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Compound statements

1. PURPOSE OF THE THEORY

A statement is a verbal or written assertion. In the English language
such assertions are made by means of declarative sentences. For ex-
ample, “It is snowing” and “I made a mistake in signing up for this
course” are statements.

The two statements quoted above are simple statements. A com-
bination of two or more simple statements is a compound statement.
For example, “It is snowing, and I wish that I were out of doors, but
I made the mistake of signing up for this course,” is a compound
statement.

It might seem natural that one should make a study of simple
statements first, and then proceed to the study of compound ones.
However, the reverse order has proved to be more useful. Because of
the tremendous variety of simple statements, the theory of such state-
ments is very complex. It has been found in mathematics that it is
often fruitful to assume for the moment that a difficult problem has
been solved and then to go on to the next problem. Therefore we shall
proceed as if we knew all about simple statements and study only
the way they are compounded. The latter is a relatively easy problem.

While the first systematic treatment of such problems is found in
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2 COMPOUND STATEMENTS Chap. |

the writings of Aristotle, mathematical methods were first employed
by George Boole about 100 years ago. The more polished techmiques
now available are the product of twentieth century mathematical
logicians.

The fundamental property of any statement is that it is either true
or false (and that it cannot be both true and false). Naturally, we are
interested in finding out which is the case. For a compound statement
it is sufficient to know which of its components are true, since the
truth values (i.e., the truth or falsity) of the components determine
in a way to be described later the truth value of the compound.

Our problem then is twofold: (1) In how many different ways can
statements be compounded? (2) How do we determine the truth value
of a compound statement given the truth values of its components?

Let us prepare our mathematical tools. In any mathematical for-
mula we find three kinds of symbols: constants, variables, and auxiliary
symbols. For example, in the formula (x + y)* the plus sign and the
exponent are constants, the letters x and y are variables, and the
parentheses are auxiliary symbols. Constants are symbols whose mean-
ings in a given context are fixed. Thus in the formula given above,
the plus sign indicates that we are to form the sum of the two num-
bers x and y, while the exponent 2 indicates that we are to multiply
(x + p) by itself. Variables always stand for entities of a given kind,
but they allow us to leave open just which particular entity we have
in mind. In our example above the letters x and y stand for unspec-
ified numbers. Auxiliary symbols function somewhat like punctuation
marks. Thus if we omit the parentheses in the expression above we
obtain the formula x 4 y?, which has quite a different meaning than
the formula (x + y)2.

In this chapter we shall use variables of only one kind. We indicate
these variables by the letters p, g, 7, etc., which will stand for unspec-
ified statements. These statements frequently will be simple statements
but may also be compound. In any case we know that, since each
variable stands for a statement, it has an (unknown) truth value.

The constants that we shall use will stand for certain connectives
used in the compounding of statements. We will have one symbol for
forming the negation of a statement and several symbols for combin-
ing two statements. It will not be necessary to introduce symbols for
the compounding of three or more statements, since we can show that
the same combination can also be formed by compounding them two
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at a time. In practice only a small number of basic constants are used
and the others are defined in terms of these. It is even possible to use
only a single connective! (See Section 4, Exercises 10 and 11.)

The auxiliary symbols that we shall use are, for the most part, the
same ones used in elementary algebra. Any case where the usage is
different will be explained.

Examples. As examples of simple statements, let us take *“The
weather is nice” and “It is very hot.” We will let p stand for the
former and g for the latter.

Suppose we wish to make the compound statement that both are
true, “The weather is nice and it is very hot.” We shall symbolize this
statement by p A ¢q. The symbol A, which can be read “and,” is our
first connective.

In place of the strong assertion above we might want to make the
weak (cautious) assertion that one or the other of the statements is
true. “The weather is nice or it is very hot.” We symbolize this as-
sertion by p V g. The symbol V, which can be read *“or,” is the
second connective which we shall use.

Suppose we believed that one of the statements above was false,
for example, “It is not very hot.” Symbolically we would write ~q.
Our third connective is then ~, which can be read “not.”

More complex compound statements can now be made. For ex-
ample, p A ~q stands for “The weather is nice and it is not very hot.”

EXERCISES

1. The following are compound statements or may be so interpreted.
Find their simple components.
(a) It is hot and it is raining.
(b) It is hot but it is not very humid.
[Ans. *“It is hot”; “it is very humid.”}
(¢) It is raining or it is very humid.
(d) Jack and Jill went up the hill.
(e) The murderer is Jones or Smith.
(f) It is neither necessary nor desirable.
(2) Either Jones wrote this book or Smith did not know who the
author was.

2. In Exercise 1 assign letters to the various components, and write the
statements in symbolic form. [dns. (b) p A ~q.]
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3. Write the following statements in symbolic form, letting p be “Fred

is smart” and q be “George is smart.”

(a) Fred is smart and George is stupid.

(b) George is smart and Fred is stupid.

(c) Fred and George are both stupid.

(d) Either Fred is smart or George is stupid.

(e) Neither Fred nor George is smart.

(f) Fred is not smart, but George is stupid.

(g) It is not true that Fred and George are both stupid.

4. Assume that Fred and George are both smart. Which of the seven
compound statements in Exercise 3 are true?

5. Write the following statements in symbolic form.
(a) Fred likes George. (Statement p.)
(b) George likes Fred. (Statement g.)
(c) Fred and George like each other.
(d) Fred and George dislike each other.
(e) Fred likes George, but George does not reciprocate.
(f) George is liked by Fred, but Fred is disliked by George.
(g) Neither Fred nor George dislikes the other.
(h) It is not true that Fred and George dislike each other.

6. Suppose that Fred likes George and George dislikes Fred. Which of
the eight statements in Exercise 5 are true?

7. For each statement in Exercise 5 give a condition under which it is
false. [Ans. (c) Fred does not like George.]

8. Let p be “Stock prices are high” and ¢ be “Stocks are rising.” Give a
verbal translation for each of the following.
@ pAg
(b) p A ~q.
(©) ~p A ~q.
dpvV ~q
(e) ~(» A 9.
) ~(p V9.
(8) ~(~p VvV ~q).
9. Using your answers to Exercise 8, parts (e), (f), (g), find simpler sym-
bolic statements expressing the same idea.

10. Let p be “I have a dog” and ¢ be “I have a cat.” Translate into English
and simplify: ~[~p V ~~q] A ~~p.

2. THE MOST COMMON CONNECTIVES

The truth value of a compound statement is determined by the
truth values of its components. When discussing a connective we will
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Sec. 2 COMPOUND STATEMENTS 5

want to know just how the truth of a compound statement made
from this connective depends upon the truth of its components. A
very convenient way of tabulating this dependency is by means of a
truth table.

Let us consider the compound p A g. Statement p could be either
true or false and so could statement g.

Thus there are four possible pairs of truth

values for these statements and we want p 9 PAg
to know in each case whether or not the T T T
statement p A g is true. The answer is T F E
straightforward: If p and g are both true, F T F
then p A g is true, and otherwise p A ¢ F F F
is false. This seems reasonable since the :

assertion p A ¢ says no more and no less Figure 1
than that p and g are both true.

Figure 1 gives the truth table for p A g, the conjunction of p and ¢q.
The truth table contains all the information that we need to know
about the connective A, namely it tells us the truth value of the con-

junction of two statements given the

truth values of each of the statements.
p q pVgq We next look at the compound state-
. T ) ment p V g, the.disjt.mction of p and gq.
T F T Here the assertion 1s tl}at one or the
F T T other of these statements is true. Clearly,
E F E if one statement is true and the other

false, then the disjunction is true, while

Figure 2 if both statements are false, then the

disjunction is certainly false. Thus we

can fill in the last three rows of the truth table for disjunction (see
Figure 2). :

Observe that one possibility is left unsettled, namely, what happens
if both components are true? Here we observe that the everyday
usage of “or” is ambiguous. Does *“or’”” mean “one or the other or
both” or does it mean “one or the other but not both”?

Let us seek the answer in examples. The sentence “This summer I
will date Jean or Pat” allows for the possibility that the speaker may
date both girls. However the sentence “I will go to Dartmouth or to
Princeton” indicates that only one of these schools will be chosen.
“I will buy a TV set or a phonograph next year” could be used in
either sense; the speaker may mean that he is trying to make up his
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mind which one of the two to buy, but it could also mean that he will
buy at least one of these—possibly both. We sec that sometimes the
context makes the meaning clear, but not always.

A mathematician would never waste his time on a dispute as to
which usage “should” be called the disjunction of two statements.
Rather he recognizes two perfectly good usages, and calls one the in-
clusive disjunction (p or q or both) and the other the exclusive disjunc-
tion (p or g but not both). The symbol Vv will be used for inclusive
disjunction, and the symbol V will be used for exclusive disjunction.
The truth tables for each of these are found in Figures 3 and 4. Unless
we state otherwise, our disjunctions will be inclusive disjunctions.

p q PVq p q pPMg
T T T T T F
T F T T F T
F T T F T T
F F F F F F
Figure 3 Figure 4

The last connective which we shall discuss in this section is negation.
If p is a statement, the symbol ~p, called the negation of p, asserts
that p is false. Hence ~p is true when p is false, and false when p is
true. The truth table for negation is shown in Figure 5.

Besides using these basic connectives singly to

form compound statements, several can be used to

p ~P form a more complicated compound statement,
T B in much the same way that complicated algebraic
F T expressions can be formed by means of the basic
arithmetic operations. For example, ~(p A g),

Figure 5 pA~p, and (p V q@) V ~p are all compound

statements. They are to be read “from the inside
out” in the same way that algebraic expressions are, namely, quantities
inside the innermost parentheses are first grouped together, then these
parentheses are grouped together, etc. Each compound statement
has a truth table which can be constructed in a routine way. The
following examples show how to construct truth tables.

Example 1. Consider the compound statement p V ~g. We begin
the construction of its truth table by writing in the first two columns
the four possible pairs of truth values for the statements p and gq.
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Then we write the proposition in question, leaving plenty of space
between symbols so that we can fill in columns below. Next we copy
the truth values of p and ¢ in the columns below their occurrences in
the proposition. This completes step 1; see Figure 6.

p q p vV ~q
T T T T
T F T F
F T F T
F F F F
Step No. 1 1
Figure 6

Next we treat the innermost compound, the negation of the variable
g, completing step 2, see Figure 7.

p q p VvV ~ q
T T T F T
T F T T F
F T F F T
F F F T F

Step No. 1 2 1

Figure?7

Finally we fill in the column under the disjunction symbol, which
gives us the truth value of the compound statement for various truth
values of its variables. To indicate this we place two parallel lines
on each side of the final column, completing step 3 as in Figure 3.

p q p \ ~ q
T T T T F T
T F T T T F
F T F F F T
F F F T T F
Step No. 1 3 2 1

Figure 8
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The next two examples show truth tables of more complicated com-
pounds worked out in the same manner. There are only two basic
rules which the student must remember when working these: first,
work from the “‘inside out”; second, the truth values of the compound
statement are found in the last column filled in during this procedure.

