. Let a deck of cards consist of the jacks and queens chosen from a
bridge deck, and let two cards be drawn from the new deck. Find

(a) The probability that the cards are both jacks, given that one
is a jack.

[Ans. 3
11

= .27.]

(b) The probability that the cards are both jacks, given that one
is a red jack.

[Ans. 5
13

= .38.]
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The probability that the cards are both jacks, given that one
is the jack of hearts.

[Ans. 3
7
= .43.]

10. Prove that statements r and s in Example 4.9 are independent.

11. The following example shows that r may be independent of p and
q without being independent of p ∧ q and p ∨ q. We throw a
coin twice. Let p be “The first toss comes out heads”, q be “The
second toss comes out heads”, and r be “The two tosses come out
the same”. Compute Pr[r],Pr[r|p],Pr[r|q],Pr[r|p∧ q],Pr[r|p∨ q].

[Ans. 1
2
, 1
2
, 1
2
, 1, 1

3
.]

12. Prove that for any two statements p and q,

Pr[p] = Pr[p ∧ q] + Pr[p ∧ ¬q].

13. Let p be any statement and q1, q2, q3 be a complete set of alter-
natives. Prove that

Pr[p] = Pr[q1]Pr[p|q1] + Pr[q2]Pr[p|q2] + Pr[q3]Pr[p|q3].

14. Prove that the procedure given in Example 4.10 does maximize
the chance of getting a black ball. [Hint: Show that you can
assume that one urn contains more black balls than white balls
and then consider what is the best that could be achieved, first
in the urn with more black than white balls, and then in the urn
with more white than black balls.]

Supplementary exercises.

15. Assume that p and q are independent statements relative to a
given measure. Prove that each of the following pairs of state-
ments are independent relative to this same measure.

(a) p and ¬q.
(b) ¬q and p.

(c) ¬p and ¬q
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16. Prove that for any three statements p, q, and r,

Pr[p ∧ q ∧ r] = Pr[p] · Pr[q|p] · Pr[r|p ∧ q].

17. A coin is thrown twice. Let p be the statement “Heads turns up
on the first toss” and q the statement “Heads turns up on the
second toss”. Show that it is possible to assign a measure to the
possibility space {HH,HT,TH,TT} so that these statements are
not independent.

18. A multiple-choice test question lists five alternative answers, of
which just one is correct. If a student has done the homework,
then he or she is certain to identify the correct answer; otherwise,
the student chooses an answer at random. Let p be the statement
“The student does the homework” and q the statement “The
student answers the question correctly”. Let Pr[p] = a.

(a) Find a formula for Pr[p|q] in terms of a.

(b) Show that Pr[p|q] ≥ Pr[p] for all values of a. When does the
equality hold?

19. A coin is weighted so that heads has probability .7, tails has
probability .2, and it stands on edge with probability .1. What
is the probability that it does not come up heads, given that it
does not come up tails?

[Ans. 1
8
.]

20. A card is drawn at random from a deck of playing cards. Are the
following pairs of statements independent?

(a) p: A jack is drawn. q: A black card is drawn.

(b) p: An even numbered heart is drawn. q: A red card smaller
than a five is drawn.

21. A simple genetic model for the color of a person’s eyes is the
following: There are two kinds of color-determining genes, B and
b, and each person has two color-determining genes. If both are
b, he or she has blue eyes; otherwise he or she has brown eyes.
Assume that one-quarter of the people have two B genes, one-
quarter of the people have two b genes, and the rest have one B
gene and one b gene.
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(a) If a person has brown eyes, what is the probability that he
or she has two B genes?

Assume that a child’s mother and father have brown eyes
and blue eyes, respectively.

(b) What is the probability that the child will have brown eyes?

(c) If the child has brown eyes, what is the probability that the
father has two B genes?

[Ans. 1
2
.]

22. Three red, three green, and three blue balls are to be put into
three urns, with at least two balls in each urn. Then an urn is
selected at random and two balls withdrawn.

(a) How should the balls be put in the urns in order to maximize
the probability of drawing two balls of different color? What
is the probability?

[Ans. 1.]

(b) How should the balls be put in the urns in order to maximize
the probability of withdrawing a red and a green ball? What
is the maximum probability?

[Ans. 7
10
.]

4.6 Finite stochastic processes

We consider here a very general situation which we will specialize in
later sections. We deal with a sequence of experiments where the out-
come on each particular experiment depends on some chance element.
Any such sequence is called a stochastic process. (The Greek word
“stochos” means “guess”.) We shall assume a finite number of exper-
iments and a finite number of possibilities for each experiment. We
assume that, if all the outcomes of the experiments which precede a
given experiment were known, then both the possibilities for this ex-
periment and the probability that any particular possibility will occur
would be known. We wish to make predictions about the process as a
whole. For example, in the case of repeated throws of an ordinary coin
we would assume that on any particular experiment we have two out-
comes, and the probabilities for each of these outcomes is 1

2
regardless
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Figure 4.3: ♦

of any other outcomes. We might be interested, however, in the proba-
bilities of statements of the form, “More than two-thirds of the throws
result in heads”, or “The number of heads and tails which occur is the
same”, etc. These are questions which can be answered only when a
probability measure has been assigned to the process as a whole. In this
section we show how a probability measure can be assigned, using the
given information. In the case of coin tossing, the probabilities (hence
also the possibilities) on any given experiment do not depend upon the
previous results. We will not make any such restriction here since the
assumption is not true in general.

We shall show how the probability measure is constructed for a par-
ticular example, and the procedure in the general case is similar. We
assume that we have a sequence of three experiments, the possibilities
for which are indicated in Figure 4.3. The set of all possible outcomes
which might occur on any of the experiments is represented by the set
{a, b, c, d, e, f}. Note that if we know that outcome b occurred on the
first experiment, then we know that the possibilities on experiment two
are {a, e, d}. Similarly, if we know that b occurred on the first experi-
ment and a on the second, then the only possibilities for the third are
{c, f}. We denote by pa the probability that the first experiment re-
sults in outcome a, and by pb the probability that outcome b occurs in
the first experiment. We denote by pb,d the probability that outcome
d occurs on the second experiment, which is the probability computed
on the assumption that outcome b occurred on the first experiment.
Similarly for pb,a,pb,e,pa,a,pa,c. We denote by pbd,c the probability that
outcome c occurs on the third experiment, the latter probability being
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computed on the assumption that outcome b occurred on the first ex-
periment and d on the second. Similarly for pba,c,pba,f , etc. We have
assumed that these numbers are given and the fact that they are proba-
bilities assigned to possible outcomes would mean that they are positive
and that pa + pb = 1, pb,a + pb,e + pb,d = 1, and pbd,a + pbd,c = 1, etc.

It is convenient to associate each probability with the branch of
the tree that connects to the branch point representing the predicted
outcome. We have done this in Figure 4.3 for several branches. The
sum of the numbers assigned to branches from a particular branch point
is 1, e.g., pb,a + pb,e + pb,d = 1.

A possibility for the sequence of three experiments is indicated by a
path through the tree. We define now a probability measure on the set
of all paths. We call this a tree measure. To the path corresponding to
outcome b on the first experiment, d on the second, and c on the third,
we assign the weight pb·pb,d·pbd,c. That is the product of the probabilities
associated with each branch along the path being considered. We find
the probability for each path through the tree.

Before showing the reason for this choice, we must first show that it
determines a probability measure, in other words, that the weights are
positive and the sum of the weights is 1. The weights are products of
positive numbers and hence positive. To see that their sum is 1 we first
find the sum of the weights of all paths corresponding to a particular
outcome, say b, on the first experiment and a particular outcome, say
d, on the second. We have

pb · pb,d · pbd,a + pb · pb,d · pbd,c = pb · pb,d[pbd,a + pbd,c] = pb · pb,d.
For any other first two outcomes we would obtain a similar result.

For example, the sum of the weights assigned to paths corresponding
to outcome a on the first experiment and c on the second is pa · pa,c.
Notice that when we have verified that we have a probability measure,
this will be the probability that the first outcome results in a and the
second experiment results in c.

Next we find the sum of the weights assigned to all the paths cor-
responding to the cases where the outcome of the first experiment is
b. We find this by adding the sums corresponding to the different pos-
sibilities for the second experiment. But by our preceding calculation
this is

pb · pb,a + pb · pb,e + pb · pb,d = pb[pb,a + pb,e + pb,d] = pb.

Similarly, the sum of the weights assigned to paths corresponding
to the outcome a on the first experiment is pa. Thus the sum of all
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weights is pa + pb = 1. Therefore we do have a probability measure.
Note that we have also shown that the probability that the outcome of
the first experiment is a has been assigned probability pa in agreement
with our given probability.

To see the complete connection of our new measure with the given
probabilities, let Xj = z be the statement “The outcome of the jth
experiment was z”. Then the statement [X1 = b ∧X2 = d ∧X3 = c] is
a compound statement that has been assigned probability pb ·pb,d ·pbd,c.
The statement [X1 = b∧X2 = d] we have noted has been assigned prob-
ability pb ·pb,d and the statement [X1 = b] has been assigned probability
pb. Thus

Pr[X3 = c|X2 = d ∧X1 = b] =
pb · pb,d · pbd,c

pb · pb,d
= pbd,c,

Pr[X2 = d|X1 = b] =
pb · pb,d

pb
= pb,d.

Thus we see that our probabilities, computed under the assumption
that previous results were known, become the corresponding condi-
tional probabilities when computed with respect to the tree measure.
It can be shown that the tree measure which we have assigned is the
only one which will lead to this agreement. We can now find the proba-
bility of any statement concerning the stochastic process from our tree
measure.

Example 4.11 Suppose that we have two urns. Urn 1 contains two
black balls and three white balls. Urn 2 contains two black balls and
one white ball. An urn is chosen at random and a ball chosen from this
urn at random. What is the probability that a white ball is chosen?
A hasty answer might be 1

2
since there are an equal number of black

and white balls involved and everything is done at random. However,
it is hasty answers like this (which is wrong) which show the need for
a more careful analysis.

We are considering two experiments. The first consists in choosing
the urn and the second in choosing the ball. There are two possibilities
for the first experiment, and we assign p1 = p2 =

1
2
for the probabilities

of choosing the first and the second urn, respectively. We then assign
p1,W = 3

5
for the probability that a white ball is chosen, under the

assumption that urn 1 is chosen. Similarly we assign p1,B = 2
5
, p2,W = 1

3
,

p2,B = 2
3
. We indicate these probabilities on their possibility tree in

Figure 4.4. The probability that a white ball is drawn is then found
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Figure 4.4: ♦

from the tree measure as the sum of the weights assigned to paths which
lead to a choice of a white ball. This is 1

2
· 3
5
+ 1

2
· 1
3
= 7

15
. ♦

Example 4.12 Suppose that a drunkard leaves a bar which is on a
corner which he or she knows to be one block from home. He or she is
unable to remember which street leads home, and proceeds to try each
of the streets at random without ever choosing the same street twice
until he or she goes on the one which leads home. What possibilities
are there for the trip home, and what is the probability for each of
these possible trips? We label the streets A, B, C, and Home. The
possibilities together with typical probabilities are given in Figure 4.5.
The probability for any particular trip, or path, is found by taking the
product of the branch probabilities. ♦

Example 4.13 Assume that we are presented with two slot machines,
A and B. Each machine pays the same fixed amount when it pays off.
Machine A pays off each time with probability 1

2
, and machine B with

probability 1
4
. We are not told which machine is A. Suppose that we

choose a machine at random and win. What is the probability that
we chose machine A? We first construct the tree (Figure 4.6) to show
the possibilities and assign branch probabilities to determine a tree
measure. Let p be the statement “Machine A was chosen” and q be
the statement “The machine chosen paid off”. Then we are asked for

Pr[p|q] = Pr[p ∧ q]

Pr[q]
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Figure 4.5: ♦

Figure 4.6: ♦
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The truth set of the statement p∧ q consists of a single path which has
been assigned weight 1

4
. The truth set of the statement q consists of

two paths, and the sum of the weights of these paths is 1
2
· 1
2
+ 1

2
· 1
4
= 3

8
.

Thus Pr[p|q] = 2
3
. Thus if we win, it is more likely that we have machine

A than B and this suggests that next time we should play the same
machine. If we lose, however, it is more likely that we have machine
B than A, and hence we would switch machines before the next play.
(See Exercise 9.) ♦

Exercises

1. The fractions of Republicans, Democrats, and Independent voters
in cities A and B are

City A: .30 Republican, .40 Democratic, .30 Independent;

City B: .40 Republican, .50 Democratic, .10 Independent.

A city is chosen at random and two voters are chosen succes-
sively and at random from the voters of this city. Construct a
tree measure and find the probability that two Democrats are
chosen. Find the probability that the second voter chosen is an
Independent voter.

[Ans. .205; .2.]

2. A coin is thrown. If a head turns up, a die is rolled. If a tail
turns up, the coin is thrown again. Construct a tree measure to
represent the two experiments and find the probability that the
die is thrown and a six turns up.

3. An athlete wins a certain tournament if he or she can win two
consecutive games out of three played alternately with two oppo-
nents A and B. A is a better player than B. The probability of
winning a game when B is the opponent 2

3
. The probability of

winning a game when A is the opponent is only 1
3
. Construct a

tree measure for the possibilities for three games, assuming that
he or she plays alternately but plays A first. Do the same assum-
ing that he or she plays B first. In each case find the probability
that he or she will win two consecutive games. Is it better to play
two games against the strong player or against the weaker player?
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[Ans. 10
27
; 8

27
; better to play strong player twice.]

4. Construct a tree measure to represent the possibilities for four
throws of an ordinary coin. Assume that the probability of a
head on any toss is 1

2
regardless of any information about other

throws.

5. A student claims to be able to distinguish beer from ale. The
student is given a series of three tests. In each test, the student
is given two cans of beer and one of ale and asked to pick out
the ale. If the student gets two or more correct we will admit
the claim. Draw a tree to represent the possibilities (either right
or wrong) for the student’s answers. Construct the tree measure
which would correspond to guessing and find the probability that
the claim will be established if the student guesses on every trial.

