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Vectors and matrices

1. COLUMN AND ROW VECTORS

A column vector is an ordered collection of numbers written in a
column. Examples of such vectors are

(3 69 (o) () "%

The individual numbers in these vectors are called components, and the
number of components a vector has is one of its distinguishing charac-
teristics. Thus the first two vectors above have two components, the
next two have three components, and the last has four components.
When talking more generally about n-component column vectors we
shall write

23}

Uz

Un
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Analogously, a row vector is an ordered collection of numbers written

in a row. Examples of row vectors are
(19 O)s (_23 1)3 (23 _33 49 0)9 (— 1, 2’ _33 4’ _5)'

Each number appearing in the vector is again called a component of
the vector, and the number of components a row vector has is again
one of its important characteristics. Thus, the first two examples are
two-component, the third a four-component, and the fourth a five-
component vector. The vector v = (vy, vy, . . ., 2,) iS an n-component

row vector.
Two row vectors, or two column vectors, are said to be equal if and

and only if corresponding components of the vector are equal. Thus
for the vectors

=2, 0=(;) w=02, x=n,

we see that 4 = w but u ¢ ¢, and u # x.
If u and v are three-component column vectors, we shall define their

sum u -+ v by component-wise addition as follows:

251 (41 U+ 0
u+v= Uy + Vg | = u2+l‘2.
U3 U3 us + 13

Similarly, if »# and v are three-component row vectors, their sum is
defined to be
u + V= (ll1, Us, U3) -+ (1)1, (A 1)3)

= (uy + v, ug + 0o, uz + 3).

Note that the sum of two three-component vectors yields another three-
component vector. For example,

1 2 3
—1]+( 3)=(2)
2 —1 1

and -
(4, —7,12) + (3,14, —14) = (7,7, —2).

The sum of two n-component vectors (either row or column) is de-
fined by component-wise addition in an analogous manner, and yields
another n-component vector. Observe that we do not define the addi-
tion of vectors unless they are both row or both column vectors, having
the same number of components.
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Because the order in which two numbers are added is immaterial as
far as the answer goes, it is also true that the order in which vectors
are added does not matter; that is,

u-tv=v+4u,

where u and v are both row or both column vectors. This is the so-called
commutative law of addition. A numerical example is

()+(3)-0)-C))

Once we have the definition of the addition of two vectors we can
easily see how to add three or more vectors by grouping them in pairs
as in the addition of numbers. For example,

() 6)-6)+6)- 6)-C)+)-C)

and
(1,0,0) 4+ (0,2,0) + (0,0, 3) = (1,2,0) + (0, 0, 3) = (1, 2, 3)
= (1,0,0)+ (0,2,3) = (1, 2, 3).

In general, the sum of any number of vectors (row or column), each
having the same number of components, is the vector whose first com-
ponent is the sum of the first components of the vectors, whose second
component is the sum of the second components, etc.

The multiplication of a number a times a vector v is defined by
component-wise multiplication of a times the components of ». For
the three-component case we have

Uy au,
au = al u: | = | aus
Uz (2472}

av = a(vy, s, v3) = (avy, are, avy)

for column vectors and

for row vectors. If u is an n-component vector (row or column), then
au is defined similarly by component-wise multiplication.

If u is any vector we define its negative —u to be the vector —u =
(—1u. Thus in the three-component case for row vectors we have

—u = (— D, ts, us) = (—uy, —ug, —u3).
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Once we have the negative of a vector it is easy to see how to subtract
vectors, i.e., we simply add “algebraically.” For the three-component
column vector case we have '

73 (51 Uy — 0
U—DVD={U)—|])=]|U — 1] 8
U3 Us Uy — 03

Specific examples of subtraction of vectors occur in the exercises at the
end of this section.

An important vector is the zero vector all of whose components are
zero. For example, three-component zero vectors are '

0
0={0) and 0= (0,0,0).
0

When there is no danger of confusion we shall use the symbol 0, as
above, to denote the zero (row or column) vector. The meaning will
be clear from the context. The zero vector has the important property
that, if u is any vector, then u + 0 = u. A proof for the three-compo-
nent column vector case is as follows:

u 0 ul+0 251
u—|—0= Usg + 0] = u2+0 =l = U
Uz 0 us + 0 U3

One of the chief advantages of the vector notation is that one can
denote a whole collection of numbers by a single letter such as u,
v ...,and treat such a collection as if it were a single quantity. By
using the vector notation it is possible to state very complicated rela-
tionships in a simple manner. The student will see many examples of
this in the remainder of the present chapter and the two succeeding
chapters.

EXERCISES

1. Compute the quantities below for the vectors
3 -2 -1
u=1\{1}) v = 3}, w=|—-11].
2 0 1
(a) 2u. [Ans. <§>]
4
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(b) —o.
(©) 2u —»,
-3
@ v+ w. [Ans. ( 2>.]
1
© ut+v—w
® 2u—30—w.
9
(g 3u — v+ 2w, [Ans. <—2>.]
8

2. Compute (a) through (g) of Exercise 1 if the vectors u, v, and w are
U= (7’ 09 —3)9 v = (2, 1: —5)1 w = (1’ —1’ O)-

3. (a) Show that the zero vector is not changed when multiplied by any
number.
(b) If u is any vector, show that 0 4 u = u.

4. If u and v are two row or two column vectors having the same number
of components, prove that ¥ + Ov = ux and Qu + v = v.

5. If 2u — v = 0, what is the relationship between the components of u
and those of »? [Ans. v; = 2u;.]

6. Answer the question in Exercise 5 for the equation —3u + 50 + u —
7v = 0. Do the same for the equation 20v — 3u + 50 + 8u = 0.

7. When possible, compute the following sums; when not possible, give

reasons.
6

@(“D+-‘§=?

@(i®+7—2L+G>=?

1 1 0
(@ 1<0>+2<1>-|;3<1> = ?
1 0 1
1 U 1
8. If<l> -+ <u2> = <—1>, find uy, u,, and u;. [Ans. 0; —2; —2.]
2 uz/ - 0

[ 0
9. If 2 <’02> = <1>, fd the components of .

V3 3
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0 u 0

10. If <O) + <u2> = <0>, what can be said concerning the components
0 Us 0

Uy, Ug, us?

u; 0

11. If 0-<u2> = <0>, what can be said concerning the components u;,
Uz 0

U, us?

12. Suppose that we associate with each person a three-component row
vector having the following entries: age, height, and weight. Would it make
sense to add together the vectors associated with two different persons?
Would it make sense to multiply one of these vectors by a constant?

13. Suppose that we associate with each person leaving a supermarket a
row vector whose components give the quantities of each available item that
he has purchased. Answer the same questions as those in Exercise 12.

14. Let us associate with each supermarket a column vector whose entries
give the prices of each item in the store. Would it make sense to add together
the vectors associated with two different supermarkets? Would it make sense
to multiply one of these vectors by a constant? Discuss the differences in
the situations given in Exercises 12, 13, and 14.

SUPPLEMENTARY EXERCISES

15. In a certain school students take four courses each semester. At the
end of the semester the registrar records the grades of each student as a row
vector. He then gives the student 4 points for each A, 3 points for each B,
2 points for each C, 1 point for each D, and 0 for each F. The sum of these
numbers, divided by 4 is the student’s grade point average.

(2) If a student has a 4.0 average, what are the logical possibilities for
his grade vector?

(b) What are the possibilities if he has a 3.0 average?

(c) What are the possibilities if he has a 2.0 average?

16. Consider the vectors

x (xz) ’ Y (J’z)
Show that the vector
ix +y)

has components that are the averages of the components of x and y. Gen-
eralize this result to the case of n vectors.
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17. (a) Show that the vector equation

(-3)+(79)- ()

represents two simultaneous linear equations for the two variables

x and y.
(b) Solve these equations for x and y and substitute into the above
vector equation to check your work.

18. Write the following simultaneous linear equations in vector form

ax-+ by =e
cx +dy = f.

[Hint: Follow the form given in Exercise 17.]

19, Letx = (x1>. Define x > 0 to be the conjunction of the statements

X2
x1 > 0 and x; > 0. Define x < 0 analogously. Now prove that if x > 0,
then —x < 0.
20. Using the definition in Exercise 19, define x > y to mean x — y > 0,
where x and y are vectors of the same shape. Consider the following four

vectors:
-1 —4 1 4
x = < 2), y = ( 0>, u= <1>, v = <5>
0 -1 1 6

(a) Show that x > y.

(b) Show that u > y.

(c) Is there any relationship between x and u?
(d) Show thatv > x,v > y,and v > u.

21. If x > yand y > u, prove that x > u.

22, If x, x®, , ., , x™ is a set of »n vectors, show how to find a vector u
such that u > x® for all i. Also show how to find a vector v such that
v < xW for all i,

2. THE PRODUCT OF VECTORS

The reader may have wondered why it was necessary to introduce
both column and row vectors when their properties are so similar. This
question can be answered in several different ways. In the first place,
in many applications there are two kinds of quantities which are studied
simultaneously, and it is convenient to represent one of them as a row
vector and the other as a column vector. Second, there is a way of
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combining row and column vectors that is very useful for certain types
of calculations. To bring out these points let us look at the following
simple economic example.

Example 1. Suppose a man named Smith goes into a grocery store
to buy a dozen each of eggs and oranges, a half dozen each of apples
and pears, and three lemons. Let us represent his purchases by means
of the following row vector:

X = [6 (apples), 12 (eggs), 3 (lemons), 12 (oranges), 6 (pears)]
= (6, 12, 3, 12, 6).

Suppose that apples are 4 cents each, eggs are 6 cents each, lemons are
9 cents each, oranges are 5 cents each, and pears are 7 cents each. We
can then represent the prices of these items as a column vector,

4 cents per apple
6 cents per egg

y=129 cents per lemon
5 cents per orange
7 cents per pear.

The obvious question to ask now is, what is the total amount that Smith
must pay for his purchases? What we would like to do is to multiply
the quantity vector x by the price vector y, and we would like the result
to be Smith’s bill. We see that our multiplication should have the
following form:

x-y=(6,12,3,12, 6)

~ WL \O O\

=6-4+4+12-6+3-94+ 12-546-7
=24+ 72+ 27 4+ 60 + 42
= 225 cents or $2.25.

This is, of course, the computation that the cashier performs in figuring

Smith’s bill.
We shall adopt in general the above definition of multiplication of

row times column vectors.

7

-
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DEerFINITION. Let u be a row vector and v a column vector each having
the same number n of components; then we shall define the product
u-v to be

U0 = Wy + Ul + . . . + Unla.

Notice that we always write the row vector first and the column
vector second, and this is the only kind of vector multiplication that
we consider. Some examples of vector multiplication are given below.

3
(LL—D<—0=23+4<—D+04}4=L
4

@m<%=10+04=0+0=a
Note that the result of vector multiplication is always a number.

Example 2. Consider an oversimplified economy which has three
industries, which we call coal, electricity, and steel, and three con-
sumers 1, 2, and 3. Suppose that each consumer uses some of the
output of each industry and also that each industry uses some of the
output of each other industry. We assume that the amounts used are
positive or zero, since using a negative quantity has no immediate
interpretation. We can represent the needs of each consumer and
industry by a three-component demand (row) vector, the first com-
ponent measuring the amount of coal needed by the consumer or
industry, the second component the amount of electricity needed, and
the third component the amount of steel needed, in some convenient
units. For example, the demand vectors of the three consumers
might be

dl = (33 23 5)’ d2 = (Os 179 1)’ d3 = (4, 6, 12);

and the demand vectors of each of the industries might be
de=(0,1,4), de = (20, 0, 8), ds = (30, 5, 0),

where the subscript C stands for coal, the subscript E, for electricity,
and the subscript S, for steel. Then the total demand for these goods

by the consumers is given by the sum
di+d+d=(3,2,5+0,17,1) + (4,6,12) = (7, 25, 18).
Also, the total industrial demand for these goods is given by the sum
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de +ds + ds = (0, 1, 4) + (20, 0, 8) + (30, 5, 0) = (50, 6, 12).
Therefore the total overall demand is given by the sum
(7, 25, 18) + (50, 6, 12) = (57, 31, 30).

Suppose now that the price of coal is $1 per unit, the price of elec-
tricity is $2 per unit, and the price of steel is $4 per unit. Then these
prices can be represented by the column vector

-

Consider the steel industry: It sells a total of 30 units of steel at $4 per
unit so that its total income is $120. Its bill for the various goods is
given by the vector product

1
ds-p = (30, 5, O)-<2> = 30 4 10 = $40.
4

Hence the profit of the steel industry is $120 — $40 = $80. In the
exercises below the profits of the other industries will be found.

This model of an economy is unrealistic in two senses. First, we have
not chosen realistic numbers for the various quantities involved. Sec-
ond, and more important, we have neglected the fact that the more
an industry produces the more inputs it requires. The latter complica-
tion will be introduced in Chapter VIL.

Example 3. Consider the rectangular coordinate system in the plane
shown in Figure 1. A two-component row vector x = (a, ) can be regard-
ed as a point in the plane located by
means of the coordinate axes as shown.
x={a,b)  The point x can be found by starting
at the origin of coordinates O and
moving a distance a along the x
axis, then moving a distance b along
rb a line parallel to the x; axis. If we
have two such points, say x = (a, b)
and y = (c, d), then the points x 4 y,
oK - 5T, —X, =V, X — y,y— X, —Xx — y have
a the geometric significance shown in
Figure 1 Figure 2.

Xz

-

[ Sl
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X5 x+y=(a+c,b+d)
y=[(,d-——""
¢” - I
y—x:(c—q,d—P)‘—__,o’ / /
r / ]
/ /
/ /
. / / /
/! / __——#x=(a,b)
, oY _—==7 !
I -7 / / X
r:'X—(—G,_b) / /
/ !
/ / /
1
/ — -y = — —_
| my=te,~d)_ -~ x=y=la-c,b-d
| T

¢
~x-y=(-a-c,~b~d)
Figure 2

The idea of multiplying a row vector by a number can also be given
a geometric meaning, see Figure 3. There we have plotted the points
corresponding to the vector x = (1,2) and 2x, 1x, —x, and —2x.
Observe that all these points lic on a line through the origin of co-
ordinates. Another vector quantity which has geometrical significance
: is the vector z = ax + (1 — a)y, where a is any number between 0 and 1.
! Observe in Figure 4 that the points z all lie on the line segment between

‘ X X
] : p2x=(2,4) :
: /
y
/ N
/ N
/- x=(1,2) \.\z = gx + (1- aly
; \
,'%X=(%,1) N 1
/ Midpoint's2x + z¥
oV \
/ X1 \
J , / N
/ \
// AN

? -x = (-1, —23 » .
; /
/
o X
—2x=(-2,-4)¢ © :

Figure 3 Figure 4
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the points x and y. If a = 1, the corresponding point on the line seg-
ment is the mid-point of the segment. Thus, if x = (q, b)and y = (¢, d),
then the point
32X+ 3y = ¥a, b) + ¥(c, d)
. (a +cb+d
B 2 2 )

is the mid-point of the line segment between x and .

EXERCISES

1. Compute the quantities below for the following vectors:

u=(1,-1,49, x=1(0,1,2),

B ()

@ uv+xy=71 [Ans. 12.]
(b) (—u + 5x)-(3v — 2y) = ?
©) Su-v4+10[x-(20 — y)] = ? [Ans. 55.]

@ 2[(w —x)+y)] = ?

2. Plot the points corresponding to the row vectors x = (3,49 and y =
(=2, 7). Then compute and plot the following vectois.

(@) 3x + 3y.

(®) x + y.

(©) x — 2y.

(d) &x + &y.

(e) 3x — 2y,

) 4y — 3x.

3. If x = (1, —1,2)and y = (0, 1, 3) are points in space, what is the mid-
point of the line segment joining x to y? [Ans. (3,0, 3).]

4. If uis a three-component row vector and vis a three-component column
vector, and a is a number, prove that a(u-v) = (au)-» = u-(av).

5. Suppose that Brown, Jones, and Smith go to the grocery store and
purchase the following items:
Brown: two apples, six lemons, and five pears;
Jones: two dozen eggs, two lemons, and two dozen oranges;
Smith: ten apples, one dozen eggs, two dozen oranges, and a half dozen
pears.
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(a) How many different kinds of items did they purchase? [Ans. 5.]

(b) Write each of their purchases as row vectors with as many com-
ponents as the answer found in (a).

(c) Using the price vector given in Example 1, compute each man’s
grocery bill. [Ans. $0.97, $2.82, $2.74.]

(d) By means of vector addition, find the total amount of their pur-
chases as a row vector.

(e) Compute in two different ways the total amount spent by the three
men at the grocery store. [Ans. $6.53.]

6. Prove that vector multiplication satisfies the following property:
u-w+w) =uv+uw,

where u is a three-component row vector, v and w are three-component
column vectors.

7. The production of a book involves several steps: first it must be set in
type, then it must be printed, and finally it must be supplied with covers and
bound. Suppose that the typesetter charges $6 an hour, paper costs } cent
per sheet, that the printer charges 11 cents for each minute that his press
runs, that the cover costs 28 cents, and that the binder charges 15 cents to
bind each book. Suppose now that a publisher wishes to print a book that
requires 300 hours of work by the typesetter, 220 sheets of paper per book,
and five minutes of press time per book.