Example 2. The truth table for the statement (p V ~q) A ~p
together with the numbers indicating the order in which the columns
are filled in appears in Figure 9.

P q (» \Y% ~ q) A ~ p

T T T T F T F F T

T F T T T F F F T

F T F F F T F T F

F F F T T F T T F

Step No. 1 3 2 1 4 2 1
Figure 9

Example 3. The truth table for the statement ~[(p A g V
(~p A ~q)] together with the numbers indicating the order in which
the columns are filled appears in Figure 10. We note that the com-
pound statement has the same truth table as p vV g. These two state-
ments are equivalent (see Section 7).

P q ~ [ AN @ VvV (~ p AN ~ 9]
T T F T T T T F T F F T
T F T T F F F F T F T F
F T T F F T F T F F F T
F F F F F F T T F T T F
Step No. 5 1 2 1 4 2 1 3 2 1

Figure 10

EXERCISES

1. Give a compound statement which symbolically states “p or g but not
both,” using only ~, V, and A.
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Sec. 2 COMPOUND STATEMENTS 9

9. Construct the truth table for your answer to Exercise 1, and compare
this with Figure 4.

3. Construct the truth table for the symbolic form of each statement in
Exercise 3 of Section 1. How does Exercise 4 of Section 1 relate to these

truth tables?

4. Construct a truth table for each of the following.

@) ~@ A 9). [4ns. FTTT.]
(®) p A ~p. [Ans. FF.]
©) (pVgV ~p [4Ans. TTTT.]
@ ~[@ Ve A(~pV ~ql [Ans. TFFT.]

5. Let p stand for “Jones passed the course” and g stand for “Smith
passed the course” and translate into symbolic form the statement “It is not
the case that Jones and Smith both failed the course.” Construct a truth table
for this compound statement. State in words the circumstances under which

the statement is true.

6. Construct a simpler statement about Jones and Smith that has the
same truth table as the one in Exercise 5.

7. Let p | g express that “p and g are not both true.” Write a symbolic
expression for p | g using ~ and A.

8. Write a truth table for p | g.

9. Write a truth table for p | p. [Ans. Same as Figure 5.]
10. Write a truth table for (p | @) | (p | 9. [4ns. Same as Figure 1.] |
11. Construct a truth table for each of the following.

(@) ~p VeV ~@Vp). [Ans. FFFT.]
(b) ~(p VvV q) A P. [Ans. FFFF.]
© ~(p M. [Ans. TFFT.]
(d) ~@|. [A4ns. TFFF.]

12. Construct two symbolic statements, using only ~, V, and A, which
have the following truth tables (a) and (b), respectively.

p q () (b)
T T T T
T F F F
F T T F
F F T T
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13. Using only ~ and V, construct a compound statement having the
same truth table as:
(@ pVa.
(b) p Ag.

3. OTHER CONNECTIVES

Suppose we did not wish to make an outright assertion but rather
an assertion containing a condition. As examples, consider the follow-
ing sentences. “If the weather is nice, I will take a walk.” “If the
following statement is true, then I can prove the theorem.” “If the
cost of living continues to rise, then the government will impose rigid
curbs.” Each of these statements is of the form “if p thenq.” The condi-
tional is then a new connective which is symbolized by the arrow —.

Of course the precise definition of this new connective must be made
by means of a truth table. If both p and g are true, then p —gq is
certainly true, and if p is true and g false, then p — g is certainly false.
Thus the first two lines of the truth table can easily be filled in, see
Figure 11a. Suppose now that p is false; how shall we fill in the last
two lines of the truth table in Figure 11a? At first thought one might
suppose that it would be best to leave it completely undefined. How-
ever, to do so would violate our basic principle that a statement is
either true or false.

p q pb—q p q p—q
T T T T T T
T F F T F F
F T ? F T T
F F ? F F T
Figure 1la Figure 11b

Therefore we make the completely arbitrary decision that the condi-
tional, p — ¢, is true whenever p is false, regardless of the truth value
of ¢. This decision enables us to complete the truth table for the
conditional and it is given in Figure 11b. A glance at this truth table
shows that the conditional p — g is considered false only if p is true
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Sec. 3 COMPOUND STATEMENTS 1

and ¢ is false. If we wished, we might rationalize the arbitrary decision
made above by saying that if statement p happens to be false, then we
give the conditional p — g the “benefit of the doubt” and consider
it true. (For another reason, see Exercise 1.)

In everyday conversation it is customary to combine simple state-
ments only if they are somehow related. Thus we might say “It is
raining today and I will take an umbrella,” but we would not say
“I read a good book and I will take an umbrella.” However, the rather
ill-defined concept of relatedness is difficult to enforce. Concepts re-
lated to each other in one person’s mind need not be related in an-
other’s. In our study of compound statements no requirement of
relatedness is imposed on two statements in order that they be com-
pounded by any of the connectives. This freedom sometimes produces
strange results in the use of the conditional. For example, according
to the truth table in Figure 11b, the statement “If 2 X 2 = 5, then
black is white” is true, while the statement “If 2 X 2 = 4, then cows
are monkeys” is false. Since we use the “if . .. then .. .” form usually
only when there is a causal connection between the two statements,
we might be tempted to label both of the above statements as nonsense.
At this point it is important to remember that no such causal connec-
tion is intended in the usage of —; the meaning of the conditional is
contained in Figure 11b and nothing more is intended. This point will
be discussed again in Section 7 in connection with implication.

Closely connected to the conditional connective is the biconditional
statement, p <> ¢, which may be read “p if and only if q.”” The bi-
conditional statement asserts that if p is true, then ¢ is true, and if p
is false, then ¢ is false. Hence the biconditional is true in these cases
and false in the others, so that its truth table can be filled in as in
Figure 12.

p q peq
T T T
T F F
F T F
F F T

Figure 12
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The biconditional is the last of the five connectives which we shall
use in this chapter. The table below gives a summary of them to-
gether with the numbers of the figures giving their truth tables. Remem-

Name Symbol Translated as Truth Table
Conjunction A “and” Figure 1
Disjunction \ “or” Figure 3

(inclusive)
Negation ~ “not™ Figure 5§
Conditional — “if...then...” Figure 11b
Biconditional “ “, ..ifand onlyif...” Figure 12

ber that the complete definition of each of these connectives is given
by its truth table. The examples below show the use of the two new
connectives.

Examples. In Figures 13 and 14 the truth tables of two statements
are worked out following the procedure of Section 2.

D q p — (62 \Y q)

T T T T T T T

T F T T T T F

F T F T F T T

F F F T F F E

Step No. 1 3 1 2 1

Figure 13

D q ~ P “ (¢ — ~ q)
T T F T T | T F F T
T F F T F T T T F
F T T F T F T F T
F F T F T F T T F
Step No. 2 1 4 1 3 2 1

Figure 14
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It is also possible to form compound statements from three or more
simple statements. The next example is a compound formed from
three simple statements p, ¢, and r. Notice that there will be a total
of eight possible triples of truth values for these three statements so
that the truth table for our compound will have eight rows as shown
in Figure 15.
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Figure 15

EXERCISES

1. One way of filling in the question-marked squares in Figure 11a is
given in Figure 11b. There are three other possible ways.
(a) Write the three other truth tables.
(b) Show that each one of these truth tables has an interpretation in
terms of the connectives now available to us.

2. Write truth tables for¢ V p, ¢ A p, @ — p, q < p. Compare these with

the truth tables in Figures 3, 1, 11b, and 12, respectively.
3. Construct truth tables for
@p—@vVvn. [Ans. TTTFTTTT.]
®@VvHAP—9. [4ns. TTFFTFTF.]
© (@Vvae@Vp). [Ans. TTTT.]
(d p A ~p. [4ns. FF.]
© w—p)V@—~p). [Ans. TT.]
) @V~ Ar. [4ns. TFTFFFTF.]

® p—=@-n-ko9—0-nL [Ans. TTTTTTIT.]
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4. For each of the following statements (i) find a symbolic form, and (ii)
construct the truth table. Use the notation: p for “Joe is smart,” g for “Jim
is stupid,” r for “Joe will get the prize.”

(a) If Joe is smart and Jim is stupid, then Joe will get the prize.
[Ans. TFTTTTTIT.]
(b) Joe will get the prize if and only if either he is smart or Jim is stupid.
[Ans. TFTFTFFT.]
(c) If Jim is stupid but Joe fails to get the prize, then Joe is not smart.
[Ans. Same as (a).]

5. Construct truth tables for each of the following, and give an interpre-
tation.
@) (p —g) A (@ — p). (Compare with Figure 12.)
® (»Ag)—p.
© g—@V9.
D @—g)e(~pVa.

6. The truth table for a statement compounded from two simple state-
ments has four rows, and the truth table for a statement compounded from
three simple statements has eight rows. How many rows would the truth
table for a statement compounded from four simple statements have? How
many for five? For n? Devise a systematic way of writing down these latter
truth tables.

7. Let p be “It is raining” and g be “The wind is blowing.” Translate
each of the following into symbolic form.
(a) If it rains, then the wind blows.
(b) If the wind blows, then it rains.
(c) The wind blows if and only if it rains.
(d) If the wind blows, then it does not rain.
(e) Itis not the case that the wind blows if and only if it does not rain.

8. Construct truth tables for the statements in Exercise 7.
[Ans. TFTT; TTFT; TFFT; FTIT; TFFT.]

9, Construct truth tables for
@ (P Vq) e (~r A ~s).
®) @ Ag)— ~[~p A(rV 9l

10. Construct a truth table for ~[(~p A ~g) A (p V D).
[Ans. TTTTTTFT.]

11. Find a simpler statement having the same truth table as the one found
in Exercise 10.
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SUPPLEMENTARY EXERCISES

12. A compound statement in p and q must have one of 16 possible truth
tables. Find all of these tables.

13. For the 16 truth tables found in Exercise 12, show that eight represent
negations of eight others.

14. Find a simple compound statement for each of the 16 truth tables
found in Exercise 12. [Hint: Use the result of Exercise 13.]

15. Construct the truth table of
p—({(rvag) e ~(rAs)

16. Show that the truth table in Exercise 15 can be constructed much more
quickly by identifying the cases in which the statement is false.
[Ans. False in cases TTTT, TFIT, TFFT, TFFF.]

*4, STATEMENTS HAVING GIVEN TRUTH TABLES

In the preceding two sections we showed how to construct the truth
table for any compound statement. It is also interesting to consider
the converse problem, namely, given a truth table to find one or more
statements having this truth table. The converse problem always has
a solution and, in fact, a solution using only the connectives A, V,
and ~. The discussion which we give here is valid only for a truth
table in three variables but can easily be extended to cover the case
of n variables.