6. A box contains three defective light bulbs and seven good ones.
Construct a tree to show the possibilities if three consecutive
bulbs are drawn at random from the box (they are not replaced
after being drawn). Assign a tree measure and find the probabil-
ity that at least one good bulb is drawn out. Find the probability
that all three are good if the first bulb is good.

[Ans. 119
120

; 5
12
.]

7. In Example 4.12, find the probability that the drunkard reaches
home after trying at most one wrong street.

8. In Example 4.13, find the probability that machine A was chosen,
given that we lost.

9. In Example 4.13, assume that we make two plays. Find the prob-
ability that we win at least once under the assumption

(a) That we play the same machine twice.

[Ans. 19
32
.]

(b) That we play the same machine the second time if and only
if we won the first time.

[Ans. 20
32
.]
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10. A chess player plays three successive games of chess. The player’s
psychological makeup is such that the probability of winning a
given game is (1

2
)k+1, where k is the number of games won so far.

(For instance, the probability of winning the first game is 1
2
, the

probability of winning the second game if the player has already
won the first game is 1

4
, etc.) What is the probability that the

player will win at least two of the three games?

11. Before a political convention, a political expert has assigned the
following probabilities. The probability that the President will
be willing to run again is 1

2
. If the President is willing to run, the

President and his or her Vice President are sure to be nominated
and have probability 3

5
of being elected again. If the President

does not run, the present Vice President has probability 1
10

of
being nominated, and any other presidential candidate has prob-
ability 1

2
of being elected. What is the probability that the present

Vice President will be re-elected?

[Ans. 13
40
.]

12. There are two urns, A and B. Urn A contains one black and one
red ball. Urn B contains two black and three red balls. A ball is
chosen at random from urn A and put into urn B. A ball is then
drawn at random from urn B.

(a) What is the probability that both balls drawn are of the
same color?

[Ans. 7
12
.]

(b) What is the probability that the first ball drawn was red,
given that the second ball drawn was black?

[Ans. 2
5
.]

Supplementary exercises.

13. Assume that in the World Series each team has probability 1
2
of

winning each game, independently of the outcomes of any other
game. Assign a tree measure. (See Section ?? for the tree.) Find
the probability that the series ends in four, five, six, and seven
games, respectively.
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14. Assume that in the World Series one team is stronger than the
other and has probability .6 for winning each of the games. Assign
a tree measure and find the following probabilities.

(a) The probability that the stronger team wins in 4, 5, 6, and
7 games, respectively.

(b) The probability that the weaker team wins in 4, 5, 6, and 7
games, respectively.

(c) The probability that the series ends in 4, 5, 6, and 7 games,
respectively.

[Ans. .16; .27; .30; .28.]

(d) The probability that the strong team wins the series.

[Ans. .71.]

15. Redo Exercise 14 for the case of two poorly matched teams, where
the better team has probability .9 of winning a game.

[Ans. (c).66;.26;.07;.01; (d).997.]

16. In the World Series from 1905 through 1965 (excluding series of
more than seven games) there were 11 four-game, 14 five-game,
13 six-game, and 20 seven-game series. Which of the assumptions
in Exercises 13, 14, 15 comes closest to predicting these results?
Is it a good fit?

[Ans. .6; No.]

17. Consider the following assumption concerning World Series: Ninety
per cent of the time the two teams are evenly matched, while 10
per cent of the time they are poorly matched, with the better
team having probability .9 of winning a game. Show that this
assumption comes closer to predicting the actual outcomes than
those considered in Exercise 16.

18. We are given three coins. Coin A is fair while coins B and C are
loaded: B has probability .6 of heads and C has probability .4 of
heads. A game is played by tossing a coin twice starting with coin
B. If a head is obtained, B is tossed again, otherwise the second
coin to be tossed is chosen at random from A and C.
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(a) Draw the tree for this game, assigning branch and path
weights.

(b) Let p be the statement “The first toss results in heads” and
let q be the statement “The second toss results in heads”.
Find Pr[p], Pr[q], Pr[q|p].

[Ans. .6; .54; .6.]

19. A and B play a series of games for which they are evenly matched.
A player wins the series either by winning two games in a row,
or by winning a total of three games. Construct the tree and the
tree measure.

(a) What is the probability that A wins the series?

(b) What is the probability that more than three games need to
be played?

20. In a room there are three chests, each chest contains two drawers,
and each drawer contains one coin. In one chest each drawer
contains a gold coin; in the second chest each drawer contains a
silver coin; and in the last chest one drawer contains a gold coin
and the other contains a silver coin. A chest is picked at random
and then a drawer is picked at random from that chest. When
the drawer is opened, it is found to contain a gold coin. What is
the probability that the other drawer of that same chest will also
contain a gold coin?

[Ans. 2
3
.]

4.7 Bayes’s probabilities

The following situation often occurs. Measures have been assigned in
a possibility space U . A complete set of alternatives, p1, p2, . . . , pn has
been singled out. Their probabilities are determined by the assigned
measure. (Recall that a complete set of alternatives is a set of state-
ments such that for any possible outcome one and only one of the
statements is true.) We are now given that a statement q is true. We
wish to compute the new probabilities for the alternatives relative to
this information. That is, we wish the conditional probabilities Pr[pj|q]
for each pj . We shall give two different methods for obtaining these
probabilities.
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The first is by a general formula. We illustrate this formula for
the case of four alternatives: p1, p2, p3, p4. Consider Pr[p2|q]. From the
definition of conditional probability,

Pr[p2|q] =
Pr[p2 ∧ q]

Pr[q]
.

But since p1, p2, p3, p4 are a complete set of alternatives,

Pr[q] = Pr[p1 ∧ q] + Pr[p2 ∧ q] + Pr[p3 ∧ q] + Pr[p4 ∧ q].

Thus

Pr[p2|q] =
Pr[p2 ∧ q]

Pr[p1 ∧ q] + Pr[p2 ∧ q] + Pr[p3 ∧ q] + Pr[p4 ∧ q]
.

Since Pr[pj ∧ q] = Pr[pj]Pr[q|pj], we have the desired formula

Pr[p2|q] =
Pr[p2]Pr[q|p2]

Pr[p1]Pr[q|p1] + Pr[p2]Pr[q|p2] + Pr[p3]Pr[q|p3] + Pr[p4]Pr[q|p4]
.

Similar formulas apply for the other alternatives, and the formula gen-
eralizes in an obvious way to any number of alternatives. In its most
general form it is called Bayes’s theorem.

Example 4.14 Suppose that a freshman must choose among mathe-
matics, physics, chemistry, and botany as his or her science course. On
the basis of the interest he or she expressed, his or her adviser assigns
probabilities of .4, .3, .2 and .1 to the student’s choosing each of the
four courses, respectively. The adviser does not hear which course the
student actually chose, but at the end of the term the adviser hears
that he or she received an A in the course chosen. On the basis of the
difficulties of these courses the adviser estimates the probability of the
student getting an A in mathematics to be .1, in physics .2, in chemistry
.3, and in botany .9. How can the adviser revise the original estimates
as to the probabilities of the student taking the various courses? Using
Bayes’s theorem we get

Pr[The student took math|The student got an A] =
(.4)(.1)

(.4)(.1) + (.3)(.2) + (.2)(.3) + (.1)(.9)
=

4

25

Similar computations assign probabilities of .24, .24, and .36 to the
other three courses. Thus the new information, that the student re-
ceived an A, had little effect on the probability of having taken physics
or chemistry, but it has made mathematics less likely, and botany much
more likely. ♦
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It is important to note that knowing the conditional probabilities
of q relative to the alternatives is not enough. Unless we also know the
probabilities of the alternatives at the start, we cannot apply Bayes’s
theorem. However, in some situations it is reasonable to assume that
the alternatives are equally probable at the start. In this case the
factors Pr[p1], . . . ,Pr[p4] cancel from our basic formula, and we get the
special form of the theorem:

If Pr[p1] = Pr[p2] = Pr[p3] = Pr[p4] then

Pr[p2|q] =
Pr[q|p2]

Pr[q|p1] + Pr[q|p2] + Pr[q|p3] + Pr[q|p4]
.

Example 4.15 In a sociological experiment the subjects are handed
four sealed envelopes, each containing a problem. They are told to open
one envelope and try to solve the problem in ten minutes. From past
experience, the experimenter knows that the probability of their being
able to solve the hardest problem is .1. With the other problems, they
have probabilities of .3, .5, and .8. Assume the group succeeds within
the allotted time. What is the probability that they selected the hardest
problem? Since they have no way of knowing which problem is in which
envelope, they choose at random, and we assign equal probabilities to
the selection of the various problems. Hence the above simple formula
applies. The probability of their having selected the hardest problem
is

.1

.1 + .3 + .5 + .8
=

1

17
.

♦

The second method of computing Bayes’s probabilities is to draw a
tree, and then to redraw the tree in a different order. This is illustrated
in the following example.

Example 4.16 There are three urns. Each urn contains one white
ball. ln addition, urn I contains one black ball, urn II contains two,
and urn III contains 3. An urn is selected and one ball is drawn. The
probability for selecting the three urns is 1

6
, 1

2
, and 1

3
, respectively. If

we know that a white ball is drawn, how does this alter the probability
that a given urn was selected?

First we construct the ordinary tree and tree measure, in Figure
4.7.
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Figure 4.7: ♦

Figure 4.8: ♦
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Figure 4.9: ♦

Next we redraw the tree, using the ball drawn as stage 1, and the
urn selected as stage 2. (See Figure 4.8.) We have the same paths as
before, but in a different order. So the path weights are read off from
the previous tree. The probability of drawing a white ball is

1

12
+

1

6
+

1

12
=

1

3
.

This leaves the branch weights of the second stage to be computed. But
this is simply a matter of division. For example, the branch weights
for the branches starting at W must be 1

4
, 1
2
, 1
4
to yield the correct

path weights. Thus, if a white ball is drawn, the probability of having
selected urn I has increased to 1

4
, the probability of having picked urn

III has fallen to 1
4
, while the probability of having chosen urn II is

unchanged (see Figure 4.9). ♦
This method is particularly useful when we wish to compute all the

conditional probabilities. We will apply the method next to Example
4.14. The tree and tree measure for this example in the natural order is
shown in Figure 4.10. In that figure the letters M, P, C, and B stand
for mathematics, physics, chemistry, and botany, respectively.

The tree drawn in reverse order is shown in Figure 4.11. Each
path in this tree corresponds to one of the paths in the original tree.
Therefore the path weights for this new tree are the same as the weights
assigned to the corresponding paths in the first tree. The two branch
weights at the first level represent the probability that the student
receives an A or that he or she does not receive an A. These probabilities
are also easily obtained from the first tree. In fact,

Pr[A] = .04 + .06 + .06 + .09 = .25

and
Pr[¬A] = 1− Pr[A] = .75.
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Figure 4.10: ♦

Figure 4.11: ♦
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Figure 4.12: ♦

We have now enough information to obtain the branch weights at
the second level, since the product of the branch weights must be the
path weights. For example, to obtain pA,M we have

.25 · pA,M = .04; pA,M = .16.

But pA,M is also the conditional probability that the student took
math given that he or she got an A. Hence this is one of the new
probabilities for the alternatives in the event that the student received
an A. The other branch probabilities are found in the same way and
represent the probabilities for the other alternatives. By this method
we obtain the new probabilities for all alternatives under the hypothesis
that the student receives an A as well as the hypothesis that the student
does not receive an A. The results are shown in the completed tree in
Figure 4.12.

Exercises

1. Urn I contains 7 red and 3 black balls and urn II contains 6 red
and 4 black balls. An urn is chosen at random and two balls are
drawn from it in succession without replacement. The first ball
is red and the second black. Show that it is more probable that
urn II was chosen than urn I.

2. A gambler is told that one of three slot machines pays off with
probability 1

2
, while each of the other two pays off with probability

1
3
.
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(a) If the gambler selects one at random and plays it twice, what
is the probability that he or she will lose the first time and
win the second?

[Ans. 25
108

.]

(b) If the gambler loses the first time and wins the second, what
is the probability he or she chose the favorable machine?

[Ans. 9
25
.]

3. During the month of May the probability of a rainy day is .2. The
Dodgers win on a clear day with probability .7, but on a rainy
day only with probability .4. If we know that they won a certain
game in May, what is the probability that it rained on that day?

[Ans. 1
8
.]

4. Construct a diagram to represent the truth sets of various state-
ments occurring in the previous exercise.

5. On a multiple-choice exam there are four possible answers for
each question. Therefore, if a student knows the right answer, he
or she has probability 1 of choosing correctly; if the student is
guessing, he or she has probability 1

4
of choosing correctly. Let us

further assume that a good student will know 90 per cent of the
answers, a poor student only 50 per cent. If a good student has
the right answer, what is the probability that he or she was only
guessing? Answer the same question about a poor student, if the
poor student has the right answer.

[Ans. 1
37
; 1
5
.]

6. Three economic theories are proposed at a given time, which ap-
pear to be equally likely on the basis of existing evidence. The
state of the American economy is observed the following year,
and it turns out that its actual development had probability .6 of
happening according to the first theory; and probabilities .4 and
.2 according to the others. How does this modify the probabilities
of correctness of the three theories?
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7. Let p1, p2, p3, and p4 be a set of equally likely alternatives. Let
Pr[q|p1] = a, Pr[q|p2] = b, Pr[q|p3] = c, Pr[q|p4] = d. Show that if
a+ b+ c+d = 1, then the revised probabilities of the alternatives
relative to q are a, b, c, and d, respectively.

8. In poker, Smith holds a very strong hand and bets a considerable
amount. The probability that Smith’s opponent, Jones, has a
better hand is .05. With a better hand Jones would raise the bet
with probability .9, but with a poorer hand Jones would raise
only with probability .2. Suppose that Jones raises, what is the
new probability that he or she has a winning hand?

[Ans. 9
47
.]

9. A rat is allowed to choose one of five mazes at random. If we know
that the probabilities of his or her getting through the various
mazes in three minutes are .6, .3, .2, .1, .1, and we find that the
rat escapes in three minutes, how probable is it that he or she
chose the first maze? The second maze?

[Ans. 6
13
; 3
13
.]