(a) Write a five-component row vector which gives the requirements
for the first book. Write another row vector which gives the re-
quirements for the second, third, .. .copies of the book. Write
a five-component column vector whose components give the prices
of the various requirements for each book, in the same order as
they are listed in the requirement vectors above.

(b) Using vector multiplication, find the cost of publishing one copy

of a book. [Ans. $1,801.53.]
(c) Using vector addition and multiplication, find the cost of printing
a first edition run of 5000 copies. [Ans. $9,450.]

(d) Assuming that the type plates from the first edition are used again,
find the cost of printing a second edition of 5000 copies.
[Ans. $7,650.]

8. Perform the following calculations for Example 2.
(a) Compute the amount that each industry and each consumer has to
pay for the goods it receives.
(b) Compute the profit made by each of the industries.
(c) Find the total amount of money that is paid out by all the industries
and consumers.
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(d) Find the proportion of the total amount of money found in (c)
paid out by the industries. Find the proportion of the total money
that is paid out by the consumers.

9. A building contractor has accepted orders for five ranch style houses,
seven Cape Cod houses, and twelve Colonial style houses. Write a three-
component row vector x whose components give the numbers of each type
of house to be built. Suppose that he knows that a ranch style house requires
20 units of wood, a Cape Cod 18 units, and a Colonial style 25 units of
wood. Write a column vector u whose components give the various quantities
of wood needed for each type of house. Find the total amount of wood needed
by computing the matrix product xu. [Ans. 526.]

10. Let x = (x1, x2) and let g and b be the vectors

3 (2
=5y ¢=()
Ifx-a= —1land x-b = 7,determine x, and x;. [Ans. x; = —31; x, = 23.]

11. Let x = (x1, x;) and let @ and b be the vectors

() o)

If x-a = x; and x-b = x,, determine x; and x..

SUPPLEMENTARY EXERCISES

12. Consider the vectors
x=(5,8, y=07, f=G)

(@) Compute 3xfand 3yf, and show that these numbers are the averages
of the components of x and y, respectively. [4ns. 6.5, 5.]

(b) Compute i(x + y)f and give an interpretation for this number.
[Partial Ans. 5.75.]

13. Let x and y be two n-component row vectors, and let £ be an n-com-
ponent column vector all of whose entries are 1°s.

(a) Compute 1 xfand 1 yf and interpret the result.
n n

(b) Compute 2171 (x 4 y)f and interpret the result.

[Hint: Exercise 12 is a special case.]
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14. Consider an experiment in which there are two outcomes; we get $2
with probability § and $3 with probability 2. Let

a=@23) and p= (5;‘)
3

Show that the expected outcome of the experiment is ap.

15. If an experiment has outcomes a, ay, . . ., a, Occurring with proba-
bilities py, ps, . . . , Pn, define the vectors

2!

a=(a,...,a,) and p= ’éZ

Dn
Show that the expected outcome is ap.

16. Consider the vectors

a = (ay, av), x = (xl)

X2

and a number ¢. Show that the equation ax = c is a single equation in two
variables.

17. Consider the vectors
a=(a,a), b=(b,b), x= (x1>

X2
and two numbers ¢, and c;. Show that the equations

ax = ¢,
bx = ¢

represent two simultaneous equations in two unknowns.

18. Show that every set of two simultaneous equations in two unknowns
can be written as in Exercise 17.

3. MATRICES AND THEIR COMBINATION
WITH VECTORS

A matrix is a rectangular array of numbers written in the form

din Q12 ... dip
d21 Q2 «.. dop

Qn1 Am2 « .« Qpn
Here the letters a,; stand for real numbers and m and n are integers.
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Observe that m is the number of rows and »n is the number of columns
of the matrix. For this reason we call it an m X »n matrix. If m = n,
the matrix is square. The following are examples of matrices.

1
a, 2, 3), (g) (_; ‘;)

1o 0o 1 7 -8 9 10
0100

’ 3 —1 14 2 -6}
00 10F 0 3 -5 7 0
0 0 01

The first example is a row vector which is a 1 X 3 matrix; the second
is a column vector which is a 3 X 1 matrix; the third example is a
2 X 2 square matrix; the fourth is a 4 X 4 square matrix; and the last
is a 3 X 5 matrix.

Two matrices having the same shape (i.e., having the same number
of rows and columns) are said to be equal if and only if the correspond-
ing entries are equal.

Recall that in Chapter IV, Section 13, we found that a matrix arose
naturally in the consideration of a Markov chain process. To give
another example of how matrices occur in practice and are used in
connection with vectors, we consider the following example.

Example 1. Suppose that a building contractor has accepted orders
for five ranch style houses, seven Cape Cod houses, and twelve Colonial
style houses. We can represent his orders by means of a row vector
x = (5, 7, 12). The contractor is familiar, of course, with the kinds of
“raw materials” that go into each type of house. Let us suppose that
these raw materials are steel, wood, glass, paint, and labor. The num-
bers in the matrix below give the amounts of each raw material going
into each type of house, expressed in convenient units. (The numbers
are put in arbitrarily, and are not meant to be realistic.)

Steel Wood Glass Paint Labor
Ranch: 5 20 16 7 17
Cape Cod: < 7 18 12 9 21 )
Colonial: 6 25 - 8 5 13

= R
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Observe that each row of the matrix is a five-component row vector
which gives the amounts of each raw material needed for a given kind
of house. Similarly, each column of the matrix is a three-component
column vector which gives the amounts of a given raw material needed
for each kind of house. Clearly, a matrix is a very succinct way of
summarizing this information.

Suppose now that the contractor wishes to compute how much of
each raw material to obtain in order to fulfill his contracts. Let us
denote the matrix above by R; then he would like to obtain something
like the product xR, and he would like the product to tell him what
orders to make out. The product should have the following form:

5 20 16 7 17
xR=(5,7,12){7 18 12 9 21
6 25 8 5 13

=(G54+77+12:6, 5204 7-18 + 12.25,
5164+ 7-12 4 12-8, 574+ 7-9 + 12-5,
5.17 4+ 7-21 + 12-13)

= (146, 526, 260, 158, 388).

Thus we see that the contractor should order 146 units of steel, 526
units of wood, 260 units of glass, 158 units of paint, and 388 units of
labor. Observe that the answer we get is a five-component row vector
and that each entry in this vector is obtained by taking the vector prod-
uct of x times the corresponding column of the matrix R.

The contractor is also interested in the prices that he will have to pay
for these materials. Suppose that steel costs $15 per unit, wood costs
$8 per unit, glass costs $5 per unit, paint costs $1 per unit, and labor
costs 310 per unit. Then we can write the cost as a column vector as

follows:
15

8
y= 5
1
10

Here the product Ry should give the costs of each type of house, so
that the multiplication should have the form
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15

5 2 16 7 17 8
Ry=<7 18 12 9 21> 5
6 25 8 5 13 1

10

5:15+20-8+16-5+7-1+17-10
=\{7-15418-8412-54+9-1 4 21-10
6-15+25-8+ 8:5+4+5-1+413-10

492
= {528 }.
465

Thus the cost of materials for the ranch style house is $492, for the
Cape Cod house is $528, and for the Colonial house $465.

The final question which the contractor might ask is what is the total
cost of raw materials for all the houses he will build. It is easy to see
that this is given by the vector xRy. We can find it in two ways as
shown below.

15
8
xRy = (xR)y = (146, 526, 260, 158, 383)-f 5 | = 11,736
1
10
, 492
xRy = x(Ry) = (5,7, 12)-<528> = 11,736.
465
The total cost is then $11,736.

We shall adopt, in general, the above definitions for the multiplica-

tion of a matrix times a row or a column vector.

DEFINITION. Let 4 be an m X n matrix, let x be an m-component
row vector, and let u be an n-component column vector; then we define
the products x4 and Au as follows:

an iz ... Qi

azn da ... Qo
XA = (X1, X0y« o oy Xm)

n1t A2 <.+ QAmn
= (X1au + X201 + . . . + X1, X1 + Xolos + . . . + X,
ey X1G1n + XoQon + o o o F X))
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U
adn Q12 ... Qin Us auty + apue + ...+ anu,
Ay =1| 92 G2 ... Gn . = [ Gun + anuz + ...+ aoin
Ami Qm2 «++ Omn . Amith + Qmatis + .« . .+ Qualin

Un

The reader will find these formulas easy to work with if he observes
that each entry in the products x4 or Au is obtained by vector multi-
plication of x or u by a column or row of the matrix A. Notice that in
order to multiply a row vector times a matrix, the number of rows of
the matrix must equal the number of components of the vector, and
the result is another row vector; similarly, to multiply a matrix times a
column vector, the number of columns of the matrix must equal the
number of components of the vector, and the result of such a multi-
plication is another column vector.

Some numerical examples of the multiplication of vectors and ma-
trices are:

3 1
(1,0,—1)(2 3>= 1-34+02-1.2,1-140-3 —1-8)

2 8
1
<3 1 2) 5 _(3-—1+ 4)_(6),
2 3 8 5 T \2—-3+4+16/  \15)°
3 2 -1 5
1 0 2 1 -3
0 3 1 0]= -2
5 —4 7 -2 -9
-3 2 -1 —1

Observe that if x is an m-component row vector and A is m X n, then
xA is an n-component row vector; similarly, if u is an n-component
column vector, then Au is an m-component column vector. These facts
can be observed in the examples above.

Example 2. In Exercise 6 of Chapter 1V, Section 13, we considered
a Markov chain with transition matrix
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2
P= ( g).
2z
The initial state was chosen by a random device that selected states ay
and a; each with probability . Let us indicate the choice of initial state
by the vector p©® = (3, 1) where the first component gives the proba-

bility of choosing state a; and the second the probability of choosing
state a,. Let us compute the product p®P. We have

1
rr=ay( D-a+iitn=-mm.

Using the methods of Chapter IV, one can show that after one step
there is probability {5 that the process will be in state g, and probability
17 that it will be in state a,. Let p™ be the vector whose first component
gives the probability of the process being in state g, after one step and
whose second component gives the probability of it being in state a,
after one step. In our example we have Y = (P, 1%) = pOP.

In general, the formula p® = p@©@P holds for any Markov process
with transition matrix P and initial probability vector PO,

B cofpt

(ST

Example 3. In Example 1 of Section 2 assume that Smith has two
stores at which he can make his purchases, and let us assume that the
prices charged at these two stores are slightly different. Let the price
vector at the second store be

5 cents per apple
5 cents per egg

y=110 cents per lemon
4 cents per orange
6 cents per pear.

Smith now has the option of buying all his purchases at store 1, all at
store 2, or buying just the lower-priced items at the store charging the
lower price. To help him decide, we form a price matrix as follows:

Prices, Prices, Minimum
Store 1 Store 2 Price
4 5 4
6 5 5
P = 9 10 9
5 4 4
7 6 6
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The first column lists the prices of store 1, the second column lists the
prices of store 2, and the third column lists the lesser of these two prices.
To compute Smith’s bill under the three possible ways he can make his
purchases, we compute the produce xP, as follows:

4 5 4

6 5 5
xP=(6,12,3,12,6)| 9 10 9 |= (225,204, 195).

5 4 4

7 6 6

We thus see that if Smith buys only in store 1, his bill will be $2.25; if
he buys only in store 2, his bill will be $2.04; but if he buys each item
in the cheaper of the two stores (apples and lemons in store 1, and the
rest in store 2), his bill will be $1.95.

Exactly what Smith will, or should, do depends upon circumstances.
If both stores are equally close to him, he will probably split his pur-
chases and obtain the smallest bill. If store 1 is close and store 2 is very
far away, he may buy everything at store 1. If store 2 is closer and
store 1 is far enough away so that the 9 cents he would save by splitting
his purchases is not worth the travel effort, he may buy everything at

store 2.

The problem just cited is an example of a decision problem. In such
problems it is necessary to choose one of several courses of action, or
strategies. For each such course of action or strategy, it is possible to
compute the cost or worth of such a strategy. The decision-maker will
choose a strategy with maximum worth.

Sometimes the worth of an outcome must be measured in psycho-
logical units and we then say that we measure the wutility of an outcome.
For the purposes of this book we shall always assume that the utility
of an outcome is measured in monetary units, so that we can compare
the worths of two different outcomes to the decision maker.

Example 4. As a second example of a decision problem, consider
the following. An urn contains five red, three green, and one white
ball. One ball will be drawn at random, and then payments will be
made to holders of three kinds of lottery tickets, A, B, and C, according
to the following schedule:
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Ticket A Ticket B Ticket C
Red 1 3 0
M = Green ( 4 1 0 >
White 0 0 16

Thus, if a red ball is selected, holders of ticket A will get $1, holders of
ticket B will get $3, and holders of ticket C will get nothing. If green is
chosen, the payments are 4, 1, and 0, respectively. If white is chosen,
holders of ticket C get $16, and the others nothing. Which ticket would
we prefer to have?

Our decision will depend upon the concept of expected value dis-
cussed in the preceding chapter. The statements “draw a red ball,”
“draw a green ball,” and “draw a white ball” have probabilities &, 3,
and 3, respectively. From these probabilities we can calculate the ex-
pected value of holding each of the lottery tickets as described in the
last chapter. However, a compact way of performing all these calcula-
tions is to compute the product pM, where p is the probability vector

p=G, 3 %
From this we have

13 0
PM =G, 5941 0

0 0 16
=3+ 43+04 34+ 1-34+03, 0-§+0-3+163)
=G5 3 .
It is easy to see that the three components of pM give the expected
values of holding lottery tickets A, B, and C, respectively. From these
numbers we can see that ticket B is the best, A is the next best, and Cis
third best.

If we have to pay for the tickets, then the cost of the tickets will
determine which is the best buy. If each ticket costs $3 we would be
better off by not buying any ticket, since we would then expect to lose
money. If each ticket costs $1 then we should buy ticket B, since it
would give us a net expected gain of $2 — $1 = $1. If the first two
tickets cost $2.10, and the third cost $1.50, we should buy ticket C
since it is the only one for which we would have a positive net expecta-
tion.
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EXERCISES

1. Perform the following multiplications.

@ (2 7))

® G, —4)(-:12 “;)= [dns. (11, —11).]
1 3 0
7 -1 3 3
© -8 14 -5 -<—1>=?
9 2 7 1
10 -6 0
@ @, 2)(_1 —}) =7 [ns. (0,0).]

o (L))~

1 7 -8 9 10
® 0,2,-3)|3 -1 14 2 —6])=1?

0o 3 ~-517 0

(@) (x1, x2) (::1 Z) = ? [dns. (ax; + cxz, bx1 -+ dx.).]

® (2 g)()-
1 0 O\ /u

@ <0 1 0> <u2> =7
0 0 1/ \u;

1 00
G) (x1, x2, x3) (O 1 0) = ?
0 01

2. What number does the matrix in parts (i) and (j) above resemble?

3. Notice that in Exercise 1(d) above the product of a row vector, none
of whose components is zero, times a matrix, none of whose components is
zero, yields the zero row vector. Find another example which is similar to
this one. Answer the analogous question for Exercise 1(e).
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4. When possible, solve for the indicated quantities.

@) Cx, x2) ((7) - ;) = (7, 0). Find the vector x, [Ans. (3,1).]

®) @, —1) (j z) ~ (6, 3). Find the matrix (:’ z) In this case can

you find more than one solution ?

1 —1 Uy . 3 .
© (__1 1) (u) = <4) Find the vector u.

@ (_; _g) (1’2) ~ (_g) Find .

How many solutions can you find ?

[Ans. u = (4k —3

k

5. Solve for the indicated quantities below and give an interpretation for
each.

), for any number £.]

@ [, —1) (_g j) = a(1, —1); find a. [Ans. a = 2.]

(®) (; i) (51) =3 (‘ljl); find u. How many answers can you find ?
2 2

[Ans. u = ( 2’2) for any number £.]
© (§ %) (ul) = ( u’); find u. How many answers are there?
)

% Uy Uz

6. In Exercise 5 of the preceding section construct the 3 X 5 matrix
whose rows give the various purchases of Brown, Jones, and Smith. Multiply
on the right by the five-component price (column) vector to find the three-
component column vector whose entries give each person’s grocery bill,
Multiply on the left by the row vector x = (1,1, 1) and on the right by the
price vector to find the total amount that they spent in the store.

7. In Example 1 of this section, assume that the contractor is to build
seven ranch style, three Cape Cod, and five Colonial type houses. Recom-
pute, using matrix multiplication, the total cost of raw materials, in two
different ways as in the example,

8. In Example 2 of this section, assume that the initial probability vector
is p©® = (1, 2). Find the vector o, [Ans. (4, $).]

9. For the Markov chain whose transition matrix is

010
P=1{0
3

O V-

[~ ST
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assume the initial probability vector is p® = (%, }, ). Draw the tree of the
process and find the tree measures. Compute p¥ by means of the tree
measure and also from the formula p® = p@P and show that the two
answers agree.