As observed in the last section, a truth table with three variables
has eight rows, one for each of the eight possible triples of truth val-
ues. Suppose that our given truth table has its last column consisting
entirely of F’s. Then it is easy to check that the truth table of the
statement p A ~p also has only F’s in its last column, so that this
statement serves as an answer to our problem. We now need consider
only truth tables having one or more T’s. The method that we shall
use is to construct statements that are true in one case only, and then
to construct the desired statement as a disjunction of these.

It is not hard to construct statements that are true in only one case.
In Figure 16 are listed eight such statements, each true in exactly
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Basic Conjunctions

Q
-

PN gN r
PN g\ r~r
PAN~g N\ r
DN\ ~g N\ ~r
~p AN gAN r
~p N g/ ~r
~pN~gN\ r
~p N\ ~g AN\ ~r
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Figure 16

one case. We shall call such statements basic conjunctions. Such a
basic conjunction contains each variable or its negation, depending
on whether the line on which it appears in Figure 16 has a T or an F
under the variable. Observe that the disjunction of two such basic
conjunctions will be true in exactly two cases, the disjunction of three
in three cases, etc. Therefore, to find a statement having a given truth
table simply form the disjunction of those basic conjunctions which
occur in Figure 16 on the rows where the given truth table has T’s.

Example 1. Find a statement whose truth table has T’s in the
first, second, and last rows, and F’s in the other rows. The required
statement is the disjunction of the first, second, and eighth basic con-
junctions, that is,

@PAGADNV@AGA~DV (~p A ~q A ~7)

Exercise 2 asks the student to show that this statement has the required
truth table,

Examp’e 2. A logician is captured by a tribe of savages and placed
in a jail having two exits. The savage chief offers the captive the
following chance to escape: “One of the doors leads to certain death
and the other to freedom. You can leave by either door. To help you
in making a decision, two of my warriors will stay with you and
answer any one question which you wish to ask of them. I must warn
you, however, that one of my warriors is completely truthful while
the other always lies.” The chief then leaves, believing that he has
given his captive only a sporting chance to escape.
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After thinking a moment, our quick-witted logician asks one ques-
tion and then chooses the door leading to freedom. What question
did he ask?

Let p be the statement “The first door leads to freedom”™ and g be
the statement “You are truthful.” It is clear that p and g are useless
questions in themselves, so let us try compound statements. We want
to ask a single question for which a “yes” answer means that p is
true and a “no” answer means that p is false, regardless of which war-
rior is asked the question. The answers desired to these questions are

listed in Figure 17.

Desired Truth Table
P q Answer of Question
T T yes T
T F yes F
F T no F
F F no T
Figure 17

The next thing to consider is, what would be the truth table of a
question having the desired answers. If the warrior answers ‘“yes”
and if he is truthful, that is, if g is true, then the truth value is T. But
if he answers “yes” and he is a liar, that is, if ¢ is false, then the truth
value is F. A similar analysis holds if the answer is “no.” The truth
values of the desired question are shown in Figure 17.

Therefore we have reduced the problem to that of finding a statement
having the truth table of Figure 17. Following the general method
outlined above, we see that the statement

@ADV (~p A~q)

will do. Hence the logician asks the question: “Does the first door
lead to freedom and are you truthful, or does the second door lead to
freedom and are you lying?” The reader can show (Exercise 3) that
the statement p <> g also has the truth table given in Figure 17, hence
a shorter equivalent question would be: “Does the first door lead to
freedom if and only if you are truthful?”

As can be seen in Example 2, the method does not necessarily yield
the simplest possible compound statement. However it has two ad-
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vantages: (1) It gives us a mechanical method of finding a statement
that solves the problem. (2) The statement appears in a standard
form. The latter will be made use of in designing switching circuits

(see Section 12).

EXERCISES

1. Show that each of the basic conjunctions in Figure 16 has a truth table
consisting of one T appearing in the row in which the statement appears in

Figure 16, and all the rest F’s.

9. Find the truth table of the compound statement constructed in Ex-
ample 1.

3. Show in Example 2 that the statement p < ¢ has the truth table of
Figure 17.

4. Construct one or more compound statements having each of the follow-
fng truth tables, (a), (b), and ©).

p q r (@) (b) (©)
T T T T F T
T T F F F T
T F T T F T
T F F F T F
F T T F F T
F T F F F T
F F T T F F
F F F F F T

5. Using only V, A, and ~, write a statement equivalent to each of the
following.
(@ peag.
(b) p—4q.
() ~(p—9.
6. Using only VvV and ~, write down a statement equivalent to p A q.
Use this result to prove that any truth table can be represented by means of
the two connectives V and ~.

In Exercises 7-10 we will study the new connective |, where p | g ex-
presses ‘‘neither p nor q.”
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7. Construct the truth table of p | q. A ,
8. Construct the truth table for p | p. What other compound has this

truth table? [Ans. Same as Figure 5.]
9. Construct the truth table for (p | @) | (» | 9). What other com-
pound has this truth table? [Ans. Same as Figure 3.]

10. Use the results of Exercises 6, 8, and 9 to show that any truth table
can be represented by means of the single connective | .

11. Use the results of Exercises 9 and 10 following Section 2 to show that
any truth table can be represented by means of the single connective |.

12. Write down a compound of p, g, r which is true if and only if exactly
one of the three components is true.

13. The “basic conjunctions” for statements having only one variable are

p and ~p. Discuss the various compound statements that can be formed by

disjunctions of these. How do these relate to the possible truth tables for

statements of one variable? What can be asserted about an arbitrary com-
pound, no matter how long, that contains only the variable p?

[Partial Ans. There are four possible truth tables.]

14. In Example 2 there is a second question, having a different truth table
than that in Figure 17, which the logician can ask. What is it?

15. A student is confronted with a true-false exam, consisting of five ques-
tions. He knows that his instructor always has more true than false questions,
and that he never has three questions in a row with the same answer. From
the nature of the first and last questions he knows that these must have the
opposite answer. The only question to which he knows the answer is number
two. And this assures him of having all answers correct. What did he know
about question two? What is the answer to the five questions?

[Ans. TFTTF.]

5. LOGICAL POSSIBILITIES

One of the most important contributions that mathematics can
make to the solution of a scientific problem is to provide an exhaustive
analysis of the logical possibilities for the problem. The role of science
is then to discover facts which will eliminate all but one possibility.
Or, if this cannot be achieved, at least science tries to estimate the
probabilities of the various possibilities.

So far we have considered only a very special case of the analysis
of logical possibilities, namely truth tables. We started with a small
number of given statements, say p, ¢, and r, and we assumed that all
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the truth table cases were possible. This amounts to assuming that the
three statements are logically unrelated (see Section 8). Then we could
determine the truth or falsity of every compound statement formed
from p, g, and r for every truth table case (every logical possibility).

But there are many more statements whose truth cannot be analyzed
in terms of the eight truth table cases discussed above. For example,
~p V (g A r A ~s)equires a finer analysis, a truth table with 16 cases.

Many of these ideas are applicable in a more general setting. Let us
suppose that we have an analysis of logical possibilities. That is, we
have a list of eventualities, such that one and only one of them can
possibly be true, We know this partly from the framework in which
the problem is considered, and partly as a matter of pure logic. We
then consider statements relative to this set of possibilities. These are
statements whose truth or falsity can be determined for each logical
possibility. For example, the set of possibilities may be the eight
truth table cases, and the statements relative to these possibilities are
the compound statements formed from p, ¢, and r. But we should
consider a more typical example.

Example 1. Let us consider the following problem, which is of a
type often studied in probability theory. “There are two urns; the
first contains two black balls and one white ball, while the second
contains one black ball and two white balls. Select an urn at random
and draw two balls in succession from it. What is the probability

Case Umn First Ball Second Ball
1 1 black black
2 1 black white
3 1 white black
4 2 black white
5 2 white black
6 2 white white
Figure 18
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at ﬁllg that ... 2 Without raising questions of probability, let us ask what
cou the possibilities are. Figures 18 and 19 give us two ways of analyzing

brmed 5 oy e
o the logical possibilities.
hility). gical posst
hlyzed
imple, Case Urmn First Ball Second Ball
cases.
[ et us 1 1 black no. 1 black no. 2
18, we 2 1 black no. 2 | black no. 1
T can
which 3 1 black no. 1 | white
c. We
se are 4 1 black no. 2 white
ogical -
eight 5 1 white black no. 1
es are
hould 6 1 white black no. 2
7 2 black white no. 1
s of a 8 2 black white no. 2
s; the
econd 9 2 white no. 1 | black
indom
ability 10 2 white no. 2 | black
11 2 white no. 1 white no. 2
12 2 white no. 2 white no. 1
Figure 19

In Figure 18 we have analyzed the possibilities as far as colors of
balls drawn was concerned. Such an analysis may be sufficient for
many purposes. In Figure 19 we have carried out a finer analysis, in
which we distinguished between balls of the same color in an urn.
For some purposes the finer analysis may be necessary.

It is important to realize that the possibilities in a given problem may
be analyzed in many different ways, from a very rough grouping to a
highly refined one. The only requirements on an analysis of logical
possibilities are:
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(1) That under any conceivable circumstances one and only one of
these possibilities must be the case, and '

(2) that the analysis is fine enough so that the truth value of each
statement under consideration in the problem is determined in
each case.

It is easy to verify that both analyses (Figures 18 and 19) satisfy
the first condition. Whether the rougher analysis will satisfy the second
condition depends on the nature of the problem. If we can limit our-
selves to statements like “Two black balls are drawn from the first
urn,” then it suffices. But if we wish to consider “The first black ball
is drawn after the second black ball from the first urn,” then the finer
analysis is needed.

Given the analysis of logical possibilities, we can ask for each asser-
tion about the problem, and for each logical possibility, whether the
assertion is true in this case. Normally, for a given statement there
will be many cases in which it is true and many in which it is false.
Logic will be able to do no more than to point out the cases in which
the statement is true. In Example 1, the statement “One white ball
and one black ball is drawn”’ is true (in Figure 18) in cases 2,3,4,and 5,
and false in cases 1 and 6. However, there are two notable exceptions,
namely, a statement that is true in every logically possible case, and
one that is false in every case. Here logic alone suffices to determine
the truth value.

A statement that is true in every logically possible case is said to be
logically true. The truth of such a statement follows from the meaning
of the words and the form of the statement, together with the context
of the problem about which the statement is made. We will see several
examples of logically true statements below. A statement that is false
in every logically possible case is said to be logically Jfalse, or to be a
self-contradiction. For example, the conjunction of any statement with
its own negation will always be a self-contradiction, since it cannot be
true under any circumstances.