10. Three men, A, B, and C, are in jail, and one of them is to be
hanged the next day. The jailer knows which man will hang, but
must not announce it. Man A says to the jailer, “Tell me the
name of one of the other two who will not hang. If both are to go
free, just toss a coin to decide which to say. Since I already know
that at least one of them will go free, you are not giving away
the secret.” The jailer thinks a moment and then says, “No, this
would not be fair to you. Right now you think the probability
that you will hang is 1

3
, but if I tell you the name of one of the

others who is to go free, your probability of hanging increases to 1
2
.

You would not sleep as well tonight.” Was the jailer’s reasoning
correct?

[Ans. No.]

11. One coin in a collection of 8 million coins has two heads. The
rest are fair coins. A coin chosen at random from the collection
is tossed ten times and comes up heads every time. What is the
probability that it is the two-headed coin?
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12. Referring to Exercise 11, assume that the coin is tossed n times
and comes up heads every time. How large does n have to be
to make the probability approximately 1

2
that you have the two-

headed coin?

[Ans. 23.]

13. A statistician will accept job a with probability 1
2
, job b with

probability 1
3
, and job c with probability 1

6
. In each case he or

she must decide whether to rent or buy a house. The probabilities
of buying are 1

3
if he or she takes job a, 2

3
if he or she takes job

b, and 1 if he or she takes job c. Given that the statistician buys
a house, what are the probabilities of having taken each job?

[Ans. .3; .4; .3.]

14. Assume that chest X-rays for detecting tuberculosis have the fol-
lowing properties. For people having tuberculosis the test will
detect the disease 90 out of every 100 times. For people not hav-
ing the disease the test will in 1 out of every 100 cases diagnose
the patient incorrectly as having the disease. Assume that the
incidence of tuberculosis is 5 persons per 10,000. A person is
selected at random, given the X-ray test, and the radiologist re-
ports the presence of tuberculosis. What is the probability that
the person in fact has the disease?

4.8 Independent trials with two outcomes

In the preceding section we developed a way to determine a probabil-
ity measure for any sequence of chance experiments where there are
only a finite number of possibilities for each experiment. While this
provides the framework for the general study of stochastic processes,
it is too general to be studied in complete detail. Therefore, in proba-
bility theory we look for simplifying assumptions which will make our
probability measure easier to work with. It is desired also that these as-
sumptions be such as to apply to a variety of experiments which would
occur in practice. In this book we shall limit outselves to the study of
two types of processes. The first, the independent trials process, will
be considered in the present section. This process was the first one to
be studied extensively in probability theory. The second, the Markov
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chain process, is a process that is finding increasing application, par-
ticularly in the social and biological sciences, and will be considered in
Section 4.13.

A process of independent trials applies to the following situation.
Assume that there is a sequence of chance experiments, each of which
consists of a repetition of a single experiment, carried out in such a way
that the results of any one experiment in no way affect the results in
any other experiment. We label the possible outcome of a single ex-
periment by a1, . . . , ar. We assume that we are also given probabilities
p1, . . . , pr for each of these outcomes occurring on any single experi-
ment, the probabilities being independent of previous results. The tree
representing the possibilities for the sequence of experiments will have
the same outcomes from each branch point, and the branch probabili-
ties will be assigned by assigning probability pj to any branch leading
to outcome aj . The tree measure determined in this way is the measure
of an independent trials process. In this section we shall consider the
important case of two outcomes for each experiment. The more general
case is studied in Section 4.11.

In the case of two outcomes we arbitrarily label one outcome “suc-
cess” and the other “failure”. For example, in repeated throws of a
coin we might call heads success, and tails failure. We assume there is
given a probability p for success and a probability q = 1− p for failure.
The tree measure for a sequence of three such experiments is shown in
Figure 4.13. The weights assigned to each path are indicated at the end
of the path. The question which we now ask is the following. Given an
independent trials process with two outcomes, what is the probability
of exactly x successes in n experiments? We denote this probability by
f(n, x; p) to indicate that it depends upon n, x, and p.

Assume that we had a tree for this general situation, similar to the
tree in Figure 4.13 for three experiments, with the branch points labeled
S for success and F for failure. Then the truth set of the statement
“Exactly x successes occur” consists of all paths which go through x
branch points labeled S and n − x labeled F . To find the probability
of this statement we must add the weights for all such paths. We are
helped first by the fact that our tree measure assigns the same weight
to any such path, namely pxqn−x. The reason for this is that every
branch leading to an S is assigned probability p, and every branch
leading to F is assigned probability q, and in the product there will
be x p’s and (n− x) q’s. To find the desired probability we need only
find the number of paths in the truth set of the statement “Exactly x
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Figure 4.13: ♦

successes occur”. To each such path we make correspond an ordered
partition of the integers from 1 to n which has two cells, x elements in
the first and n − x in the second. We do this by putting the numbers
of the experiments on which success occurred in the first cell and those
for which failure occurred in the second cell. Since there are

(
n
x

)
such

partitions there are also this number of paths in the truth set of the
statement considered. Thus we have proved:

In an independent trials process with two outcomes the

probability of exactly x successes in n experiments is given by

f(n, x; p) =

(
n

x

)
pxqn−x.

Example 4.17 Consider n throws of an ordinary coin. We label heads
“success” and tails “failure”, and we assume that the probability is 1

2

for heads on any one throw independently of the outcome of any other
throw. Then the probability that exactly x heads will turn up is

f(n, x;
1

2
) =

(
n

x

)
(
1

2
)n.

For example, in l00 throws the probability that exactly 50 heads will
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turn up is

f(100, 50;
1

2
) =

(
100

50

)
(
1

2
)100,

which is approximately .08. Thus we see that it is quite unlikely that
exactly one-half of the tosses will result in heads. On the other hand,
suppose that we ask for the probability that nearly one-half of the tosses
will be heads. To be more precise, let us ask for the probability that
the number of heads which occur does not deviate by more than l0 from
50. To find this we must add f(100, x; 1

2
) for x = 40, 41, . . . , 60. If this

is done, we obtain a probability of approximately .96. Thus, while it
is unlikely that exactly 50 heads will occur, it is very likely that the
number of heads which occur will not deviate from 50 by more than l0.
♦

Example 4.18 Assume that we have a machine which, on the basis
of data given, is to predict the outcome of an election as either a Re-
publican victory or a Democratic victory. If two identical machines are
given the same data, they should predict the same result. We assume,
however, that any such machine has a certain probability q of reversing
the prediction that it would ordinarily make, because of a mechanical
or electrical failure. To improve the accuracy of our prediction we give
the same data to r identical machines, and choose the answer which
the majority of the machines give. To avoid ties we assume that r is
odd. Let us see how this decreases the probability of an error due to a
faulty machine.

Consider r experiments, where the jth experiment results in success
if the jth machine produces the prediction which it would make when
operating without any failure of parts. The probability of success is
then p = 1 − q. The majority decision will agree with that of a per-
fectly operating machine if we have more than r/2 successes. Suppose,
for example, that we have five machines, each of which has a proba-
bility of .1 of reversing the prediction because of a parts failure. Then
the probability for success is .9, and the probability that the majority
decision will be the desired one is

f(5, 3; 0.9) + f(5, 4; 0.9) + f(5, 5; 0.9)

which is found to be approximately .991 (see Exercise 3).
Thus the above procedure decreases the probability of error due to

machine failure from .1 in the case of one machine to .009 for the case
of five machines. ♦
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Exercises

1. Compute for n = 4, n = 8, n = 12, and n = 16 the probability of
obtaining exactly 1

2
heads when an ordinary coin is thrown.

[Ans. .375; .273; .226; .196.]

2. Compute for n = 4, n = 8, n = 12, and n = 16 the probability
that the fraction of heads deviates from 1

2
by less than 1

5
.

[Ans. .375; .711, .854; .923.]

3. Verify that the probability .991 given in Example 4.18 is correct.

4. Assume that Peter and Paul match pennies four times. (In match-
ing pennies, Peter wins a penny with probability 1

2
, and Paul wins

a penny with probability 1
2
.) What is the probability that Peter

wins more than Paul? Answer the same for five throws. For the
case of 12,917 throws.

[Ans. 5
16
; 1
2
; 1
2
.]

5. If an ordinary die is thrown four times, what is the probability
that exactly two sixes will occur?

6. In a ten-question true-false exam, what is the probability of get-
ting 70 per cent or better by guessing?

[Ans. 11
64
.]

7. Assume that, every time a batter comes to bat, he or she has
probability .3 for getting a hit. Assuming that hits form an in-
dependent trials process and that the batter comes to bat four
times, what fraction of the games would he or she expect to get
at least two hits? At least three hits? Four hits?

[Ans. .348; .084; .008.]

8. A coin is to be thrown eight times. What is the most probable
number of heads that will occur? What is the number having
the highest probability, given that the first four throws resulted
in heads?
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9. A small factory has ten workers. The workers eat their lunch at
one of two diners, and they are just as likely to eat in one as in the
other. If the proprietors want to be more than .95 sure of having
enough seats, how many seats must each of the diners have?

[Ans. Eight seats.]

10. Suppose that five people are chosen at random and asked if they
favor a certain proposal. If only 30 per cent of the people favor
the proposal, what is the probability that a majority of the five
people chosen will favor the proposal?

11. In Example 4.18, if the probability for a machine reversing its
answer due to a parts failure is .2, how many machines would
have to be used to make the probability greater than .89 that the
answer obtained would be that which a machine with no failure
would give?

[Ans. Three machines.]

12. Assume that it is estimated that a torpedo will hit a ship with
probability 1

3
. How many torpedos must be fired if it is desired

that the probability for at least one hit should be greater than
.9?

13. A student estimates that, if he or she takes four courses, he or
she has probability .8 of passing each course. If he or she takes
five courses, he or she has probability .7 of passing each course,
and if he or she takes six courses he or she has probability .5 for
passing each course. The student’s only goal is to pass at least
four courses. How many courses should he or she take for the
best chance of achieving this goal?

[Ans. 5.]

Supplementary exercises.

14. In a certain board game players move around the board, and each
turn consists of a player’s rolling a pair of dice. If a player is on
the square Park Bench, he or she must roll a seven or doubles
before being allowed to move out.
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(a) What is the probability that a player stuck on Park Bench
will be allowed to move out on the next turn?

[Ans. 1
3
.]

(b) How many times must a player stuck on Park Bench roll
before the chances of getting out exceed 3

4
.

[Ans. 4.]

15. A restaurant orders five pieces of apple pie and five pieces of
cherry pie. Assume that the restaurant has ten customers, and
the probability that a customer will ask for apple pie is 3

4
and for

cherry pie is 1
4
.

(a) What is the probability that the ten customers will all be
able to have their first choice?

(b) What number of each kind of pie should the restaurant order
if it wishes to order ten pieces of pie and wants to maximize
the probability that the ten customers will all have their first
choice?

16. Show that it is more probable to get at least one ace with 4 dice
than at least one double ace in 24 throws of two dice.

17. A thick coin, when tossed, will land “heads” with a probability of
5
12
, “tails” with a probability of 5

12
, and will land on edge with a

probability of 1
6
. If it is tossed six times, what is the probability

that it lands on edge exactly two times?

[Ans. .2009.]

18. Without actually computing the probabilities, find the value of x
for which f(20, x; .3) is largest.

19. A certain team has probability 2
3
of winning whenever it plays.

(a) What is the probability the team will win exactly four out
of five games?

[Ans. 80
243

.]

(b) What is the probability the team will win at most four out
of five games?
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[Ans. 211
243

.]

(c) What is the probability the team will win exactly four games
out of five if it has already won the first two games of the
five?

[Ans. 4
9
.]

4.9 A problem of decision

In the preceding sections we have dealt with the problem of calculating
the probability of certain statements based on the assumption of a given
probability measure. In a statistics problem, one is often called upon
to make a decision in a case where the decision would be relatively
easy to make if we could assign probabilities to certain statements, but
we do not know how to assign these probabilities. For example, if a
vaccine for a certain disease is proposed, we may be called upon to
decide whether or not the vaccine should be used. We may decide that
we could make the decision if we could compare the probability that
a person vaccinated will get the disease with the probability that a
person not vaccinated will get the disease. Statistical theory develops
methods to obtain from experiments some information which will aid
in estimating these probabilities, or will otherwise help in making the
required decision. We shall illustrate a typical procedure.

Smith claims to have the ability to distinguish ale from beer and
has bet Jones a dollar to that effect. Now Smith does not mean that
he or she can distinguish beer from ale every single time, but rather a
proportion of the time which is significantly greater than 1

2
.

Assume that it is possible to assign a number p which represents
the probability that Smith can pick out the ale from a pair of glasses,
one containing ale and one beer. We identify p = 1

2
with having no

ability, p > 1
2
with having some ability, and p < 1

2
with being able to

distinguish, but having the wrong idea which is the ale. If we knew
the value of p, we would award the dollar to Jones if p were ≤ 1

2
, and

to Smith if p were > 1
2
. As it stands, we have no knowledge of p and

thus cannot make a decision. We perform an experiment and make a
decision as follows.

Smith is given a pair of glasses, one containing ale and the other
beer, and is asked to identify which is the ale. This procedure is re-
peated ten times, and the number of correct identifications is noted. If
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the number correct is at least eight, we award the dollar to Smith, and
if it is less than eight, we award the dollar to Jones.

We now have a definite procedure and shall examine this procedure
both from Jones’s and Smith’s points of view. We can make two kinds of
errors. We may award the dollar to Smith when in fact the appropriate
value of p is ≤ 1

2
, or we may award the dollar to Jones when the

appropriate value for p is > 1
2
There is no way that these errors can

be completely avoided. We hope that our procedure is such that each
bettor will be convinced that, if he or she is right, he or she will very
likely win the bet.

Jones believes that the true value of p is 1
2
. We shall calculate the

probability of Jones winning the bet if this is indeed true. We assume
that the individual tests are independent of each other and all have the
same probability 1

2
for success. (This assumption will be unreasonable if

the glasses are too large.) We have then an independent trials process
with p = 1

2
to describe the entire experiment. The probability that

Jones will win the bet is the probability that Smith gets fewer than
eight correct. From the table in Figure 4.14 we compute that this
probability is approximately .945. Thus Jones sees that, if he or she
is right, it is very likely that he or she will win the bet.

Smith, on the other hand, believes that p is significantly greater
than 1

2
. If Smith believes that p is as high as .9, we see from Figure

4.14 that the probability of Smith’s getting eight or more correct is
.930. Then both parties will be satisfied by the bet.

