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Linear programming

and the theory of games

1. CONVEX SETS

An equation containing one or more variables will be called an open
statement. For instance,

(@) —2x1+ 3x, =6

is an example of an open statement. If welet 4 = (=2, 3), x = (;‘1),
2

and b = 6, we can write (2) in matrix form as
Ax = (—2,3) (ﬁ‘) = —2%, + 3x, = 6 = b.
2

For some two-component vectors x the statement Ax = b is true and

for others it is false. For instance, if x = (i) it is true since —2-3 -

3.4=06, and if x = (i) it is false since —2:2 + 3-4 = 8. The set of

all two-component vectors x that make the open statement Ax = b true
is defined to be the rruth set of the open statement.

Example 1. In plane geometry it is usual to picture in the plane the
truth sets of open statements such as (a). Thus we can regard each two-
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component vector x as being the components of a point in the plane in
the usual way. Then the truth set or Jocus (which is the geometric term
for truth set) of (a) is the straight line plotted in Figure 1. Points on
this line may be obtained by assuming values for one of the variables

@) /

/ o

Figure 1

and computing the corresponding values for the other variable. Thus,
setting x; = 0, we find x, = 2, so that the point x = (g) lies on the
locus; similarly, setting x, = 0, we find x; = —3, so that the point

(—8> lies on the locus, etc.

In the same way, inequalities of the form 4Ax < b or Ax < b or
Ax > b or Ax > b are open statements and possess truth sets. And
in the case that x is a two-component vector, these can be plotted in

the plane.

Example 2. Consider the inequalities (b) Ax < b, (c) Ax > b,
(d) Ax < b, and (e) Ax > b, where A4, x, and b are as in Example 1.
They may be written as

(b) —2%1 + 3x, < 6
(©) —2x1+3x2> 6
(d) —2x1+3x. <6

(e) —2x1 + 3x2 > 6.
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Consider (b) first. What points (il) satisfy this inequality? By trial
2
and error we can find many points on the locus. Thus the point (;) is

on it since —2-1 4 3-2 = 4 < 6; on the other hand, the point (;) is

not on the locus because —2-1 + 3-3 = —2 + 9 = 7, which is not less

than 6. In between these two points we find (i), which lies on the
3

boundary, i.e., on the locus of (a). We note that, starting with < l) on
3

locus (a), by increasing x, we went outside the locus (b); by decreasing
X, we came into the locus (b) again. This holds in general. Given a
point on the locus of (a), by increasing its second coordinate we get
more than 6, but by decreasing the second coordinate we get less than
6, and hence the latter gives a point in the truth set of (b). Thus we
find that the locus of (b) consists of all points of the plane below the
line (a), in other words, the shaded area in Figure 1. The area on one
side of a straight line is called an open half plane.

We can apply exactly the same analysis to show that the locus of (c)
is the open half plane above the line (a). This can also be deduced from
the fact that the truth sets of statements (a), (b), and (c) are disjoint
and have as unjon the entire plane.

Since (d) is the disjunction of (a) and (b), the truth set of (d) is the
union of the truth sets of (a) and (b). Such a set, which consists of an
open half plane together with the points on the line that defines the half
plane, is called a closed half plane. Obviously, the truth set of (¢) con-
sists of the union of (a) and (c) and therefore is also a closed half plane.

Frequently we want to assert several different open statements at
once, that is, we want to assert the conjunction of several such state-
ments. The easy way to do this is to let 4 be an m X n matrix, x an
n-component column vector, and b an m-component column vector.
Then the statement Ax < b is the conjunction of the m statements
A:x < b; where A; is the ith row of 4 and b; is the ith entry of b.

Example 3. Consider the following example: Ax < b where

() -0
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If we write the components of the equations Ax < b, we obtain

) —x1 < 0 which is equivalentto x; >0
() —x; < 0 which is equivalent to x, > 0
(h) 2x1 + 3x; < 6.

Here we are simultaneously asserting three different statements; i.e.,
we assert their conjunction. Therefore the truth set of Ax < b is the
intersection of the three individual truth sets. The truth set of (f) is
the right half plane; the truth set
of (g) is the upper half plane; and
the truth set of (h) is the half o
plane below the line 2x; -+ 3x, \(2)
= 6. The intersection of these is
the triangle (including the sides)
shaded in Figure 2. The area

X2

shaded in Figure 2 contains those (3)

points which simultaneously sat- 5 © .

isfy (©), (¢), and (b). . 7
In the examples so far we have Figure 2

restricted ourselves to open state-

ments with two variables. Such statements have truth sets that can be
sketched in the plane. Inthe same way, open statements with three vari-
ables have truth sets that can be visualized in three-dimensional space.
Open statements with four or more variables have truth sets in four or
more dimensions, which we can no longer visualize. However, applied
problems frequently lead to such statements. Fortunately, methods
have been developed for handling them without having to visualize the
truth sets geometrically. We shall illustrate these ideas in three-dimen-
sional space, but everything that we do there can be extended without
essential change to the general case of n variables.

In order to have a notation that will enable us to talk in general about
conjunctions of m open statements in three dimensions, we shall con-
sider x to be a three-component column vector, b an m-component
column vector, and 4 an m X 3 matrix. The ith row of 4 will be de-
noted by 4;fori = 1,2, ..., m. Similarly, the ith component of b will
be denoted by b;. Of course, 4; is a three-component row vector and
b; is a number. We shall call the set of all three-component x vectors,
three-space. Similarly, we call the set of all two-component x vectors,
two-space or the plane.
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We now set up some definitions for later use.

DEFINITION. The truth set of 4,x = b, is called a plane in three-space.
The truth sets of inequalities of the form Ax < b; or A;x > b; are
called open half spaces, while the truth sets of the inequalities 4;x < b;
or A;x 2> b; are called closed half spaces in three-space.

When we assert the conjunction of several open statements, the re-
sulting truth set is the intersection of the truth sets of the individual
open statements. Thus, in Example 3, we have the conjunction of
m = 3 open statements in the plane. In Figure 2 we show this geo-
metrically as the intersection of m = 3 closed half spaces (half planes)
in two dimensions. Such intersections of closed half spaces are of spe-
cial importance.

DEFINITION. The intersection of a finite number of closed half spaces
is a polyhedral convex set.

The intuitive idea of polyhedral convex sets in two or three dimen-
sions is very easy. In two dimensions they are sets, bounded by seg-
ments of straight lines that always “bulge out.” For example, triangles,
rectangles, pentagons, etc. are plane polyhedral (or polygonal) convex
sets. In three dimensions they are sets, bounded by “pieces” of planes
that always “bulge out.” For instance, tetrahedra, cubes, octahedra,
ctc., are all such examples. :

Theorem. Any polyhedral convex set is the truth set of an in-
equality statement of the form Ax < b.

Proof. A closed half space is the truth set of an inequality of the
form A;x < b;. (An inequality of the form A;x 2> b; can be converted
into one of this form by multiplying by —1.) Now a polyhedral convex
set is the truth set of the conjunction of several such statements. Since
A is the matrix whose ith row is 4; and b is the column vector with
components b;, then the inequality statement Ax < b is a succinct way
of stating the conjunction of the inequalities A;x < by, . . . y Amx < b,p.
This completes the proof. :

The terminology polyhedral convex sets is used because these sets are
special examples of convex sets. A convex set Cis a set such that when-
ever u and v are points of C, the entire line segment between u and v also
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belongs to C. This is equivalent to saying that all points of the form
z=au-+ (1 —a) for 0 < a <1 belong to C whenever u and » do.
We shall be concerned primarily with polyhedral convex sets in this
chapter.