In Example 1, the statement “At most two black balls are drawn”
is true in every case, in either analysis. Hence this statement is log-
ically true. It follows from the very definition of the problem that we
cannot draw more than two balls, Hence, also, the statement “Draw
three white balls” is logically false.
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What the logical possibilities are for a given set of statements will
depend on the context, i.e., on the problem that is being considered.
Unless we know what the possibilities are, we have not understood
the task before us. This does not preclude that there may be several
ways of analyzing the logical possibilities. In Example 1 above, for
example, we gave two different analyses, and others could be found.
In general, the question “How many cases are there in which p is
true” will depend on the analysis given. (This will be of importance
in our study of probability theory.) However, note that a statement
that is logically true (false) according to one analysis will be logically
true (false) according to every other analysis of the given problem.

The truth table analysis is often the roughest possible analysis.
There may be hundreds of logical possibilities, but if all we are in-
terested in are compounds formed from p and g, we need only know
when p and g are true or false. For example, a statement of the form
»—(p V ¢g) will have to be true in every conceivable case. We may
have a hundred cases, giving varying truth values for p and ¢, but
every such case must correspond to one of the four truth table cases,
as far as the compound is concerned. In each of these four cases the
compound is true, and therefore such a statement is logically true.
An example of it is “If Jones is smart, then he is smart or lucky.”

However, if the components are logically related, then a truth table
analysis may not be adequate. Let p be the statement “Jim is taller
than Bill,” while ¢ is “Bill is taller than Jim.” And consider the state-
ment, “Either Jim is not taller than Bill or Bill is not taller than Jim,”
ie., ~p V ~q. If we work the truth table of this compound, we find
that it is false in the first case. But this case is not logically possible,
since under no circumstances can p and ¢ both be true! Our com-
pound is logically true, but a truth table will not show this. Had we
made a careful analysis of the possibilities as to the heights of the
two men, we would have found that the compound statement is true
in every case. (Such relations will be considered in Section 8. This
particular pair of statements will be considered in Exercise 11 in that
section.)

Example 2. The Miracle Filter Company conducts an annual sur-
vey of the smoking habits of adult Americans. The results of the survey
are organized into 25 files, corresponding to the 25 cases in Figure 20.
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Educational
Case Sex Level Occupation
1 male 0 prof.
2 male 0 non-prof.
3 male 1 prof.
4 male 1 non-prof.
5 male 2 prof.
6 male 2 non-prof.
7 male 3 prof.
8 male 3 non-prof.
9 male 4 prof.
10 male 4 non-prof.
11 female 0 housewife
12 female 0 prof.
13 female 0 non-prof.
14 female 1 housewife
15 female 1 prof.
16 female 1 non-prof.
17 female 2 housewife
18 female 2 prof.
19 female 2 non-prof.
20 female 3 housewife
21 female 3 prof.
22 female 3 non-prof.
23 female 4 housewife
24 female 4 prof.
25 female 4 non-prof.

Figure 20

Chap. |

First, figures are kept separately for men and women. Secondly, the

educational level is noted according to the following code:

did not finish high school
finished high school, no college

some college, but no degree

college graduate, but no graduate work
did some graduate work

Finally, there is a rough occupational classification: housewife, salaried
professional, or salaried non-professional.
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They have found that this classification is adequate for their pur-
poses. For instance, to get figures on all adults in their survey who
did not go beyond high school, they pull out the files numbered 1, 2, 3,
4, 11, 12, 13, 14, 15, and 16. Or they can locate data on male profes-
sional workers by looking at files 1, 3, 5, 7, and 9.

According to their analysis, the statement ‘““The person is a housewife,
professional, or non-professional” is logically true, while the statement
“The person has educational level greater than 3, is neither profes-
sional nor non-professional, but not a female with graduate education™
is a self-contradiction. The former statement is true about all 25 files,
the latter about none.

Of course, they may at some time be forced to consider a finer
analysis of logical possibilities. For instance, “The person is a male
with annual income over $10,000” is not a statement relative to the
given possibilities. We could choose a case—say case 6—and the given
statement may be either true or false in this case. Thus the analysis is
not fine enough.

Of all the logical possibilities, one and only one represents the facts
as they are. That is, for a given person, one and oaly one of the 25 cases
is a correct description. To know which one, we need factual infor-
mation. When we say that a certain statement is ‘“‘true,” without
qualifying it, we mean that it is true in this one case. But, as we have
said before, what the case actually is lies outside the domain of logic.
Logic can tell us only what the circumstances (logical possibilities)
are under which a statement is true.

EXERCISES

1. Prove that the negation of a logically true statement is logically false,
and the negation of a logically false statement is logically true. .

2. Classify the following as (i) logically true, (ii) a self-contradiction,
(iii) neither.

(@ pep. “ [Ans. Logically true.]
(b) p — ~p.

© @Vvae—@Ag). [A4ns. Neither.]
(D (»— ~q)— (g — ~Dp).

©® @—=DA@G@—=nA~pP-—T). [4ns. Self-contradiction.]
6 @—q9) —p.

(@ [(@—q9 —pr]—p.
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3. Figure 20 gives the possible classifications of one person in the survey.
How many cases do we get if we classify two people jointly ? [Ans. 625.]

4. For each of the 25 cases in Figure 20 state whether the following state-
ment is true: “The person has had some college education, and if the person
is female then she is a housewife.”

5. In Example 1, with the logical possibilities given by Figure 18, state
the cases in which the following statements are true.
(a) Urn one is selected.
(b) At least one white ball is drawn.
(c) At most one white ball is drawn.
(d) If the first ball drawn is white, then the second is black.
(e) Two balls of different color are drawn if and only if urn one is
selected.

6. In Exaniple 1 give two logically true and two logically false statements
(other than those in the text).

7. Ina college using grades A, B, C, D, and F, how many logically possible
report cards are there for a student taking four courses? [A4ns. 625.]

8. A man has nine coins totaling 78 cents. What are the logical possi-
bilities for the distribution of the coins? [Hins: There are three possibilities. ]

9. In Exercise 8, which of the following statements are logically true and
which are logically false?

(a) He has at least one penny. [Ans. Logically true.]
(b) He has at least one nickel. [Ans. Neither.]
(c) He has exactly two nickels. [Ans. Logically false.]

(d) He has exactly three nickels if and only if he has exactly one dime.
[Ans. Logically true.]

10. In Exercise 8 we are told that the man has no nickel in his possession.
What can we infer from this ?

11. Two dice are rolled. Which of the following analyses satisfy the first
condition for logical possibilities? What is wrong with the others?
The sum of the numbers shown is:
(@@): (1) 6, (2) not 6.
(b): (1) an even number, (2) less than 6, (3) greater than 6.
©: (1) 2,(2) 3, (3) 4, (4) more than 4.
(@: (1) 7o0r11,(2)2,3,0r12,(3)4,5,6, 8,9, or 10,
(e): (1) 2, 4, or 6, (2) an odd number, (3) 10 or 12,
(f): (1) less than 5 or more than 8, (2) 5 or 6, (3) 7, (4) 8.
(g): (1) more than 5 and less than 10, (2) at most 4, (3) 7, (4) 11 or 12.
[Ans. (a), (c), (d), (f) satisfy the condition.]
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SUPPLEMENTARY EXERCISES

Note: These exercises refer to the following example: There are three urns.
The first one contains two black balls. The second one contains one black
and two white balls, while the third contains two black and two white balls.
We select an urn, and draw two balls.

12. Construct a table of the logical possibilities, similar to Figufe 18.
[Partial Ans. There are eight cases.]

13. In which cases is the statement “One black and one white ball is
drawn” true?

14. What is the status of the statement “Urn 1 is selected, and two differ-
ent color balls are drawn”’? [Ans. Logically false.]

15. Find the cases in which the statement “Urn 1 is selected if and only if
two black balls are drawn” is true.

16. How does the list of possibilities change if we don’t care about the
order in which the balls are drawn?

6. TREE DIAGRAMS

A very useful tool for the analysis of logical possibilities is the
drawing of a “tree.” This device will be illustrated by several examples.

Example 1. Consider again the survey of the Miracle Filter Com-
pany. They keep two large filing cabinets, one for men and one for
women. Each cabinet has five drawers, corresponding to the five
educational levels. Each drawer is subdivided according to occupa-
tions; drawers in the filing cabinet for men have two large folders,
while in the other cabinet each drawer has three folders.

When a clerk files a new piece of information, he first has to find
the right cabinet, then the correct drawer, and then the appropriate
folder. This three-step process of filing is shown in Figure 21. For
obvious reasons we shall call a figure like this, which starts at a point
and branches out, a tree.

Observe that the tree contains all the information relevant to classify-
ing a person interviewed. There are 25 ways of starting at the bottom
and following a path to the top. The 25 paths represent the 25 cases
in Figure 20. The order in which we performed the classification is
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/

All people
{start)

Figure 21

arbitrary. We might as well have classified first according to educa-
tional level, then according to occupation, and then according to sex.
We would still obtain a tree representing the 25 logical possibilities,
but the tree would look quite different. (See Exercise 1.)

Example 2. Next let us consider the example of Figure 18. This
is a three-stage process; first we select an urn, then draw a ball and
then draw a second ball. The tree of logical possibilities is shown in
Figure 22. We note that six is the correct number of logical possibili-

Black White Black White Black White
Block\ /Whi're Black White
First urn Second urn
Start
Figure 22

ties. The reason for this is: If we choose the first urn (which contains
two black balls and one white ball) and draw from it a black ball,
then the second draw may be of either color; however, if we draw a
white ball first, then the second ball drawn is necessarily black. Similar
remarks apply if the second urn is chosen.
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Example 3. As a final example, let us construct the tree of logical
possibilities for the outcomes of a World Series played between the
Dodgers and the Yankees. In Figure 23 is shown half of the tree,

QYAPAYRLAYAYROAQLOOOD
QY Ay Q)Y aPOAYQ ROy PO
QY ) 0. F ) b " b Y ’R®
@D/Y ~, ~ N,
— < g |

Figure 23

corresponding to the case when the Dodgers win the first game (the
dotted line at the bottom leads to the other half of the tree). In the
figure a “D”’ stands for a Dodger win and “Y”’ for a Yankee win. There
are 35 possible outcomes (corresponding to the circled letters) in the.
half-tree shown, so that the World Series can end in 70 ways.

This example is different from the previous two in that the paths.
of the tree end at different levels, corresponding to the fact that the.
World Series ends whenever one of the teams has won four games.

Not always do we wish as detailed an analysis as that provided in
the examples above. If, in Example 2, we wanted to know only the:
color and order in which the balls were drawn and not which urn they
came from, then there would be only four logical possibilities instead

- of six. Then in Figure 22 the second and fourth paths (counting from

the left) represent the same outcome, namely, a black ball followed
by a white ball. Similarly, the third and fifth paths represent the same:
outcome. Finally, if we cared only about the color of the balls drawn,
not the order, then there are only three logical possibilities: two black
balls, two white balls, or one black and one white ball.