Suppose, however, that Smith thinks the value of p is only about
.75. Then the probability that Smith will get eight or more correct and
thus win the bet is .526. There is then only an approximately even
chance that the experiment will discover Smith’s abilities, and Smith
probably will not be satisfied with this. If Smith really thinks his or her
ability is represented by a p value of about 3

4
, we would have to devise

a different method of awarding the dollar. We might, for example,
propose that Smith win the bet if he or she gets seven or more correct.
Then, if Smith has probability 3

4
of being correct on a single trial, the

probability that Smith will win the bet is approximately .776. If p = 1
2

the probability that Jones will win the bet is about .828 under this new
arrangement. Jones’s chances of winning are thus decreased, but Smith
may be able to convince him or her that it is a fairer arrangement than
the first procedure.

In the above example, it was possible to make two kinds of er-
rors. The probability of making these errors depended on the way we
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Figure 4.14: ♦
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designed the experiment and the method we used for the required de-
cision. In some cases we are not too worried about the errors and can
make a relatively simple experiment. In other cases, errors are very im-
portant, and the experiment must be designed with that fact in mind.
For example, the possibility of error is certainly important in the case
that a vaccine for a given disease is proposed, and the statistician is
asked to help in deciding whether or not it should be used. In this case
it might be assumed that there is a certain probability p that a person
will get the disease if not vaccinated, and a probability r that the per-
son will get it if he or she is vaccinated. If we have some knowledge
of the approximate value of p, we are then led to construct an experi-
ment to decide whether r is greater than p, equal to p, or less than p.
The first case would be interpreted to mean that the vaccine actually
tends to produce the disease, the second that it has no effect, and the
third that it prevents the disease; so that we can make three kinds of
errors. We could recommend acceptance when it is actually harmful,
we could recommend acceptance when it has no effect, or finally we
could reject it when it actually is effective. The first and third might
result in the loss of lives, the second in the loss of time and money of
those administering the test. Here it would certainly be important that
the probability of the first and third kinds of errors be made small. To
see how it is possible to make the probability of both errors small, we
return to the case of Smith and Jones.

Suppose that, instead of demanding that Smith make at least eight
correct identifications out of ten trials, we insist that Smith make at
least 60 correct identifications out of 100 trials. (The glasses must now
be very small.) Then, if p = 1

2
, the probability that Jones wins the

bet is about .98; so that we are extremely unlikely to give the dollar to
Smith when in fact it should go to Jones. (If p < 1

2
it is even more likely

that Jones will win.) If p > 1
2
we can also calculate the probability that

Smith will win the bet. These probabilities are shown in the graph in
Figure 4.15. The dashed curve gives for comparison the corresponding
probabilities for the test requiring eight out of ten correct. Note that
with 100 trials, if p is 3

4
, the probability that Smith wins the bet is

nearly 1, while in the case of eight out of ten, it was only about 1
2
.

Thus in the case of 100 trials, it would be easy to convince both Smith
and Jones that whichever one is correct is very likely to win the bet.

Thus we see that the probability of both types of errors can be made
small at the expense of having a large number of experiments.
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Figure 4.15: ♦

Exercises

1. Assume that in the beer and ale experiment Jones agrees to pay
Smith if Smith gets at least nine out of ten correct.

(a) What is the probability of Jones paying Smith even though
Smith cannot distinguish beer and ale, and guesses?

[Ans. .011.]

(b) Suppose that Smith can distinguish with probability .9. What
is the probability of not collecting from Jones?

[Ans. .264.]

2. Suppose that in the beer and ale experiment Jones wishes the
probability to be less than .1 that Smith will be paid if, in fact,
Smith guesses. How many of ten trials must Jones insist that
Smith get correct to achieve this?

3. In the analysis of the beer and ale experiment, we assume that
the various trials were independent. Discuss several ways that
error can enter, because of the nonindependence of the trials, and
how this error can be eliminated. (For example, the glasses in
which the beer and ale were served might be distinguishable.)

4. Consider the following two procedures for testing Smith’s ability
to distinguish beer from ale.
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(a) Four glasses are given at each trial, three containing beer and
one ale, and Smith is asked to pick out the one containing
ale. This procedure is repeated ten times. Smith must guess
correctly seven or more times. Find the probability that
Smith wins by guessing.

[Ans. .003.]

(b) Ten glasses are given to Smith, and Smith is told that five
contain beer and five ale, and asked to name the five that
contain ale. Smith must choose all five correctly. Find the
probability that Smith wins by guessing.

[Ans. .004.]

(c) Is there any reason to prefer one of these two tests over the
other?

5. A testing service claims to have a method for predicting the order
in which a group of freshmen will finish in their scholastic record
at the end of college. The college agrees to try the method on
a group of five students, and says that it will adopt the method
if, for these five students, the prediction is either exactly correct
or can be changed into the correct order by interchanging one
pair of adjacent students in the predicted order. If the method is
equivalent to simply guessing, what is the probability that it will
be accepted?

[Ans. 1
24
.]

6. The standard treatment for a certain disease leads to a cure in 1
4

of the cases. It is claimed that a new treatment will result in a
cure in 3

4
of the cases. The new treatment is to be tested on ten

people having the disease. If seven or more are cured, the new
treatment will be adopted. If three or fewer people are cured, the
treatment will not be considered further. If the number cured
is four, five, or six, the results will be called inconclusive, and
a further study will be made. Find the probabilities for each of
these three alternatives under the assumption first, that the new
treatment has the same effectiveness as the old, and second, under
the assumption that the claim made for the treatmnent is correct.
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7. Three students debate the intelligence of Springer spaniels. One
claims that Springers are mostly (say 90 per cent of them) in-
telligent. A second claims that very few (say 10 per cent) are
intelligent, while a third one claims that a Springer is just as
likely to be intelligent as not. They administer an intelligence
test to ten Springers, classifying them as intelligent or not. They
agree that the first student wins the bet if eight or more are in-
telligent, the second if two or fewer, the third in all other cases.
For each student, calculate the probability that he or she wins
the bet, if he or she is right.

[Ans. .930, .930, .890.]

8. Ten students take a test with ten problems. Each student on each
question has probability 1

2
of being right, if he or she does not

cheat. The instructor determines the number of students who get
each problem correct. If instructor finds on four or more problems
there are fewer than three or more than seven correct, he or she
considers this convincing evidence of communication between the
students. Give a justification for the procedure. [Hint: The table
in Figure 4.14 must be used twice, once for the probability of fewer
than three or more than seven correct answers on a given problem,
and the second time to find the probability of this happening on
four or more problems.]

4.10 The law of large numbers

In this section we shall study some further properties of the indepen-
dent trials process with two outcomes. In Section 4.8 we saw that the
probability for x successes in n trials is given by

f(n, x; p) =

(
n

x

)
pxqn−x.

In Figure 4.16 we show these probabilities graphically for n = 8 and
p = 3

4
. In Figure 4.17 we have done similarly for the case of n = 7 and

p = 3
4
.

We see in the first case that the values increase up to a maximum
value at x = 6 and then decrease. In the second case the values increase
up to a maximum value at x = 5, have the same value for x = 6, and
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Figure 4.16: ♦

Figure 4.17: ♦



4.10. THE LAW OF LARGE NUMBERS 145

then decrease. These two cases are typical of what can happen in
general.

Consider the ratio of the probability of x+1 successes in n trials to
the probability of x successes in n trials, which is

(
n

x+1

)
px+1qn−x−1

(
n
x

)
pxqn−x

=
n− x

x+ 1
· p
q
.

This ratio will be greater than one as long as (n − x)p > (x + 1)q
or as long as x < np − q. If np − q is not an integer, the values(
n
x

)
pxqn−x increase up to a maximum value, which occurs at the first

integer greater than np − q, and then decrease. In case np − q is an
integer, the values

(
n
x

)
pxqn−x increase up to x = np − q, are the same

for x = np− q and x = np− q + 1, and then decrease.
Thus we see that, in general, values near np will occur with the

largest probability. It is not true that one particular value near np is
highly likely to occur, but only that it is relatively more likely than
a value further from np. For example, in 100 throws of a coin, np =
100 · 1

2
= 50. The probability of exactly 50 heads is approximately .08.

The probability of exactly 30 is approximately .00002.
More information is obtained by studying the probability of a given

deviation of the proportion of successes x/n from the number p; that
is, by studying for ǫ > 0,

Pr[|x
n
− p| < ǫ].

For any fixed n, p, and ǫ, the latter probability can be found by
adding all the values of f(n, x; p) for values of x for which the inequality
p − ǫ < x/n < p + ǫ is true. In Figure 4.18 we have given these
probabilities for the case p = .3 with various values for ǫ and n. In the
first column we have the case ǫ = .1. We observe that as n increases,
the probability that the fraction of successes deviates from .3 by less
than .1 tends to the value 1. In fact to four decimal places the answer
is 1 after n = 400. In column two we have the same probabilities for
the smaller value of ǫ = .05. Again the probabilities are tending to 1
but not so fast. In the third column we have given these probabilities
for the case ǫ = .02. We see now that even after 1000 trials there is still
a reasonable chance that the fraction x/n is not within .02 of the value
of p = .3. It is natural to ask if we can expect these probabilities also
to tend to 1 if we increase n sufficiently. The answer is yes and this is
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Figure 4.18: ♦
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Figure 4.19: ♦

assured by one of the fundamental theorems of probability called the
law of large numbers. This theorem asserts that, for any ǫ > 0,

Pr[|x
n
− p| < ǫ]

tends to 1 as n increases indefinitely.
It is important to understand what this theorem says and what it

does not say. Let us illustrate its meaning in the case of coin tossing.
We are going to toss a coin n times and we want the probability to be
very high, say greater than .99, that the fraction of heads which turn
up will be very close, say within .00l of the value .5. The law of large
numbers assures us that we can have this if we simply choose n large
enough. The theorem itself gives us no information about how large n
must be. Let us however consider this question.

To say that the fraction of the times success results is near p is the
same as saying that the actual number of successes x does not deviate
too much from the expected number np. To see the kind of deviations
which might be expected we can study the value of Pr[|x−np| ≥ d]. A
table of these values for p = .3 and various values of n and d are given
in Figure 4.19. Let us ask how large d must be before a deviation as
large as d could be considered surprising. For example, let us see for
each n the value of d which makes Pr[|x − np| ≥ d] about .04. From
the table, we see that d should be 7 for n = 50, 9 for n = 80, 10 for
n = 100, etc. To see deviations which might be considered more typical
we look for the values of d which make Pr[|x− np| ≥ d] approximately
1
3
. Again from the table, we see that d should be 3 or 4 for n = 50, 4

or 5 for n = 80, 5 for n = 100, etc. The answers to these two questions
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are given in the last two columns of the table. An examination of these
numbers shows us that deviations which we would consider surprising
are approximately

√
n while those which are more typical are about

one-half as large or
√
n/2.

This suggests that
√
n, or a suitable multiple of it, might be taken

as a unit of measurement for deviations. Of course, we would also have
to study how Pr[|x − np| ≥ d] depends on p. When this is done, one
finds that

√
npq is a natural unit; it is called a standard deviation. It

can be shown that for large n the following approximations hold.

Pr[|x− np| ≥ √
npq] ≈ .3174

Pr[|x− np| ≥ 2
√
npq] ≈ .0455

Pr[|x− np| ≥ 3
√
npq] ≈ .0027

That is, a deviation from the expected value of one standard devi-
ation is rather typical, while a deviation of as much as two standard
deviations is quite surprising and three very surprising. For values of p
not too near 0 or 1, the value of

√
pq is approximately 1

2
. Thus these

approximations are consistent with the results we observed from our
table.

For large n, Pr[x − np ≥ k
√
npq] or Pr[x − np ≤ −k

√
npq] can be

shown to be approximately the same. Hence these probabilities can be
estimated for k = 1, 2, 3 by taking 1

2
the values given above.

Example 4.19 In throwing an ordinary coin 10,000 times, the ex-
pected number of heads is 5000, and the standard deviation for the

number of heads is
√
10, 000(1

2
)(1

2
) = 50. Thus the probability that

the number of heads which turn up deviates from 5000 by as much as
one standard deviation, or 50, is approximately .317. The probability
of a deviation of as much as two standard deviations, or 100, is ap-
proximately .046. The probability of a deviation of as much as three
standard deviations, or 150, is approximately .003. ♦

Example 4.20 Assume that in a certain large city, 900 people are
chosen at random and asked if they favor a certain proposal. Of the
900 asked, 550 say they favor the proposal and 350 are opposed. If, in
fact, the people in the city are equally divided on the issue, would it be
unlikely that such a large majority would be obtained in a sample of 900
of the citizens? If the people were equally divided, we would assume
that the 900 people asked would form an independent trials process
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with probability 1
2
for a “yes” answer and 1

2
for a “no” answer. Then

the standard deviation for the number of “yes” answers in 900 trials is√
900(1

2
)(1

2
) = 15. Then it would be very unlikely that we would obtain

a deviation of more than 45 from the expected number of 450. The
fact that the deviation in the sample from the expected number was
100, then, is evidence that the hypothesis that the voters were equally
divided is incorrect. The assumption that the true proportion is any
value less than 1

2
would also lead to the fact that a number as large

as 550 favoring in a sample of 900 is very unlikely. Thus we are led to
suspect that the true proportion is greater than 1

2
. On the other hand,

if the number who favored the proposal in the sample of 900 were 465,
we would have only a deviation of one standard deviation, under the
assumption of an equal division of opinion. Since such a deviation is
not unlikely, we could not rule out this possibility on the evidence of
the sample. ♦

Example 4.21 A certain Ivy League college would like to admit 800
students in their freshman class. Experience has shown that if they
admit 1250 students they will have acceptances from approximately
800. If they admit as many as 50 too many students they will have
to provide additional dormitory space. Let us find the probability that
this will happen assuming that the acceptances of the students can be
considered to be an independent trials process. We take as our estimate
for the probability of an acceptance p = 800

1250
. Then the expected num-

ber of acceptances is 800 and the standard deviation for the number of
acceptances is

√
1250 · .64 · .36 ≈ 17. The probability that the number

accepted is three standard deviations or 51 from the mean is approx-
imately .0027. This probability takes into account a deviation above
the mean or below the mean. Since in this case we are only interested
in a deviation above the mean, the probability we desire is half of this
or approximately .0013. Thus we see that it is highly unlikely that the
college will have to have new dormitory space under the assumptions
we have made. ♦

We finish this discussion of the law of large numbers with some final
remarks about the interpretation of this important theorem.