10. Consider the Markov chain with two states whose transition matrix is

_ a 1—a
P—(l—b b )

where a and b are nonnegative numbers. Suppose the initial probability
vector for the process is
P® = (o, P

where p{® is the initial probability of choosing state 1 and p{® is the initial
probability of choosing state 2. Derive the formulas for the components of
the vector p®, [4ns. p = {ap® + (1 — b)p, (1 — a)p® + bpi"}.]
11. In Example 2 use tree measures to show that p® = pP,
12. The following matrix gives the vitamin contents of three food items, in
conveniently chosen units.
Vitamin: A B CD
Food I: S5 5 0 0
Food I1: <.3 0 .2 .1)
Food III: \.1 .1 .2 .5
If we eat five units of food I, ten units of food II, and eight units of food I1I,
how much of each type of vitamin have we consumed? If we pay only for the
vitamin content of each food, paying 10 cents, 20 cents, 25 cents, and 50 cents,

respectively, for units of the four vitamins, how much does a unit of each type
of food cost? Compute in two ways the total cost of the food eaten.

15
[4ns. (6.3, 3.3, 3.6, 5.0), <13>, $4.69.]
33
13. In Example 3, by how much would store 1 have to reduce the price of
oranges in order to make Smith’s purchases less expensive at store 1 than at
store 27
14. In Example 3, find the store at which the total cost to Smith is less
when he wishes to purchase
@@ x=(@4,1,2,0,1). [A4ns. Store 1, cost 47 cents.]
®x=001310.
) x=(0@,1,1,2,0).
15. In Example 4, let us assume that an individual chooses ticket A with
probability r;, ticket B with probability r,, and ticket C with probability rs.

r

Let r = <r2>. Give an interpretation for pMr, Compute this for the case
I3

thatry=r: =r;. [Ans. pMr = 7, which is the expected return.]
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SUPPLEMENTARY EXERCISES

16. A company is considering which of three methods of production it
should use in producing three goods, A, B, and C. The amount of each good
produced by each method is shown in the matrix

A B C

2 3 1\ Method 1
R = <1 2 3> Method 2

2 4 1/ Method 3.

Let p be a vector whose components represent the profit per unit for each of

the goods. What does the vector Rp represent? Find three different vectors

p such that under each of these profit vectors a different method would be
10

most profitable. [Partial Ans. For p = < 8> method 3 is most profitable.]
7

17. Consider the matrices

A = (au 012) x = (X1> b = (bl>.
ds1 QA ’ Xo ’ b,

(a) Show that the equation 4x = b represents two simultaneous equa-
tions in two unknowns.

(b) Show that every set of two simultaneous equations in two un-
knowns can be written in this form for the proper choice of A4

and 4.
) i 7= (1)
Show that Pf = f.

18. Consider the matrices

19. Let P be the matrix of transition probabilities for a Markov chain
having n states, and let f be a column matrix all of whose entries are 1’s.
Show that Pf = f. [Hint: Exercise 18 provides a special case.]

20. If Ax = 0 and Ay = 0, show that A(x + y) =0.
21. If Ax = b and Ay = 0, show that 4(x + y) = b.

~

I
AN
" e
[ SN

4. THE ADDITION AND MULTIPLICATION
OF MATRICES

Two matrices of the same shape, that is, having the same numbers
of rows and columns, can be added together by adding corresponding
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components. For example, if 4 and B are two 2 X 3 matrices, we have
an QG2 ap bu by bm)
B =
4+ (021 Az a23> T (bn b bas
= (au + by Ge-+be au+ bls)_
an + bnn G+ bea Gz + bos

Observe that the addition of vectors (row or column) is simply a special
case of the addition of matrices. Numerical examples of the addition
of matrices are the following:

(,L,0,=2)+(0,5,0 = (1,5, —2);

(0 1)+ —1)=( o)

7 O 0 -8 0 1 —1 0 1
-3 1 —6 4 5 -1 1 6 —7
4 0 7 |+ 0 3 0]}= 4 3 7
0 —2 =2 -1 1 —1 -1 -1 =3
1 1 1 0 —4 2 1 -3 3

Other examples occur in the exercises. The reader should observe that
we do not add matrices of different shapes.
If A is a matrix and k is any number, we define the matrix k4 as

an as eeoe Qin kau kau o e e kal,,

a a . @ ka ka ... ka
kA — k 21 22 2n — 21 22 2n

mt Gmz «++ Qmn kam kame ... kam

Observe that this is merely component-wise multiplication, as was the
analogous concept for vectors. Some examples of multiplication of
matrices by constants are

(1 2 8_(—14 4 —16\,
o 5 —-1)=\ 0o —-10 2/

1 0 6 0
610 1]={ 0 6 ]
3 — 18 —24

The multiplication of a vector by a number is, of course, a special case
of the multiplication of a matrix by a number.
Under certain conditions two matrices can be multiplied together to
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give a new matrix. As an example, let 4 be a 2 X 3 matrix and B be a
3 X 2 matrix. Then the product 4B is found as

bu by
AB = (au Gz 6113) ba by
A1 dx Qg by By
— (aubu + awbn + auby anbis + a12bys + a13b32>.
anby + Q20ba + axby anby, + Gooby + Gosbs;

Observe that the productisa 2 X 2 matrix. Also notice that each entry
in the new matrix is the product of one of the rows of A4 times one of
the columns of B; for example, the entry in the second row and first
column is found as the product

bu
(021 Ao 023) <b21> = anby + Ag2by -+ auba.

31

The following definition holds for the general case of matrix multipli-
cation.

DEFINITION. Let 4 be an m X k matrix and Bbe a k X » matrix;
then the product matrix C = 4B is an m X n matrix whose compo-
nents are

by;
bej
Ci=(a as ... ay) . = Qaby; + auby; + ...+ Qibyj.

bkj

The important things to remember about this definition are: first, in
order to be able to multiply matrix 4 times matrix B, the number of
columns of 4 must be equal to the number of rows of B; second, the
product matrix C = 4B has the same number of rows as 4 and the
Same number of columns as B; finally, to get the entry in the ith row
and jth column of 4B we multiply the ith row of 4 times the Jth column
of B. Notice that the product of a vector times a matrix is a special

case of matrix multiplication.
Below are several examples of matrix multiplication.

G ") (2 9= (% )




Sec. 4 VECTORS AND MATRICES 245

3 0 1\/1 0 0 4 11
—1 2 0)J{0 —-1 O})=(—-1 -2 Oy;
0 0 2/\1 11 2 2 2

(314><i?88=(41044)
2 05 00 1 1 2 6 5

One obvious ‘question that now arises is that of multiplying more
than two matrices together. Let A be an m X # matrix, let B be an
h X k matrix, and let C be a k X n matrix. Then we can certainly
define the products (4B)C and A(BC). It turns out that these two

products are equal, and we define the product ABC to be their com-
mon value, i.e.,

L

ABC = A(BC) = (4B)C.

The rule expressed in the above equation is called the associative law for
multiplication. We shall not prove the associative law here, although
the student will be asked to check an example of it in Exercise 5.

If A and B are square matrices of the same size, then they can be
multiplied in either order. It is not true, however, that the product AB
is necessarily equal to the product B4. For example, if

a3 ) 0= (2 9
- ()0 -6 O
=90 8- 1)

and it is clear that AB # BA.

then we have

whereas

EXERCISES

1. Perform the following operations.

6 1 4 2 0 —4
(a)2< 0 -3>—3< 0 1>=? [Ans.<0 —9>.]
-1 2 -5 -1/ 13 7

o 3 )58 )



246 VECTORS AND MATRICES Chap. V

o )G )

o 3 )0 1)- s, (2 13);

1 —1\/ 1 -1\ _
© (—1 1) (—1 1)‘
4 1 4 3 01 11 2 12
® <—l -2 -—1><—1 2 0>=? [Ans. <—l —4 —-3>.]
2 -1 =2 0 0 2 7 -2 -2
1 -2

0 o

-7 9 -5 6 0

@ 7 s|(Z 4 y)=7
4 3 10 3 —41

0 -2
2. Let A be any 3 X 3 matrix and let I be the matrix

1 00
I=y0 1 0).
0 01

Show that A7 = I4 = A. The matrix I acts for the products of matrices in
the same way that the number 1 acts for products of numbers. For this reason
it is called the identity matrix.

3. Let 4 be any 3 X 3 matrix and let 0 be the matrix

0 0O
0=|0 0 0}
0 0O

Show that 40 = 04 = 0 for any A. Also show that A +0=04+ 4 = 4
for any 4. The matrix 0 acts for matrices in the same way that the number 0
acts for numbers. For this reason it is called the zero matrix.

_ {0 0O _ (1 0 _ {0 0\
4, IfA—(0 1)andB—(O O)sshowthatAB-<0 O) Thus the

product of two matrices can be the zero matrix even though neither of the
matrices is itself zero. Find another example that illustrates this point.

5. Verify the associative law for the special case when

1 70 -1 -1\
A=("; _g g) B=<—3 ~1 o>, c=< 2 0).
1 05 0 4
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6. Consider the matrices

111
1 0 -1
(1 0 1 (222 _
A—(—-l 17 57)’ B=l333) C‘(_? T (1))
000

-1 -1
D= 2 2 ).
1 1

The shapes of these are 2 X 3,4 X 3,3 X 3, and 3 X 2, respectively. What
is the shape of

(@) AC.

(b) DA.

(c) AD.

(d) BC.

(e) CB.

(f) DAC,

(g) BCDA. [Ans. 4 X 3.]

7. In Exercise 6 find
(a) The component in the second row and second column of AC.
[4ns. 40.]
(b) The component in the fourth row and first column of BC.
(¢) The component in the last row and last column of DA. [4ns. 58.]
(d) The component in the first row and first column of CB.

8. Ifdisa square‘matrix, it can be multiplied by itself; hence we can
define (using the associative law)

A= A-A
A3 = A*4A=A-A-A
A = A1 4 =A-A- ... A (n factors).

These are naturally called “powers” of a matrix—the first one being called
the square, the second, the cube, etc. Compute the indicated powers of the
following matrices.

@ If A = (; g), find A2, A% and A*,

1 0\./1 O\.(/1 0O
LAns. (15 16)’(63 64)’(255 256)']

(b) If I and O are the matrices defined in Exercises 2 and 3, find I2, B3,
I, 02, 0%, and O~.
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0 00

© IfA=(1 0 0) find 42 43 and 4~.
2 -1 0

@ 1fA=<} }),ﬁndA".

9. Cube the matrix

G5 2)

Compare your answer with the matrix P® in Example 1, Chapter IV, Sec-
tion 13, and comment on the result.

wh e O

O Wi b

10. Consider a two-stage Markov process whose transition matrix is

P = <P11 Pm),
Dy P2

(a) Assuming that the process starts in state 1, draw the tree and set
up tree measures for three stages of the process. Do the same,
assuming that the process starts in state 2.

(b) Using the trees drawn in (a), compute the quantities p2, p2, p2,
p$P. Write the matrix P®,

(c) Compute the cube P? of the matrix P.

(d) Compare the answers you found in parts (b) and (¢) and show
that P® = P3,

11. Show that the fifth and all higher powers of the matrix

010
0 01
110

have all entries positive. Show that no smaller power has this property.

12. In Example 1 of Section 3 assume that the contractor wishes to take
fnto account the cost of transporting raw materials to the building site as well
as the purchasing cost. Suppose the costs are as given in the matrix below.

Purchase Transport

15 4.5 Steel
j 8 2 Wood
; Q= 5 3 Glass
] 1 0.5 Paint
10 0 Labor

Referring to the example:
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(a) By computing the product RQ find a 3 X 2 matrix whose entries
give the purchase and transportation costs of the materials for each
kind of house.

(b) Find the product xRQ, which is a two-component row vector
whose first component gives the total purchase price and second
component gives the total transportation cost.

() Letz = (i) and then compute xRQz, which is a number giving

the total cost of materials and transportation for all the houses
being built. [Ans. $14,304.]

13. A college survey at an all-male school shows that dates of students
are distributed as follows: a freshman dates one blonde and one brunette
during the year; each sophomore dates one blonde, three brunettes, and one
redhead; each junior dates three blondes, two brunettes, and two redheads;
each senior dates three redheads. It is further known that each blonde brings
three dresses with her, two skirts, two blouses, and one sweater; each brunette
brings five dresses, four skirts, one blouse, and three sweaters; each redhead
brings one dress, four skirts, and four sweaters. If each dress costs $50,
each skirt $15, each blouse $10, and each sweater $5; and if there are 500
freshmen, 400 sophomores, 300 juniors, and 200 seniors,

(a) What is the total number of blondes, brunettes, and redheads
dated?

(b) What is the total number of each type of clothing item in the
dates’ wardrobes ?

(c) What is the cost of the wardrobe of a blonde? A brunette? A

redhead ?
(d) What is the total cost of all the wardrobes of all the dates? Cal-
culate two ways. [4ns. $1,347,500.]

SUPPLEMENTARY EXERCISES

14. Find three different 2 X 2 matrices 4 such that 42 = I,
15. The commutative law for addition is
A+B=B+ A4

for any two matrices 4 and B of the same shape. Prove that ths commutative
law for addition is true from the definition of matrix addition and the fact
that it is true for ordinary numbers.

16. The distributive law for numbers and matrices is

k(A + B) = kA + kB
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for any number k and any two matrices 4 and B of the same shape. Prove
that this law holds from the definitions of numerical multiplication of ma-
trices, addition of matrices and the ordinary rules for numbers.

17. The distributive laws for matrices are
(A + B)C = AC + BC
C(4+ B) =CA 4+ CB,
where A, B, and C are matrices of suitable shapes. Show that these laws hold

from the definitions of matrix multiplication and addition, and the ordinary
rules for numbers.

18; A diagonal matrix is square and its only nonzero entries are on the
main diagonal. For instance, the matrices

_ (1 0O _ (3 0
=0 e 2=(32)
are 2 X 2 diagonal matrices.
(a) Show that 4 and B commute, i.e., AB = BA.

(b) Show that any pair of diagonal matrices of the same size commute
when multiplied together.

19. Consider the matrices

010 0 0 1
A=|0 0 1) and B=\{1 0 0).
1 00 010

(a) Show that A2 = B and 4% = I. What is 44?
(b) Show that B2 = 4 and B® = 1.
(c) Show that 4% = BA = AB = B® = I, hence A and B commute.

20. For the matrix

0100
0010
4=1900 1
1000
what is the smallest k such that 4% = I?
(1 1\,
21. Let 4 = (0 1)
(2) Find a matrix B such that AB = ((1) ‘1))
(b) Find a matrix D such that AD = (i g)

s, @ (5 1)@ (72 3N
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5. THE SOLUTION OF LINEAR EQUATIONS

There are many occasions when the simultaneous solutions of linear
equations is important. In this section we shall develop methods for
finding out whether a set of linear equations has solutions, and for find-
ing all such solutions.

Example 1. Consider the following example of three linear equa-
tions in three unknowns.

(1) X1 + 4X2 + 3X3 = 1
(2) 2x1 + 5.7C2 + 4)C3 = 4
(3) X1 — 3x2 -_ 2X3 = 5,

Equations such as these, that contain one or more variables, are called
open statements. Statement (1) is true for some values of the variables
(for instance, when x; = 1, x, = 0, and x; = 0), and false for other
values of the variables (for instance, when x; = 0, x; = 1, and x; = 0).
X1
The truth set of (1) is the set of all vectors <x2> for which (1) is true.
X3
Similarly, the truth set of the three simultaneous equations (1), (2), and
X1
(3) is the set of all vectors <x2> which make their conjunction
X3

(%14 4x; + 3x3 = 1) A 2x1 4 S5x2 + 4x; = 4)
A (v — 3%, — 2% = 5)

true. When we say thdat we solve a set of simultaneous equations, we
mean that we determine the truth set of their conjunction.

Before we discuss the solution of these equations we note that they
can be written as a single equation in matrix form as follows:

1 4 3 X1 1
2 5 41l x]=14])
1 -3 =2 X3 5

One of the uses of vector and matrix notation is in writing a large num-
ber of linear equations in a single simple matrix equation such as the
one above. It also leads to the detached coefficient form of solving
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simultaneous equations that we shall discuss at the end of the present
section and in the next section.

The method of solving the linear equations above is the following.
First we use equation (1) to eliminate the variable x; from equations (2)
and (3); i.e., we subtract 2 times (1) from (2) and then subtract (1) from

(3), giving

(l’) X1 + 4x2 + 3X3 =1

) —3xy — 2x3 = 2

(3,) '—7.X'2 -_ SX3 = 4.

Next we divide equation (2') through by the coefficient of Xs, namely,
—3, obtaining x, + %x; = —2. We use this equation to eliminate x,
from each of the other two equations. In order to do this we subtract

4 times this equation from (1’) and add 7 times this equation to (3),
obtaining

1) X1+ 0+ fx3 = 3t
2") X+ 3x = —}%
(3" —3x = —%.

The last step is to divide through (3”’) by —3, which is the coefficient
of x;, obtaining the equation x; = 2 we use this equation to eliminate
x3 from the first two equations as follows:

" xx+04+0= 3
Q" X +0=-2
3" X3 = 2.
The solution can now be read from these equations as x; = 3, x, = —2,

and x; = 2. The reader should substitute these values into the original
equations (1), (2), and (3) above to see that the solution has actually

_been obtained.

In the example just discussed we saw that there was only one solution
to the set of three simultaneous equations in three variables. Example 2
will be one in which there is more than one solution, and Example 3 will
be one in which there are no solutions to a set of three simultaneous
equations in three variables.
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Example 2. Consider the following linear equations.