A less detailed analysis of the possibilities for the World Series is.
also possible. For example, we can analyze the possibilities as follows:

Dodgers in four, five, six, or seven games, and Yankees in four, five,

six, or seven games. The new classification reduced the number of
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possibilities from 70 to eight. The other possibilities have not been
-eliminated but merely grouped together. Thus the statement “Dodgers
in four games” can happen in only one way, while “Dodgers in seven
‘games” can happen in 20 ways (see Figure 23). A still less detailed
analysis would be a classification according to the number of games
1in the series. Here there are only four logical possibilities. :
The student will find that it often requires several trials before the
“best” way of listing logical possibilities is found for a given problem.

EXERCISES

1. Construct a tree for Example 1, if people are first classified according
‘to educational level, then according to profession, and finally according to
sex. Is the shape of the tree the same as in Figure 21? Does it represent the
.same possibilities ?

2. In 1965 the Dodgers lost the first two games of the World Series, but
‘won the series in the end. In how many ways can the series go so that the
losing team wins the first two games? [Ans. 10.]

3. The following is a typical process in genetics: Each parent has two
-genes for a given trait, AA or Aa or aa. The child will inherit one gene from
.each parent. What are the possibilities for a child if both parents are AA?
What if one is AA and the other aa? What if one is AA and the other Aa?
What if both are Aa? Construct a tree for each process. [Let stage one be
the choice of a gene from the first parent, stage two from the second parent.
"Then see how many different types the resulting branches represent. ]

4. It is often the case that types AA and Aa (see Exercise 3) are indis-
tinguishable from the outside, but easily distinguishable from type aa. What
.are the logical possibilities if the two parents are of noticeably different types?

5. In nominating candidates for President and Vice President, a major
-party takes into account the sex of the candidate, and the part of the country
from which he comes. For the latter purpose they identify four regions: East,
Midwest, South, and West. Draw a tree for the various possibilities in select-
_ing a pair of candidates.
(a) How many cases are there?
(b) How many are there if the two candidates must not come from the
same part of the country?
(c) How many are there if, in addition, the party refuses to nominate
two women ? [Ans. (c) 36.]

6. We set up an experiment similar to that of Figure 18, but urn 1 has
14wo black balls and two white balls, while urn 2 has one white ball and
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four black balls. We select an urn, and draw three balls from it. Construct
the tree of logical possibilities. How many cases are there ? [4ns. 10.]

7. From the tree constructed in Exercise 6 answer the following questions.
(@) In how many cases do we draw three black balls?
(b) In how many cases do we draw two black balls and one white ball ?
(c) In how many cases do we draw three white balls?
(d) How many cases does this leave? What cases are these?
[Partial Ans. 3.]

8. In how many ways can the World Series be played (see Figure 23) if
the Dodgers win the first game and

(a) No team wins two games in a row. [Ans. 1.]
(b) The Dodgers win at least the odd-numbered games. [Ans. 5.]
(¢) The winning team wins four games in a row. [Ans. 4.]
(d) The losing team wins four games. [4ns. 0.]

9. A man is considering the purchase of one of four types of stocks. Each
stock may go up, go down, or stay the same after his purchase. Draw the
tree of logical possibilities.

10. For the tree constructed in Exercise 9 give a statement which
(a) Is true in half the cases.
(b) Is false in all but one case.
(c) Is true in all but one case.
(d) Is logically true.
(e) Is logically false.

11. In Exercise 6 we wish to make a rougher classification of logical possi-
bilities. What branches (in the tree there constructed) become identical if
(a) We do not care about the order in which the balls are drawn.
(b) We care neither about the order of balls, nor about the number of
the urn selected.
(c) We care only about what urn is selected, and whether the balls
drawn are all the same color.

12. Work Exercise 7 of the last section by sketching a tree diagram.

13. A menu lists a choice of soup or orange juice for an appetizer, a choice
of steak, chicken, or fish for the entree, and a choice of pie or cake for dessert.
A complete dinner consists of one choice in each case. Draw the tree for the
possible complete dinners.

(a) How many different complete dinners are possible ? [4ns. 12.]
(b) How many complete dinners are there which have chicken for the
entree ? [Ans. 4.]
(c) How many complete dinners are there available for a man who will
eat pie only if he had steak for the entree? [Ans. 8.]
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SUPPLEMENTARY EXERCISES

14. In how many different ways can 55 cents change be given, using
quarters, dimes, and nickels? Draw a tree. [Hint: To eliminate duplication,
require that larger coins be handed out before smaller ones. Let the branches
of the tree be labelled with the number of coins of each type handed out.]

[Ans. 11.]
15. Redraw the tree of Exercise 14, requiring that smaller coins be handed
out before larger ones.

16. What is the answer to Exercise 14 if only one nickel is available?

17. Draw a tree for Exercise 12 in Section 5.

18. In electing the chairman of a small committee, candidate A receives
two votes, and candidate B receives one. Draw a tree to represent the possible
orders in which the three ballots are counted. In what fraction of the cases
is A ahead all the way?

19. Redo Exercise 18 for the election in which A receives four votes and
B receives two. [Ans. % of the cases.]

7. LOGICAL RELATIONS

Until now we have considered statements in isolation. Sometimes,
however, we want to consider the relationship between pairs of state-
ments. The most interesting such relation is that one statement (log-
ically) implies the other one. If r implies s we also say that s follows
from r, or that s is (logically) deducible from r. For instance, in any
mathematical theorem the hypothesis implies the conclusion.

If we have listed all logical possibilities, then we shall characterize
implication as follows: r implies s if s is true whenever r is true, i.e.,
if s is true in all the logically possible cases in which r is true.

For compound statements having the same components, truth tables
provide a convenient method for testing this relation. In Figure 24 we
illustrate this method. Let us take p <> g as our hypothesis r. Since it
is true only in the first and fourth cases, and p — g is true in both
these cases, we see that the statement p <> g implies p —¢. On the
other hand, the statement p V g is false in the fourth case and hence
it is not implied by p <> ¢. Again, a comparison of the last two col-
umns of Figure 24 shows that the statement p — g does not imply and
is not implied by p V q.

s
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The relation of implication has a close affinity to the conditional
statement, but it is important not to confuse the two. The conditional
is a new statement compounded from two given statements, while
implication is a relation between the two statements. The connection
is the following: r implies s if and only if the conditional r — s is
logically true.

That this is the case is shown by a simple argument. The statement
r implies the statement s if s is true whenever r is true. This means
that there is no case in which r is true and s false, i.e., no case in which
r — s is false. But this in turn means that r — s is logically true. In
Exercise 1 this result will be applied to Figure 24.

p q peq | P—q | PVG

T T T T T

T F F F T

F T F T T

F F T T F
Figure 24

Let us now take up the “paradoxes” of the conditional. Conditional
statements sound paradoxical when the components are not related.
For example, it sounds strange to say that “If it is a nice day then
chalk is made of wood” is true on a rainy day. It must be remem-
bered that the conditional statement just quoted means no more and
no less than that one of the following holds: (1) It is a nice day and
chalk is made of wood, or (2) It i5 not a nice day and chalk is made of
wood, or (3) It is not a nice day and chalk is not made of wood. [See
Figure 11b.] And on a rainy day number (3) happens to be correct.

But it is by no means true that “It is a nice day” implies that “Chalk
is made of wood.” It is logically possible for the former to be true
and for the latter to be false (indeed, this is the case on a nice day,
with the usual method of chalk manufacture), hence the implication
does not hold. Thus, while the conditional quoted in the previous
paragraph is true on a given day, it is not logically true.

In common parlance “if . . . then .. .” is usually asserted on logical
grounds. Hence any usage in which such an assertion happens to be
true, but is not logically true, sounds paradoxical. Similar remarks
apply to the common usage of “if and only if.”
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If the biconditional r <> 5 is not only true but logically true, then
this establishes a relation between r and s. If r < s is true in every
logically possible case, then the statements » and s have the same truth
value in every case. We say, under these circumstances, that r and s
are (logically) eguivalent. For compound statements having the same
components, the truth table provides a convenient means of testing
for equivalence. We merely have to verify that the compounds have
the same truth table. Figure 25 establishes that ~p A ~q is equivalent

D q ~pNAN~qg | ~pVqg)

T T F F

T F F F

F T F F

F F T T
Figure 25

to ~(p V q). This is one of the so-called De Morgan laws. (See Exer-
cise 13.)

A third important relationship is that of inconsistency. Statements r
and s are inconsistent if it is impossible for both of them to be true,
in other words, if r A s is a self-contradiction. For example, the state-
ments p A g and ~q are inconsistent. An important use of logic is to
check for inconsistencies in a set of assumptions or beliefs.

EXERCISES

1. Show that (p < q) — (p — ¢) is logically true, but that (p« q) —
(pr V g) is not logically true.

2. Prove that r is equivalent to s just in case r implies s and s implies r.

3. Construct truth tables for the following compounds, and test for im-
plications and equivalences.
@ prArg
(b) p — ~q.
(© ~pV ~q.
d) ~pVva.
(&) pA~g.  [Ans. (b)equiv. (c); () impl. (d); (e) impl. (b), (c).]

L P
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4. Construct truth tables for the following compounds, and arrange them
in order so that each compound implies all the following ones.
(@) ~pegq.
() p— (~p—9).
© ~[p—@—Dp)l
dpva
(e) ~p Ag. [dns. (©); (®); (); (d); (b).]
5. Construct a compound equivalent to p A g, using only the connectives
~ and V.

6. Construct a compound equivalent to p « g, using only the connectives
— and A. (Cf. Exercise 2.)

7. Construct a compound statement equivalent to p V g, using only the
connectives ~ and A.

8. If p is logically true, prove that
(@) p V q is logically true.
(b) ~p A q is logically false.
(c) p A g is equivalent to g.
(d) ~p V q is equivalent to q.

9. If p and ¢ are logically true and r is logically false, what is the status of
PV ~g A ~r? [Ans. Logically true.]

10. Pick out an inconsistent pair from among the following four compound
statements.

r: pva.

5: p—gq.

2 ~q.

u: ~(q—p).

11. What implications hold between pairs of statements in Exercise 10?
[Ans. u implies r and s.]

12. In Exercise 10, is there an inconsistent pair among r, s, and ¢? Is it
possible that all three statements are true?

13. One of the De Morgan laws is established in Figure 25. The other one
states that ~(p A q) is equivalent to ~p V ~q. Prove this.

14. What relation exists between two logically true statements? Between
two self-contradictions?
15. Prove that
(a) A logically true statement is implied by every statement, and that

a self-contradiction implies every statement.
(b) The conjunction or disjunction of a statement with itself is equiva-

lent to the statement.
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(c) The double negation of a statement is equivalent to the statement.
(d) A statement which implies its own negation is a self-contradiction.