EXERCISES

1. Draw pictures of the truth sets of Ax < b, where 4 and b are as given
below. (Construct the truth sets of the individual statements first and then
take their intersection.)

1 0 3
(@@ 4= ( 0 1>, = <2>
-2 =3 0
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-2 -1 -7
(k)A=< 1 O>, b=< 0>.
0 1 0

2. Consider the following sets.

U is the whole plane;

A is the half plane which is the locus of —2x; + x; < 3.

B is the half plane which is the locus of —2x; 4+ x; > 3.

C is the half plane which is the locus of —2x; + x, < 3.

D is the half plane which is the locus of —2x; 4 x; > 3.

L is the line which is the locus of =2x1 + x5 =

& is the empty set.
Show that the following relationships hold among these sets: 4 = D, B = C,
L=4UB,CND=L,ANB=6,ANC = AABND=BAUD =,
BUC=4,4UC=C,BUD=D,AUL=C,BUL = D, Can you
find other relationships?

3. Of the polyhedral convex sets constructed in Exercise 1, which have a
finite area and which have infinite area?
[Partial Ans. (c), (d), (f), (h), and (j) are of infinite area; (g) is a line;

(1) and (k) are empty.]

4. For each of the following half planes give an inequality of which it is
the truth set.
(a) The open half plane above the x;-axis. [Ans. x; > 0.]
(b) The closed half plane on and above the straight line making angles
of 45° with the positive x;- and x.-axis.

Exercises 5-9 refer to a situation in which a retailer is trying to decide how
many units of items A and B he should keep in stock. Let x be the number
of units of A and y be the number of units of B. A costs $4 per unit and B
costs $3 per unit.

5. One cannot stock a negative number of units of either A or B. Write
these conditions as inequalities and draw their truth sets.

6. The maximum demand over the period for which the retailer is con-
templating holding inventory will not exceed 600 units of A or 600 units of B.
Modify the set found in Exercise 5 to take this into account. :

7. The retailer is not willing to tie up more than $2400 in inventory
altogether. Modify the set found in Exercise 6.

8. The retailer decides to invest at least twice as much in inventory of
ftem A as he does in inventory of item B. Modify the set of Exercise 7.
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9. Finally, the retailer decides that he wants to invest $900 in inventory
of item B. What possibilities are left? [Ans. None.]

10. Assume that the minimal nutritional requirements of human beings
are given by the following table.

Phosphorus | Calcium
Adult .02 .01
Child .03 .03
Infant .01 .02

Plot the amount of phosphorus on the vertical axis and the amount of cal-
cium on the horizontal. Then draw in the convex sets of minimal diet require-
ments for adults, children (noninfants), and infants. State whether or not the
following assertions are true.
(@) If a child’s needs are satisfied, so are an adult’s.
(b) An infant’s needs are satisfied only if a child’s needs are.
(c) An adult’s needs are satisfied only if an infant’s needs are.
(d) Both an adult’s and an infant’s needs are satisfied only if a child’s
needs are.
(e) It is possible to satisfy adult needs without satisfying the needs of
an infant.

11. Prove that the following sets are convex. Which are polyhedral convex
sets ?
(a) The interior plus the edges of a triangle.
(b) The interior of a circle.
(c) The interior of a rectangle.
(d) A rectangle surmounted by a semicircle.

12. Consider the plane with a cartesian coordinate system. A rectangle
with sides of length a, and a. (@, # a,) is placed with one corner at the origin
and two of its sides along the axes. Prove that the interior of the rectangle
plus its edges forms a polyhedral convex set and find the statement of the
form Ax < b of which it is the truth set. '

13. The following polygons are placed in a plane with a cartesian coordi-
nate system with one corner at the origin and one side along an axis. Find
the statements 4x < b of which they are the truth sets.

(a) A regular pentagon.
(b) A regular hexagon.
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SUPPLEMENTARY EXERCISES

14. Consider the inequalities

6] —x+2y <3
(1) x+ y<6
(iii) x >0
(iv) y=>0

as open statements, and vectors (;) as logical possibilities for these open

statements.

(a) Sketch the truth set of each open statement, and also of their con-
Junction. Show that the statements are consistent by finding a
logical possibility making all of them true.

(b) Show that the four statements cannot all be false,

15. How many regions would four independent statements yield? How
many regions did we obtain in Exercise 14?

16. Add to the statements in Exercise 14, the statement
) 3x 4+ 4y < 22.

(@) Show that the statement, “If (1), (i), (iii), and (iv) are true, then
(v) is true,” is logically true.

(b) Show that the convex set determined by the statements (i)~(v) is
the same as that determined by @-@av).

(c) Show that (a) and (b) are just two different ways of saying that (v)
is unnecessary or superfluous in the determination of the convex set.

17. A manufacturer has two machines M, and M, which he uses to manu-
facture two products P, and P,. To produce one unit of P,, three hours of
time on M, and six hours on M, are needed. And to produce one unit of P,,
six hours on M, and five hours on M; are needed. Assume that each machine
can run a maximum of 2100 hours per year.

(a) Let x; be the number of units of P, and x, the number of units of
P; produced. Write the inequality restrictions on x = (i‘)
2
. (b) Draw the convex set of possible production vectors x. (Save your
work for later use.)

18. Two breakfast cereals, Krix and Kranch, supply \}arying amounts of
vitamin B and iron; these are listed together with § of the daily minimum
requirements in the table below.

B Ll T ——
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Vitamin B Iron
Krix 15 mg./oz. 1.67 mg./oz.
Kranch .10 mg./oz. 3.33 mg./oz.
4 Minimum requirements .12 mg./day 2.0 mg./day

(a) Let w, be the amount of Krix eaten and w, the amount of Kranch
eaten. Write the inequality restrictions on w; and w, in order that
% of the minimum daily requirements are met.

(b) Draw the convex set of possible amounts eaten defined by the
inequalities of (a).

(c) What feasible diet requires a person to eat the fewest ounces of

cereal ?
[Ans. The diet requiring him to eat & of an ounce of Krix and

15 of an ounce of Kranch.]

19. Rework Exercise 18 under the assumption that a person wants to eat
at least as much Kranch as Krix.

2. MAXIMA AND MINIMA OF LINEAR FUNCTIONS

In the present section we first discuss the problem of finding the ex-
treme points of a bounded polyhedral convex set. Then we find out
how to compute the maximum and minimum values of a linear func-
tion defined on such a set.

As in the preceding section, we use the following notation that is
adapted for three-space, but which extends easily to any number of
dimensions. The polyhedral convex set C is the truth set of the state-
ment Ax < b where A4 is an m X 3 matrix, x is a three-component
column vector, and b is an m-component column vector. We let
Ay, A, . . ., A denote the rows of 4, so that each A4; is a three-com-
ponent row vector and

A
A;

A/
The statement Ax < b is then the conjunction of the statements

Alx_<_b1,A2x§bg,...,Amx_<_bm.
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DEFINITION. We shall call the truth set of the statement 4:x = b; the
bounding plane of the half space 4x < b (In the two-dimensional
case it is called the bounding line.)