Of course no matter how large n is we cannot prevent the coin from
coming up heads every time. If this were the case we would observe a
fraction of heads equal to 1. However, this is not inconsistent with the
theorem, since the probability of this happening is (1

2
)n which tends to
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0 as n increases. Thus a fraction of 1 is always possible, but becomes
increasingly unlikely.

The law of large numbers is often misinterpreted in the following
manner. Suppose that we plan to toss the coin 1000 times and after
500 tosses we have already obtained 400 heads. Then we must obtain
less than one-half heads in the remaining 500 tosses to have the fraction
come out near 1

2
. It is tempting to argue that the coin therefore owes

us some tails and it is more likely that tails will occur in the last 500
tosses. Of course this is nonsense, since the coin has no memory. The
point is that something very unlikely has already happened in the first
500 tosses. The final result can therefore also be expected to be a result
not predicted before the tossing began.

We could also argue that perhaps the coin is a biased coin but this
would make us predict more heads than tails in the future. Thus the
law of averages, or the law of large numbers, should not give you great
comfort if you have had a series of very bad hands dealt you in your
last 100 poker hands. If the dealing is fair, you have the same chance
as ever of getting a good hand.

Early attempts to define the probability p that success occurs on
a single experiment sounded like this. If the experiment is repeated
indefinitely, the fraction of successes obtained will tend to a number p,
and this number p is called the probability of success on a single exper-
iment. While this fails to be satisfactory as a definition of probability,
the law of large numbers captures the spirit of this frequency concept
of probability.

Exercises

1. If an ordinary die is thrown 20 times, what is the expected number
of times that a six will turn up? What is the standard deviation
for the number of sixes that turn up?

[Ans. 10
3
; 5
3
.]

2. Suppose that an ordinary die is thrown 450 times. What is the
expected number of throws that result in either a three or a four?
What is the standard deviation for the number of such throws?

3. In 16 tosses of an ordinary coin, what is the expected number
of heads that turn up? What is the standard deviation for the
number of heads that occur?
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[Ans. 8;2.]

4. In 16 tosses of a coin, find the exact probability that the number
of heads that turn up differs from the expected number by (a)
as much as one standard deviation, and (b) by more than one
standard deviation. Do the same for the case of two standard
deviations, and for the case of three standard deviations. Show
that the approximations given for large n lie between the values
obtained, but are not very accurate for so small an n.

[Ans. .454; .210; .077; .021; .004; .001.]

5. Consider n independent trials with probability p for success. Let r
and s be numbers such that p < r < s. What does the law of large
numbers say about Pr[r < x

n
< s] as we increase n indefinitely?

Answer the same question in the case that r < p < s.

6. A drug is known to be effective in 20 per cent of the cases where
it is used. A new agent is introduced, and in the next 900 times
the drug is used it is effective 250 times. What can be said about
the effectiveness of the drug?

7. In a large number of independent trials with probability p for
success, what is the approximate probability that the number of
successes will deviate from the expected number by more than
one standard deviation but less than two standard deviations?

[Ans. .272.]

8. What is the approximate probability that, in 10,000 throws of an
ordinary coin, the number of heads which turn up lies between
4850 and 5150? What is the probability that the number of heads
lies in the same interval, given that in the first 1900 throws there
were 1600 heads?

9. Suppose that it is desired that the probability be approximately
.95 that the fraction of sixes that turn up when a die is thrown n
times does not deviate by more than .01 from the value 1

6
. How

large should n be?

[Ans. Approximately 5555.]
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10. Suppose that for each roll of a fair die you lose $1 when an odd
number comes up and win $1 when an even number comes up.
Then after 10,000 rolls you can, with approximately 84 per cent
confidence, expect to have lost not more than $(how much?).

11. Assume that 10 per cent of the people in a certain city have
cancer. If 900 people are selected at random from the city, what
is the expected number which will have cancer? What is the
standard deviation? What is the approximate probability that
more than 108 of the 900 chosen have cancer?

[Ans. 90;9;.023.]

12. Suppose that in Exercise 11, the 900 people are chosen at random
from those people in the city who smoke. Under the hypothesis
that smoking has no effect on the incidence of cancer, what is the
expected number in the 900 chosen that have cancer? Suppose
that more than 120 of the 900 chosen have cancer, what might be
said concerning the hypothesis that smoking has no effect on the
incidence of cancer?

13. In Example 4.20, we made the assumption in our calculations
that, if the true proportion of voters in favor of the proposal
were p, then the 900 people chosen at random represented an
independent trials process with probability p for a “yes” answer,
and 1− p for a “no” answer. Give a method for choosing the 900
people which would make this a reasonable assumption. Criticize
the following methods.

(a) Choose the first 900 people in the list of registered Republi-
cans.

(b) Choose 900 names at random from the telephone book.

(c) Choose 900 houses at random and ask one person from each
house, the houses being visited in the mid-morning.

14. For n throws of an ordinary coin, let tn be such that

Pr[−tn <
x

n
− 1

2
< tn] = .997,

where x is the number of heads that turn up. Find tn for n = 104,
n = 106, and n = 1020.



4.11. INDEPENDENT TRIALSWITHMORE THAN TWOOUTCOMES153

[Ans. .015; .0015; .000,000,000,15.]

15. Assume that a calculating machine carries out a million opera-
tions to solve a certain problem. In each operation the machine
gives the answer 10−5 too small, with probability 1

2
, and 10−5 too

large, with probability 1
2
. Assume that the errors are independent

of one another. What is a reasonable accuracy to attach to the
answer? What if the machine carries out 1010 operations?

[Ans. ±.01;±1.]

16. A computer tosses a coin 1 million times, and obtains 499,588
heads. Is this number reasonable?

4.11 Independent trials with more than

two outcomes

By extending the results of Section 4.8, we shall study the case of
independent trials in which we allow more than two outcomes. We
assume that we have an independent trials process where the possible
outcomes are a1, a2, . . . , ak, occurring with probabilities p1, p2, . . . , pk,
respectively. We denote by

f(r1, r2, . . . , rk; p1, p2, . . . , pk)

the probability that, in n = r1+r2+ . . .+rk such trials, there will be r1
occurrences of a1, r2 occurrences of a2, etc. In the case of two outcomes
this notation would be f(r1, r2; p1, p2). In Section 4.8 we wrote this as
f(n, r + 1; p) since r2 and p2 are determined from n, r1, and p1. We
shall indicate how this probability is found in general, but carry out
the details only for a special case. We choose k = 3, and n = 5 for
purposes of illustration. We shall find f(1, 2, 2; p1, p2, p3).

We show in Figure 4.20 enough of the tree for this process to indicate
the branch probabilities for a path (heavy lined) corresponding to the
outcomes a2, a3, a1, a2, a3. The tree measure assigns weight p2 · p3 · p1 ·
p2 · p3 = p1 · p22 · p23 to this path.

There are, of course, other paths through the tree corresponding to
one occurrence of a1, two of a2, and two of a3. However, they would all
be assigned the same weight p1 · p22 · p23, by the tree measure. Hence to
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Figure 4.20: ♦

find f(l, 2, 2; p1, p2, p3) we must multiply this weight by the number of
paths having the specified number of occurrences of each outcome.

We note that the path a2, a3, a1, a2, a3 can be specified by the three-
cell partition [{3}, {1, 4}, {2, 5}] of the numbers from 1 to 5. Here the
first cell shows the experiment which resulted in a1, the second cell
shows the two that resulted in a2, and the third shows the two that
resulted in a3. Conversely, any such partition of the numbers from 1
to 5 with one element in the first cell, two in the second, and two in
the third corresponds to a unique path of the desired kind. Hence the
number of paths is the number of such partitions. But this is

(
5

1, 2, 2

)
=

5!

1!2!2!

(see 3.4), so that the probability of one occurrence of a1, two of a2, and
two of a3 is (

5

1, 2, 2

)
· p1 · p22 · p23.

The above argument carried out in general leads, for the case of
independent trials with outcomes a1, a2, . . . , ak occurring with proba-
bilities p1, p2, . . . , pk, to the following.

The probability for r1 occurrences of a1, r2 occurrences of

a2, etc., is given by

f(r1, r2, . . . , rk; p1, p2, . . . , pk) =

(
n

r1, r2, . . . , rk

)
pr11 · pr22 · . . . · prkk .
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Example 4.22 A die is thrown 12 times. What is the probability that
each number will come up twice? Here there are six outcomes, 1, 2,
3, 4, 5, 6 corresponding to the six sides of the die. We assign each
outcome probability 1

6
. We are then asked for

f(2, 2, 2, 2, 2, 2;
1

6
,
1

6
,
1

6
,
1

6
,
1

6
,
1

6
)

which is
(

12

2, 2, 2, 2, 2, 2

)
(
1

6
)2(

1

6
)2(

1

6
)2(

1

6
)2(

1

6
)2(

1

6
)2 = .0034.

♦

Example 4.23 Suppose that we have an independent trials process
with four outcomes a1, a2, a3, a4 occurring with probability p1, p2. p3,
p4, respectively. It might be that we are interested only in the proba-
bility that r1 occurrences of a1 and r2 occurrences of a2 will take place
with no specification about the number of each of the other possible
outcomes. To answer this question we simply consider a new exper-
iment where the outcomes are a1, a2, ā3. Here ā3 corresponds to an
occurrence of either a3 or a4 in our original experiment. The corre-
sponding probabilities would be p1, p2 and p̄3 with p̄3 = p3 + p4. Let
r̄3 = n− (r1 + r2) Then our question is answered by finding the prob-
ability in our new experiment for r1 occurrences of a1, r2 of a2, and r̄3
of ā3, which is (

n

r1, r2, r̄3

)
pr11 · pr22 · p̄3r̄3 .

♦
The same procedure can be carried out for experiments with any

number of outcomes where we specify the number of occurrences of
such particular outcomes. For example, if a die is thrown ten times
the probability that a one will occur exactly twice and a three exactly
three times is given by

(
10

2, 3, 5

)
(
1

6
)2(

1

6
)2(

4

6
)5 = .043.
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Exercises

1. Suppose that in a city 60 per cent of the population are Democrats,
30 per cent are Republicans, and 10 per cent are Independents.
What is the probability that if three people are chosen at random
there will be one Republican, one Democrat, and one Independent
voter?

[Ans. .108.]

2. Three horses, A, B, and C, compete in four races. Assuming
that each horse has an equal chance in each race, what is the
probability that A wins two races and B and C win one each?
What is the probability that the same horse wins all four races?

[Ans. 4
27
; 1
27
.]

3. Assume that in a certain large college 40 per cent of the students
are freshmen, 30 per cent are sophomores, 20 per cent are juniors,
and 10 per cent are seniors. A committee of eight is chosen at
random from the student body. What is the probability that
there are equal numbers from each class on the committee?

4. Let us assume that when a batter comes to bat, he or she has
probability .6 of being put out, .1 of getting a walk, .2 of getting
a single, .1 of getting an extra base hit. If he or she comes to bat
five times in a game, what is the probability that

(a) He gets two walks and three singles?

[Ans. .0008.]

(b) He gets a walk, a single, an extra base hit (and is out twice)?

[Ans. .043.]

(c) He has a perfect day (i.e., never out)?

[Ans. .010.]

5. Assume that a single torpedo has a probability 1
2
of sinking a

ship, probability 1
4
of damaging it, and probability 1

4
of missing.

Assume further that two damaging shots sink the ship. What
is the probability that four torpedos will succeed in sinking the
ship?



4.11. INDEPENDENT TRIALSWITHMORE THAN TWOOUTCOMES157

[Ans. 251
256

.]

6. Jones, Smith, and Green live in the same house. The mailman has
observed that Jones and Smith receive the same amount of mail
on the average, but that Green receives twice as much as Jones
(and hence also twice as much as Smith). If he or she has four
letters for this house, what is the probability that each resident
receives at least one letter?

7. If three dice are thrown, find the probability that there is one six
and two fives, given that all the outcomes are greater than three.

[Ans. 1
9
.]

8. An athlete plays a tournament consisting of three games. In each
game he or she has probability 1

2
for a win, 1

4
for a loss, and 1

4
for a

draw, independently of the outcomes of other games. To win the
tournament he or she must win more games than he or she loses.
What is the probability that he or she wins the tournament?

9. Assume that in a certain course the probability that a student
chosen at random will get an A is .1, that he or she will get a B
is .2, that he or she will get a C is .4, that he or she will get a D
is .2, and that he or she will get an F is .1. What distribution of
grades is most likely in the case of four students?

[Ans. One B, two C’s, one D.]

10. Let us assume that in a World Series game a batter has probability
1
4
of getting no hits, 1

2
for getting one hit, 1

4
for getting two hits,

assuming that the probability of getting more than two hits is
negligible. In a four-game World Series, find the probability that
the batter gets

(a) Exactly two hits.

[Ans. 7
64
.]

(b) Exactly three hits.

[Ans. 7
32
.]

(c) Exactly four hits.
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[Ans. 35
128

.]

(d) Exactly five hits.

[Ans. 7
32
.]

(e) Fewer than two hits or more than five.

[Ans. 23
128

.]

11. Gypsies sometimes toss a thick coin for which heads and tails are
equally likely, but which also has probability 1

5
of standing on

edge (i.e., neither heads nor tails). What is the probability of
exactly one head and four tails in five tosses of a gypsy coin?

12. A family car is driven by the father, two sons, and the mother.
The fenders have been dented four times, three times while the
mother was driving. Is it fair to say that the mother is a worse
driver than the men?

4.12 Expected value

In this section we shall discuss the concept of expected value. Although
it originated in the study of gambling games, it enters into almost any
detailed probabilistic discussion.

Definition. If in an experiment the possible outcomes are numbers,
a1, a2, . . . , ak, occurring with probability p1, p2, . . . , pk, then the expected
value is defined to be

E = a1p1 + a2p2 + . . .+ akpk.