16. Using the results of Section 4, Exercises 10 and 11, prove that for any
compound statement there is an equivalent compound statement
(a) Whose only connective is | .
(b) Whose only connective is |.

17. What is the status of a statement equivalent to its own negation? -
[Ans. Impossible.]

*8. A SYSTEMATIC ANALYSIS OF LOGICAL
RELATIONS

The relation of implication is characterized by the fact that it is
impossible for the hypothesis to be true and the conclusion to be false.
If two statements are equivalent, it is impossible for one to be true
and the other to be false. Thus we see that for an implication one
truth table case must not occur, and for an equivalence two ot the
four truth table cases must not occur. The absence of one or more
truth table cases is thus characteristic of logical relations. In this

section we shall investigate all con-

ceivable relations that can exist be-

p 9 Case No. tween two statements.
T T I We shall say that two statements
T F 2 are unrelated if each of the four
E T 3 truth table cases (see Figure 26)
F F 4 can occur. The two statements are
related if one or more of the four
Figure 26 cases in Figure 26 cannot occur. [Cf,

Section 5.]

If p and g are statements such that exactly one of the cases in Fig-
ure 26 is excluded, then we say that there is a onefold relation between
them. Obviously there are four possible onefold relations which we
list below. (a) If case 1 is excluded, the two statements cannot both
be true. In this case p and g are said to be a pair of contraries or are
said to be inconsistent. (b) If case 2 is excluded, then (cf. Section 7
p implies g. (c) If case 3 is excluded, it is false that g is true and pis
false, that is, g implies p. (d) If case 4 is excluded, both statements
cannot be false, i.e., at least one of them is true. Such a pair of state-
ments is called a pair of subcontraries.
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If p and q are statements such that exactly two of the cases in Fig-
ure 26 are excluded, then we say that there is a twofold relation between
them. There are six ways in which two cases can be selected from
four, but several of these do not produce interesting relations. For
example, suppose cases 1 and 2 are excluded; then p cannot be true,
i.e., it is logically false. Similarly, if cases 1 and 3 are excluded, then q
is logically false. On the other hand, if cases 3 and 4 are excluded,
then p is logically true; and if 2 and 4 are excluded, then g is logically
true. Hence we see that these choices do not give us new relations;
they merely indicate that one of the two statements is logically true
or false. We now have only two alternatives remaining: (A) cases 2
and 3 are excluded, which means that the two statements are equivalent
and (B) cases 1 and 4 are excluded, which means that the two state-
ments cannot both be true and cannot both be false, in other words,
one must be true and the other false. We shall then say that p and ¢
are contradictories, or a pair of alternatives.

It is not hard to see that there are no threefold relations, for if
three of the cases in Figure 26 are excluded, then there is only one
possibility for each of the two statements, so that each must be either
logically true or logically false.

We have already discussed implication and equivalence and have
noted their connection to the conditional and the biconditional, re-
spectively. We can do the same for the three remaining relations.
If p and g are subcontraries, then they cannot both be false; since
this is the only case in which their disjunction is false, we see that p
and g are subcontraries if and only if p V ¢ is logically true. If p and q
are contraries, then they cannot both be true; since this is the only
case in which their conjunction is true, we see that p and ¢ are con-
traries if and only if p A g is logically false. Finally, if p and q are
contradictories, then cases 1 and 4 of Figure 26 are excluded, hence
P <> q is logically false. (Note also that, if p and g are contradictories,
then p V g is logically true.) The table in Figure 27 gives a summary
of the relevant facts about the six relations we have derived.

Subcontraries are not of great theoretical importance, but contraries
and contradictories are very important. Each of these relations can be
generalized to hold for more than two statements. If we have # differ-
ent statements, not all of which can be true, then we say that they are
inconsistent. Then the conjunction of these statements must be false,
Special cases of inconsistent statements are the following: if n = 1,
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Case(s) Excluded Relation Alternate Definition
T-T Contraries P A q logically false

F-F . Subcontraries P V q logically true

T-F First implies second P — q logically true

F-T Second implies first g — p logically true

T-F and F-T Equivalents D < q logically true
T-T and F-F Contradictories P < q logically false

Figure 27

then we have a single self-contradictory statement; and if n = 2, then
we have a pair of inconsistent statements (i.e., a pair of contraries).
If we have n different statements such that one and only one of
them can be true, then we say they form a complete set of alternatives.
Again the special cases are: if n = 1, then we have a single logically
true statement; and if n = 2, then we have a pair of contradictories.
Truth tables again furnish a method for recognizing when relations
hold between statements. The examples below show how the method
works. y

Examples. Consider the five compound statements, all having the
same components, which appear in Figure 28. Find all relations which
exist between pairs of these statements.

p q PAg ~pV ~q ~pVgqg ~D D—q
T T T F T F T
T - F F T F F F
F T F T T T T
F F F T T T T
Statement

Number 1 2 3 4 5

Figure 28

First of all we note that statements 3 and 5 have identical truth
tables, hence they are equivalent. Therefore we need consider only
one of them, say statement 3. Statements 1 and 2 have exactly op-
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posite truth tables, hence they are contradictories. Upon comparing
statements 1 and 3 we find no T-F case, so that 1 implies 3. Since
numbers 1 and 4 are never both true, they are contraries, while num-
bers 2 and 3 are never both false, so that they are subcontraries.
Finally, upon comparing either 2 or 3 to 4 we find no F-T case and
hence both are implied by 4. Thus the six relations we found above
are all exemplified in Figure 28. Observe also that statements ~p and ¢
give an example of a pair of unrelated statements. [Cf. Section 5.]

EXERCISES

1. Construct truth tables for the following four statements and state what
relation (if any) holds between each of the six pairs formable.
(@) ~p.
(b) ~q.
©) p A ~q.
(d) ~(~p Vv q).
[4ns. (a) and (b) unrelated; (a) and (c), (d) contraries; (c), (d) imply
(b); (0) equiv. (d).]

2. Construct truth tables for each of the following six statements. Give
an example of an unrelated pair, and an example of each of the six possible
relations among these.

(@ peg.

(b) p—4q.

(©) ~p A ~q.

(d @AQV(~p A ~qg).
(&) ~q.

®) pA~q.

3. Prove the following assertions.

(a) The disjunction of two contradictory statements is logically true.
(b) The contradictories of two contraries are subcontraries.

4. What is the relation between the following pair of statements?

@ p—[p A ~gVn)l

(®) ~p V (~g A ~r). [Ans. Equivalent.]
5. At most how many of the following assertions can one person con-

sistently believe?

(a) Joe is smart.

(b) Joe is unlucky.

(c) Joe is lucky but not smart.
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(d) If Joe is smart, then he is unlucky.
(e) Joe is smart if and only if he is lucky.
(f) Either Joe is smart, or he is lucky, but not both. [Ans. 4.]

6. Prove the following assertions.
(a) The contradictories of two equivalent statements are equivalent.
(b) In a complete set of alternatives any two statements are contraries.
(c) If p and g are subcontraries, and if each implies r, then r is logically
true.

7. Pick out a complete set of (four) alternatives from the following.
(a) It is raining but the wind is not blowing.
(b) It rains if and only if the wind blows.
(c) It is not the case that it rains and the wind blows.
(d) It is raining and the wind is blowing.
(e) It is neither raining nor is the wind blowing.
(f) Itis not the case that it is raining or the wind is not blowing.

[Ans. (a); (d); (e); (f).]
8. What is the relation between [pV ~(gV )V (p A 5)] and
~PAgATAST [4ns. Subcontraries.]

9. Suppose that p and g are contraries® What is the relation between
(a) p and ~q.
(b) ~p and q.
(c) ~pand ~q.
(d) p and ~p.

10. Let p, g, and r be three statements such that any two of them are un-
related. Discuss the possible relations among the three statements. [Hinz: If
we ignore the order of the statements, there are 16 such relations. The rela-
tions are at most fourfold. There are two fourfold relations, and 12 relations
are found from these by excluding fewer cases. There are two other possible
relations. ]

11. In Section 5 we considered an example comparing the height of two
men. Suppose that we allow for the possibilities: below 5 ft. 9 in., 5 ft. 9 in.,
5 ft. 10 in., 5 ft. 11 in., 6 ft. 0 in., above 6 ft. We will, for the purpose of this
problem, consider two men of the same height if they fall into the same cate-
gory according to the above analysis.

(a) Construct the set of all possibilities for a pair of men, Jim and Bill.
(b) Find the cases in which “Jim is taller than Bill”’ is true.

(c) Find the cases where “Bill is taller than Jim” is true.

(d) Are all four truth table cases present ?

(e) What is the relation between the two statements ?

12. Construct the set of logical possibilities which classify a person with
respect to sex and marital status.

S
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(a) Show that “If the person is a bachelor, then he is unmarried” is
logically true.

(b) Show that “If a person is an old maid, then the person is a man”
is not logically false.

(c) Find the relation between “The person is a man” and “The person
is a bachelor.”

(d) Find a simple statement that is a subcontrary of “The person is a
man” and is consistent with it.

*9. VARIANTS OF THE CONDITIONAL

The conditional of two statements differs from the biconditional
and from disjunctions and conjunctions of these two in that it lacks
symmetry. Thus p V ¢ is equivalent to ¢ V p, p A g is equivalent
to g A p, and p < g is equivalent to g < p; but p — q is not equivalent
to g — p. The latter statement, ¢ — p, is called the converse of p —gq.
Many of the most common fallacies in thinking arise from a confusion
of a statement with its converse.

It is of interest to consider conditionals formed from the statements
p and g and their negations. The truth tables of four such conditionals
together with their names are tabulated in Figure 29. We note that

Converse of
Converse of Contra- Contra-
Conditional | Conditional positive positive
D q p—q q—p ~p—~q ~g —>~p
T T T T T T
T F F T T F
F T T F F T
F F T T T T
Figure 29

p — q is equivalent to ~g — ~p. The latter is called the contrapositive
of the former. For many arguments the contrapositive is a very
useful form of the conditional. In the same manner the statement
~p — ~q is the converse of the contrapositive. Since the contra-
positive is equivalent to p — ¢, the converse of the former is equivalent
to the converse of the latter as can be seen in Figure 29.
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The use of conditionals seems to cause more trouble than the use
of the other connectives, perhaps because of the lack of symmetry,
but also perhaps because there are so many different ways of express-
ing conditionals. In many cases only a careful analysis of a condi-
tional statement shows whether the person making the assertion means
the given conditional or its converse. Indeed, sometimes he means
both of these, i.e., he means the biconditional. (See Exercise 5.)