Thus, in Figure 1 of the preceding section the slanting line (a) is the
bounding line of the half space (b).

Sometimes it happens that one of the inequality statements defining
a polyhedral convex set is unnecessary in the sense that the conjunction
of the statements defining C is the same (equivalent) with or without
the given statement. For instance, in Example 3 of Section 1, if we add
the statement x; > —1 to the statements defining the convex set, it is
superfluous, since the statement x; > 0 implies the statement x;, > —1.
But there are less obvious examples of superfluous statements, such as
the one given in Exercise 16 of the preceding section. Still other ex-
amples are given in Exercise 1. Obviously, the elimination of super-
fluous inequalities does not change the polyhedral convex set C, and
we assume that all such superfluous inequalities have been removed.

If the inequality 4:x < b, is not superfluous, then its bounding plane
Ax = b; must contain a point of the polyhedral convex set C. The
bounding planes of C are the bounding planes of the (nonsuperfluous)
half spaces of which C is the intersection.

In Example 3 of Section 1 the bounding planes (lines) of the convex
set given there are the three boundary lines of the triangle shaded in
Figure 2. Note that these lines intersect in pairs in three points, the
vertices of the triangle. Such intersections are called extreme points
of C. And in three dimensions, if T is a point of C that is the inter-
section of three bounding planes of C, then it is an extreme point of C.

Example 1. Find the extreme points of the polyhedral convex set
Ax < b where

-2 -1 9
A= 1 -3} b=16)
1 2 3

A sketch of the three half planes, Figure 3, shows that the set is a
triangle. Hence we can find the extreme points by changing the in-
equalities to equalities in pairs and solving three sets of simultaneous
equations. We obtain in this way the points

(5} (5 = ()

which are the extreme points of the set.

. b
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X2

Figure 3

We can now give an interpretation for the various points of the poly-
hedral convex set in terms of the system of inequalities. An extreme
point, in the plane, lies on two boundaries, which means that two of
the inequalities are actually equalities. A point on a side, other than
an extreme point, lies on one boundary and hence one inequality is an
equality. An interior point of the polygon must, by a process of elimi-
nation, correspond to the case where the inequalities are all strict in-
equalities, i.e., not only < but < holds.

There is a mechanical (but lengthy) method for finding all the ex-
treme points of a polyhedral convex set C in three-space defined by
Ax < b. Consider the bounding hyperplanes 4;x = by, ..., Apx = bn
of the half spaces that determine C. Select a subset of three of these
hyperplanes and solve their equations simultaneously. If the result is a
unique point x° (and only then), check to see whether or not x° belongs
to C. If it does, by the above definition, x° is an extreme point of C.
Moreover, all extreme points of C can be found in this manner.

Example 2. Let

A= ("(1) _?) and b= (8).

Then the polyhedral convex set C defined by Ax < b is the first quad-
rant of the x, x, plane, shaded in Figure 4. The only extreme point is
the origin, which is the intersection of the lines x; = 0 and x; = 0.
This is an example of an unbounded polyhedral convex set.
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Figure 4

Notice that the set C contains the ray or half line that starts at the
origin of coordinates and extends upward to the right making a 45°
angle with the axes. This ray is dotted in Figure 4. Of course, this set
also contains many other rays.

We shall say that a polyhedral convex set is bounded if it does not
contain a ray. A set, such as the one in Figure 4, that does contain rays
will be called unbounded. For simplicity we shall restrict our discussion
to bounded convex sets in most of this chapter. In particular, this
means that necessarily m > n, that is, the convex set must be the inter-
section of at least n 4 1 half spaces. Thus we need at least three lines
in the plane, and at least four planes in three-space to produce a
bounded set. This is a necessary but not sufficient condition that the
convex set is bounded (see Exercise 23).

Example 3. Let us suppose that in a business problem x; and x,
are quantities we can control, except that there are limitations imposed
which can be stated as inequalities. We shall assume that the system
of inequalities given in Example 1 limits our choice of x; and x,. Let
us assume that a given choice of x; and x, results in a profit of x; + 2x.
dollars. What is the most and the least profit we can make? We must
find the maximum and the minimum value of x; + 2x; for points (x3, x3)
in the triangle. Let us first try the extreme points. At (—3, —3) we
would have a profit of —9, i.e., a loss of $9. At (—7, 5) we have a
profit of $3, and at (%%, —$) also a profit of $3. What can we say about
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the remainder of the triangle? The last inequality tells that x; -
2x; < 3, hence our profit cannot be more than $3. If we multiply the
first inequality by 4 and the second by £ and add them, we find that
X1 + 2x, 2> —9; hence, we cannot lose more than $9. We have thus
shown that both the greatest profit and the greatest loss occur at an
extreme point. We will show that this is true in general.

Given a polyhedral convex set C and a linear function
X = ¢1X1 + Coxo + . . o F CpXny

where ¢ = (c3, €3, . . ., ¢.), We want to show in general that the maxi-
mum and minimum values of the function cx always occur at extreme
points of C. We shall carry out the proof for the planar case in which
n = 2, but our results are true in general.

First, we will show that the values of the linear function X1 + Coxy
on any line segment lie between the values the function has at the two
end points (possibly equal to the value at one end point). We represent
X1
X2
tion is represented by the row vector ¢ = (cy, ¢y). Let the end points of

the segment be
_(x _ (N,
p= () = a= ()

We have seen in Chapter V (see Figure 4) that the points in between P
and g can be represented as 1p + (1 — f)g, with0 < ¢ < 1. If the values
of the function at the points p and ¢ are P and Q, respectively (assume
that P > Q), then at a point in between the value will be ¢tP + 1-90,
since the function is linear. This value can also be written as

P+ (1=00=0+®—-Qt=P—(1—1)P— Q),

which (for 0 < 7 < 1) is at least Q and at most P.
We are now in a position to prove the result illustrated in Example 3.

the points as column vectors < ) and then we see that our linear func-

Theorem. A linear function cx defined over a polyhedral convex set
C takes on its maximum (and minimum) value at an extreme point of C.

The proof of the theorem is illustrated in Figure 5. We shall suppose
that at the extreme point p the function takes on a value P greater than
or equal to the value at any other extreme point, and at the extreme
point ¢ it takes on its smallest extreme point value, Q. Let r be any
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Minimum corner
/ value Q

Maximum corner:

value P \

P s

Figure 5

point of the polygon. Draw a straight line between p and r and con-
tinue it until it cuts the polygon again at a point u lying on an edge of
the polygon, say the edge between the corner points s and ¢. (The line
may even cut the edge at one of the points s and 7; the analysis remains
unchanged.) By hypothesis the value of the function at any corner point
must lie between Q and P. By the above result the value of the function
at u must lie between its values at s and ¢, and hence must also lie be-
tween Q and P. Again by the above result the value of the function at
r must lie between its values at p and u, and hence must also lie between
Q and P. Since r was any point of the polygon, our theorem is proved.

Suppose that in place of the linear function cx; + c.x, we had con-
sidered the function ¢1x; + ¢;x2 + k. The addition of the constant k
merely changes every value of the function, including the maximum
and minimum values of the function, by that amount. Hence the analy-
sis of where the maximum and minimum values of the function are
taken on is unchanged. Therefore, we have the following theorem.