@) X{— 2xg — 3x3= 2
) X1 — 4x, — 13x; = 14
(6) —3X1 + 5)C2 + 4JC3 = 0.

Let us proceed as before and use equation (4) to eliminate the variable
.x, from the other two equations. ‘We have

4) X1 — 2x,— 3x3= 2
5) —2x; — 10x; = 12
6 —Xx;— S5x3= 6.
Proceeding as before, we divide equation (5) by —2, obtaining the
equation x; + 5x; = —6. We use this equation to eliminate the vari-

able x, from each of the other equations—namely, we add twice this
equation to (4') and then add the equation to (6').

" X404 Txg = —10
(5”) 5C2 + Sx;3 = —6
(6") 0= O

Observe that we have eliminated the last equation completely! We also
see that the variable x; can be chosen completely arbitrarily in these
equations. To emphasize this, we move the terms involving x; to the
right-hand side, giving

") X1 = —10 — Tx;
(5" Xy = — 6 — 5x3.

The reader should check, by substituting these values of x; and x, into
equations (4), (5), and (6), that they are solutions regardless of the
value of x;. Let us also substitute particular values for x; to obtain
numerical solutions. Thus, if we let x; = 1, 0, —2, respectively, and
compute the resulting numbers, using (4’’) and (5”’), we obtain the
following numerical solutions.

X1=—17, x2=——11, X3 = 1
X1 = —10, Xo = '—6, X3 = 0
X1 = 4, Xg = 4, X3 = 2.

The reader should also substitute these numbers into (4), (5), and (6)
to show that they are solutions. To summarize, our second example
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has an infinite number of solutions, one for each numerical value of X3
which is substituted into equations (4" and (5'").

Example 3. Suppose that we modify equation (6) by changing the
number on the right-hand side to 2. Then we have

(7) X1 — 2X2 —_ 3X3 = 2
(8) X1 — 4xp — 13x; = 14
(9) —3X1 + 5X2 + 4X3 = 2.

If we carry out the same procedure as before and use (7) to eliminate
x; from (8) and (9), we obtain

(7) X1 — 2Xg— 3x3= 2

&) —2x3 — 10x3 = 12

%) —Xy— 5x3= 8.

We divide (8’) by —2, the coefficient of Xa, oi)taining, as before, x, -+
5x3 = —6. Using this equation to eliminate xz from the other two
equations, we have

an x1+ 04 Tx; = —10

€ X+ Sx3 = —6

9" 0= 2.

Observe that the last equation is logically false, that is, false for all
values of xi, x;, x;. Because our elimination procedure has led to a
false result we conclude that the equations (7), (8), and (9) have no
solution. The student should always keep in mind that this possibility
exists when considering simultaneous equations.

In the examples above the equations we considered had the same
number of variables as equations. The next example has more variables
than equations and the last has more equations than variables.

Example 4. Consider the following two equations in three variables.
(10) —'4X1 + 3.7C2 + 2.X'3 = —2
(11) Sx1—4xy+ x3= 3.

Using the elimination method outlined above, we divide (10) by —4,
and then subtract 5 times the result from (11), obtaining
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(10) X1— 3x,— ixs = 1%

(11" —ix: + % = 1.

Multiplying (11’) by —4 and using it to eliminate x; from (10"), we have
(10") x1+0—Ilx3=—1

(11’ Xy — ldx; = —2.

We can now let x; take on any value whatsoever and solve these equa-
tions for x; and x;. We emphasize this fact by rewriting them as in
Example 2 as

(10,") X1 = IIX3 -1
(11”’) X9 = 14X3 — 2.

The reader should check that these are solutions and also, by choosing
specific values for x;, find numerical solutions to these equations.

Example 5. Let us consider the other possibility suggested by Ex-
ample 4, namely, the case in which we have more equations than vari-
ables. Consider the following equations.

(12) —4X1 + 3X2 = 2
(13) Sx;— 4x, =0
(14) 2X1— Xp = a,

where @ is an arbitrary number. Using equation (12) to eliminate x;
from the other two we obtain

(12) Xy — 3xp = —1%

(13) —1xe =3

(14) ix, =a+ 1.

Next we use (13') to eliminate x, from the other equations, obtaining
(127) x1+0=-—8

(13"7) Xy = —10

(14 0=a+ 6.

These equations remind us of the situatioﬁ in Example 3, since we will
be led to a false result unless a = —6. We see that equations (12), (13),

and (14) have the solution x; = —8 and x, = —10 only if @ = —6. If
a # —6, then there is no solution to these equations.
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The examples above illustrate all the possibilities that can occur in
the general case. There may be no solutions, exactly one solution, or
an infinite number of solutions to a set of simultaneous equations.

The procedure that we have illustrated above is one that turns any

[E%E'J

Leti=1,

Y

Does the ith equation have g
nonzero coefficient ?

Yes

Y
Let x; be any variable
in the ith equation with a
nonzero coefficient. Divide
through the ith equation
by this coefficient.

Is the righthand
side of the ith equation
equalto O ?

Replace
[ i by i+ 1.
Use the ith equation
to eliminate x; from
all the other equations.

rSTop. Equoﬁons-:
! do not have a |
| _solution. |

Yes

Cross out all
equations of
the form 0 =0.

re there exactly
N equations remaining?

Yes

rSTOp. There are rSTop. The-=
I infinitely many I solutionis |
L solutions. | L unique. J

—_

Figure 5 Flow diagram for solving m equations in n variables.
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set of linear equations into an equivalent set of equations from which
the existence of solutions and the solutions can be easily read. A
student who learned other ways of solving linear equations may wonder
why we use the above procedure—one which is not always the quickest
way of solving equations. The answer is that we use it because it always
works, that is, it is a canonical procedure to apply to any set of linear
equations. The faster methods usually work only for equations that
have solutions, and even then may not find all solutions.

The computational process illustrated above is summarized in the
flow diagram of Figure 5. In that diagram the instructions encircled by
dotted lines are either beginning or ending instructions; those enclosed
in rectangles are intermediate computational steps; and those enclosed
in ovals ask questions, the answers to which determine which of two
paths the computational process will follow.

The direction of the process is always indicated by arrows. The flow
diagram of Figure 5 can easily be turned into a computer program for
solving m linear equations in n variables. Students having access to
a computer will find it a useful exercise to write such a program.

Let us return again to the equations of Example 1. Note that the vari-
ables, coefficients, and equals signs are in columns at the beginning of
the solution and are always kept in the same column. It is obvious that
the location of the coefficient is sufficient identification for it and that
it is unnecessary to keep writing the variables. We can start with the
format or tableau

1 4 311
(15) 2 5 414\
I =3 =25

Note that the coefficients of x, are found in the first column, the coeffi-
cients of x, in the second column, of x; in the third column, and the
constants on the right-hand side of the equation all occur in the fourth
column. The vertical line represents the equals signs in the equations.

The tableau of (15) will be called the detached coefficient tableau for
simultaneous linear equations. We now show how to solve simultane-
ous equations using the detached coefficient tableau.

Example 6. Starting with the tableau of (15) we carry out exactly
the same calculations as in Example 1, which lead to the following
series of tableaus.
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1 4 3] 1
(16) 0 -3 —2| 2
0 -7 —5| 4
1 0 3]
an (0 1 3 —%)
0 0 —3|-3
1 0 0] 3
(18) 0 1 0f-=2}
0 0 1| 2

From the tableau of (18) we can easily read the answer x; = 3, x; =
—2, and x; = 2, which is the same as before.

The correspondence between the calculations of Example 1 and of
the present example is as follows:

(1), (2), and (3) correspond to (15)
(1), (2'), and (3) correspond to  (16)
(1”), 2"), and (3"")  correspond to (17)
(1///)’ (2/[/), and (3///) Correspond to (18)

Note that in the tableau form we are always careful to keep zero coeffi-
cients in each column when necessary.

Example 7. Suppose that we have two sets of simultaneous equa-
tions to solve and that they differ only in their right-hand sides. For

"instance, suppose we want to solve

1 4 3 X1 1 —1
(19) <2 5 4) <x2> - <4> and =< o).
I =3 =2/ \x 5 2

It is obvious that the calculations on the left-hand side will be the same
regardless of the numbers appearing on the right-hand side. Therefore,
it is possible to solve both sets of simultaneous equations at once. We
shall illustrate this in the following series of tableaus.

1 4 3] 1 —1

(20) (2 5 4| 4 0)
1 -3 =2 5 2
1 4 37 1 —1

Q1) (o -3 —2| 2 2)
4 3

0 -7 -5
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1 0
(22) 0 1
0 0o -—
0
1
0

1
(23) <0
0

We find the answers
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X1=3, X2=—-2, X3 =2
to the first set of equations and the answers
X1=O, X2=-"4, X3=5

to the second set of equations. The reader should check these answers
by substituting into the original equations.

EXERCISES

1. Work again Examples 2-4 using the detached coefficient tableau.

2. Find all the solutions of the following simultaneous equations.

@4 +5x,= 6
Xg = 6X3 = —2

3xq; F4x;= 3. [Ans. x;y =9, x; = —38, x; = —6.]

(b) 3x; — Xy — 2X3 = 2 ’

2XQ - X3 = -1

3X1 -— SX2 = 3.

(C) - X1 + 2X2 + 3X3 =0

X —4x; — 13x; = 0

—3x1 + 5X2 + 4X3 = Q. [AIIS. X1 = —7X3, Xy = —5x3.]

[Ans. No solution.]

8. Find all the solutions of the following simultaneous equations.
@ xi+ x24+ x3=0
2X1+4X2+3X3= 0
4x, + 4x; = 0.

®) x4+ x4+ xs= -2
2X]_ + 4X2 + 3X3 = 3
4X2 + 2X3 = 2.

(©) 4x; +4x;= 8
X; — 6x3 = —3

3X1 + Xq — 3X3 = 3.
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4. Find all solutions of the following equations using the detached coeffi-
cient tableau.
(a) le b 3X2 = =7
—2X1 + 9X2 = 4
2x) + 4x; = =2, [AHS. X1 = —H; Xg == 323-.]
(b) X1 + 2X2 = 1
—3x1 + 2X2 = —2
2x14+3x: = 1, [Ans. No solution.]
(e) 5X1 - 3X2 —_ 7X3 + X4 10
—x1 + 2x3 + 6x; — 3x4
X1+ X2+4X3—5JC4= 0.

Il

i
I
w

5. Find all solutions of:
X1+ 2xy 4+ 3x3 4+ 4x, =10
26— X0+ x3— xs= 1
3X1 + Xo + 4X3 + 3X4 =11
—2x; + 6x3 + 4x; + 10x, = 18

[Ans. x1 = 32 — x5 — 3x43 %3 = 32 — X3 — $x4, X3 and x, arbitrary.]

6. We consider buying three kinds of food. Food I has one unit of vitamin
A, three units of vitamin B, and four units of vitamin C. Food II has two,
three, and five units, respectively. Food III has three units each of vitamin
A and vitamin C, none of vitamin B. We need to have 11 units of vitamin A,
nine of vitamin B, and 20 of vitamin C.

(a) Find all possible amounts of the three foods that will provide pre-

cisely these amounts of the vitamins.
(b) If food I costs 60 cents and the others cost 10 cents each per unit,
is there a solution costing exactly $1? [Ans. (b) Yes; 1, 2, 2.]

7. Solve the following four simultaneous sets whose right-hand sides are
listed under (a), (b), (c), and (d) below. Use the detached coefficient tableau.

(@ ® @© @

41 +5x=1 1 0 0
X2 — 6x; 2 0 0 1
3x1 + 4X3 3 0 1 0.

[A)ZS (a)x1 = '—11 Xo = 56 JC3=9]

Il

8. Solve the following four sets of simultaneous equations, which differ
only in their right-hand sides.
@ ® @© @
X1 + Xeo + X3 = 3 0 12 0
X1 — Xo + ZX3 = 2 -1 7 0
ZX1+X2— X3 = 2 3 11 0.
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9. Solve the following three sets of simultaneous equations.

@ ® ©

X1 + X2 + X3 = 1 2 0
Xy — X2 +'2X3 = —2 2 0
3X1 — X2 + 5X3 = —3 2 0.

10. Show that the equations

—4x;+ 3x; +ax; = ¢
5X1 bl 4X2 + bX3 = d

always have a solution for all values of a, b, ¢, and 4.

11. Find conditions on a, b, and ¢ in order that the equations

'—4X1 + 3X2 =aq
S5x, —4x: = b
—3x; -+ 2x; = ¢
have a solution. [Ans. 2a+ b = c.]

12. (a) Let x = (x1, x2) and let 4 be the matrix
_ (3 —4
A= ( >z 6).
Find all solutions of the equation x4 = x. [4ns. x = (0, 0).]
(b) Let x = (x), x2) and let 4 be the matrix

_ 3 6
a=(_5 %)
Find all solutions of the equation x4 = x.

[Ans. x = (k, k) for any number £.]
13. Let x = (x1, x2) and let P be the matrix

12
p=(3 %)
3 3
(a) Find all solutions of the equation xP = x.

(b) Choose the solution for which x; + x; = 1.

14. If x = (x1, x2, x3) and A is the matrix

1 =2 0
a=(0 s 1)
0 —6 -—

find all solutions of the equation x4 = x.
[4ns. x = (—k/2, 5k/4, k) for any number k.]
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15. If x = (xy, xs, x5) and P is the matrix

0 % 3
P=13% % 1)
s 0 %

find all solutions of the equation xP = x. Select the unique solution for
which X1 + X2 -+ x3=1

16. (a) Show that the simultaneous linear equations

X1+ xo4 xz3=1
X1+ 2x:43x; =0

can be interpreted as a single matrix-times-column-vector equation

of the form
11 1\ /2 _ 1)
1 2 3)\*™ 0/
X3
(b) Show that any set of simultaneous linear equations may be inter-
preted as a matrix equation of the form Ax — b, where A is an

m X n matrix, x is an n-component column vector, and 4 is an
m-component column vector.

17. (a) Show that the equations of Exercise 16(a) can be interpreted as a
row-vector-times-matrix equation of the form

1 1
(x1 x: x3) <l 2> =(1 0.
1 3

(b) Show that any set of simultaneous linear equations may be inter-
preted as a matrix equation of the form xA4 = b, where A4 is an
m X n matrix, x is an m-component row vector, and b is an
n-component row vector,.

18. (a) Show that the simultaneous linear equations of Exesrcise 16(a) can
be interpreted as asking for all possible ways of expressing the

column vector (é) in terms of the column vectors (;), ( ;), and
1 Ll
3
(b) Show that any set of linear equations may be interpreted as asking

for all possible ways of expressing a column vector in terms of
given column vectors,
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SUPPLEMENTARY EXERCISES

19. For what value of the constant k does the following system have a
unique solution? Find the solution in this case. What is the case if £ does
not take on this value?

2x +4z= 6

[Ans. k = —2; x = —1,y = 0, z = 2; no solution.]
20. Consider the following set of simultaneous equations.
X1 n+ =a

X +y:=0b
X2 + »n =
X2 + Y = d-
(a) For what conditions on a, b, ¢, and d will these equations have a

solution ?

(b) Give a set of values for a, b, ¢, and d for which the equations do
not have a solution.

(c¢) Show that if there is one solution to these equations, then there are
infinitely many solutions.

21. Which of the following statements are true and which false concerning
the solution of m simultaneous linear equations in n unknowns written in the
form Ax = b?

(a) If there are infinitely many solutions, then n > m.

(b) If the solution is unique, then n = m.

(c) If m = n, then the solution is unique.

(d) If n > m, then there cannot be a unique solution.

(e) If b = 0, then there is always at least one solution.

(f) If b = 0, then there are always infinitely many solutions.

(g) If b = 0 and x™ and x® are solutions, then x® 4 x® is also a
solution, ldns. (d), (e), and (g) are true.]

22, Let
X1
A= (ab,o), x =\ X
3

and let 4 be any number. Consider the open statement Ax = d.
(a) If 4 = 0, show that the truth set of Ax = d is not empty.
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(b) If A = 0 and d = 0, show that Ax = d is logically true.

(c) If 4 = 0 and d = 0, show that Ax = 4 is logically false.

(d) Use (a), (b), and (c) to prove the following theorem: A single open
statement Ax = d is logically false if and only if 4 = 0 and d = 0.

6. THE INVERSE OF A SQUARE MATRIX

If A is a square matrix and B is another square matrix of the same
size having the property that B4 = I (where I is the identity matrix),
then we say that B is the inverse of 4. When it exists, we shall denote
the inverse of 4 by the symbol 4-1. To give a numerical example, let
A and 471 be the following.