The statement “I will go for a walk only if the sun shines” is a
variant of a conditional statement. A statement of the form “p only
if g” is closely related to the statement “If p then ¢, but just how?
Actually the two express the same idea. The statement “p only if ¢”
states that “If ~¢ then ~p” and hence is equivalent to “If p then q.”
Thus the statement at the beginning of the paragraph is equivalent
to the statement, “If I go for a walk, then the sun will be shining.”

Other phrases, in common use by mathematicians, which indicate
a conditional statement are: “‘a necessary condition” and “‘a sufficient
condition.” To say that p is a sufficient condition for g means that
if p takes place, then g will also take place. Hence the sentence “p is
a sufficient condition for ¢” is equivalent to the sentence “If p then ¢.”

Similarly, the sentence “p is a necessary condition for ¢”* is equivalent
to “g only if p.” Since we know that the latter is equivalent to “If ¢
then p,” it follows that the assertion of a necessary condition is the
converse of the assertion of a sufficient condition.

Finally, if both a conditional statement and its converse are asserted,
then effectively the biconditional statement is being asserted. Hence the
assertion “p is a necessary and sufficient condition for ¢” is equivalent
to the assertion “p if and only if ¢.”

These various equivalences are summarized in Figure 30.

Basic Statement Equivalent Forms

If ptheng ~ ponly if g
p is a sufficient condition for ¢

If g then p g only if p
P is a necessary condition for ¢

pifand only if g ? is a necessary and sufficient condition for P

¢ P Figure 30 b f'
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EXERCISES

1. Let p stand for *I will pass this course” and ¢ for “I will do homework
regularly.” Put the following statements into symbolic form.

(a) I will pass the course only if I do homework regularly.

(b) Doing homework regularly is a necessary condition for me to pass
this course.

(c) Passing this course is a sufficient condition for me to do homework
regularly.

(d) I will pass this course if and only if I do homework regularly.

(e) Doing homework regularly is a necessary and sufficient condition
for me to pass this course.

2. Take the statement in part (a) of the previous exercise. Form its con-
verse, its contrapositive, and the converse of the contrapositive. For each of
these give both a verbal and a symbolic form.

3. Let p stand for “It snows’ and q for “The train is late.” Put the follow-
ing statements into symbolic form.
(a) Snowing is a sufficient condition for the train to be late.
(b) Snowing is a necessary and sufficient condition for the train to be
late. .
(c) The train is late only if it snows.

4. Take the statement in part (a) of the previous exercise. Form its con-
verse, its contrapositive, and the converse of its contrapositive. Give a verbal
form of each of them.

5. Prove that the conjunction of a conditional and its converse is equiva-
lent to the biconditional.

6. To what is the conjunction of the contrapositive and its converse
equivalent? Prove it.

7. Prove that
(a) ~~p is equivalent to p.
(b) The contrapositive of the contrapositive is equivalent to the original
conditional.

8. “For a matrix to have an inverse it is necessary that its determinant
be different from zero.” Which of the following statements follow from this ?
[No knowledge of matrices is required.]

(a) For a matrix to have an inverse it is sufficient that its determinant
be zero. '

(b) For its determinant to be different from zero it is sufficient for the
matrix to have an inverse.
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(c) For its determinant to be zero it is necessary that the matrix have
no inverse.
(d) A matrix has an inverse if and only if its determinant is not zero.
(e) A matrix has a zero determinant only if it has no inverse.
[Ans. (b); (€); (e).]
9. “A function that is differentiable is continuous.” This statement is
true for all functions, but its converse is not always true. Which of the
following statements are true for all functions? [No knowledge of functions
is required.]
(a) A function is differentiable only if it is continuous.
(b) A function is continuous only if it is differentiable.
(c) Being differentiable is a necessary condition for a function to be
continuous.
(d) Being differentiable is a sufficient condition for a function to be
continuous.
(e) Being differentiable is a necessary and sufficient condition for a
function to be differentiable. [Ans. (a); (d); (e).]

10. Prove that the negation of “p is a necessary and sufficient condition
for ¢” is equivalent to “p is a necessary and sufficient condition for ~gq.”

*10. VALID ARGUMENTS

One of the most important tasks of a logician is the checking of
arguments. By an argument we shall mean the assertion that a certain
statement (the conclusion) follows from other statements (the premises).
An argument will be said to be valid if and only if the conjunction of
the premises implies the conclusion, i.e., if the premises are all true,
the conclusion must also be true.

It is important to realize that the truth of the conclusion is irrelevant
as far as the test of the validity of the argument goes. A true conclusion
is neither necessary nor sufficient for the validity of the argument.
The two examples below show this, and they also show the form in
which we shall state arguments, i.e., first we state the premises, then
draw a line, and then state the conclusion.

Example 1.

If the United States is a democracy, then its
citizens have the right to vote.
Its citizens do have the right to vote.

Therefore the United States is a'democracy.
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The conclusion is, of course, true. However, the argument is not
valid since the conclusion does not follow from the two premises.

Example 2.

To pass this Math course you must be a genius.
Every player on the football team has passed this course.
The captain of the football team is not a genius.
Therefore the captain of the football team does not

play on the team.

Here the conclusion is false, but the argument is valid since the
conclusion follows from the premises. If we observe that the first
premise is false, the paradox disappears. There is nothing surprising
in the correct derivation of a false conclusion from false premises.

If an argument is valid, then the conjunction of the premises implies
the conclusion. Hence if all the premises are true, then the conclusion
is also true. However, if one or more of the premises is false, so that
the conjunction of all the premises is false, then the conclusion may
be either true or false. In fact, all the premises could be false, the
conclusion true, and the argument valid, as the following example
shows. ‘

Example 3.

All dogs have two legs.
All two-legged animals are carnivorous.
Therefore, all dogs are carnivorous.

Here the argument is valid and the conclusion is true, but both
premises are false!

Each of these examples underlines the fact that neither the truth
value nor the content of the statements appearing in an argument

affect the validity of the argument. In Figures 31a and 31b are two
valid forms of arguments.

p—q pP—q
b____ ~q )
S q oo ~p
Figure 3la Figure 31b

The symbol .. means “therefore.” The truth tables for these argu-
ment forms appear in Figure 32.
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D q pP—q p q pP—q ~q ~p
T T T T T T F F
T F F T F F T F
F T T F T T F T
F F T F F T T T
Figure 32

For the argument of Figure 31a, we see in Figure 32 that there is only

one case in which both premises are true, namely, the first case, and -

in this case the conclusion is true, hence the argument is valid. Simi-
larly, in the argument of Figure 31b, both premises are true in the
fourth case only, and in this case the conclusion is also true, hence
the argument is valid.

An argument that is not valid is called a fallacy. Two examples of
fallacies are the following argument forms.

p—q p—q
q Fallacies ~p
S p Soo~g

In the first fallacy, both premises are true in the first and third cases
of Figure 32, but the conclusion is false in the third case, so that the
argument is invalid. (This is the form of Example 1.) Similarly, in
the second fallacy we see that both premises are true in the last two
cases, but the conclusion is false in the third case.,

We say that an argument depends only upon its form in that it
does not matter what the components of the argument are. The truth
tables in Figure 32 show that if both premises are true, then the con-
clusions of the arguments in Figures 31a and 31b are also true. For the
fallacies above, the truth tables show that it is possible to choose both
premises true without making the conclusion true, namely, choose a
false p and a true gq.

Example 4. Consider the following argument.

pP—q
q—r

SDor

The truth table of the argument appears in Figure 33.
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Both premises are true in the first, fifth, seventh, and eighth rows
of the truth table. Since in each of these cases the conclusion is also
true, the argument is valid. (Example 3 can be written in this form.)

Once we have discovered that a certain form of argument is valid,
we can use it in drawing conclusions. It is then no longer necessary
to compute truth tables. Presumably, this is what we do when we
reason in everyday life; we apply a variety of valid forms known to us
from previous experience. However, the truth table method has one
great advantage: It is always applicable and purely automatic. We can
even get a computer to test the validity of arguments involving com-
pound statements.

EXERCISES

1. Test the validity of the following arguments.

@ peoeg ®) pPVg © PAq
P ~p ~p—q
..- q o.c q Q.l Nq

[4ns. (a), (b) are valid.]

2. Test the validity of the following arguments.

(@ P— q (b) P q
NQ—-—)N" ~r——)~g
o r— p o AP — ~D

[Ans. (b) is valid.]
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3. Test the validity of the argument

pPeq
gvr

~r

So~p [4ns. Not valid.]

4. Test the validity of the argument
PY g

~q — r
~p\ ~r
~p

5. Test the validity of the argument

p— q
~p— ~q

PN~

... s

6. Given are the premises ~p — g and ~r — ~q. We wish to find a valid
conclusion involving p and r (if there is any).

(a) Construct truth tables for the two premises.

(b) Note the cases in which the conclusion must be true.

(c) Construct a truth table for a combination of p and r only, filling
in T wherever necessary.

(d) Fill in the remainder of the truth table, making sure that you do
not end up with a logically true statement.

(e) What combination of p and r has this truth table? This is a valid
conclusion. [Ans. p v r.]

7. Translate the following argument into symbolic form, and test its
validity.
If this is a good course, then it is worth taking.
Either the grading is lenient, or the course is not
worth taking.
But the grading is not lenient.
Therefore, this is not a good course. [Ans. Valid.]

8. Write the following argument in symbolic form, and test its validity,

“For the candidate to win, it is sufficient that he carry New York.
He will carry New York only if he takes a strong stand on civil
rights. He will not take a strong stand on civil rights. Therefore,
he will not win.” ‘

\
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9. Write the following argument in symbolic form and test its validity,

“Father praises me only if I can be proud of myself. Either I do
well in sports or I cannot be proud of myself. If I study hard,
then I cannot do well in sports. Therefore, if father praises me,
then I do not study hard.”

10. Supply a conclusion to the following argument, making it a valid
argument. [Adapted from Lewis Carroll.]

“If he goes to a party, he does not fail to brush his hair.

To look fascinating it is necessary to be tidy.

If he is an opium eater, then he has no self-command.

If he brushes his hair, he looks fascinating.

He wears white kid gloves only if he goes to a party.

Having no self-command is sufficient to make one look untidy.
Therefore . . .”

SUPPLEMENTARY EXERCISES

11. Show that the following method may be used for testing the validity of
an argument: Find the cases in which the conclusion is false, and show that
in each case at least one premise is false.

12. Use the method of Exercise 11 to test Example 4.
13. Redo Exercise 1 using the method of Exercise 11.
14. Redo Exercise 4 using the method of Exercise 11.
15. Draw a valid conclusion from the following premises.

Either he is a man or a mouse.

He has no skill in athletics.

To be a man it is necessary to command respect.

A man can command respect only if he has some athletic skill.

16. Draw a valid conclusion from the following premises.

Either he will go to graduate school, or he will be drafted.
If he does not go to graduate school, he will get married.
If he gets married, he will need a good income.