Theorem. The function cx + k defined over a polyhedral convex
set C takes on its maximum (and minimum) value at an extreme point
of C.

A method of finding the maximum or minimum of the function
¢x + k defined over a convex set C is then the following: Find the ex-
treme points of the set; there will be a finite number of them. Substitute
the coordinates of each into the function. The largest of the values so

e

T
‘;{V‘
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obtained will be the maximum of the function and the smallest value
will be the minimum of the function. The method is illustrated in Ex-
ample 3 above.

EXERCISES

1. In the following sets of inequalities at least one is superfluous. In each
case find the superfluous ones.

@ xi+x<3 ®) x;+x>0

—X1— X3 >0 X1 —x3 <0

x;Z——l X1S4
-—x252. X2__>__4.

© —-1<xc<1

-2 SXQSZ

x1+4+ x> —10

2% — x; < 2. [Ans. (@) x; + x; < 3.]

2. (a) Draw a picture of the convex set defined by the inequalities

2x14+ x2+9<0
—x1+3x 46 <0
X1+2X'2—'3S0.

(b) What is the relationship between this and Figure 3?

3. Find the corner points of the convex polygons given in parts (a), (b),
and (e) of Exercise 1 of Section 1.

() ) (0 (2 (2)(2)»

4. (a) Show that the three lines whose equations are

le+ x2+9=0
—x1+3x2+6=0
X+ 2x,—3=0

divide the plane into seven convex regions. Mark these regions
with Roman numerals I-VII.

(b) For each of the seven regions found in part (a), write a set of three
inequalities, having the region as its locus. [Hint: Two of these sets
of inequalities are considered in Exercise 2.]

(c) There is one more way of putting inequality signs into the three
equations given in (a). What is the locus of this last set of in-
qualities ? [Ans. The empty set &.]
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5. A convex polygon has the points (—1, 0), (3, 4), (0, —3), and (1, 6) as

extreme points. Find a set of inequalities which defines the convex polygon
having these extreme points.

6. Find the extreme points of the convex polygon given by the equations

2x1 + x2+920
—x1+3x+6>0
X1+ZX2—'3SO
x1+ X <0.

[Hint: Use some of the results of Example 1 in the text.]
7. Find the extreme values of the function G defined by
G(x) = Tx; + 5x, — 3
over the convex polygon of Exercise 6.
8. Find the maximum and minimum of the function
G(x) = —2x; + 5x, + 17

over each of the convex polygons given in parts (a), (b), and (e) of Exercise 1
of Section 1. [4ns. (a) 33, 1; (e) 36, —2.]

9. Find the maximum and minimum, when they exist, of the function
Gx) =5x1+3x,— 6

over each of the polyhedral convex sets given in parts (h) and (j) of Exercise 1
of Section 1. [4ns. (h) Neither maximum nor minimum; (J) minimum is 3.]

10. The owner of an oil truck with a capacity of 500 gallons hauls gasoline
and oil products from city to city. On any given trip he wishes to load his
truck with at least 200 gallons of regular test gasoline, at least 100 gallons of
high test gasoline, and at most 150 gallons of kerosene. Assuming that he
always fills his truck to capacity, find the convex set of ways that he can load
his truck. Interpret the extreme points of the set. [Hint: There are four ex-
treme points. ]

11. An advertiser wishes to sponsor a half hour television comedy and
must decide on the composition of the show. The advertiser insists that there
be at least three minutes of commercials, while the television network requires
that the commercial time be limited to at most 15 minutes. The comedian
refuses to work more than 22 minutes each half hour show. If a band is
added to the show to play during the time that neither the comedian nor the
commercials are on, construct the convex set C of possible assignments of
time to the comedian, the commercials, and the band that use up the 30
minutes. Find the extreme points of C. '
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[Ans. If x, is the comedian time, x, the commercial time, and 30 — x; — x;
the band time, the extreme points are

G) () (3 () = (i9)2

12. In Exercise 10 suppose that the oil truck operator gets 3 cents per
gallon for delivering regular gasoline, 2 cents per gallon for high test, and
1 cent per gallon for kerosene. Write the expression that gives the total
amount he will be paid for each possible load that he carries. How should
he load his truck in order to earn the maximum amount ?

[Ans. He should carry 400 gallons of regular gasoline, 100 gallons of high
test, and no kerosene.]

13. In Exercise 12, if he gets 3 cents per gallon of regular and 2 cents per
gallon of high test gasoline, how high must his payment for kerosene become
before he will load it on his truck in order to make a maximum profit?

[Ans. He must get paid at least 3 cents per gallon of kerosene.]

14. In Exercise 11 let x; be the number of minutes the comedian is on and
x; be the number of minutes the commercial is on the program. Suppose the
comedian costs $200 per minute, the commercials cost $50 per minute, and
the band is free. How should the advertiser choose the composition of the
show in order that its cost be a minimum ?

15. Consider the polyhedral convex set P defined by the inequalities

—15x1$4
OSXQSG-

Find four different sets of conditions on the constants a and b that the func-
tion F(x) = ax; + bx; should have its maximum at one and only one of the
four corner points of P. Find conditions that F should have its minimum at
each of these points.

[Ans. For example, the maximum is at (2) ifa>0and 4 > 0.]
16. Let H be the quadratic function defined by H(x) = (x; — 1)
(x: — 1)* on the convex set C which is the truth set of the inequalities
x1+X2S1, x120, X2ZO.

Are the maximum and minimum values of H taken on at the extreme points
of C? Discuss reasons why this problem is essentially harder than that of
finding the extreme values of a linear function on a polyhedral convex set.

17. A set of points is said to be convex if whenever it contains two points
it also contains the line segment connecting them. Show that
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(a) If two points are in the truth set of an inequality, then any point
on the connecting segment is also in the truth set.
(b) Every polygonal convex set is a convex set in the above-mentioned

sense. -
18. Give an example of a quadrilateral that is not a convex set.

19. Prove that for any three vectors, u, v, w, the set of all points au 4
bv+ew(@>0,b>0,¢c>0,a+ b+ c=1)is a convex set. What geo-
metric figure is this locus? [Ans. In general, the locus is a triangle.]

20. Let C be any plane polyhedral convex set. Show that if x is a point
that lies on three bounding lines of C, then one of the inequalities defining C
is superfluous.

21. Let x and y be two distinct points of a polyhedral convex set C, let ¢
be a number such that 0 < ¢ < 1, and define z = tx 4 (1 — £)y. Show that
z is not an extreme point of C.

22. Prove that the intersection of two half planes is a bounded convex set
only if it is empty.

23. Construct examples that show that the intersection of three half planes
either may or may not be a bounded convex set.

SUPPLEMENTARY EXERCISES

24. In Exercise 17 of Section 1 assume that the manufacturer makes a
profit of $4 for each unit of P, and $5 for each unit of P,, How many units
of each should he produce in order to maximize his profit? What is his
maximum profit?

[Ans. 100 units of P; and 300 units of Py; his maximum profit is $1900.]

25. In Exercise 18 of Section 1 assume that Krix costs § of a cent per
ounce and Kranch costs § of a cent per ounce. In order to satisfy } of the
daily minimum requirements at minimum cost, how many ounces of each
cereal should a person eat? What is the cost of the minimum cost diet?