4 0 5
(1) A=<O 1 —6>
30 4
‘ 4 0 —5
) A1 = (——18 1 24).
~3 0 4

Then we have

4 0 =5\ /4 0 5 1 00
A4 ={—-18 1 24}){0 1 —6]=({0 1 O0})=1
-3 0 4/ \3 0 4 0 0 1

If we multiply these matrices in the other order, we also get the identity
matrix ; thus

4 0 5 4 0 -5 1 00
A41={0 1 —6)(—18 1 24}={0 1 O})=1
3 0 4 -3 0 4 0 01

In general it can be shown that if 4 is a square matrix with inverse 4,
then the inverse satisfies the equation

A4 = A4 =1L

It is easy to see that a square matrix can have only one inverse. Sup-
pose that in addition to 4~ we also have a B such that

BA =1
Then we see that

B = Bl = B(AA™) = (BA)A-! = I4-' = A\,
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Finding the inverse of a matrix is analogous to finding the reciprocal
of an ordinary number, but the analogy is not complete. Every non-
zero number has a reciprocal, but there are matrices, not the zero
matrix, which have no inverse. For example, if

A=(_i “i) and B=<i })
=) )€ Y-

From this it follows that neither 4 nor B can have an inverse. To show

that 4 does not have an inverse, let us assume that 4 had an inverse
A~t, Then '

then

B = (A'A)B = A Y(AB) = A0 =0,
contradicting the fact that B ¢ 0. The proof that B cannot have an

inverse is similar.
Let us now try to calculate the inverse of the matrix 4 in (1). Spe-
cifically, let’s try to calculate the first column of 4~ Let

X1
X =1X
X3

be the desired entries of the first column. Then from the equation
AA~! = I we see that we must solve

4 O S\ /x1 1
0 1 - 6 Xo | = (0
30 4/ \x3 0

Similarly, to find the second and third columns of 4—! we want to solve
the additional sets of equations,

4 0 5\ /x; 0 0
01 —6){x]=(1) and ={0}
30 4/\x U 1

respectively. We thus have three sets of simultaneous equations that
differ only in their right-hand sides. This is exactly the situation de-
scribed in Example 7 of the previous section.

To solve them, we start with the tableau

4 0 511 00
3) 01 —6]0 10
0 01

30 4
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and carry out the calculations as described in the last section. This gives
rise to the following series of tableaus. In (3) divide the first row by 4,
copy the second row, and subtract 3 times the new first row from the
old third row, which yields the tableau

1 0 3 100
() 01 -6 1 0}

00 $11—-32 01
Next we multiply the third row of (4) by 4, multiply the new third row

by 6 and add to the old second row, and multiply the new third row by
£ and subtract from the old first row. We have the final tableau:

1 00 4 0 —5
(5) 01 0|—18 1 24}

0 01| -3 0 4

We see that the inverse 4~ which is given in (2) appears to the right of
the vertical line in the tableau of (5).

The procedure just illustrated will find the inverse of any square ma-
trix A, providing A has an inverse. We summarize it as follows:

RULE FOR INVERTING A MATRIX. Let 4 be a matrix that has an in-
verse. To find the inverse of A start with the tableau

4]Dn

and change it by row transformations (as described in Section 5) into
the tableau
(7| B).

The resulting matrix B is the inverse 4-! of A.

Even if 4 has no inverse, the procedure just outlined can be started.
At some point in the procedure a tableau will be found that is not of
the desired final form and from which it is impossible to change by row
transformations of the kind described.

Example 1. Show that the matrix

4 0 8
A=10 1 -6
2 0 4

has no inverse.
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We set up the initial tableau as follows:

40 8|100
(©) 01 —6|01 0)
00 1

2 0 4

Carrying out one set of row transformations, we obtain the second

tableau as follows:
100
1 0}
-1 0 1

1 0 2
@) (0 1 —6
00 O
It is clear that we cannot proceed further since there is a row of zeros
to the left of the equals sign on the third set of equations. Hence we
conclude that 4 has no inverse.
Because of the form of the final tableau in (7), we see that it is im-
possible to solve the equations

4 0 8\ /x1 0
01 —6 X ) = 0 s
2 0 4 X3 1

since these equations are inconsistent as is shown by the tests developed
in Section 5. In other words, it is not possible to solve for the third
column of the inverse matrix.

It is clear that an n X n matrix A has an inverse if and only if the
following sets of simultaneous equations,

1 0 0

0 1 0
Ax = , Ax = . L , Ax =

0 0 1

can all be uniquely solved. And these sets of simultaneous equations,
since they all share the same left-hand sides, can be solved uniquely if
and only if the transformation of the rule for inverting a matrix can be
carried out. Hence we have proved the following theorem.

Theorem. A square matrix 4 has an inverse if and only if the tableau

“|D
can be transformed by row transformations into the tableau
(| 4.
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Example 2. Let us find the inverse of the matrix

1 4 3
A= (2 5 4).
1 =3 —
The initial tableau is

1 4 311 00
2 5 410 1 0}
1 -3 =2[0 0 1

Transforming it by row transformations, we obtain the following series

of tableaus.
1 4 0
(0 -3 O)
0 -7 1
1
<o
0
1
<o
0
The inverse of A is then

2 —1 1
At = 8 —5 2}
—11 7 =3

The reader should check that 4714 = 4471 = I,
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EXERCISES

1. Compute the inverse of each of the following matrices.

1 00 4 3 2

A=<315>, B=<Ol—1>,
-2 01 00 7
S

C = , D=[(3 40
0o 0 7 — P
0 0 O 3
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2. Show that each of the following matrices fails to have an inverse.

1 2 3 11 0
0 3 3 -1 1 -5

1 12 3
11 1
c= 9 542} p_(111)
1 =31 0 D11
0 375

3. Let A, B, and D be the matrices of Exercise 1; let

X1
X = <x2> and w = (w, w, w3);

X3

let b, ¢, d, e, and f be the following vectors.

3 -1 1
b= <—l>, c= < 2>, d=@3,7,-2), e=(1,1,1), f= (1)
0 -3 1

Use the inverses you computed in Exercise 1 to solve the following equations.

(@) Ax = b. (b) Bx =c. () wD = e.
(d) wB = d. () wA =e. ) Dx =f.
3 1
[Partial Ans. (a) x = <—40>; ew=(-10,1,—4); H x = <%r>.]
6 0

4. Rework Exercise 7 of Section 5 by first writing the equations in the form
Ax = b, and finding the inverse of A.

5. Solve the following problem by first inverting the matrix. (Assume
ad # bc.) If a grinding machine is supplied with x pounds of meat and y
pounds of scraps (meat scraps and fat) per day, then it will produce ax + by
pounds of ground meat and cx + dy pounds of hamburger per day. In other
words, its production vector is

(2 2)C)

What inputs are necessary in order to get 25 pounds of ground meat and 70
pounds of hamburger? In order to get 20 pounds of ground meat and 100
pounds of hamburger?

6. For each of the matrices 4 and D in Exercise 2 find a nonzero vector
whose product with the given matrix is 0.

7. Show that if 4 has no inverse, then neither does any of its positive
powers A,
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8. The formula (471)~! = A states that if 4 has an inverse 41, then A1
itself has an inverse, and this inverse is 4. Prove both parts of this statement.

9. Expand the formula (4B)~! = B~'4~linto a two-part statement analo-
gous to the one in the exercise above. Then prove both parts of your state-
ment.

10. (a) Show that (4B)7 % A~1B~! for the matrices 4 = (1 1) and

. 01
_ 0
5=(3 )

(b) Find (4B)~* in two different ways. [Hint: Use Exercise 9.]

11. Give a criterion for deciding whether the 2 X 2 matrix (‘CI 3) has an

inverse. (Ans. ad # be.]
-1
12. Give a formula for (z z> , when it exists.
13. If (‘Cz z> has an inverse and has integer components, what condition

-1
must it fulfill in order that <z 3) have integer components ?

SUPPLEMENTARY EXERCISES

14. Let A4 be the matrix ( 2 _5).

-1 3
(a) Find 471
(b) Use the result of (a) to solve the matrix equation A2x = b, where

x = (2) and b = (_}2)
[Ans. x = (i’g)]

15. Let A4 be a square matrix that has an inverse. Show that the inverse of
A? is (A7Y)2, What is the inverse of 47?

Note: The remaining exercises refer to the problem of computing (I — Q)™
where Q is a lower triangular matrix.

16. A matrix is lower triangular if it has zeros on and above its main

diagonal. For instance,
0 0O
Q= < 4 0 O)
10 5 0/

is lower triangular.
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(a) Compute Q2 saving the result for later exercises.
(b) Show that Q% = 0, and also that Q% = 0 for & > 3.

17. Consider the equation w = wQ + 4 where Q is as in Exercise 16, and
w = (w1, Wy, W3), d = (20, 5, 3).
Solve symbolically for w. [Ans. w = d(I — Q)1.]
18. (a) Establish the identity
I—QI+Q+0)=I—0 =1

where Q is as in Exercise 16.

(b) Show from (@) that (/ — Q)1 = I+ Q 4 Q°.
(c) Use (b) to compute (I — Q)71

1 00
[Ans. I — O) 1 = ( 4 1 O>.]
30 5 1

(d) Use (c) to solve for the w of Exercise 17. [A4ns. w = (130, 20, 3).]
19. Let O be any n X n lower triangular matrix.

(a) Show that Q¥ = O for k > n.

(b) Showthat { - QI+ Q0+ ...+ 0" ) =1—-0Q* =1,

(c) Showthat{ — Q)1=I+ Q4+ ...+ O,
20. Find (I — Q)™ * for Q being each of the following.

@ /0 0 0 O (b) 0 00 0O
7 0 0 0}, 2 0 000
2000 53000
3 45 0 018 00O
10 5 0 3 O

1 0 0O

71 00

[Ans.(a)zOIO]
41 4 5 1

and has non-

L]

21. Use Exercise 19 to show that if Q is lower triangula
negative integer entries, then so does the matrix (I — Q)L

7. APPLICATIONS OF MATRIX THEORY TO
MARKOV CHAINS

In this section we shall show applications of matrix theory to Markov
chains. For simplicity we shall confine our discussion to two-state and
three-state Markov chains, but a similar procedure will work for any
other Markov chain.
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In Section 13 of Chapter IV, we noted that to each Markov chain
there was a matrix of transition probabilities. For instance, if there are
three states, ay, a;, and a;, then

a ds as
a Pu D12 P13
P = g, P21 D2 Do
as P31 PDi2 Ds3
is the transition matrix for the chain. Recall that the row sums of P are
all equal to 1. Such a matrix is called a transition matrix.

DEFINITION. A transition matrix is a square matrix with nonnegative
entries such that the sum of the entries in each rowis 1. '

In order to obtain a Markov chain we must specify how the process
starts. Suppose that the initial state is chosen by a chance device that
selects state a; with probability p{®. We can represent these initial
probabilities by means of the vector p@ = (p{?, p, P5"). As in Exer-
cise 10 of Section 4, we can construct a tree measure for as many steps
of the process as we wish to consider. Let pi® be the probability that
the process will be in state a; after » steps. Let the vector of these
probabilities be p™ = (p{®, p{, pi®).

DEFINITION. A row vector p is called a probability vector if it has
nonnegative components whose sum is 1.

Obviously the vectors p® and p™ are probability vectors. Also each
row of a transition matrix is a probability vector.

By means of the tree measure it can be shown that these probabilities
satisfy the following equations.

(n—1)

P = p§"‘1’pu -+ p:(z”"”pzl + pi* Vpn

n—1)

PP = i Ppie + DY Ppes + Ds" P32
P = p{*~Vpi; + P8 " Pp2s + p§Vpas.

It is not hard to give intuitive meanings to these equations. The first
one, for example, expresses the fact that the probability of being in
state 4, after n steps is the sum of the probabilities of being at each of
the three possible states after n — 1 steps and then moving to state g,
on the nth step. The interpretation of the other equations is similar.
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If we recall the definition of the product of a vector times a matrix
we can write the above equations as

pm™ = p=DP,

If we substitute values of n we get the equations p® = pOP, p@ =
pWOP = pOPpP2 p@® = p@P = pOPs etc. In general, it can be seen that

p(n) — p(O)P".

Thus we see that, if we multiply the vector p®® of initial probabilities
by the nth power of the transition matrix P, we obtain the vector p™,
whose components give the probabilities of being in each of the states
after n steps.

In particular, let us choose p® = (1,0, 0) which is equivalent to
letting the process start in state a;. From the equation above we see
that then p™ is the first row of the matrix P*. Thus the elements of the
first row of the matrix P» give us the probabilities that after n steps the
process will be in a given one of the states, under the assumption that
it started in state a;. In the same way, if we choose p® = (0, 1, 0), we
see that the second row of P gives the probabilities that the process
will be in one of the various states after n steps, given that it started in
state a,. Similarly, the third row gives these probabilities, assuming
that the process started in state as.

In Section 13 of Chapter IV, we considered special Markov chains
that started in given fixed states. There we arrived at a matrix P™
whose ith row gave the probabilities of the process ending in the vari-
ous states, given that it started at state a;. By comparing the work that
we did there with what we have just done, we see that the matrix P™
is merely the nth power of P, that is, P™® = P», (Compare Exercise 10
of Section 4.) Matrix multiplication thus gives a convenient way of
computing the desired probabilities.

DerINITION. The probability vector w is a fixed point of the matrix
P, if w = wP.

Example 1. Consider the transition matrix
P 3\ _ (667 .333\
- 1) \.500 .500

If w = (.6, .4), then we see that

rof= eoled
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2 1

wP = (.6, .4) (3 g) = (.6, .4) = w,

so that w is a fixed point of the matrix P.

If we had happened to choose the vector w as our initial probability
vector p(®, we would have had p™ = pOPr = ypr = y = . In this
case the probability of being at any particular state is the same at all
steps of the process. Such a process is in equilibrium.

As seen above, in the study of Markov chains we are interested in
the powers of the matrix P. To see what happens to these powers, let
us further consider the example.

Example 1 (continued). Suppose that we compute powers of the
matrix P in the example above., We have

P <.611 .389>’ ps (.602 .398), e,

583 417 597 .403
It looks as if the matrix P~ is approaching the matrix
6 4
W= (.6 .4)

and, in fact, it can be shown that this is the case. (When we say that
P~ approaches W, we mean that each entry in the matrix P gets close
to the corresponding entry in #.) Note that each row of W is a fixed
point w of the matrix P,

DEFINITION. A transition matrix is said to be regular if some power
of the matrix has only positive components.

Thus the matrix in the example is regular, since every entry in it is
positive, so that the first power of the matrix has all positive entries.
Other examples occur in the exercises.

Theorem. If P is a regular transition matrix, then
(a) The powers P* approach a matrix W.

(b) Each row of W is the same probability vector w.
(c) The components of w are positive.
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We omit the proof of this theorem ;* however, we can prove the next
theorem.

Theorem. If P is a regular transition matrix, and W and w are
given by the previous theorem, then

(a) If pis any probability vector, pP* approaches w.

(b) The vector w is the unique fixed point probability vector of P.

Proof. First let us consider the vector pW. The first column of W
has a w; in each row. Hence in the first component of pW each com-
ponent of p is multiplied by w;, and therefore we have w; times the sum
of the components of p, which is wy. Doing the same for the other
components, we note that pW is simply w. But pP" approaches pW;
hence it approaches w. Thus if any probability vector is multiplied
repeatedly by P, it approaches the vector w. This proves part (a).

Since the powers of P approach W, P*t! = P"P approaches W, but
it also approaches WP; hence WP = W. Any one row of this matrix
equation states that wP = w; hence w is a fixed point (and by the pre-
vious theorem, a probability vector). We must still show that it is
unique. Let u be any probability vector fixed point of P. By part (a)
we know that wP" approaches w. But since u is a fixed point, uP* = u.
Hence u remains fixed but ‘““approaches” w. This is possible only if
u = w. Hence w is the only probability vector fixed point. This com-
pletes the proof of part (b).

The following is an important consequence of this theorem. If we
take as p the vector p® of initial probabilities, then the vector pP* = p™
gives the probabilities after n steps, and this vector approaches w.
Therefore, no matter what the initial probabilities are, if P is regular,
then after a large number of steps the probability that the process is in
state a; will be very nearly w;, Hence the Markov chain approaches
equilibrium.

We noted for an independent trials process that if p is the probability
of a given outcome d, then this may be given an alternate interpretation
by means of the law of large numbers: In a long series of experiments
the fraction of outcomes in which a occurs is approximately p, and the

*For an elementary proof see Kemeny, Mirkil, Snell, and Thompson, Finite
Mathematical Structures (Englewood Cliffs, N.J.: Prentice-Hall, Inc., 1959) Chapter
6, Section 3.
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approximation gets better and better as the number of experiments in-
creases. For a regular Markov chain it is the components of the vector
w that play the analogous role. That is, the fraction of times that the
chain is in state a; approaches w;, no matter how the process is started.

Example 1 (continued). Let us take p@ = (.1,.9) and see how
p™ changes. Using P as in the example above, we have that p =
(.5167, .4833), p® = (.5861, .4139), and p® = (.5977, .4023). Recall-
ing that w = (.6, .4), we see that these vectors do approach w.