He will not have a good income in the Army.

*11. THE INDIRECT METHOD OF PROOF

A proof is an argument which shows that a conditional statement
of the form p —gq is logically true. (Namely, p is the conjunction
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of the premises, and ¢ is the conclusion of the argument.) Sometimes
it is more convenient to show that an equivalent conditional statement
is logically true.

Exampleil. Let x and y be positive integers.

Theorem. If xy is an odd number, then x and y are both odd.

Proof. Suppose, on the contrary, that they are not both odd. Then
one of them is even, say x = 2z. Then xy = 2zy is an even number,
contrary to hypothesis. Hence we have proved our theorem.

Example 2. “He did not know the first name of the president of
the Jones Corporation, hence he cannot be an employee of that firm.
Why? Because every employee of that firm calls the boss by his first
name (behind his back). Therefore, if he were really an employee of
Jones, then he would know Jones’s first name.”

These are simple examples of a very common form of argument,
frequently used both in mathematics and in everyday discussions.
Let us try to unravel the form of the argument.

Given: xy is an odd number. He doesn’t know Jones's p
first name,
To prove: xand yarebothoddnum- He doesn’t work for Jones. q
bers.
Suppose: x and y are not both odd He does work for Jones. ~q
numbers.
Then: xy is an even number. He must know what Jones’s ~p
first name is.

In each case we assume the contradictory to the conclusion and derive,
by a valid argument, a result contradictory to the hypothesis. This is
one form of the indirect method of proof.

To restate, what we want to do is to show that the conditional
p —q is logically true; what we actually show is that the contra-
positive

(D ~q— ~p

is loglcally true. Since these two statements are equ:lvalent our pro-

cedure is valid. (See Section 9.)

There are several other important variants of this method of proof.
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It is easy to check that the following statements have the same truth
table as (are equivalent to) the conditional p — g.

@) (p N\ ~q) — ~p.
(3) (p A ~9)—q.
4 (P A ~g)—(r A ~n).

Statement (2) shows that in the indirect method of proof we may make
use of the original hypothesis in addition to the contradictory assump-
tion ~gq. Statement (3) shows that we may also use this double hy-
pothesis in the direct proof of the conclusion g. Statement (4) shows
that if, from the double hypothesis p and ~q we can arrive at a con-
tradiction of the form » A ~r, then the proof of the original statement
is complete. This last form of the method is often referred to as
reductio ad absurdum.

These last forms of the method are very useful for the following
reasons: First of all we see that we can always take ~g as a hypothesis
in addition to p. Second we see that besides g there are two other
conclusions (~p or a contradiction) which are just as good.

EXERCISES

1. Construct indirect proofs for the following assertions.
(a) If x*is odd, then x is odd (x an integer).
(b) If I am to pass this course, I must do homework regularly.
(c) If he earns a great deal of money (more than $30,000), he is not a
college professor.

2. Give a symbolic analysis of the following argument.

“If he is to succeed, he must be both competent and lucky. Be-
cause, if he is not competent, then it is impossible for him to
succeed. If he is not lucky, something is sure to go wrong.”

3. Construct indirect proofs for the following assertions.
(@) If p V g and ~q, then p.
(b) If p» g and g — ~r and r, then ~p.

4. Give a symbolic analysis of the following argument.

“If Jones is the murderer, then he knows the exact time of death
and the murder weapon. Therefore, if he does not know the exact
time or does not know the weapon, then he is not the murderer.”

5. Verify that forms (2), (3), and (4) given above are equivalent to p — g.
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6. Give an example of an indirect proof of some statement in which from
p and ~q a contradiction is derived.

7. Give a statement equivalent to (p A ¢) — r, which is in terms of ~p,
~g, and ~r. Show how this can be used in a proof where there are two
hypotheses given.

8. Use the indirect method to establish the validity of the following
argument.

PN ¢

~pD— r
r— s
qg—~s

S D

9. Use the indirect method on Exercise 7 of Section 10.

*12. APPLICATIONS TO SWITCHING CIRCUITS

The theory of compound statements has many applications to sub-
jects other than pure mathematics. As an example we shall develop a
theory of simple switching networks.

A switching network is an arrangement of wires and switches which
connect together two terminals T, and T,. Each switch can be either
“open” or ‘“closed.” An open switch prevents the flow of current,
while a closed switch permits flow. The problem that we want to
solve is the following: Given a network and given the knowledge of
which switches are closed, determine whether or not current will flow
from T, to T..

Figure 34 shows the simplest kind of a network in which the terminals
are connected by a single wire containing a switch P. If P is closed,
then current will flow between the terminals; otherwise it does not.

T, P T, T, P Q . T,
Figure 34 Figure 35

The network in Figure 35 has two switches P and Q in “series.” Here
the current flows only if both P and Q are closed.

To see how our logical analysis can be used to solve the problem
stated above, let us associate a statement with each switch. Let p be
the statement “Switch P is closed” and let ¢ be the statement “Switch
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Q is closed.” Then in Figure 34 current will flow if and only if p is
true. Similarly, in Figure 35 the current will flow if and only if both
p and q are true, that is, if and only if p A ¢ is true. Thus the first
circuit is represented by p and the second by p A gq.

In Figure 36 is shown a network with switches P and Q in “parallel.”
In this case the current flows if either of the switches is closed, so the
circuit is represented by the statement p V g.

P P Q

T— T, Ty *T,
Q R S
Figure 36 Figure 37

The network in Figure 37 combines the series and parallel types
of connections. The upper branch of the network is represented by the
statement p A g and the lower by r A s; hence the entire circuit is
represented by (p A q) V (r A s). Since there are four switches and
each one can be either open or closed, there are 2¢ = 16 possible set-
tings for these switches. Similarly, the statement (p A ¢) V (r A s) has
four variables, so that its truth table has 16 rows in it. The switch
settings for which current flows correspond to the entries in the truth
table for which the above compound statement is true.

Switches need not always act independently of each other. It is
possible to couple two or more switches together so that they open
and close simultaneously, and we shall indicate this in diagrams by
giving all such switches the same letter. It is also possible to couple
two switches together, so that if one is closed, the other is open. We
shall indicate this by giving the first switch the letter P and the second
the letter P’. Then the statement “P is closed” is true if and only if
the statement “P’ is closed” is

false. Therefore if p is the state- P
ment “P is closed,” then ~p is p'— Q' .
equivalent to the statement “P’ is  Ty*—] . T2
closed.” P Q

Such a circuit is illustrated in Figure 38

Figure 38. The associated com-

pound statementis [p V (~p A ~g)] V [p A q]. Since this statement is
false only if p is false and g is true, the current will flow unless P is open
and Q is closed. We can also check directly. If P is closed, current will
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flow through the top branch regardless of Q’s setting. If both switches
are open, then P’ and Q' will be closed, so that current will flow through
the middle branch. But if P is open and Q is closed, none of the
branches will pass current.

Notice that we never had to consider current flow through the
bottom branch. The logical counterpart of this fact is that the state-
ment associated with the network is equivalent to (2 V (~p A ~q)]
whose associated network is just the upper two branches of Figure 38.
Thus the electrical properties of the circuit of Figure 38 would be the
same if the lower branch were omitted.

As a last problem, we shall consider the design of a switching net-
work having certain specified properties. An equivalent problem, which
we solved in Section 4, is that of constructing a compound statement
having a given truth table. As in that section, we shall limit ourselves
to statements having three variables, although our methods could
easily be extended.

In Section 4 we developed a general method for finding a statement
having a given truth table not consisting entirely of F’s. (The circuit
which corresponds to a statement whose truth table consists entirely
of F’s is one in which current never flows, and hence is not of inter-
est.) Each such statement could be constructed as a disjunction of
basic conjunctions. Since the basic conjunctions were of the form
PANGAT, pAgA~r, etc, each will be represented by a circuit
consisting of three switches in series and will be called a basic series
circuit. The disjunction of certain of these basic conjunctions will
then be represented by the circuit obtained by putting several basic
series circuits in parallel. The resulting network will not, in general,
be the simplest possible such network fulfilling the requirements, but
the method always suffices to find one.

Example. A three-man committee wishes to employ an electric
circuit to record a secret simple majority vote. Design a circuit so
that each member can push a button for his “yes” vote (not push it
for a “no” vote), and so that a signal light will go on if a majority
of the committee members vote yes.

Let p be the statement “Committee member 1 votes yes,” let g be
the statement “Member 2 votes yes,” and let » be “Member 3 votes
yes.” The truth table of the statement “Majority of the members
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Desired Corresponding

Truth Basic
p q r Value Conjunction
T T T T PAN gAN r
T T F T PAN gAr~~r
T F T T DPA~GAN 1
T F F F PN ~gN-~r
F T T T ~p N gqAN T
F T F F ~pN gqgN-~r
F F T F ~pA~GAN T
F F F F ~D N ~q N\ ~r

Figure 39

vote yes’ appears in Figure 39. From that figure we can read off the
desired compound statement as

@AGADND@AGA~HN (PA~GADV (~p AgAP.
The circuit desired for the voting procedure appears in Figure 40.

Voting buttons

R S 4
P Q R

P Q R'
P—Q—R
P—Q—R

ik o
Light
Voltage source

. Figure 40

EXERCISES

1. What kind of a circuit has a logically true statement assigned to it?
Give an example.

2. Construct a network corresponding to
[PA~V(~p AD]V (~p A ~9).
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3. What compound statement represents the following circuit ?

P Q

Te— —P—T,

P—Q-

Q

4. Work out the truth table of the statement in Exercise 3. What does
this tell us about the circuit ?

5. Design a simpler circuit than the one in Exercise 3, having the same
properties.

6. Construct a network corresponding to

[PV A~V [(~p A rVql.

7. Design a circuit for an electrical version of the game of matching

-

8. In a large hall it is desired to turn the lights on or off from any one of
four switches on the four walls. This can be accomplished by designing a
circuit which turns the light on if an'even number of switches are closed, and
off if an odd number are closed. (Why does this solve the problem?) Design
such a circuit.

9. A committee has five members. It takes a majority vote to carry a
Ineasure, except that the chairman has a veto (i.e., the measure carries only
if he votes for it). Design a circuit for the committee, so that each member
votes for a measure by pressing a button, and the light goes on if and only
if the measure is carried,

10. A group of candidates is asked to take a true-false exam, with four
questions. Design a circuit such that a candidate can push the buttons of
those questions to which he wants to answer “true,” and that the circuit

will indicate the number of correct answers. [Hint: Have five lights, corre-
sponding to 0, 1, 2, 3, 4 correct answers, respectively.]

11. Devise a scheme for working truth tables by means of switching
circuits,

12. Figure 40 uses 12 switches. Find a circuit that accomplishes the same
goal with only 5 switches. Check that the corresponding truth table agrees
with Figure 39,
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