[Partial Ans. The cost is { of a cent per day.]

26. Rework Exercise 25 under the assumption that a person wants to eat
at least as much Kranch as Krix (see Exercise 19 of Section 1).

27. An automobile manufacturer has 900 tons of metal on hand from which
he is to make x; automobiles and x, trucks. It takes 2 tons of metal and 200
man-hours of work to make an automobile, and it takes 4 tons of metal and
150 man-hours of work to make a truck. He has 60,000 man-hours of time
available. If he makes a profit of $500 on an automobile and $800 on a truck,
how many of each should he make to maximize his profit?
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(a) Set up the inequality constraints on the variables.
(b) Draw the convex set of feasible vectors.
(c) Find the optimal production vector and the maximum profit.
[Ans. He should produce 210 automobiles and 120 trucks for a
- maximum profit of $201,000.]

28. Suppose in Exercise 27 that the profit on automobiles drops to $350.
How will this affect the production and profits?
[Ans. He produces only trucks for profit of $180,000.]
29. Suppose in Exercise 27 that the profit on trucks drops to $350. How
should the manufacturer now produce?

3. LINEAR PROGRAMMING PROBLEMS

An important class of practical problems are those which require the
determination of the maximum or the minimum of a linear function
cx + k defined over a polyhedral convex set of points C. We illustrate
- these so-called linear programming problems by means of the following
examples.*

Example 1. An automobile manufacturer makes automobiles and
trucks in a factory that is divided into two shops. Shop 1, which per-
forms the basic assembly operation, must work five man-days on each
truck but only two man-days on each automobile. Shop 2, which
performs finishing operations, must work three man-days for each.
automobile or truck that it produces. Because of men and machine
limitations, shop 1 has 180 man-days per week available while shop 2
has 135 man-days per week. If the manufacturer makes a profit of
$300 on each truck and $200 on each automobile, how many of each
should he produce to maximize his profit?

To state the problem mathematically, we set up the following nota-
tion: Let x; be the number of trucks and x, the number of automobiles
to be produced per week. Then these quantities must satisfy the follow-
ing restrictions.

5x1 + 2)(.'2 S 180

3x1+ 3x; < 135.

* Readers interested in an elementary treatment of the simplex method of linear
programming are referred .to Kemeny, Schleifer, Snell, and Thompson, Finite
Mathematics with Business Applications (Englewood Cliffs, N.J.: Prentice-Hall, Inc.,
1962), pp. 384-401.
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We want to maximize the linear function 300x; 4+ 200x,, subject to these
inequality constraints, together with the obviously necessary constraints
that x, > 0 and x, > 0. ,

To further simplify notation, we define the quantities

5 2 180
A= <3 3>, b= (135) and ¢ = (300, 200).

Then we can state this linear programming problem as follows.

Maximum problem: Determine the vector x so that the weekly profit,
given by the quantity cx, is a maximum, subject to the inequality con-
straints Ax < b and x > 0. The inequality constraints insure that the
weekly number of available man-hours is not exceeded and that non-
negative quantities of automobiles and trucks are produced.

The graph of the convex set of possible x vectors is pictured in Fig-
ure 6. Clearly this is a problem of the kind discussed in the previous

section.
The extreme points of the convex set C are

- () 7= () 7- () i e ()

Following the solution procedure outlined in the previous section, we

2)
3
DGR "

Figure 6
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test the function cx = 300x; + 200x, at each of these extreme points.
The values taken on are 0, 10,800, 9000, and 12,000. Thus the maxi-
mum weekly profit is $12,000 and is achieved by producing 30 trucks
and 15 automobiles per week.

Example 2. A mining company owns two different mines that pro-
duce a given kind of ore. The mines are located in different parts of
the country and hence have different production capacities. After crush-
ing, the ore is graded into three classes: high-grade, medium-grade, and
low-grade ores. There is some demand for each grade of ore. The
mining company has contracted to provide a smelting plant with 12
tons of high-grade, eight tons of medium-grade, and 24 tons of low-
grade ore per week. It costs the company $200 per day to run the first
mine and $160 per day to run the second. However, in a day’s opera-
tion the first mine produces six tons of high-grade, two tons of medium-
grade, and four tons of low-grade ore, while the second mine produces
daily two tons of high-grade, two tons of medium-grade, and 12 tons
of low-grade ore. How many days a week should each mine be operated
in order to fulfill the company’s orders most economically?

Before solving the problem it is convenient to summarize the above
information as in the tableau of Figure 7. The numbers in the tableau
form a 2-by-3 matrix, the requirements form a row vector ¢, and the

High- Medium- Low-

grade grade grade

ore ore ore

Mine 1 6 2 4 $200
b

Mine 2 2 2 12 $160}

12 8 34

¢
Figure?

costs form a column vector b. The entries in the matrix indicate the
production of each kind of ore by the mines, the entries in the require-
ments vector ¢ indicate the quantities that must be produced, and the
entries in the cost vector b indicate the daily costs of running each mine.
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Let w = (w1, wy) be the two-component row vector whose component
wy gives the number of days per week that mine 1 operates and w; gives
the number of days per week that mine 2 operates. If we define the

quantities

6 2 4 200
A=<2 5 12), ¢ = (12, 8, 24), and b“(wo)’

we can state the above problem as a minimum problem.

Minimum problem: Determine the vector w so that the weekly operat-
ing cost, given by the quantity wb, is a minimum, subject to the in-
equality restraints w4 > ¢ and w > 0. The inequality restraints insure
that the weekly output requirements are met and the limits on the com-
ponents of w are not exceeded.

It is clear that this is a minimum problem of the type discussed in
detail in the preceding section. In Figure 8 we have graphed the convex

W,
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Figure 8

polyhedral set C defined by the inequalities w4 > ¢. (We have omitted
the additional obvious constraints w, < 7 and w, < 7, for simplicity.
These, if added, would make the convex set bounded.)

The extreme points of the convex set C are
T1 = (6, 0), Ta = (3, 1), Ta = (1, 3), T4 = (O, 6).
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Testing the function wb = 200w; 4+ 160w, at each of these extreme
points, we see that it takes on the values 1200, 760, 680, and 960,
respectively. We see that the minimum operating cost is $680 per week
and it is achieved at Ty, i.e., by operating the first mine one day per
week and the second mine three days a week.

Observe that if the mines are operated as indicated, then the combined
weekly production will be 12 tons of high-grade ore, 8 tons of medium-
grade ore, and 40 tons of low-grade ore. In other words, for this solu-
tion, low-grade ore is overproduced. If the company has no other
demand for the low-grade ore, then it must discard 16 tons of it per
week in this minimum-cost solution of its production problem.

Example 3. As a variant of Example 2, assume that the cost vector
isb = Ggg), in other words, the first mine now has a lower daily cost
than the second. By the same procedure as above we find that the
minimum cost level is again $680 and is achieved by operating the first
mine three days a week and the second mine one day per week. In
this solution, 20 tons of high-grade ore, instead of the required 12 tons,
are produced, while the requirements of medium- and low-grade ores
are exactly met. Thus eight tons of high-grade ore must be discarded
per week.