Example 2. As an example, let us derive the formulas for the fixed
point of a 2 X 2 transition matrix with positive components. Such a

matrix is Qf the form
l1—a a
S = < bo1-— b)’

where 0 < a < 1and 0 < b < 1. Since S is regular, it has a unique
probability vector fixed point w = (w, wy). Its components must satisfy
the equations

wi(l — a) + wb = wy
wia + wy(l — b) = w,,

Each of these equations reduces to the single equation wya = wyb. This
single equation has an infinite number of solutions. However, since w
is a probability vector, we must also have w; 4+ wy, = 1, and the new
equation gives the point [5/(a 4 b), a/(a + b)] as .he unique fixed-
point probability vector of .S,

Example 3. Suppose that the President of the United States tells
person A his intention either to run or not to run in the next election.
Then A relays the news to B, who in turn relays the message to C, etc.,
always to some new person. Assume that there is a probability p > 0
that any one person, when he gets the message, will reverse it before
passing it on to the next person. What is the probability that the nth
man to hear the message will be told that the President will run? We
can consider this as a two-state Markov chain, with states indicated by
“yes” and “no.” The process is in state “yes” at time n if the nth per-
son to receive the message was told that the President would run. It is
in state “no” if he was told that the President would not run. The
matrix P of transition probabilities is then
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yes no
o (1-p 2 ),
no p 1- p)
Then the matrix P* gives the probabilities that the nth man is given a
certain answer, assuming that the President said “yes” (first row) or
assuming that the President said “no” (second row). We know that
these rows approach w. From the formulas of the last section, we find
that w = (%, ). Hence the probabilities for the nth man being told
“yes” or “no” approach % independently of the initial decision of the
President. For a large number of people, we can expect that approxi-
mately one-half will be told that the President will run and the other half
that he will not, independently of the actual decision of the President.
Suppose now that the probability a that a person will change the news
from “yes” to “no” when transmitting it to the next person is different

from the probability b that he will change it from “no” to “yes.” Then
the matrix of transition probabilities becomes

yes no
yes (1 —a a \.
no b 1 — b)

In this case w = [b/(a + b), a/(a + b)]. Thus there is a probability
of approximately b/(a + b) that the nth person will be told that the
President will run. Assuming that » is large, this probability is inde-
pendent of the actual decision of the President. For n large we can
expect, in this case, that a proportion approximately equal to b/(a -+ b)
will have been told that the President will run, and a proportion
a/(a + b) will have been told that he will not run. The important
thing to note is that, from the assumptions we have made, it follows
that it is not the President but the people themselves who determine the

probability that a person will be told “yes” or “no,” and the propor-
tion of people in the long run that are given one of these predictions.

Example 4. For this example, we continue the study of Example 2
in Chapter IV, Section 13. The first approximation treated in that ex-
ample leads to a two-state Markov chain, and the results are similar to
those obtained in Example 1 above. The second approximation led to
a four-state Markov chain with transition probabilities given by the
matrix
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RR DR RD DD
RR l1—a 0 a 0
DR b 0 1—5 0
RD 0 1—c¢ 0 c
DD 0 d 0 1—-d

If a, b, c, and d are all different from 0 or 1, then the square of the
matrix has no zeros, and hence the matrix is regular. The fixed proba-
bility vector is found in the usual way (see Exercise 18) and is

( bd ad ad ca )
bd + 2ad + ca bd + 2ad + ca bd + 2ad + ca bd + 2ad+ ca

Note that the probability of being in state DR after a large number
of steps is equal to the probability of being in state RD. This shows that
in equilibrium a change from R to D must have the same probability as
a change from D to R.

From the fixed vector we can find the probability of being in state R
in the far future. This is found by adding the probability of being in
state RR and DR, giving

bd + ad
bd 4+ 2ad + ca

Notice that, to find the probability of being in state R on the election
preceding some election far in the future, we should add the proba-
bilities of being in states RR and RD. That we get the same result
corresponds to the fact that predictions far in the future are essentially
independent of the particular period being predicted. In other words,
the process is acting as if it were in equilibrium.

EXERCISES

1. Which of the following matrices are regular?

(@ ( (b) (g }}) [Ans. Regular.]

\._/

Wi

3
© (; g) @ (f %) [Ans. Regular.]
(e) ((%) ?) )] <(1) (1)) [Ans. Not regular.]
3 30 3 0 3
(8 <0 3 %) () <O 1 O>. [Ans. Not regular.]
3 33 0 % $
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2. Show that the 2 X 2 matrix

(1 —a a
5= ( b 11— b)
is a regular transition matrix if and only if either

() 0<a<landO<b<1;o0r
(i) 0<a<landO< b <L1.

3. Find the fixed point for the matrix in Exercise 2 for each of the cases
listed there. [Hint: Most of the cases were covered in the text above.]

4. Find the fixed point w for each of the following regular matrices.

@ (§ ) [dns. w = (2, $).]
9 1

® (7 )
$ 10

© <g i 1> Lns. w = (3,3, D]

5. Let p° = (%, 1) and compute p®, p®, and p® for the matrices in
Exercises 4(a) and 4(b). Do they approach the fixed points of these matrices?

6. Give a probability theory interpretation to the condition of regularity.
7. Consider the two-state Markov chain with transition matrix
a a
a 0 1
P= a: (1 0)'
What is the probability that after n steps the process is in state a, if it started
in state a,? Does this probability become independent of the initial position

for large n? If not, the theorem of this section must not apply. Why? Does
the matrix have a unique fixed point probability vector?

8. Prove that, if a regular 3 X 3 transition matrix has the property that
its column sums are 1, its fixed point probability vector is (3, 3, 3). State a
similar result for » X n transition matrices having column sums equal to 1.

9. Compute the first five powers of the matrix
8 .2
P= (.2 .8)'
From these, guess the fixed point vector w. Check by computing what w is.
10. Show that all transition matrices of the form
(1 —a a )
a 1—a/)

where 0 < a < 1, have the same unique fixed point. [dns. w = 3, 3).]
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11. A professor has three pet questions, one of which occurs on every test
he gives. The students know his habits well. He never uses the same question
twice in a row. If he used question one last time, he tosses a coin, and uses
question two if a head comes up. If he used question two, he tosses two coins
and switches to question three if both come up heads. If he used question
three, he tosses three coins and switches to question one if all three come up
heads. In the long run, which question does he use most often, and how fre-
quently is it used ? [Ans. Question two, 40 per cent of the time.]

12. A professor tries not to be late for class too often. If he is late one day,
he is 90 per cent sure to be on time next time. If he is on time, then the next
day there is a 30 per cent chance of his being late. In the long run, how often
is he late for class?

13. The Land of Oz is blessed by many things, but not good weather. They
never have two nice days in a row. If they have a nice day they are just as
likely to have snow as rain the next day. If they have snow (or rain), they
have an even chance of having the same the next day. If there is a change
from snow or rain, only half of the time is this a change to a nice day. Set
up a three-state Markov chain to describe this situation. Find the long-range
probability for rain, for snow, and for a nice day. What fraction of the days
does it rain in the Land of Oz?

[Ans. The probabilities are: nice, ; rain, £; snow, £.]

14. Let S be the matrix
10
s=(1 )
2 2

Compute the unique probability vector fixed point of .S, and use your result
to prove that S is not regular.
15. Show that the matrix

100
S=(% 0 3
001

has more than one probability vector fixed point. Find the matrix that .S»
approaches, and show that it is not a matrix all of whose rows are the same.

16. Let P be a transition matrix in which all the entries that are not zero
have been replaced by x’s. Devise a method of raising such a matrix to powers
in order to check for regularity. Illustrate your method by showing that

010
P=<00 O
3 3 0

is regular.
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17. Consider a Markov chain such that it is possible to go from any state
a; to any state a; and such that py is not O for at least one state a;. Prove that
the chain is regular. [Hint: Consider the times that it is possible to go from

a; to q; via a.] _
18. Show that the vector given in Example 4 is the fixed vector of the
transition matrix. '

SUPPLEMENTARY EXERCISES

19. Determine whether each of the following matrices is regular.

@@ (0 1 ® /3 0 3
(%%)’ (010>-
b 7 3
© /0 0 1 @ /0 0 1
<01o>. <%0%>.
100 140
® /2 3 00 ® /0 3 3%
1300 <1oo>.
00 3 3 100
1013

[Ans. (a) and (d) are regular.]
20. Consider the three-state Markov chain with transition matrix

RN
P=(3 3 o)
bioo

(@) Show that the matrix has a unique fixed probability vector.
[Ans. (3, 7%, 1%).]
(b) Approximately what is the entry in the third column of the first
row of P100?
(c) What is the interpretation of the entry estimated in (b)?

21. Assume that it is known that of the sons of Harvard alumni, 80 per
cent go to Harvard and all the rest go to Yale; of the sons of Yale men, 40
per cent go to Yale, the remainder split evenly between Harvard and Dart-
mouth; and of the sons of Dartmouth men, 70 per cent go to Dartmouth,
20 per cent to Harvard, and 10 per cent to Yale.

(a) Set up this process as a Markov chain.
(b) What is the probability that the grandson of a Harvard man goes
to Harvard?
(c) What is the long run fraction expected in each school ?
[4ns. (b) .7; (c) (Harvard, §; Yale, §; Dartmouth, 2.)]
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22. A carnival man moves a pea among three shells, A, B, and C. When-
ever the pea is under A, he moves it with equal probability to A or B. When
ft is under B, he is sure to move it to C. When it is under C, he is sure to
put it next time under C or B, but is twice as likely to put it under C as B.

Set up a Markov chain taking as states the letters of the shells under which
the pea appears after a move. Give the matrix of transition probabilities.
Assume that the pea is initially under shell A. Which of the following state-
ments are logically true?

(a) After the first move, the pea is under A or B.
(b) After the second move, the pea is under shell B or C.
(c) If the pea appears under B, it will eventually appear under A again
if the process goes on long enough.
(d) If the pea appears under C, it will not appear under A again.
[Ans. (a) and (d) are logically true.]

23. A certain company decides each year to add a new workers to its pay-
roll, to remove b workers from its payroll, or to leave its workforce un-
changed. There is probability  that the action taken in the given year will
be the same as the action taken in the previous year. The president of the
company has ruled that they should never fire workers the year after they
added some, and that they should never hire workers the year after they fired
some. Moreover, if no workers were added or fired in the previous year, the
company is twice as likely to add workers as to fire them.

(a) Set up the problem as a Markov chain with three states.
(b) Show that it is regular.
(c) Find the long run probability of each type of action.
(d) For what values of a and b will the company tend to increase in
size? To decrease? To stay the same?
[Ans. (c) Increase, %; decrease, §; same, 3. (d) a > b/2; a < b/2;
a=b/2.]

8. ABSORBING MARKOV CHAINS

In this section we shall consider a kind of Markov chain quite differ-
ent from regular chains.

DEFINITION. A state in a Markov chain is an absorbing state if it is
impossible to leave it. A Markov chain is absorbing if (1) it has at least
one absorbing state, and (2) from every state it is possible to go to an
absorbing state (not necessarily in one step).
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Example 1. A particle moves on a line; each time it moves one unit
to the right with probability 3, or one unit to the left. We introduce
barriers so that if it ever reaches one of these barriers it stays there. As
a simple example, let the states be 0, 1, 2, 3, 4. States O and 4 are ab-
sorbing states. The transition matrix is, then,

0123 4
0 /1 000 0
1 [ 01100
P=2 [0 23201 0
3 \oo1o01
4 \0 0 0 0 1

The states 1, 2, 3 are all nonabsorbing states, and from any of these it
is possible to reach the absorbing states 0 and 4. Hence the chain is an
absorbing chain. Such a process is usually called a random walk.

When a process reaches an absorbing state we shall say that it is
absorbed.

Theorem. In an absorbing Markov chain the probability that the
process will be absorbed is 1.

We shall indicate only the basic idea of the proof of the theorem.
From each nonabsorbing state, a;, it is possible to reach an absorbing
state. Let n; be the minimum number of steps required to reach an
absorbing state, starting from state a;. Let p; be the probability that,
starting from state ag;, the process will not reach an absorbing state in
n; steps. Then p; < 1. Let n be the largest of the n; and let p be the
largest of the p;. The probability of not being absorbed in n steps is
less than p, in 2#n steps is less than p?, etc. Since p < 1, these proba-
bilities tend to zero.

For an absorbing Markov chain we consider three interesting ques-
tions: (a) What is the probability that the process will end up in a given
absorbing state? (b) On the average, how long will it take for the process
to be absorbed? (¢) On the average, how many times will the process
be in each nonabsorbing state? The answer to all these questions de-
pends, in general, on the state from which the process starts.

Consider then an arbitrary absorbing Markov chain. Let us re-
number the states so that the absorbing states come first. If there are
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r absorbing states and s nonabsorbing states, the transition matrix will
have the following canonical (or standard) form.

r states s states

r ( I l (0] )
) P= .
s R | o

Here I is an r-by-r identity matrix, O is an r-by-s zero matrix, R is an
s-by-r matrix, and Q is an s-by-s matrix. The first  states are absorbing
and the last s states are nonabsorbing.

In Section 7 we saw that the entries of the matrix P* gave the proba-
bilities of being in the various states starting from the various states.
It is easy to show that P~ is of the form

@ P=(i o)

where the asterisk * stands for the s-by-r matrix in the lower left-hand
corner of P, which we do not compute here. The form of P shows that
the entries of Q" give the probabilities for being in each of the non-
absorbing states after n steps for each possible nonabsorbing starting
state. (After zero steps the process must be in the same nonabsorbing
state in which it started. Hence Q° = I.) By our first theorem, the
probability of being in the nonabsorbing states after » steps approaches
zero. Thus every entry of Q" must approach zero as n approaches in-
finity, i.e., Q" — 0.

From the fact that 0* — 0 it can be shown that the matrix (/ — Q)~!
exists.* The matrix (/ — Q) will be called the fundamental matrix of
the absorbing chain. It has the following important interpretation.

Let n; be the expected number of times that the chain is in state a; if
it starts in state a,, for two nonabsorbing states a; and a;. Let N be the
matrix whose components are n;;. If we take into account the contribu-
tion of the original state (which is 1 if i = j and 0 otherwise), we may
write the equation

ni; = dij + (PigsaMesr,i +F Pirgfrii + « o o F Disvialloge.i)s

where d;; is 1 if i = j and O otherwise. (Note that the sum in paren-
theses is merely the sum of the products pan; for k running over the

* For a proof see Kemeny, Mirkil, Snell, and Thompson, Finite Mathemati-
cal Structures (Englewood Cliffs, N.J.: Prentice-Hall, Inc., 1959) Chapter 6, Section
3.
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nonabsorbing states.) This equation may be written in matrix form:
N =1+ QON.

Thus (/ — Q)N = I, and hence N = (I — Q)!, as was to be shown.
Thus we have found a probabilistic interpretation for our fundamental
matrix: its i, jth entry is the expected number of times that the chainis in
state g, if it starts at a;. We have answered question (c) as follows.

Theorem. Let N = (I — Q)~! be the fundamental matrix for an ab-
sorbing chain. Then the entries of N give the expected number of times
in each nonabsorbing state for each possible nonabsorbing starting
state.

Example 1 (continued). In Example 1 the transition matrix in
canonical form is

0 4 1 2 3
0 1 0|0 0 O
4 0 1/{0 0O
1 $: 00 3 O
2 0O 0(% O 2
3 0 210 3 O
From this we see that the matrix Q is
01 0
0={1 0}
0 3+ 0

[ T

and I—- Q=

—_— i O
\./

O i

/l\

Computing (/ — Q)7, we find

[ T T
— N N
20leo e Ol (0D

).

Thus, starting at state 2, the expected number of times in state 1
before absorption is 1, in state 2 it is 2, and in state 3 it is 1.

We next answer question (b). If we add all the entries in a row, we
will have the expected number of times in any of the nonabsorbing

1
N=U—®*=2<
3
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states for a given starting state, that is, the expected time required before
being absorbed. This may be described as follows:

Theorem. Consider an absorbing Markov chain with s nonabsorb-
ing states. Let ¢ be an s-component column vector with all entries 1.
Then the vector t = Nc has as components the expected number of
steps before being absorbed, for each possible nonabsorbing starting
state.

Example I (continued). For Example 1 we have

1 2 3
1 /3 1 3\ /1
t=Nc=2 (1 2 1}|1
3\ 1 3/\1
1 /3
=2 |4}
3 \3

Thus the expected number of steps to absorption starting at state 1
is 3, starting at state 2 it is 4, and starting at state 3 it is again 3. Since
the process necessarily moves to 1 or 3 from 2 it is clear that it requires
one more step starting from 2 than from 1 or 3.

We now consider question (a). That is, what is the probability that
an absorbing chain will end up in a particular absorbing state? It is
clear that this probability will depend upon the starting state and be
interesting only for the case of a nonabsorbing starting state. We write,
as usual, our matrix in the canonical form

I | O )
P = ( L
R | Q
Theorem. Let b;; be the probability that an absorbing chain will be

absorbed in state g, if it starts in the nonabsorbing state a;. Let B be the
matrix with entries b;;. Then

B = NR,
where N is the fundamental matrix and R is as in the canonical form.

Proof. Let a; be a nonabsorbing state and a; be an absorbing state.
State a, can be reached either by stepping into it on the first step, or by

3
B
k.
-5
3
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going to a nonabsorbing state a;, and from there eventually reaching a;.
Hence, if we compute b;; in terms of the possibilities on the outcome of
the first step, we have the equation

bij = pi; + kEPikbkj,

where the summation is carried out over all nonabsorbing states a.
Writing this in matrix form gives

B=R-+ QOB
(I—Q)B=R
and hence B=({— Q'R = NR.

Example 1 (continued). In the random walk example we found that

N=< )

From the canonical form we find that

1
2
1

(SR Ui
BOjc b RO

R =

O O v

e O O

B\ /3 0\ 1
1]{0 o)=2
3/\o 3/ 3

Thus, for instance, starting from ai, there is probability £ of absorp-
tion in g, and % for absorption in a,.