The term “expected value” is not to be interpreted as the value that
will necessarily occur on a single experiment. For example, if a person
bets $1 that a head will turn up when a coin is thrown, he or she may
either win $1 or lose $1. His expected value is (1)(1

2
) + (−1)(1

2
) = 0,

which is not one of the possible outcomes. The term, expected value,
had its origin in the following consideration. If we repeat an experiment
with expected value E a large number of times, and if we expect a1 a
fraction p1 of the time, a2 a fraction p2 of the time, etc., then the average
that we expect per experiment is E. In particular, in a gambling game
E is interpreted as the average winning expected in a large number
of plays. Here the expected value is often taken as the value of the
game to the player. If the game has a positive expected value, the
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game is said to be favorable; if the game has expected value zero it
is said to be fair; and if it has negative expected value it is described
as unfavorable. These terms are not to be taken too literally, since
many people are quite happy to play games that, in terms of expected
value, are unfavorable. For instance, the buying of life insurance may
be considered an unfavorable game which most people choose to play.

Example 4.24 For the first example of the application of expected
value we consider the game of roulette as played at Monte Carlo. There
are several types of bets which the gambler can make, and we consider
two of these.

The wheel has the number 0 and the numbers from 1 to 36 marked
on equally spaced slots. The wheel is spun and a ball comes to rest
in one of these slots. If the player puts a stake, say of $1, on a given
number, and the ball comes to rest in this slot, then he or she receives
from the croupier 36 times the stake, or $36. The player wins $35
with probability 1

37
and loses $1 with probability 36

37
. Hence his or her

expected winnings are

36 · 1

37
− 1 · 36

37
= −.027.

This can be interpreted to mean that in the long run the player can
expect to lose about 2.7 per cent of his or her stakes.

A second way to play is the following. A player may bet on “red”
or “black”. The numbers from 1 to 36 are evenly divided between the
two colors. If a player bets on “red”, and a red number turns up, the
player receives twice the stake. If a black number turns up, the player
loses the stake. If 0 turns up, then the wheel is spun until it stops on
a number different from 0. If this is black, the player loses; but if it is
red, the player receives only the original stake, not twice it. For this
type of play, the player wins $1 with probability 18

37
, breaks even with

probability 1
2
· 1
37
, and loses $1 with probability 18

37
+ 1

2
· 1
37
. Hence his

or her expected winning is

1 · 18
37

+ 0 · 1

74
− 1 · 37

74
= −.0135.

In this case the player can expect to lose about 1.35 per cent of his
or her stakes in the long run. Thus the expected loss in this case is
only half as great as in the previous case. ♦
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Example 4.25 A player rolls a die and receives a number of dollars
corresponding to the number of dots on the face which turns up. What
should the player pay for playing, to make this a fair game? To answer
this question, we note that the player wins 1, 2, 3, 4, 5 or 6 dollars,
each with probability 1

6
. Hence, the player’s expected winning is

1(
1

6
) + 2(

1

6
) + 3(

1

6
) + 4(

1

6
) + 5(

1

6
) + 6(

1

6
) = 3.5.

Thus if the player pays $3.50, the expected winnings will be zero. ♦

Example 4.26 What is the expected number of successes in the case
of four independent trials with probability 1

3
for success? We know that

the probability of x successes is
(
4
x

)
(1
3
)x(2

3
)4−x. Thus

E = 0 ·
(
4

0

)
(
1

3
)0(

2

3
)4 + 1 ·

(
4

1

)
(
1

3
)1(

2

3
)3 + 2 ·

(
4

2

)
(
1

3
)2(

2

3
)2 +

3 ·
(
4

3

)
(
1

3
)3(

2

3
)1 + 4 ·

(
4

4

)
(
1

3
)4(

2

3
)0

= 0 +
32

81
+

48

81
+

24

81
+

4

81
=

108

81
=

4

3
.

In general, it can be shown that in n trials with probability p for success,
the expected number of successes is np. ♦

Example 4.27 In the game of craps a pair of dice is rolled by one of
the players. If the sum of the spots shown is 7 or 11, he or she wins.
If it is 2, 3, or 12, he or she loses. If it is another sum, he or she must
continue rolling the dice until he or she either repeats the same sum or
rolls a 7. In the former case he or she wins, in the latter he or she loses.
Let us suppose that he or she wins or loses $1. Then the two possible
outcomes are +1 and −1. We will compute the expected value of the
game. First we must find the probability that he or she will win.

We represent the possibilities by a two-stage tree shown in Figure
4.21. While it is theoretically possible for the game to go on indefi-
nitely, we do not consider this possibility. This means that our analysis
applies only to games which actually stop at some time.

The branch probabilities at the first stage are determined by think-
ing of the 36 possibilities for the throw of the two dice as being equally
likely and taking in each case the fraction of the possibilities which
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Figure 4.21: ♦

correspond to the branch as the branch probability. The probabilities
for the branches at the second level are obtained as follows. If, for
example, the first outcome was a 4, then when the game ends, a 4 or 7
must have occurred. The possible outcomes for the dice were

{(3, 1), (1, 3), (2, 2), (4, 3), (3, 4), (2, 5), (5, 2), (1, 6), (6, 1)}.

Again we consider these possibilities to be equally likely and assign to
the branch considered the fraction of the outcomes which correspond to
this branch. Thus to the 4 branch we assign a probability 3

9
= 1

3
. The

other branch probabilities are determined in a similar way. Having the
tree measure assigned, to find the probability of a win we must simply
add the weights of all paths leading to a win. If this is done, we obtain
244
495

. Thus the player’s expected value is

1 · (244
495

) + (−1) · (251
495

) = − 7

495
= −.0141.

Hence the player can expect to lose 1.41 per cent of his or her stakes
in the long run. It is interesting to note that this is just slightly less
favorable than the losses in betting on “red” in roulette. ♦
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Exercises

1. Suppose that A tosses two coins and receives $2 if two heads
appear, $1 if one head appears, and nothing if no heads appear.
What is the expected value of the game to A?

[Ans. $1.]

2. Smith and Jones are matching coins. If the coins match, Smith
gets $1, and if they do not, Jones get $1.

(a) If the game consists of matching twice, what is the expected
value of the game for Smith?

(b) Suppose that Smith quits if he or she wins the first round he
or she quits, and plays the second round if he or she loses the
the first. Jones is not allowed to quit. What is the expected
value of the game for Smith?

3. If five coins are thrown, what is the expected number of heads
that will turn up?

[Ans. 5
2
.]

4. A coin is thrown until the first time a head comes up or until
three tails in a row occur. Find the expected number of times the
coin is thrown.

5. A customer wishes to purchase a five cent newspaper. The cus-
tomer has in his or her pocket one dime and five pennies. The
news agent offers to let the customer have the paper in exchange
for one coin drawn at random from the customer’s pocket.

(a) Is this a fair proposition and, if not, to whom is it favorable?

[Ans. Favorable to customer.]

(b) Answer the same question assuming that the news agent
demands two coins drawn at random from the customer’s
pocket.

[Ans. Fair proposition.]

6. A bets 50 cents against B’s x cents that, if two cards are dealt
from a shuffled pack of ordinary playing cards, both cards will be
of the same color. What value of x will make this bet fair?
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7. Prove that if the expected value of a given experiment is E, and
if a constant c is added to each of the outcomes, the expected
value of the new experiment is E + c.

8. Prove that, if the expected value of a given experiment is E, and
if each of the possible outcomes is multiplied by a constant k, the
expected value of the new experiment is k · E.

9. A gambler plays the following game: A card is drawn from a
bridge deck; if it is an ace, the gambler wins $5; if it is a jack, a
queen or a king, he or she wins $2; for any other card he or she
loses $1. What is the expected winning per play?

10. An urn contains two black and three white balls. Balls are suc-
cessively drawn from the urn without replacement until a black
ball is obtained. Find the expected number of draws required.

11. Using the result of Exercises 13 and 14 of Section 4.6, find the
expected number of games in the World Series (a) under the as-
sumption that each team has probability 1 of winning each game
and (b) under the assumption that the stronger team has proba-
bility .6 of winning each game.

[Ans. 5.81; 5.75.]

12. Suppose that we modify the game of craps as follows: On a 7 or
11 the player wins $2, on a 2, 3, or 12 he or she loses $3; otherwise
the game is as usual. Find the expected value of the new game,
and compare it with the old value.

13. Suppose that in roulette at Monte Carlo we place 50 cents on
“red” and 50 cents on “black”. What is the expected value on
the game? Is this better or worse than placing $1 on “red”?

14. Betting on “red” in roulette can be described roughly as follows.
We win with probability .49, get our money back with probability
.01, and lose with probability .50. Draw the tree for three plays
of the game, and compute (to three decimals) the probability of
each path. What is the probability that we are ahead at the end
of three bets?

[Ans. .485.]
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15. Assume that the odds are r : s that a certain statement will be
true. If a gambler receives s dollars if the statement turns out
to be true, and gives r dollars if not, what is his or her expected
winning?

16. Referring to Exercise 9 of Section 4.3, find the expected number
of languages that a student chosen at random reads.

17. Referring to Exercise 5 of Section 4.4, find the expected number
of men who get their own hats.

[Ans. 1.]

18. A pair of dice is rolled. Each die has the number 1 on two opposite
faces, the number 2 on two opposite faces, and the number 3 on
two opposite faces. The “roller” wins a dollar if

(i) the sum of four occurs on the first roll; or

(ii) the sum of three or five occurs on the first roll and the same
sum occurs on a subsequent roll before the sum of four occurs.

Otherwise he or she loses a dollar.

(a) What is the probability that the person rolling the dice wins?

[Ans. 23
45
.]

(b) What is the expected value of the game?

[Ans. 1
45
.]

4.13 Markov chains

In this section we shall study a more general kind of process than the
ones considered in the last three sections.

We assume that we have a sequence of experiments with the fol-
lowing properties. The outcome of each experiment is one of a finite
number of possible outcomes a1, a2, . . . , ar. It is assumed that the prob-
ability of outcome aj on any given experiment is not necessarily inde-
pendent of the outcomes of previous experiments but depends at most
upon the outcome of the immediately preceding experiment. We as-
sume that there are given numbers pij which represent the probability
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Figure 4.22: ♦

of outcome aj on any given experiment, given that outcome ai oc-
curred on the preceding experiment. The outcomes a1, a2, . . . , ar are
called states, and the numbers pij are called transition probabilities. If
we assume that the process begins in some particular state, then we
have enough information to determine the tree measure for the process
and can calculate probabilities of statements relating to the over-all se-
quence of experiments. A process of the above kind is called a Markov
chain process.

The transition probabilities can be exhibited in two different ways.
The first way is that of a square array. For a Markov chain with states
a1, a2, and a3, this array is written as

P =




p11 p12 p13
p21 p22 p23
p31 p32 p33


 .

Such an array is a special case of a matrix. Matrices are of fundamental
importance to the study of Markov chains as well as being important
in the study of other branches of mathematics. They will be studied in
detail in ??.

A second way to show the transition probabilities is by a transition
diagram. Such a diagram is illustrated for a special case in Figure
4.22. The arrows from each state indicate the possible states to which
a process can move from the given state.

The matrix of transition probabilities which corresponds to this
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diagram is the matrix

a1 a2 a3
a1
a2
a3




0 1 0
0 1

2
1
2

1
3

0 2
3




.

An entry of 0 indicates that the transition is impossible.
Notice that in the matrix P the sum of the elements of each row is

1. This must be true in any matrix of transition probabilities, since the
elements of the ith row represent the probabilities for all possibilities
when the process is in state ai.

The kind of problem in which we are most interested in the study
of Markov chains is the following. Suppose that the process starts in
state i. What is the probability that after n steps it will be in state
j? We denote this probability by p

(n)
ij . Notice that we do not mean by

this the nth power of the number pij . We are actually interested in this
probability for all possible starting positions i and all possible terminal
positions j. We can represent these numbers conveniently again by a
matrix. For example, for n steps in a three-state Markov chain we write
these probabilities as the matrix

P (n) =




p
(n)
11 p

(n)
12 p

(n)
13

p
(n)
21 p

(n)
22 p

(n)
23

p
(n)
31 p

(n)
32 p

(n)
33


 .

Example 4.28 Let us find for a Markov chain with transition proba-
bilities indicated in Figure 4.22 the probability of being at the various
possible states after three steps, assuming that the process starts at
state a1. We find these probabilities by constructing a tree and a tree
measure as in Figure 4.23.

The probability p
(3)
13 , for example, is the sum of the weights assigned

by the tree measure to all paths through our tree which end at state
a3. That is,

p
(3)
13 = 1 · 1

2
· 1
2
+ 1 · 1

2
· 2
3
=

7

12
.

Similarly

p
(3)
12 = 1 · 1

2
· 1
2
=

1

4
and

p
(3)
11 = 1 · 1

2
· 1
3
=

1

6
.
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Figure 4.23: ♦

By constructing a similar tree measure, assuming that we start
at state a2, we could find p

(3)
21 ,p

(3)
22 ,and p

(3)
23 . The same is true for

p
(3)
31 ,p

(3)
32 ,and p

(3)
33 . If this is carried out (see Exercise 7) we can write

the results in matrix form as follows:

P (3) =

a1 a2 a3
a1
a2
a3




1
6

1
4

7
12

7
36

7
24

37
72

4
27

7
18

25
54




.

Again the rows add up to 1, corresponding to the fact that if we start
at a given state we must reach some state after three steps. Notice
now that all the elements of this matrix are positive, showing that it is
possible to reach any state from any state in three steps. In the next
chapter we will develop a simple method of computing P (n). ♦

Example 4.29 example:4.13.2 Suppose that we are interested in study-
ing the way in which a given state votes in a series of national elec-
tions. We wish to make long-term predictions and so will not consider
conditions peculiar to a particular election year. We shall base our
predictions only on the past history of the outcomes of the elections,
Republican or Democratic. It is clear that a knowledge of these past
results would influence our predictions for the future. As a first ap-
proximation, we assume that the knowledge of the past beyond the last
election would not cause us to change the probabilities for the outcomes
on the next election. With this assumption we obtain a Markov chain
with two states R and D and matrix of transition probabilities

R D

R
D

(
1− a a
b 1− b

)
.
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The numbers a and b could be estimated from past results as follows.
We could take for a the fraction of the previous years in which the
outcome has changed from Republican in one year to Democratic in
the next year, and for b the fraction of reverse changes.