Example 4. As another variant of Example 2, assume that the cost
vectoris b = (;88), in other words, both mines have the same pro-

duction costs. Evaluating the cost function wb at the extreme points
of the convex set, we find costs of $1200 on two of the extreme points
(T1and T}) and costs of $800 on the other two extreme points (7, and 7).
Thus the minimum cost is attained by operating either one of the mines
three days a week and the other one one day a week. But there are other
solutions, since if the minimum is taken on at two distinct extreme
points, it is also taken on at each of the points on the line segment
between. Thus any vector w where ] < w; < 3,1 < w, < 3, and w; +
wy = 4 also gives a minimum-cost solution. For example, each mine
could operate two days a week.

It can be shown (see Exercise 2) that for any solution w with 1 <
w1 < 3,1 < wy < 3, and w; + w; = 4, both bhigh-grade and low-grade
ores are overproduced.
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EXERCISES

1. In Example 1, assume that profits are $200 per truck and $300 per auto-
mobile. What should the factory now produce for maximum profit ?

2. In Example 4, show that both high- and low-grade ores are overpro-
duced for solution vectors wwith 1 < w; < 3,1 < wy < 3, and w; + w, = 4.

3. A well-known nursery rhyme says “Jack Sprat could eat no fat. His
wife (call her Jill) could eat no lean. . ..” Suppose Jack wishes to have at
least one pound of lean meat per day, while Jill needs at least .4 pound of fat
per day. Assume they buy only beef having 10 per cent fat and 90 per cent
lean, and pork having 40 per cent fat and 60 per cent lean. Jack and Jill want
to fulfill their minimal diet requirements at the lowest possible cost.

(a) Let x be the amount of beef and y the amount of pork which they
purchase per day. Construct the convex set of points in the plane
representing purchases that fulfill both persons’ minimum diet re-
quirements,

(b) Suggest necessary restrictions on the purchases that will change this
set into a convex polygon.

(c) If beef costs $1 per pound, and pork costs 50 cents per pound, show
that the diet of least cost has only pork, and find the minimum cost.

[Ans. 83 cents.]

(d) If beef costs 75 cents and pork costs 50 cents per pound, show that
there is a whole line segment of solution points and find the mini-
mum cost. [Ans. 83 cents.]

(e) If beef and pork each cost $1 a pound, show that the unique
minimal cost diet has both beef and pork. Find the minimum cost.

[Ans. $1.40.]

(f) Show that the restriction made in part (b) did not alter the answer
given in (c)—(e).

4. In Exercise 3(d) show that for all but one of the minimal cost diets Jill
has more than her minimum requirement of fat, while Jack always gets ex-
actly his minimal requirement of lean. Show that all but one of the minimal
cost diets contain some beef.

5. In Exercise 3(e) show that Jack and Jill each get exactly their minimal
requirements.

6. In Exercise 3, if the price of pork is fixed at $1 a pound, how low must
the price of beef fall before Jack and Jill will eat only beef? [Ans. 25 cents.].

7. In Exercise 3, suppose that Jack decides to reduce his minimal require-
ment to .6 pound of lean meat per day. How does the convex set change?
How do the solutions in 3(c), (d), and (e) change?
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8. A poultry farmer raises chickens, ducks, and turkeys and has room for
500 birds on his farm. While he is willing to have a total of 500 birds, he
does not want more than 300 ducks on his farm at any one time. Suppose
that a chicken costs $1.50, a duck $1.00, and a turkey $4.00 to raise to
maturity. Assume that the farmer can sell chickens for $3.00, ducks for
$2.00, and turkeys for T dollars each. He wants to decide which kind of
poultry to raise in order to maximize his profit.

(a) Let x be the number of chickens and y be the number of ducks he
will raise. Then 500 — x — y is the number of turkeys he raises.
What is the convex set of possible values of x and y which satisfy
the above restrictions?

(b) Find the expression for the cost of raising x chickens, y ducks, and
(500 — x — y) turkeys. Find the expression for the total amount
he gets for these birds. Compute the profit which he would make
under these circumstances.

(c) If T = $6.00, show that to obtain maximal profit the farmer should
raise only turkeys. What is the maximum profit? [4ns. $1000.]

(d) If T = $5.00, show that he should raise only chickens and find his

maximum profit. [Ans. $750.]
(e) If T = $5.50, show that he can raise any combination of chickens
and turkeys and find his maximum profit. [Ans. $750.]

9. Rework Exercise 8 if the price of chickens drops to $2.00 and T is
(a) $6.00, (b) $5.00, (c) $4.50, and (d) $4.00.

10. In Exercise 8 show that if the price of turkeys drops below $5.50, the
farmer should raise only chickens. Also show that if the price is above $5.50,
he should raise only turkeys.

11. In Exercise 10 of Section 2, assume that the truck operator gets p cents
a gallon for regular gasoline, ¢ cents a gallon for high-test gasoline, and r
cents a gallon for kerosene. Show that he will carry kerosene for maximum
profitonly if r > pand r > g.

12. In Exercise 11 of Section 2, suppose that for each minute the comedian
is on the program 70,000 more people will tune in, for each minute the band
is on 10,000 more people will tune in, and for each minute the commercial is
on one more person will tune in. Let N be the function that gives the number
of persons that tune in for each point in C. How should the times be allotted
in order that N be a maximum ?

[Ans. There should be 3 minutes of commercials, 22 minutes of the come-
dian, and 5 minutes of band music.]

13. In Exercise 11 of Section 2, assume that the band and comedian each
cost $200 per minute while the commercials cost $50 per minute. Write the
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function that gives the cost of the program. Show that there is a whole line
segment of minimum cost solutions.

[Ans. The commercials are on for 15 minutes while the band and comedian
can share the remaining 15 minutes in any manner.]

SUPPLEMENTARY EXERCISES

14. Suppose that 1 unit of hog liver contains 1 unit of carbohydrates, 3
units of vitamins, and 3 units of proteins and costs 50 cents per unit. Suppose
1 unit of castor oil contains 3, 4, and 1 units of these items, respectively, and
costs 25 cents per unit. If hog liver and castor oil are the only foods available,
and the minimum daily requirements are 8 units of carbohydrates, 19 units
of vitamins, and 7 units of proteins, find the minimum cost diet, using the
following procedure.

(a) Let w;, be the number of units of hog liver and w. the number of
units of castor oil purchased. Set up the inequality constraints that
these variables must satisfy.

(b) Find the objective function to be minimized.

(c) Sketch the convex set of possible food purchases.

(d) Locate the extreme point giving the minimum cost diet.

[Ans. Buy one unit of hog liver and four units of castor oil; cost,
$1.50.]

15. Suppose that the minimum cost diet found in Exercise 14 is found to
be unpalatable. In order to increase its palatability, add a constraint requir-
ing that at least three units of hog liver be purchased, and re-solve the prob-
lem. How much is the cost of the minimum cost diet increased due to this
palatability requirement ? [4ns. $.63.]

16. A farmer owns a 100 acre farm and can plant any combination of two
crops I and II. Crop I requires one man-day of labor and $10 of capital for
each acre planted, while crop II requires 4 man-days of labor and $20 of
capital for each acre planted. Crop I produces $40 of net revenue per acre
and crop II produces $60 net revenue per acre. The farmer has $1100 of
capital and 160 man-days of labor available for the year.

(a) Let x, be the number of acres of crop I and x, the number of acres
of crop Il planted. Set up the inequality constraints.
(b) Set up the expression that gives the net revenue from a planting

scheme (xl).
X2
(c) Sketch the convex set of possible planting schemes.