Hence

B:NR=<

Bl 100
—t N

[FS O TS Ty

L A ]
\.—/

Let us summarize our results. We have shown that the answers to
questions (a), (b), and (c) can all be given in terms of the fundamental
matrix N = (I — Q)~* The matrix N itself gives us the expected number
of times in each state before absorption, depending upon the starting
state. The column vector t = Nc gives us the expected number of steps
before absorption, depending upon the starting state. The matrix B =
NR gives us the probability of absorption in each of the absorbing
states, depending upon the starting state.
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EXERCISES

1. Which of the following transition matrices are from absorbing chains ?

(@P=C %, (®) 100
33 P=<O%%.
0% 3
© 10000 @ 1000
0303 0 p_[3 001
P={} 31111 BERRE
03020 000 1
00001

[Ans. (a) and (d).]
2. Consider the two-state transition matrix

_(1—a a
P‘( b l—b)
For what choices of @ and » do we obtain an absorbing chain?

3. In the random walk example (Example 1) of the present section, assume
that the probability of a step to the right is  and a step to the left is 1. Find
N, t, and B. Compare these with the results for probability % for a step to
the right and 3 for a step to the left.

4. In the Land of Oz example (see Exercise 13, Section 7) let us change
the transition matrix by making R an absorbing state. This gives

R N S

R 0
N 3 )
s }

Find the fundamental matrix N, and also 7 and B. What is the interpretation
of these quantities?

e O O

Bt R ek

5. An analysis of a recent hockey game between Dartmouth and Princeton
showed the following facts: If the puck was in the center (C) the probabilities
that it next entered Princeton territory (P) or Dartmouth territory (D) were
-4 and .6, respectively. From D it went back to C with probability .95 or into
the Dartmouth goal (D) with probability .05 (Princeton scores one point).
From P it next went to C with probability .9 and to Princeton’s goal (P)
with probability .1 (Dartmouth scores one point). Assuming that the puck
begins in C after each point, find the transition matrix of this five-state
Markov chain. Calculate the probability that Dartmouth will score.

[Ans. 4.]
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6. A number is chosen at random from the integers 1, 2, 3, 4, 5. If x is
chosen, then another number is chosen from the set of integers less than or
equal to x. This process is continued until the number 1 is chosen. Form a
Markov chain by taking as states the largest number that can be chosen.
Show that

+ 1

Pk ke ek ND)
Wl = N O W
v O O A
e O O O W

W\ hHWN

where I is the 4 X 4 identity matrix. What is the expected number of draws?

[Ans. $%.]

7. Using the result of Exercise 6, make a conjecture for the form of the
fundamental matrix if we start with integers from 1 to n. What would the
expected number of draws be if we started with numbers from 1 to 10?

8. Three tanks fight a three-way duel. Tank A has probability 4 of de-
stroying the tank it fires at. Tank B has probability 1 of destroying its target
tank, and Tank C has probability ¢ of destroying its target tank. The tanks
fire together and each tank fires at the strongest opponent not yet destroyed.
Form a Markov chain by taking as state the tanks which survive any one
round. Find N, ¢, B, and interpret your results,

9. The following is an alternative method of finding the probability of
absorption in a particular absorbing state, say a;. Find the column vector d
such that the jth component of & is 1, all other components corresponding
to absorbing states are 0, and Pd = d. There is only one such vector. Com-
ponent d; is the probability of absorption in a; if the process startsin a;. Use
this method to find the probability of absorption in state 1 in the random
walk example given in this section.

10. The following is an alternative method for finding the expected number
of steps to absorption. Let ¢; be the expected number of steps to absorption
starting at state q;. This must be the same as taking one more step and then
adding p;;z; for every nonabsorbing state a;.

(a) Give reasons for the above claim that

t =14 2 piit;,
J
where the summation is over the nonabsorbing states.

(b) Solve for ¢ for the random walk example.
(c) Verify that the solution agrees with that found in the text.
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SUPPLEMENTARY EXERCISES

11. Peter and Paul are matching pennies, and each player flips his (fair)
coin before revealing it. They initially have three pennies between them and
the game ends whenever one of them has all the pennies. Let the states be
labelled with the number of pennies that Peter has.

(a) Write the transition matrix.

(b) What kind of a Markov chain is it?

(c) If Peter initially has two pennies, what is the probability that he
will win the game?

12. Peter and Paul are matching pennies as in Exercise 11, except that
whenever one of the players gets all three pennies, he returns one to his
opponent, and the game continues.

(a) Set up the transition matrix.
(b) Identify the kind of Markov chain that results. [Ans. Regular.]
(c) Find the long run probabilities of being in each of the states.

13. Peter and Paul are matching pennies as in Exercise 11, except that if
Peter gets all the pennies, the game is over, while if Paul gets all the pennies,
he gives one back to Peter, and the game continues.

(a) Set up the transition matrix.

(b) Identify the resulting Markov chain. [Ans. Absorbing.]

(c) If Peter initially has one penny, what is the probability of his win-
ning the game? If he has two pennies ?

14. A rat is put into the maze of the figure below. Each time period, it
chooses at random one of the doors in the compartment it is in and moves
into another compartment.

—

H

:

(a) Set up the process as a Markov chain (with states being the com-

partments) and identify it. [4ns. Regular.]
(b) In the long run, what fraction of his time will the rat spend in
compartment 2? [Ans. §.]

(c) Make compartment 4 into an absorbing state by assuming the rat
will stay in it once it reaches it. Set up the new process and iden-
tify it as a kind of Markov chain. [Ans. Absorbing.]
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(d) In part (c), if the rat starts in compartment 1, how many steps will
it take him, on the average, to reach compartment 4?
[Ans. 4} steps.]

15. Consider the following model. A man buys a store. The profits of the
store vary from month to month. For simplicity we assume that he earns
either $5000 or $2000 a month (“high” or *“low”’). The man may sell his
store at any time, and there is a 10 per cent chance of his selling during a
high-profit month, and a 40 per cent chance during a low-profit month. If he
does not sell, with probability 2 the profits will be the same the next month,

and with probability 4 they will change.
(a) Set up the transition matrix.
Sell 10 O
[Ans. High <1—‘~6 3 1%).]
Low 2 3 £

3 5
(b) Compute N, Nc, and NR and interpret each.

(c) Let f= (;888) and compute the vector g = Nf.

20,000
[Ans. g = (10,000)']
(d) Show that the components of g have the following interpretation.
g: is the expected amount that he will gain before selling, given
that he started in state i.

16. Suppose that P is the transition matrix of an absorbing Markov chain.
Assume that each time the process is in a nonabsorbing state i, a reward f; is
received (including the starting state). Let f be the vector with components
fi:and let g = Nf. Show that g, is the expected winnings before absorption if
the process starts in state i. [Hint: Exercise 15 is a specific example of this
process. ]

*9. LINEAR FUNCTIONS AND TRANSFORMATIONS

The primary use of vectors and matrices in science is the representa-
tion of several different quantities as a single one. For example, the
demands on all the industries in the United States may be represented
by a row vector x. We have seen examples where such a vector is mul-
tiplied by a column vector y, giving the number x-y. The components
of y could be the values of unit outputs of the various industries. Then
x-y is the total monetary value of the demand on industries.

This illustration is typical of much that we meet in the sciences. It
has two fundamental properties. If the demand increases by a given
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factor k, then (kx)-y = k(x-y), and hence the value increases by the
same factor. And if we have two demand vectors x and x’, then
(x+ x)-y = (x-y) + (x'-y), and hence their values are also added.

Thus we see that y has the effect of assigning to each row vector x a
number f(x), and has the two very simple properties,

6) S(kx) = kf(x)
(i) Six + X)) = f(x) + f(x).

Such an assignment of a number to each row vector x we call a linear
Sunction. We have seen that each column vector with » components
defines a linear function for row vectors with n components.

Linear functions represent the simplest type of dependence. Fortu-
nately, very many problems can be represented at least approximately
by linear functions. While it is not strictly true that manufacturing 100
tons of steel costs ten times as much as manufacturing ten tons, this is
at least a reasonable approximation. And the same holds for necessary
raw materials, for labor needed, transportation costs, etc. Linear func-
tions are so simple to handle that we try to use them whenever this is
reasonable.

Not only is it true that every column vector represents a linear func-
tion, but every linear function of row vectors can be so represented.
We will prove this for linear functions of three-component row vectors.

Let us suppose that f assigns a number f(x) to each three-component
vector x, and that it has the properties (i) and (ii). Consider the three
special vectors,

€ = (13 Oa O)’ € = (0’ 13 0)3 €3 = (0’ 0’ 1)'
B2
Let uscall f(e)) = y1;let yo = f(eo), y3 = f(es)andlety = |y, | If x =
'3
(x1, x2, X3), we can write x = Xx;e; + Xses + Xzes. Hence, using proper-
ties (i) and (i1), we see that

J(x) = f(xier + xe2 + xse3)
= f(xie1) + f(xee2) + f(x3€3)
= x1f(e)) + x2f(e2) + x3/(es)
= X1 + XoY2 + X3ys = X ).

Hence the column vector y represents the linear function f.
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Example 1. An office buys three kinds of paper, heavy bond, light
bond, and a cheaper quality for intra-office use. The amounts bought
(in reams) are given by the row vector x = (20, 50, 70). The prices per
ream of these types of paper are given (in cents) by the column vector

160
y= <140>. Then f(x) = x-y = $186 is the cost of the order. So far,
120

y defines a linear function of x. It is customary to give a discount if
100 or more reams are ordered of one item. The new rules for comput-
ing the bill define a new function of x, different from f. Let us call the
new function by the letter g. Then g(2x) < 2g(x), since the office gets
a discount on the light bond and on the cheaper paper. Now we have
a function that is not linear. It often happens that a function in science
is nearly linear for restricted values of the components, but not even
roughly linear outside this range.

Sometimes we assign, not a single number to a row vector, but several
numbers. Then we say that the vector is transformed into another vec-
tor. We say further that the transformation is a linear transformation
of the vector if each component in the resulting vector is a linear func-
tion of the given vector, that is, it satisfies (i) and (ii).

Example 2. In Example 1 of Section 3 we considered a vector x =
(5,7, 12), giving the number of each of three styles of houses to be
built by a contractor, and a matrix

5 20 16 7 17
R={7 18 12 9 21}
6 25 8 5 13

which gives the raw material requirements for each type of house.
Suppose that x’ = (8, 2, 3) is another vector of house orders that are

to be built in another location. Then it is easy to check that

(x + xR = (13,9, 15)R = (218, 797, 436, 247, 605)
= (146, 526, 260, 158, 388) + (72, 271, 176, 89, 217)
= xR+ x'R

Similarly, if the contractor is going to produce 2x houses,

(2x)R = (10, 14, 24)R = (292, 1052, 520, 316, 776)
= 2(146, 526, 260, 158, 388).
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It can be shown in the same way that (i) and (ii) hold true in general
and f(x) = xR is a linear transformation of vectors x.

In the same manner (see Exercise 10) one can show that R is a linear
transformation of five-component y (price) vectors.

Theorem. Let M be any m X n matrix; then M defines a linear
transformation of m-component row vectors x, and it also defines a
linear transformation of n-component column vectors y.

To prove this theorem we define f(x) = xM and show, using the
properties of ordinary numbers, that (i) and (ii) hold. This was done
for a specific numerical example in Example 2 above. Similarly, we
define g(y) = My and show that (i) and (i1) hold.

It can be shown that the effect of any linear transformation can be
described by a suitable matrix. This is illustrated in Example 3.

Example 3. Let us suppose that the population of the United
States is divided into five groups according to income. The compo-
nents of the row vector x are the number of people in each bracket.
Say x; people have an income of $100,000 or above, x; have incomes
between $40,000 and $100,000, etc. If we know the average number
of cars owned by men in a given income bracket, we can represent
these five numbers as a column vector, and we get the number of
privately owned cars as a linear function of x. Similarly, we could get
the number of yachts, privately owned houses, or television sets. Each
of these four quantities is a linear function of x (at least approximately)
and each is represented by a five-component column vector whose en-
tries are averages. Writing the four vectors together as a rectangular
array, we get a 5 X 4 matrix. This is a linear transformation trans-
forming x into a four-component row vector, whose components are
the total number of cars, yachts, houses, and television sets, respectively.

EXERCISES

1. x = (x3, X2, x3). Test each of the following functions of x as to whether
it has properties (i) and (ii).

@) f(x) = 3x1 + x2 — 2x3. [Ans. Linear.]
(b) f(x) = xixaxs.

©) fx) = V(x)? + (x2? + (xp)2 [4ns. Not linear.]
(d) f(x) = xa.




Sec. 9 VECTORS AND MATRICES 295

2. x = (xi1, x;). Test each of the following transformations of x into y as
to whether it is a linear transformation.

@ y1=2x14+3x; and y; = x; — xa. [Ans. Linear.]
®yi=x1+2x; and y, = —xx. [Ans. Not linear.]
©) »1=x; and y; = —x.

For the linear transformations above, write the matrix representing the
transformation.

3. Prove that the function f(x) = ¢, where x is a two-component row
vector and c is a constant, is a linear function if and only if ¢ = 0.

4. Prove that the function f(x) = ax; + bx, + ¢, where x is a two-
component row vector and a, b, and ¢ are constants, is a linear function if
and only if ¢ = 0.

5. Prove that the transformation T(x) = x4 4+ C, where x is a two-
component row vector and 4 and C are 2 X 2 matrices, is a linear trans-
formation if and only if C = 0.

6. Prove that f(x) = (least component of x) is not a linear function.

7. Let x be a 12-component row vector. Its components are the enroll-
ment figures in 12 mathematics courses. Give an example of
(a) A linear function of x.
[4n Ans. The total enrollment in all mathematics courses.]
(b) A linear transformation of x.
(c) A nonlinear function of x.

8. Let the components of x be the number of fiction books, the number
of nonfiction books, and the number of other publications in a library. For
each of the following functions, state whether or not it is a linear function
of x.

(a) The total number of publications. [Ans. Linear.]
(b) The total number of cards in the catalogue. (Assume that each
book has two cards, each other publication has one.)

9. If in (i) and (ii), x is taken as a column vector, then the conditions
define a linear function of a column vector. How can we represent such a
function? How can we represent a linear transformation of column vectors ?

10. Show that the matrix R defined in Example 2 can be thought of as a
transformation of both row vectors and column vectors.
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*10. PERMUTATION MATRICES

In Chapter Il we defined a permutation of n objects to be an arrange-
ment of these objects in a definite order. Thus the set {a, b, ¢} has six
permutations: abc, ach, bac, bca, cab, and cba. There is a slightly dif-
ferent way of thinking of a permutation. We may think of our set as
given originally in a definite order, say abc, and then think of a permu-
tation as a rearrangement of the set. Thus one permutation changes
abc into bac; i.e., the first element is put into the second spot, the sec-
ond into the first spot, and the third element is left unchanged. In order
to arrive at the same number, n!, of permutations as before, we must
consider the “rearrangement” that changes nothing, i.e., the permuta-
tion that “changes” abc into abc. We shall consider our n objects as
components of a row vector. A permutation changes the row vector
into amother having the same components, but possibly in a different
order.

A convenient way to describe permutations is by means of certain
special matrices. For example, the rearrangement given above can be
described by the product

010
(X1, Xa, X3) 1 0 O0}= (XQ, X1, X3).
0 01

In this we do not have to think of the x; as numbers. They are objects
of any sort for which multiplication by 0 and 1 and addition is defined
as for numbers. The 3 X 3 matrix then represents our permutation.
It has only 0’s and 1’s as components, and there is exactly one 1 in
each row and in each column.

DEFINITION 1. A permutation matrix is a square matrix having exactly
one 1 in each row and each column, and having 0’s in all other places.

0 1 010 1 00
A=(1 0), B={001) c={01 o0}
100 00 1

010
{1 00
D‘01
0

CO O M
~ O OO

0
Figure 6
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Examples of permutation matrices are shown in Figure 6. Since these
matrices are square matrices (n X n), we can speak of the matrix as
having degree n. Thus Figure 6 shows one matrix of degree 2, two of
degree 3, and one of degree 4.

Theorem 1. Every permutation matrix of degree n represents a per-
mutation of n objects, and every such permutation has a unique matrix
representation.

Proof. Let us consider n objects xi, xs, . . . , X, Wwhich by a permuta-
tion are rearranged to give y;, yo, . . ., ¥». Here each of the y’s is one
of the x’s, and every x is some y. If it happens that y; = x;, then the
object in the ith position was changed to the jth position. In this case,
define p;; = 1 and ps = O for k = i. Doing this for every i, we obtain
an n X n permutation matrix P such that

(D) (X1, X2y o o o s X2)P = (J1, Y2y ¢ « o 5 Yn)-

The fact that no two elements of a single row or a single column of P
are 1 (i.e., that P is a permutation matrix) follows from the fact that in -
a permutation each element appears once and only once in the re-
arrangement.

On the other hand, if we are given a permutation matrix P, then we
can define a permutation by the product (1). The fact that each column
of P has exactly one 1 means that each y; is some x;. The fact that P
has only one 1 in each row means that every x; appears as only one y;.
Hence the vector (31, Js, . - . , y») does represent a rearrangement of the
vector (xi, X, . . . , X»), completing the proof of the theorem.