We can obtain a better approximation by taking into account the
previous two elections. In this case our states are RR, RD, DR, and
DD, indicating the outcome of two successive elections. Being in state
RR means that the last two elections were Republican victories. If the
next election is a Democratic victory, we will be in state RD. If the
election outcomes for a series of years is DDDRDRR, then our process
has moved from state DD to DD to DR to RD to DR, and finally to RR.
Notice that the first letter of the state to which we move must agree
with the second letter of the state from which we came, since these
refer to the same election year. Our matrix of transition probabilities
will then have the form,

RR DR RD DD
RR
DR
RD
DD




1− a 0 a 0
b 0 1− b 0
0 1− c 0 c
0 d 0 1− d




.

Again the numbers a, b, c, and d would have to be estimated. The
study of this example is continued in ??. ♦

Example 4.30 The following example of a Markov chain has been
used in physics as a simple model for diffusion of gases. We shall see
later that a similar model applies to an idealized problem in changing
populations.

We imagine n black balls and n white balls which are put into
two urns so that there are n balls in each urn. A single experiment
consists in choosing a ball from each urn at random and putting the ball
obtained from the first urn into the second urn, and the ball obtained
from the second urn into the first. We take as state the number of
black balls in the first urn. If at any time we know this number, then
we know the exact composition of each urn. That is, if there are j black
balls in urn 1, there must be n − j black balls in urn 2, n − j white
balls in urn 1, and j white balls in urn 2. If the process is in state j,
then after the next exchange it will be in state j − 1, if a black ball is
chosen from urn 1 and a white ball from urn 2. It will be in state j if a
ball of the same color is drawn from each urn. It will be in state j + 1
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if a white ball is drawn from urn 1 and a black ball from urn 2. The
transition probabilities are then given by (see Exercise 12)

pjj−1 = (
j

n
)2, j > 0

pjj =
2j(n− j)

n2

pjj+1 = (
n− j

n
)2, j < n

pjk = 0 otherwise.

A physicist would be interested, for example, in predicting the compo-
sition of the urns after a certain number of exchanges have taken place.
Certainly any predictions about the early stages of the process would
depend upon the initial composition of the urns. For example, if we
started with all black balls in urn 1, we would expect that for some time
there would be more black balls in urn 1 than in urn 2. On the other
hand, it might be expected that the effect of this initial distribution
would wear off after a large number of exchanges. We shall see later,
in ??, that this is indeed the case. ♦

Exercises

1. Draw a state diagram for the Markov chain with transition prob-
abilities given by the following matrices.




1
2

1
2

0
0 1 0
1
2

0 1
2


 ,




1
3

1
3

1
3

1
3

1
3

1
3

1
3

1
3

1
3


 ,

(
0 1
1 0

)
,




0 1 0 0
1 0 0 0
0 0 1

2
1
2

0 0 1
2

1
2


 .
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Figure 4.24: ♦

2. Give the matrix of transition probabilities corresponding to the
transition diagrams in Figure 4.24.

3. Find the matrix P (2) for the Markov chain determined by the
matrix of transition probabilities

P =

(
1
2

1
2

1
3

2
3

)
.

[Ans.

(
5
12

7
12

7
18

11
18

)
.]

4. What is the matrix of transition probabilities for the Markov
chain in Example 4.30, for the case of two white balls and two
black balls?

5. Find the matrices P (2), P (3), P (4) for the Markov chain deter-
mined by the transition probabilities

(
1 0
0 1

)
.

Find the same for the Markov chain determined by the matrix

(
0 1
1 0

)
.
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6. Suppose that a Markov chain has two states, a1 and a2, and
transition probabilities given by the matrix

(
1
3

2
3

1
2

1
2

)
.

By means of a separate chance device we choose a state in which
to start the process. This device chooses a1 with probability 1

2

and a2 with probability 1
2
. Find the probability that the process

is in state a1 after the first step. Answer the same question in the
case that the device chooses a1 with probability 1

3
and a2 with

probability 2
3
.

[Ans. 5
12
; 4
9
.]

7. Referring to the Markov chain with transition probabilities indi-
cated in Figure 4.22, construct the tree measures and determine
the values of

p
(3)
21 , p

(3)
22 , p

(3)
23

and
p
(3)
31 , p

(3)
32 , p

(3)
33 .

8. A certain calculating machine uses only the digits 0 and 1. It is
supposed to transmit one of these digits through several stages.
However, at every stage there is a probability p that the digit
which enters this stage will be changed when it leaves. We form a
Markov chain to represent the process of transmission by taking
as states the digits 0 and 1. What is the matrix of transition
probabilities?

9. For the Markov chain in Exercise 8, draw a tree and assign a tree
measure, assuming that the process begins in state 0 and moves
through three stages of transmission. What is the probability
that the machine after three stages produces the digit 0, i.e., the
correct digit? What is the probability that the machine never
changed the digit from 0?

10. Assume that a man’s profession can be classified as professional,
skilled laborer, or unskilled laborer. Assume that of the sons
of professional men 80 per cent are professional, 10 per cent are
skilled laborers, and 10 per cent are unskilled laborers. In the
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Figure 4.25: ♦

case of sons of skilled laborers, 60 per cent are skilled laborers, 20
per cent are professional, and 20 per cent are unskilled laborers.
Finally, in the case of unskilled laborers, 50 per cent of the sons
are unskilled laborers, and 25 per cent each are in the other two
categories. Assume that every man has a son, and form a Markov
chain by following a given family through several generations. Set
up the matrix of transition probabilities. Find the probability
that the grandson of an unskilled laborer is a professional man.

[Ans. .375.]

11. In Exercise 10 we assumed that every man has a son. Assume
instead that the probability a man has a son is .8. Form a Markov
chain with four states. The first three states are as in Exercise
10, and the fourth state is such that the process enters it if a man
has no son, and that the state cannot be left. This state repre-
sents families whose male line has died out. Find the matrix of
transition probabilities and find the probability that an unskilled
laborer has a grandson who is a professional man.

[Ans. .24.]

12. Explain why the transition probabilities given in Example 4.30
are correct.

Supplementary exercises.

13. Five points are marked on a circle. A process moves clockwise
from a given point to its neighbor with probability 2

3
, or counter-

clockwise to its neighbor with probability 1
3
.
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(a) Considering the process to be a Markov chain process, find
the matrix of transition probabilities.

(b) Given that the process starts in a state 3, what is the prob-
ability that it returns to the same state in two steps?

14. In northern New England, years for apples can be described as
good, average, or poor. Suppose that following a good year the
probabilities of good, average, or poor years are respectively .4, .4,
and .2. Following a poor year the probabilities of good, average,
or poor years are .2, .4, and .4 respectively. Following an average
year the probabilities that the next year will be good or poor are
each .2, and of an average year, .6.

(a) Set up the transition matrix of this Markov chain.

(b) 1965 was a good year. Compute the probabilities for 1966,
1967, and 1968.

[Ans. For 1967: .28, .48, .24.]

15. In Exercise 14 suppose that there is probability 1
4
for a good

year, 1
2
for an average year, and 1

4
for a poor year. What are the

probabilities for the following year?

16. A teacher in an oversized mathematics class finds, after grading
all homework papers for the first two assignments, that it is nec-
essary to reduce the amount of time spent in such grading. He
therefore designs the following system: Papers will be marked
satisfactory or unsatisfactory. All papers of students receiving a
mark of unsatisfactory on any assignment will be read on each of
the two succeeding days. Of the remaining papers, the teacher
will read one-fifth, chosen at random. Assuming that each paper
has a probability of one-fifth of being classified “unsatisfactory”,

(a) Set up a three-state Markov chain to describe the process.

(b) Suppose that a student has just handed in a satisfactory
paper. What are the probabilities for the next two assign-
ments?

17. In another model for diffusion, it is assumed that there are two
urns which together contain N balls numbered from 1 to N . Each
second a number from 1 to N is chosen at random, and the ball
with the corresponding number is moved to the other urn. Set
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up a Markov chain by taking as state the number of balls in urn
1. Find the transition matrix.

4.14 The central limit theorem

We continue our discussion of the independent trials process with two
outcomes. As usual, let p be the probability of success on a trial, and
f(n, p; x) be the probability of exactly x successes in n trials.

In Figure 4.26 we have plotted bar graphs which represent f(n, .3; x)
for n = 10, 50, 100, and 200. We note first of all that the graphs are
drifting off to the right. This is not surprising, since their peaks occur
at np, which is steadily increasing. We also note that while the total
area is always 1, this area becomes more and more spread out.

We want to redraw these graphs in a manner that prevents the
drifting and the spreading out. First of all, we replace x by x − np,
assuring that our peak always occurs at 0. Next we introduce a new
unit for measuring the deviation, which depends on n, and which gives
comparable scales. As we saw in Section 4.10, the standard deviation√
npq is such a unit.

We must still insure that probabilities are represented by areas in
the graph. In Figure 4.26 this is achieved by having a unit base for each
rectangle, and having the probability f(n, p; x) as height. Since we are
now representing a standard deviation as a single unit on the horizontal
axis, we must take f(n, p; x)

√
npq as the heights of our rectangles. The

resulting curves for n = 50 and 200 are shown in Figures 4.27 and 4.28,
respectively.

We note that the two figures look very much alike. We have also
shown in Figure 4.28 that it can be approximated by a bell-shaped
curve. This curve represents the function

f(x) =
1√
2π

e−x2/2

and is known as the normal curve. It is a fundamental theorem of
probability theory that as n increases, the appropriately rescaled bar
graphs more and more closely approach the normal curve. The theorem
is known as the Central Limit Theorem, and we have illustrated it
graphically.

More precisely, the theorem states that for any two numbers a and
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Figure 4.26: ♦
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Figure 4.27: ♦

Figure 4.28: ♦
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Figure 4.29: ♦

b, with a < b,

Pr[a <
x− np√

npq
< b]

approaches the area under the normal curve between a and b, as n
increases. This theorem is particularly interesting in that the normal
curve is symmetric about 0, while f(n, p; x) is symmetric about the
expected value np only for the case p = 1

2
. It should also be noted that

we always arrive at the same normal curve, no matter what the value
of p is.

In Figure 4.29 we give a table for the area under the normal curve
between 0 and d. Since the total area is 1, and since it is symmetric
about the origin, we can compute arbitrary areas from this table. For
example, suppose that we wish the area between −1 and +2. The area
between 0 and 2 is given in the table as .477. The area between −1
and 0 is the same as between 0 and 1, and hence is given as .341. Thus
the total area is .818. The area outside the interval (−1, 2) is then
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1− .818 = .182.

Example 4.31 Let us find the probability that x differs from the ex-
pected value np by as much as d standard deviations.

Pr[|x− np| ≥ d
√
npq] = Pr[|x− np√

npq
≥ d].

and hence the approximate answer should be the area outside the
interval (−d, d) under the normal curve. For d = 1, 2, 3 we obtain
1 − (2 · .341) = .318, 1 − (2 · .477) = .046, 1 − (2 · .4987) = .0026, re-
spectively. These agree with the values given in Section 4.10, to within
rounding errors. In fact, the Central Limit Theorem is the basis of
those estimates. ♦

Example 4.32 In Example 4.19 we considered the example of throw-
ing a coin 10,000 times. The expected number of heads that turn up
is 5000 and the standard deviation is

√
10, 000 · 1

2
· 1

2
= 50. We ob-

served that the probability of a deviation of more than two standard
deviations (or 100) was very unlikely. On the other hand, consider the
probability of a deviation of less than .1 standard deviation. That is,
of a deviation of less than five. The area from 0 to .1 under the normal
curve is .040 and hence the probability of a deviation from 5000 of less
than five is approximately .08. Thus, while a deviation of 100 is very
unlikely, it is also very unlikely that a deviation of less than five will
occur. ♦

Example 4.33 The normal approximation can be used to estimate
the individual probabilities f(n, x; p) for large n. For example, let us
estimate f(200, 65; .3). The graph of the probabilities f(200, x; .3) was
given in Figure 4.28 together with the normal approximation. The
desired probability is the area of the bar corresponding to x = 65. An
inspection of the graph suggests that we should take the area under the
normal curve between 64.5 and 65.5 as an estimate for this probability.
In normalized units this is the area between

4.5√
200(.3)(.7)

and
5.5√

200(.3)(.7)
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or between .6944 and .8487. Our table is not fine enough to find this
area, but from more complete tables, or by machine computation, this
area may be found to be .046 to three decimal places. The exact value
to three decimal places is .045. This procedure gives us a good estimate.

If we check all of the values of f(200, x; .3) we find in each case
that we would make an error of at most .001 by using the normal
approximation. There is unfortunately no simple way to estimate the
error caused by the use of the Central Limit Theorem. The error will
clearly depend upon how large n is, but it also depends upon how near
p is to 0 or 1. The greatest accuracy occurs when p is near 1

2
. ♦

Example 4.34 Suppose that a drug has been administered to a num-
ber of patients and found to be effective a fraction p of the time. Assum-
ing an independent trials process, it is natural to take p as an estimate
for the unknown probability p for success on any one trial. It is useful
to have a method of estimating the reliability of this estimate. One
method is the following. Let x be the number of successes for the drug
given to n patients. Then by the Central Limit Theorem

Pr[|x− np√
npq

| ≤ 2] ≈ .95.

This is the same as saying

Pr[|x/n− p√
pq/n

| ≤ 2] ≈ .95.

Putting p̄ = x/n, we have

Pr[|p̄− p| ≤ 2
√
pq/n] ≈ .95.

Using the fact that pq < 4 (see Exercise 12) we have

Pr[|p̄− p| ≤ 1√
n
] ≥ .95.

This says that no matter what p is, with probability ≥ .95, the true
value will not deviate from the estimate p by more than 1√

n
It is cus-

tomary then to say that

p̄− 1√
n
≤ p ≤ p̄+

1√
n
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with confidence .95. The interval

[p̄− 1√
n
, p̄+

1√
n
]

is called a 95 per cent confidence interval. Had we started with

Pr[|x− np√
npq

| ≤ 3] ≈ .99,

we would have obtained the 99 per cent confidence interval

[p̄− 3

2
√
n
, p̄+

3

2
√
n
]

For example, if in 400 trials the drug is found effective 124 times,
or .31 of the times, the 95 per cent confidence interval for p is

[.31− 1

20
, .31 +

1

20
] = [.26, .36]

and the 99 per cent confidence interval is

[.31− 3

40
, .31 +

3

40
] = [.235, .385].