(d) Find the extreme point that gives the maximum revenue.
[Partial Ans. The maximum revenue is $4200.]




rne

ian

ose
.nd
le,
its
the

of
nat

D.]

%

o D

Sec. 4 LINEAR PROGRAMMING AND THE THEORY OF GAMES 335

17. In Exercise 16 assume that the revenue from crop II is $90 per acre.
(a) Find the new maximum revenue scheme, and show that now the
best thing for the farmer to do is to leave 15 acres unplanted.

(b) Explain why the farmer should leave part of his land fallow in
this case.

18. A manufacturer produces two types of bearings, A and B, utilizing
three types of machines, lathes, grinders, and drill presses. The machinery
requirements for one unit of each product, in hours, is expressed in the follow-
ing table.

Bearing Lathe Grinder Drill Press
A .01 .03 .03
B .02 .01 015
Weekly machine
capacity (hours) 400 450 480

The weekly machine capacities are also shown in the table. He makes a profit
of 10 cents per type A bearing and 15 cents per type B bearing.
(@) Let x; be the number of type A bearings and x, the number of type
B bearings produced. Write the inequality restrictions on these
variables.
(b) Write the objective function to be maximized.
(c) Draw the convex set of possible production plans.
(d) Find the optimum production plan.
[Ans. He should produce 8000 type A and 16,000 type B bearings
for a profit of $3200.]

19. In Exercise 18 assume that the manufacturer has enough money to
purchase one more machine of any kind, and that doing so will increase the
capacity of that type of machine by 40 hours per week.

(a) He wants to buy a new grinder. Would you advise him to do so?
\ [Ans. No.]

(b) Which machine would you recommend that he buy?
[Ans. A lathe.]

4. STRICTLY DETERMINED GAMES

We turn now from linear programming to the theory of games of
strategy. Ultimately these two theories can be closely connected but
superficially they are different.

Game theory considers situations in which there are two (or more)
persons, each of whose actions influence, but do not completely deter-
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mine, the outcome of a certain event. The manner in which their actions
influence the outcome of the event is spelled out in the rules of play of
the game. Depending on which event actually occurs, the players re-
ceive various payments, which we shall assume to be in money. If, for
each possible event, the algebraic sum of payments to all players is
zero, the game is called zero-sum; otherwise it is nonzero-sum. Usually
the players will not agree as to which event should occur, so that their
objectives in the game are different. In the case of a matrix game,
which is a two-person game in which one player loses what the other
wins (i.€., a two-person zero-sum game), game theory provides a solu-
tion, based on the principle that each player tries to choose his course
of action so that, regardless of what his opponent does, he can assure
himself of at least a certain amount.

Most recreational games such as tick-tack-toe, checkers, back-
gammon, chess, poker, bridge, and other card games can be viewed
as games of strategy. Moreover, they can be put in the form of matrix
games; the way in which this is done will be discussed for specific ex-
amples in Sections 6 and 9. On the other hand, gambling games such
as dice, roulette, etc., are not (as usually formulated) games of strategy,
since a person playing one of these games is merely “betting against
the odds.”

The actual games of strategy mentioned above are nearly all too com-
plicated, as they stand, to be analyzed completely. We shall instead
construct simple examples which, although uninteresting from a player’s
point of view, do illustrate the theory and are amenable to compu-
tations.

In this section we shall discuss strictly determined matrix games. The
general definition and discussion of matrix games is given in Section 6.

Example 1. Consider the following very simple card game. There
are two players, call them R and C (the reason for the use of these two
letters will be explained later); player R is given a hand consisting of a
red 5 and a black 5, while player C is given a black 5, a red 3, and a
red 1. The game they are to play is the following: At a given signal the
players simultaneously expose one of their cards. If the cards match in
color, player R wins the (positive) difference between the numbers on
the cards; if the cards do not match in color, player C wins the (positive)
difference between the numbers on the cards played. Obviously the
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strategic decision that each player must make is which of his cards to
play.

Player C
bk5 rd3 rd 1
bk 5 0 -2 —4
Player R
rd 5 0 2 4
Figure 9

A convenient way of representing the game is by means of the matrix
G shown in Figure 9. (In game theory it is customary to present ma-
trices in this “table” form.) The rows represent the possible choices of
player R, and the columns, the possible choices of player C; hence our
use of R and C. The number in position g;; represents the gain of R if
R chooses row 7 and C chooses column j. A positive entry is a payment
from C to R, while a negative “gain” for R is a payment from R to C.
For instance, if R chooses row 1 (plays bk 5) and C chooses column 1
(plays bk 5), then R wins the difference of the two numbers, which is 0.
If R chooses row 1 but C chooses column 2 (plays rd 3), then C wins
the difference of 5 minus 3, which is indicated by the —2 entry in the
matrix. The rest of the entries are determined similarly.

The game shown in Figure 9 is called a matrix game. Any matrix can
be considered a two person matrix game by allowing one player to
control the rows, the other the columns, and defining the payoffs of the
game to be the various matrix entries. In Section 6 such games will be
discussed in detail.

How should the players play the matrix game of Figure 9? Player C
would like to get the —4 entry in the matrix. However, the only way
he could get it would be to play the third column of the matrix, in which
case player R would surely choose the second row and C would lose 4
rather than gain 4. On the other hand, if C chooses the first column
(ie., plays bk 5), he assures himself that he will break even regardless
of what R does. It is clear that R has nothing to lose and may possibly
gain by choosing the second row, hence he should always do so. The
knowledge that he will do so reinforces C in his choice of the first
column. The optimal procedure for the players is then: R should play
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rd 5 and C should play bk 5. If they play this way, neither player wins
from the other, that is, the game is fair.

A command of the form: “Play rd 5,” or “Play bk 3,” will be called
a strategy. 1If player R uses the strategy “Play rd 5 in the game of
Figure 9, then, regardless of what C does, R assures himself that he
will get at least a payoff of zero. Similarly, if C uses the strategy “Play
bk 5,7 then, regardless of what R does, C assures himself of obtaining
a payoff of at most zero, i.e., a loss of at most zero. Since R cannot, by
his own efforts, assure himself of gaining more than zero, and C can-
not, by his own efforts, assure himself of losing less than zero, and
since these two numbers are the same, we call these optimal strategies
for the game. Also we call zero the value of the game, since it is the
outcome of the game if each player uses his optimal strategy.

DEerFINITION. We shall say that a matrix game is strictly determined if
the matrix contains an entry, call it v, which is simultaneously the mini-
mum of the row in which it occurs and the maximum of the column in
which it occurs. Optimal strategies for the players are then the following.

For player R: “Play a row that contains v.”
For player C: “Play a column that contains v.”

The value of the game is v. The game is fair if its value is zero.

In Section 6 it will be shown that the strategies here defined are op-
timal in the sense indicated above, and that » has the property of being
the best either player can assure for himself.

Example 1 (continued). The game of Figure 9 is strictly determined,
since the 0 entry in the lower left-hand corner of the matrix is the mini-
mum of the second row and the maximum of the first column of that
matrix. Observe that the optimal strategies given in the definition above
agree with those found earlier. Also the value of that game is zero,
according to the above definition; hence it is fair.