We shall restrict ourselves to the case of n = 4 for illustrating the
following discussion, but all the results we are about to establish will
hold for every n. In Figure 7 we find four examples of permutation
matrices of degree 4.

We want to study the product of two permutation matrices of
degree 4. If x = (x1, x», x3, x4), then xJ = (x4, X1, X3, X;) and xK =
(x2, X1, X4, x3). The former puts the first component into second place,
the second component into fourth place, and the fourth component
into first place; leaving the third component unchanged. The latter
interchanges the first two and the last two. What happens if we per-
form the two permutations, one after the other? Let us first consider x;.
In the first transformation it is changed into the second component,
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1 000 0100
o100 {0001
1“0010""0010

0 0 01 1 000

0100 0 001

1 000 {1 000
K"0001’L‘0010

0010 0100

Figure7

while in the second transformation, the second component is changed
into the first. Hence x; ends up where it started, in first place. The
component X, is first sent into the number four slot, and then this is
changed to number three by the second transformation. Hence x, ends
up as the third component. Component x; is at first not changed, but
later changed into component four. Component x; is first made into
the first component, and in the second transformation it is changed
into the second component. Hence, starting with x, after two trans-
formations we end up with (xy, x4, Xz, X3).
Let us now consider the product

1 000
(o010
JK"0001
0100

The matrix JK is again a permutation matrix, and it is easy to check
that it represents precisely the permutation described above.

Theorem 2. The product JK of two permutation matrices of the
same degree is again such a permutation matrix. It represents the result
of first performing permutation J, then permutation K.

Proof. This theorem is very easy to prove in matrix form. We wish
to know what x(JK) is. By the associative law (see Section 4) this is
the same as (xJ)K. But xJ is the result of the J permutation, and
(xJ)K is the result of applying the K permutation to xJ. This proves
the theorem.

Example. Referring to Figure 7, let us consider the products IJ
and JI. We know, of course, that I/ = JI = J. Hence Theorem 2 tells
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us that performing the 7 permutation followed by the J permutation (or
the reverse) will result simply in the J permutation. If we note that the
I permutation leaves everything unchanged, this result is obvious.

Let us now consider the product JL, where again J and L are as in
Figure 7. The product is equal to 7; hence L = J~!. By Theorem 2 we
know that the permutation J followed by L will result in the permuta-
tion 7, i.e., in no change at all. Thus we see that L = J~! is a permuta-
tion that undoes all changes made by J. We also note a similarity in
the structure of J and L; the latter is formed from the former by turn-
ing it over its main diagonal (the diagonal slanting from the upper
left-hand corner to the lower right-hand corner). In other words, L
has as its Z,jth component what J has as its j,ith component.

DEerFINITION 2. The transpose A* of a square matrix A is formed by
turning it over its main diagonal; that is, the entries of 4A* are given
by ai'} = 4dji.

Theorem 3. If P is a permutation matrix, then P* is its inverse;
that is, P* represents the permutation which undoes what the permu-
tation P does.

Proof. We must show that P* undoes what P does; the remainder will
follow from the above discussion and Section 6. Let us suppose that
pi; = 1. Then p;; = 1; hence the permutation P moves component Xx;
into position i. But then, because pf = 1, the component is moved
from position 7 into position j. Hence x; ends up in position j, where
it started; and this holds for every component. Thus P* undoes the
work of P, which proves the theorem.

DEerINITION 3. A set of objects forms a group (with respect to multi-
plication) if
(i) The product of two elements of the set is always an element of

the set.

(ii) There isin the set an element 7, called the identity element, such
that for every A in the set, 4 = Al = A.

(iii) For every A in the set there is an element 4! in the set such
that A4 = A4 = I.

(iv) For every A, B, C in the set, A(BC) = (4B)C.
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DEFINITION 4. A set of objects form a commutative group if, in addi-
tion to the above four properties, they also satisfy
(v) For every 4 and B in the set, AB = BA.

Theorem 4. The permutation matrices of degree n form a group
(with respect to matrix multiplication), but this group is not commuta-
tive if n > 2.

Proof. Property (i) was shown in Theorem 2. Property (ii) follows
from the more general fact that JM = M[ = M, for every n X n ma-
trix M. From Theorem 3 we know that 4 has an inverse, namely
A7 = A* It is easy to show that A4* is again a permutation matrix
(see Exercise 1). Hence (iii) follows. And (iv) again follows from the
more general theorem that all matrices obey this associative law. (See
Section 4.) On the other hand it is easy to show examples, for any
n > 2, where AB > BA. (See Exercises 2-3.) This completes the proof.

The group formed by the n X n permutation matrices is known as
the permutation group of degree n. Since permutations are used in the
study of symmetry, this group is also called the symmetric group of
degree n.

EXERCISES

1. Prove that the transpose of a permutation matrix is a permutation
matrix; i.e., that if 4 satisfies Definition 1, then so does 4*.

2. Write all permutation matrices of degree 1. Write all permutation
matrices of degree 2. Show that these two groups are commutative.

3. For n > 2, we can form the matrix 4 which only interchanges x; and
X2, and the matrix B which only interchanges x; and x;. What permutations
are performed by 4B and by BA? Are these two the same? Use this fact to
show that the permutation group of order n > 2 is not commutative.

4. Write down the permutation matrices which change (xi, x., x3, x,) into

@) (xz, x35, x4, x1). , 0 0 01
®) (x1, X3, X2, Xy).
©) (xz x3, X1, X2). [ns. @)
(d) (xl, X9, X3, X4).

5. For the following pairs of matrices, find the permutations they repre-
sent. In each case show that 4R represents the permutation 4 followed by
the permutation B, and that B4 represents the permutation B followed by
the permutation 4.

100 0\
0100
001 0
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010 1 00
@A=[0 0 1) B=[(0 0 1},
1 00 010
010 0 01
®WA=(0 0 1} B={10 0},
1 0 0 010
01 0 0 01 0O
0 001 |1 000
©@4=11 00 0) B=160 01
0 01 0 0 010
[Ans. (@) xA is (x3, X1, X2); xB is (x1, X3, X5); XAB is (x3, X2, x1); xBA is
(x2, X1, X3).]

6. Prove that the set of a// 3 X 3 matrices does not form a group (with
respect to matrix multiplication).

7. Find the inverses of the six matrices in Exercise 5 by using Theorem 3.
Check your answers by multiplying the matrices by their inverses.

0 01 1 00
[Ans. @) A1={1 0 O);Bt=(0 0 1}]
010 010

8. The process of division is usually introduced by saying that b/a is the
solution of the equation ax = b (or of xa = b).
(a) Prove that in a group the equation 4X = B always has a unique
solution.
(b) Prove that in a group the equation X4 = B always has a unique
solution.
(c) Show by means of an example that the two equations need not
have the same solution.

9. For the set of numbers {1, 2, 3, 4} we define “multiplication” by means
of the following table.
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(In this table we have neglected all multiples of 5; e.g., 2 X 4 = 8, but we
neglected the 5 and just kept the remainder 3. Again 3 X 4 = 12, but we
ignored the 10, which is a multiple of 5, and kept the remainder 2.) Prove
that this set, with multiplication so defined, forms a commutative group.

10. For the set {1, 2, 3, 4, 5, 6} write down a multiplication table, ignoring
all multiples of 7. (See Exercise 9.) Prove that the result is a commutative
group.

11. For the set {1, 2, 3, 4, 5} write down a multiplication table, ignoring
multiples of 6. (See Exercises 9 and 10.) Prove that the result is nor a group.
Why do 5 and 7 give us groups, but not 6?

12, Write down all permutation matrices of degree 3, and assign letter-
names to them. Write a multiplication table for this group. How, from this
table alone, can we see that properties (i), (i), and (iii) hold? How do we
see that (v) does not hold?

13. Consider a group with four elements, G = {q, 4, c, d}. For each x in
G let x’ be the vector x' = (xa, xb, xc, xd); e.g., a’ = (a?, ab, ac, ad). Show
that x’ is a permutation of (a, b, ¢, d). Show that the four permutations,
a', v', ¢', d’ form a permutation group having the same multiplication table
as G; i.e., show x’y’ = z' if and only if xy = z.

14. Find the permutation group associated with the group in Exercise 9
by the method of Exercise 13.

*11. SUBGROUPS OF PERMUTATION GROUPS

Within a group we sometimes can find smaller groups. Here we shall
study some of the subgroups of permutation groups. It will be under-
stood that whenever we speak of a group we have a set with a finite
number of elements in mind. In particular, this will be assumed for the
theorems given below, since some of the theorems are not valid for
groups with an infinite number of elements. The concept of a group
has important applications for infinite sets, but these do not belong in
this book.

DEerINITION 1. If a given set G forms a group, and some subset H of
it also forms a group, we call the subset H a subgroup of G. If the sub-
set H is a proper subset of G, we speak of a proper subgroup.

Theorem 1. If we select any element of a group, the powers of the
element form a subgroup which is commutative.
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Proof. Select any element A of the given group; we must show that
the powers A" have the properties (i)~(v) given in the last section. The
product of two powers is again a power, 474* = 4#*; hence (1) holds.
Next we observe that the powers cannot be all different, since this
would give us infinitely many elements in our group. Hence we must
have an equation 47 = A*, with, say, j > k. However, this implies that
A™* = I. Hence I occurs among the powers of 4, say I = A™. There-
fore (ii) holds. If m = 1 or 2, then A is its own inverse (see Exercise 9).
On the other hand, if m > 2, then among the powers we find A™1, and
AA™! = A™ = I, so that A™1 is the inverse of A. This shows that
property (iii) holds. The associative law (iv) follows from the fact that
all matrices obey this law. Finally, we get commutativity (v) from the
fact that 474*% = Ait* = Ak+i = gk[qi completing the proof.

DEFINITION 2. A group which consists of the powers of one element
A is known as the cyclic group generated by A.

Thus we know that we can form a cyclic subgroup of a given group
by picking any one element A and taking all its powers. The number
of elements in this subgroup is called the order of 4. In the proof above,
the order of A is the smallest possible m such that A™ = [,

Example 1. The permutation group of degree 4 has 4! = 24 ele-
ments. Let us consider the cyclic subgroup generated by J (see Fig-
ure 7). We find that J? = L = J-1, so that J3 = JJ2 = . Thus our
cyclic subgroup consists of J, J2 = L, and J3 = I. If we continue to
take higher powers, we get J* = J, J5 = L, Jé = I, etc. The elements
are repeated in this fixed cycle. This is the source of the name “cyclic.”

Example 2. We can get a larger cyclic subgroup by choosing the
matrix M and its powers (see Figure 8). M has order 4; hence M1 =
M* = M3 and M* = I.

01 00 0 010
0010 ,_[0 0 0 1
M"0001’M“1000

1 000 0100

0 0 01 1 000

1 000 01 00
3 = 1 =
M 0100’M 001 0

0 01 0 0 001

Figure 8
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Theorem 2. 1f in a group we select any subset having property (i),
then this subset is a subgroup.

Proof. We must show that the subset also has properties @1)-(@v).
Let A be any element of the subset. By (i), A4 = A2 is also in the
subset, and then A4? = A3 is in the subset, etc. Hence all powers of
A are in the subset. One of these powers is I and one is A~!. Hence
we have properties (ii) and (iii). Property (iv) again follows from the
fact that all matrices have this property, completing the proof of the
theorem.

We now have a practical way of finding subgroups. We select one
or more elements of the group, and form all possible products of these,
using each one as many times as necessary. If we form all possible
products, then the product of any two products will also be on our
list, and hence property (i) holds. Then, by Theorem 2, we have a sub-
group, which is called the subgroup generated by the elements. If we
start with a single element, we obtain a cyclic subgroup. Some very
interesting subgroups can be generated by two elements.

Example 3. Let us start with J (see Figure 7), and D (see Figure 6),
and form the subgroup they generate. First of all we get the powers of
J, namely, Jand J? = L and J® = I, as was shown in Example 1. Then
we have D, and D? which is again /. In products formed using both J
and D we need consider only J and J? and D, since the next higher power
is /, and then the powers are repeated. Theoretically, we should con-
sider products like DJDJ? and JDJDJDJ, but we can show, as follows,
that such long products give nothing new. First we observe that DJ =
J?D, so that in a long product we may always replace DJ by J2D, and
thus put all the /s in front and all the D’s at the end. (See Exercise 14.)
Therefore the only new products that we need consider are of the form
JeD?; and since J can occur only to the first or second power and D
only to the first power, we arrive at JD and J2D as the only additional
products. Hence our subgroup has six elements: J, J?, D, I, JD, and
J2D. Since JD # DJ, the subgroup is not commutative.

So far we have found subgroups of 3, 4, and 6 elements. Each of
these numbers is a divisor of 24, the total number of elements in the
group. It can be shown that the number of elements in a subgroup is
always a divisor of the number of elements in the group, but we will
not prove that fact here.
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Example 4. Let us now form the subgroup generated by D and K.
Since D* = I = K2, both D and K will occur only to the first power
in a product. Furthermore DK = KD; hence the subgroup will have
only four elements: I, D, K, DK. This subgroup is commutative. The
fact that the subgroup happens to be commutative is a consequence of
the following theorem.

Theorem 3. If A and B commute (i.e., AB = BA), then any two
products formed from A and B also commute. Hence the subgroup
generated by 4 and B is a commutative subgroup.

Proof. Given any product formed from A and B, say AABBBABAB,
we can make use of the fact that 4B = BA to move all the A’s up
front and all the B’s to the end. Hence the product can be written
A*B'. A second such product can be written 4*B™. The product of
these, A'B'A*B™, can again be rearranged so that all the A’s come
at the beginning. Hence (A:B7)(A*B™) = A#*Bi+m = Afk+ipmti —
(4*B™)(A'B"), completing the proof.

We have now found two types of commutative subgroups: (1) cyclic
subgroups and (2) subgroups generated by two elements that commute.
For the latter it is convenient to have a technique for finding two com-
muting elements. We will develop one method for finding such pairs.

DEerFINITION 3. The effective set of a permutation matrix is the set of
all those components of the row vector which are changed by the matrix.

For example, D has {x,, x,} as its effective set, J has {x;, x,, x4, K
has the set of all four components, and 7 has the empty set as its effec-
tive set. K suggests the definition:

DEFINITION 4. A permutation matrix having all the components in
its effective set is called a complete permutation matrix.

Theorem 4. Two permutation matrices, whose effective sets are dis-
joint, commute.

Proof. Let A, have X, as its effective set, and A4, have X, so that
XiN X, = & Then A;4, will make some changes on X; and then
on X,. The latter are not affected by the former, since X; and X; have
nothing in common. Thus we get the same result if we perform A,
followed by A,.
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We now have a simple way of getting a commutative subgroup, other
than a cyclic one. Just select any two matrices (other than 7) with dis-
joint effective sets, and form the subgroup that they generate.

EXERCISES

1. Write down the six permutation matrices of degree 3.

2. Form the cyclic subgroup for each of the six matrices in Exercise 1.
Are these subgroups all different? What is the order of each matrix ?
[4ns. Five distinct groups; one of order 1, three of order 2, two of
order 3.]

3. Prove that there are no proper subgroups of the permutation group
of degree 3, other than those found in Exercise 2.

4. Write the 24 permutation matrices of degree 4.

5. Form the cyclic subgroup for each of the matrices in Exercise 4. How
many different ones do you get? What is the order of each matrix ?
[Ans. 17 distinct groups; one of order 1, nine of order 2, eight of order
3, six of order 4.]

6. Show by an example that the subgroups found in Exercise 5 are not
the only proper subgroups of the permutation group of degree 4.

7. Prove the following facts about orders of permutations.
(a) I has order 1.
(b) A permutation which does nothing but interchange one or more
pairs of elements has order 2.
(c) Every other permutation has an order greater than 2.

8. Prove that the subgroup generated by 4 and B is cyclic if and only if
one generator is a power of the other.

9. Prove that if a matrix has order 1 or 2, then it is its own inverse.

10. A matrix M is said to be symmetric if m;; = m,; for all i and j. Prove
that a permutation matrix is symmetric if and only if it has order 1 or 2,

11. Form the subgroup generated by J and K.
[Ans. There are 12 elements.]

12. Prove the following facts about effective sets.
(a) I has an effective set of zero elements.
(b) A matrix which simply interchanges two elements has as its effec-
tive set a set of two elements.
(c) All other matrices have an effective set of at least three elements.
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(d) A matrix is complete if and only if the number of elements in its
effective set equals its degree.

13. We wish to form a commutative subgroup of the permutation group
of degree 4, by means of the method described above. We want to choose
two matrices (other than I) with disjoint effective sets, and form the subgroup

they generate.
(a) Using the results of Exercise 12, what must the number of elements

be in the two effective sets? [dns. 2,2.]
(b) Choose such a pair of matrices.
(¢) Form the subgroup.
14. Prove the following facts about Example 3 above,
(@) DJ = JD.
(b) From this it follows that DJ? = JD,
(¢) In any product of D’s and J's we can put all the J’s up front.
15. If 4 has order m, and m is an even number, then 4™ is its own inverse.
Prove this fact. What does this say about an element of order 2?

16. Prove that the cyclic group generated by A* is a subgroup of that gen-
erated by 4. When will this be a proper subgroup?
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