♦

Exercises

1. Let x be the number of successes in n trials of an independent
trials process with probability p for success. Let x⋆ = x−np√

npq
For

large n estimate the following probabilities.

(a) Pr[x⋆ < −2.5].

[Ans. .006.]

(b) Pr[x⋆ < 2.5].

(c) Pr[x⋆ ≥ −.5].

(d) Pr[−1.5 < x⋆ < 1].

[Ans. .774.]

2. A coin is biased in such a way that a head comes up with proba-
bility .8 on a single toss. Use the normal approximation to esti-
mate the probability that in a million tosses there are more than
800,400 heads.
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3. Plot a graph of the probabilities f(10, x, .5). Plot a graph also of
the normalized probabilities as in Figures 4.27 and 4.28.

4. An ordinary coin is tossed one million times. Let x be the number
of heads which turn up. Estimate the following probabilities.

(a) Pr[499, 500 < x < 500, 500]

[Ans. Approximately .682.]

(b) Pr[499, 000 < x < 501, 000],

[Ans. Approximately .954.]

(c) Pr[498, 500 < x < 501, 500],

[Ans. Approximately .997.]

5. Assume that a baseball player has probability .37 of getting a hit
each time he or she comes to bat. Find the probability of getting
an average of .388 or better if he or she comes to bat 300 times
during the season. (In 1957 Ted Williams had a batting average
of .388 and Mickey Mantle had an average of .353. If we assume
this difference is due to chance, we may estimate the probability
of a hit as the combined average, which is about .37.)

[Ans. .242.]

6. A true-false examination has 48 questions. Assume that the prob-
ability that a given student knows the answer to any one question
is 3

4
. A passing score is 30 or better. Estimate the probability

that the student will fail the exam.

7. In Example 4.21 of Section 4.10, assume that the school decides
to admit 1296 students. Estimate the probability that they will
have to have additional dormitory space.

[Ans. Approximately .115.]

8. Peter and Paul each have 20 pennies. They agree to match pen-
nies 400 times, keeping score but not paying until the 400 matches
are over. What is the probability that one of the players will not
be able to pay? Answer the same question for the case that Peter
has 10 pennies and Paul has 30.
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9. In tossing a coin 100 times, the probability of getting 50 heads
is, to three decimal places, .080. Estimate this same probability
using the Central Limit Theorem.

[Ans. .080.]

10. A standard medicine has been found to be effective in 80 per
cent of the cases where it is used. A new medicine for the same
purpose is found to be effective in 90 of the first 100 patients on
which the medicine is used. Could this be taken as good evidence
that the new medication is better than the old?

11. In the Weldon dice experiment, 12 dice were thrown 26,306 times
and the appearance of a 5 or a 6 was considered to be a suc-
cess. The mean number of successes observed was, to four deci-
mal places, 4.0524. Is this result significantly different from the
expected average number of 4?

[Ans. Yes.]

12. Prove that pq ≤ 1
4
. [Hint: write p = 1

2
+ x.]

13. Suppose that out of 1000 persons interviewed 650 said that they
would vote for Mr. Big for mayor. Construct the 99 per cent
confidence interval for p, the proportion in the city that would
vote for Mr. Big.

14. Opinion pollsters in election years usually poll about 3000 voters.
Suppose that in an election year 51 per cent favor candidate A and
49 per cent favor candidate B. Construct 95 per cent confidence
limits for candidate A winning.

[Ans. [.492, .528].]

15. In an experiment with independent trials we are going to estimate
p by the fraction p of successes. We wish our estimate to be within
.02 of the correct value with probability .95. Show that 2500
observations will always suffice. Show that if it is known that p
is approximately .1, then 900 observations would be sufficient.
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16. An experimenter has an independent trials process and he or she
has a hypothesis that the true value of p is p0. He decides to carry
out a number of trials, and from the observed r calculate the 95
per cent confidence interval for p. He will reject p0 if it does not
fall within these limits. What is the probability that he or she
will reject p0 when in fact it is correct? Should he or she accept
p0 if it does fall within the confidence interval?

17. A coin is tossed 100 times and turns up heads 61 times. Using
the method of Exercise 16 test the hypothesis that the coin is a
fair coin.

[Ans. Reject.]

18. Two railroads are competing for the passenger traffic of 1000 pas-
sengers by operating similar trains at the same hour. If a given
passenger is equally likely to choose one train as the other, how
many seats should the railroad provide if it wants to be sure that
its seating capacity is sufficient in 99 out of 100 cases?

[Ans. 537.]

4.15 Gambler’s ruin

In this section we will study a particular Markov chain, which is inter-
esting in itself and has far-reaching applications. Its name, “gambler’s
ruin”, derives from one of its many applications. In the text we will
describe the chain from the gambling point of view, but in the exercises
we will present several other applications.

Let us suppose that you are gambling against a professional gambler,
or gambling house. You have selected a specific game to play, on which
you have probability p of winning. The gambler has made sure that the
game is in his or her favor, so that p < 1

2
. However, in most situations

p will be close to 1
2
. (The cases p = 1

2
and p > 1

2
are considered in the

exercises.)
At the start of the game you have A dollars, and the gambler has B

dollars. You bet $1 on each game, and play until one of you is ruined.
What is the probability that you will be ruined? Of course, the answer
depends on the exact values of p, A, and B. We will develop a formula
for the ruin-probability in terms of these three given numbers.
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Figure 4.30: ♦

First we will set the problem up as a Markov chain. Let N = A+B,
the total amount of money in the game. As states for the chain we
choose the numbers 0, 1, 2, . . . , N . At any one moment the position of
the chain is the amount of money you have. The initial position is
shown in Figure 4.30.

If you win a game, your money increases by $1, and the gambler’s
fortune decreases by $1. Thus the new position is one state to the right
of the previous one. If you lose a game, the chain moves one step to
the left. Thus at any step there is probability p of moving one step
to the right, and probability q = 1 − p of one step to the left. Since
the probabilities for the next position are determined by the present
position, it is a Markov chain.

If the chain reaches 0 or N , we stop. When 0 is reached, you are
ruined. When N is reached, you have all the money, and you have
ruined the gambler. We will be interested in the probability of your
ruin, i.e., the probability of reaching 0.

Let us suppose that p and N are fixed. We actually want the prob-
ability of ruin when we start at A. However, it turns out to be easier to
solve a problem that appears much harder: Find the ruin-probability
for every possible starting position. For this reason we introduce the
notation xi, to stand for the probability of your ruin if you start in
position i (that is, if you have i dollars).

Let us first solve the problem for the case N = 5. We have the
unknowns x0, x1, x2, x3, x4, x5. Suppose that we start at position 2.
The chain moves to 3, with probability p, or to 1, with probability q.
Thus

Pr[ruin|start at 2] = Pr[ruin|start at 3] · p+ Pr[ruin|start at 1] · q.

using the conditional probability formula, with a set of two alternatives.
But once it has reached state 3, a Markov chain behaves just as if it
had been started there. Thus

Pr[ruin|start at 3] = x3.
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And, similarly,
Pr[ruin|start at 1] = x1.

We obtain the key relation

x2 = px3 + qx1.

We can modify this as follows:

(p+ q)x2 = px3 + qx1,

p(x2 − x3) = q(x1 − x2),

x1 − x2 = r(x2 − x3),

where r = p/q and hence r < 1. When we write such an equation for
each of the four “ordinary” positions, we obtain

x0 − x1 = r(x1 − x2),
x1 − x2 = r(x2 − x3),
x2 − x3 = r(x3 − x4),
x3 − x4 = r(x4 − x5)

(4.4)

We must still consider the two extreme positions. Suppose that the
chain reaches 0. Then you are ruined, hence the probability of your
ruin is 1. While if the chain reaches N = 5, the gambler drops out of
the game, and you can’t be ruined. Thus

x0 = 1, x5 = 0. (4.5)

If we substitute the value of x5 in the last equation of 4.4, we have
x3−x4 = rx4. This in turn may be substituted in the previous equation,
etc. We thus have the simpler equations

x4 = 1 · x4,
x3 − x4 = rx4.
x2 − x3 = r2x4.
x1 − x2 = r3x4.
x0 − x1 = r4x4

(4.6)

Let us add all the equations. We obtain

x0 = (1 + r + r2 + r3 + r4)x4.

From 4.5 we have that x0 = 1. We also use the simple identity

(1− r)(1 + r + r2 + r3 + r4) = 1− r5.
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And then we solve for x4:

x4 =
1− r

1− r5
.

If we add the first two equations in 4.6, we have that x3 = (1 + r)x4.
Similarly, adding the first three equations, we solve for x2, and adding
the first four equations we obtain x1. We now have our entire solution,

x1 =
1− r4

1− r5
, x2 =

1− r3

1− r5
, x3 =

1− r2

1− r5
, x4 =

1− r1

1− r5
. (4.7)

The same method will work for any value of N . And it is easy to guess
from 4.7 what the general solution looks like. If we want xA, the answer
is a fraction like those in 4.7. In the denominator the exponent of r is
always N . In the numerator the exponent is N − A, or B. Thus the
ruin-probability is

xA =
1− rB

1− rN
. (4.8)

We recall that A is the amount of money you have, B is the gambler’s
stake, N = A + B, p is your probability of winning a game, and r =
p/(1− p).

In Figure 4.31 we show some typical values of the ruin-probability.
Some of these are quite startling. If the probability of p is as low as .45
(odds against you on each game 11: 9) and the gambler has 20 dollars
to put up, you are almost sure to be ruined. Even in a nearly fair game,
say p = .495, with each of you having $50 to start with, there is a .731
chance for your ruin.

It is worth examining the ruin-probability formula 4.8 more closely.
Since the denominator is always less than 1, your probability of ruin is
at least 1 − rB. This estimate does not depend on how much money
you have, only on p and B. Since r is less than 1, by making B large
enough, we can make rB practically 0, and hence make it almost certain
that you will be ruined.

Suppose, for example, that a gambler wants to have probability .999
of ruining you. (You can hardly call him or her a gambler under those
circumstances!) The gambler must make sure that rB < .001. For
example, if p = .495, the gambler needs $346 to have probability .999
of ruining you, even if you are a millionaire. If p = .48, the gambler
needs only $87. And even for the almost fair game with p = .499, $1727
will suffice.
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Figure 4.31: ♦
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There are two ways that gamblers achieve this goal. Small gambling
houses will fix the odds quite a bit in their favor, making r much less
than 1. Then even a relatively small bank of B dollars suffices to assure
them of winning. Larger houses, with B quite sizable, can afford to let
you play nearly fair games.

Exercises

1. An urn has nine white balls and 11 black balls. A ball is drawn,
and replaced. If it is white, you win five cents, if black, you lose
five cents. You have a dollar to gamble with, and your opponent
has fifty cents. If you keep on playing till one of you loses all
his or her money, what is the probability that you will lose your
dollar?

[Ans. .868.]

2. Suppose that you are shooting craps, and you always hold the
dice. You have $20, your opponent has $10, and $1 is bet on each
game; estimate your probability of ruin.

3. Two government agencies, A and B, are competing for the same
task. A has 50 positions, and B has 20. Each year one position
is taken away from one of the agencies, and given to the other.
If 52 per cent of the time the shift is from A to B, what do you
predict for the future of the two agencies?

[Ans. One agency will be abolished. B survives with probability
.8, A with probability .2.]

4. What is the approximate value of xA if you are rich, and the
gambler starts with $1?

5. Consider a simple model for evolution. On a small island there is
room for 1000 members of a certain species. One year a favorable
mutant appears. We assume that in each subsequent generation
either the mutants take one place from the regular members of
the species, with probability .6, or the reverse happens. Thus,
for example, the mutation disappears in the very first generation
with probability .4. What is the probability that the mutants
eventually take over? [Hint: See Exercise 4.]
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[Ans. 1
3
.]

6. Verify that the proof of formula 4.8 in the text is still correct
when p > 1

2
. Interpret formula 4.8 for this case.

7. Show that if p > 1
2
, and both parties have a substantial amount

of money, your probability of ruin is approximately 1/rA.

8. Modify the proof in the text to apply to the case p = 1
2
. What is

the probability of your ruin?

[Ans. B/N .]

9. You are matching pennies. You have 25 pennies to start with,
and your opponent has 35. What is the probability that you will
win all his or her pennies?

10. Jones lives on a short street, about 100 steps long. At one end of
the street is Jones’s home, at the other a lake, and in the middle
a bar. One evening Jones leaves the bar in a state of intoxication,
and starts to walk at random. What is the probability that Jones
will fall into the lake if

(a) Jones is just as likely to take a step to the right as to the
left?

[Ans. 1
2
.]

(b) Jones has probability .51 of taking a step towards home?

[Ans. .119.]

11. You are in the following hopeless situation: You are playing a
game in which you have only 1

3
chance of winning. You have

$1, and your opponent has $7. What is the probability of your
winning all his or her money if

(a) You bet $1 each time?

[Ans. 1
255

.]

(b) You bet all your money each time?

[Ans. 1
27
.]
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12. Repeat Exercise 11 for the case of a fair game, where you have
probability 1

2
of winning.

13. Modify the proof in the text to compute yi, the probability of
reaching state N = 5.

14. Verify, in Exercise 13, that xi + yi = 1 for every state. Interpret.

Note: The following exercises deal with the following ruin prob-
lem: A and B play a game in which A has probability W of
winning. They keep playing until either A has won six times or
B has won three times.

15. Set up the process as a Markov chain whose states are (a, b),
where a is the number of times A won, and b the number of B
wins.

16. For each state compute the probability of A winning from that
position. [Hint: Work from higher a- and b-values to lower ones.]

17. What is the probability that A reaches his or her goal first?

[Ans. 1024
2187

.]

18. Suppose that payments are made as follows: If A wins six games,
A receives $1, if B wins three games then A pays $1. What is the
expected value of the payment, to the nearest penny?
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