Example 2. Another example of a strictly determined matrix game
is shown in Figure 10. Note that the two 2 entries in the second row
each are the minimum of the row and maximum of the column in
which they occur. Hence the value of the game is 2 and optimal strate-
gies are: for R, choose row 2 always; for C, choose either column 2 or
column 4.
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-7 0 12 -1
4 2 7 2
-3 -1 5 0
Figure 10

The solution of a strictly determined game is particularly easy to find
since each player can calculate the other’s optimal strategy and hence
know what he will do. Not all matrix games are so easy to solve, as
we shall see in the next section.

In Figure 11 we show three matrix games. The game in Figure 1la

0 1 5 2 0 1
-3 10 -7 -4 2 0
(@) (b) (©)
Figure 11

is strictly determined and fair, and its optimal strategies are for R to
choose the first row and C to choose the first column. The game in
Figure 11b is strictly determined but not fair, since its value 1s 2. What
are its optimal strategies? Finally, the game in Figure 11c is not strictly
determined, and the solution of games such as this one will be the sub-
ject of the next section.

EXERCISES

1. Determine which of the games given below are strictly determined and
which are fair. When the game is strictly determined, find optimal strategies

for each player.

(a) (®)
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3 1 1 -1

© @
4 0 -1 1
3 1 0 4

© ®
—4 0 0 2
7 0 0 0

(2 ()]
0 0 0 -7
0 0 1 1

@ ‘ 6))
0 0 1 1

[A4ns. (a) Strictly determined and fair; R play row 1, C play column 1;
(b) nonstrictly determined; (e) strictly determined but not fair; R play
row 1, C play column 1; (j) strictly determined but not fair; both
players can use any strategy.]

2. In Example 1, suppose that R is given rd 5 and bk 3, and C is given
bk 3 and rd 3. Set up the matrix game corresponding to it. Is it strictly
determined ? Is it fair? Find optimal strategies for each player.

[Ans. Yes; yes; both play bk 3.]

3. Each of the two players shows one or two fingers (simultaneously) and
C pays to R a sum equal to the total number of fingers shown. Write the
game matrix. Show that the game is strictly determined, and find the value
and optimal strategies.

4. Each of two players shows one or two fingers (simultaneously) and C
pays to R an amount equal to the total number of fingers shown, while R
pays to C an amount equal to the product of the numbers of fingers shown.
Construct the game matrix (the entries will be the net gain of R), and find
the value and the optimal strategies.

[Ans. v = 1, R must show one finger, C may show one or two.]

5. Show that a strictly determined game is fair if and only if there is a
zero entry such that all entries in its row are nonnegative and all entries in

its column are nonpositive.
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6. Consider the game

2 5

G =

-1 a

(a) Show that G is strictly determined regardless of the value of a.
(b) Find the value of G. [dns. 2.]
(c) Find optimal strategies for each player.

(d) If @ = 1,000,000, obviously R would like to get it as his payoff. Is
there any way he can assure himself of obtaining it? What would
happen to him if he tried to obtain it?

(e) Show that the value of the game is the most that R can assure for
himself.

7. Consider the matrix game

a a

G =
c d

show that G is strictly determined for every set of values for a, ¢, and d.
Show that the same result is true if two entries in a given column are always

equal.
8. Find necessary and sufficient conditions that the game

a 0

0 b

should be strictly determined. (Hint: These will be expressed in terms of rela-
tions among the numbers a and 4 and the number zero.)

9. Suppose that in Example 1, player R is given a hand consisting of bk x
and rd y, and player C is given bk « and rd v, where x, y, u, and » are real
numbers. Verify that the matrix game which they play is the following.

Player C
bk u rd o

bkx| x—u| v—x

Player R

dy|lu—y | y—u
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(a) Show that if x = u, v > x, and y > x, the game is strictly deter-

mined and fair.
(b) Show that if y = v, y < x, and y < u, the game is strictly deter-

mined and fair.

10. Consider a strictly determined 2 X 2 matrix game G. Suppose z and v
are two entries of the matrix such that each is the minimum of the row and
the maximum of the column in which it occurs. Show that u = .

SUPPLEMENTARY EXERCISES

11. In Example 1 assume that R has bk 5 and bk 4, and C has bk 4 and
rd 2. Show that the game is favorable to C, and find optimal strategies.
[Ans. R choose bk 4; C choose rd 2; v = —2.]

12. In Example 1 assume that R has bk a and bk b4, while C has bk ¢ and
rd d. If a > b > ¢ > d, show that the game is always strictly determined.
Do the same if the inequalities are reversed.

13. Solve the following games.

1 5 1 7
@ | -2 8 0 | -9
1 12 1 3
1 —12 6
0 —4 1
®) 3 ~7 2
3 —4 2
-5 —4 7

[4ns. R play either row 2 or 4; C play column 2; v = —4.]

14. Show that the following game is always strictly determined for non-
negative a and any values of the parameters b, ¢, d, and e.
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2a a 3a
b —a c
d —2a e

15. For what values of a is the following game strictly determined ?

a 6 2
-1 a -7
-2 4 a

[Ans. —1 <a <2.]

5. NONSTRICTLY DETERMINED GAMES

As we saw in the numerical examples of the last section, some matrix
games are nonstrictly determined, that is, they have no entry which is
simultaneously a row minimum and a column maximum. We can char-
acterize nonstrictly determined 2 X 2 matrix games as follows.

Theorem. The matrix game

a b

c d

is nonstrictly determined if and only if the two entries on one of the
diagonals are both /arger than the two entries on the other diagonal;
that is, @ and d are both larger or both smaller than b and c.

Proof. If the two entries on one of the diagonals are both larger than
the two entries on the other diagonal, then it is easy to check that no
entry of the matrix is simultaneously the minimum of the row and the
maximum of the column in which it occurs; hence the game is not
strictly determined.

To prove the other half of the theorem suppose that the game is
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nonstrictly determined, and suppose that the rows and columns have
been arranged so that a is the largest entry in the matrix. Then, by
Exercise 7 of the preceding section, no two entries in the same row or
the same column are equal, since that means that the game is strictly
determined. Hence, a is larger than both 4 and c. We must now show
that d is larger than both 5 and c¢. First, d must be larger than b, for
if it were less, b would be the minimum of the first row and the maxi-
mum of the second column and the game would be strictly determined.
Second, d is larger than ¢, for if it were less, d would be the minimum
of the second row and the maximum of the second column, and the
game would be strictly determined. This completes the proof of the
theorem.

Example 1. Consider the card game of the example in the last sec-
tion and assume that player R has bk 5 and rd 3 while player C has
bk 3 and rd 5. The rules of play are as before. The corresponding ma-
trix game is

Player C
bk3 rdS5
bk § 2 0
Player R ’
rd 3 0 2

which clearly is nonstrictly determined.

Example 2. Consider the following game played by two people,
Jones and Smith. Jones conceals either a $1 or a $2 bill in his hand;
Smith guesses 1 or 2, and wins the bill if he guesses its number. The
matrix of this game is

Smith guesses

1 2
$1bill | —1 0

Jones chooses
$2 bill 0 -2

Again the game is nonstrictly determined.
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How should one play a nonstrictly determined game? We must first
convince ourselves that no one choice is clearly optimal for either player.
In Example 1, R would like to win 2. But if he definitely chooses bk 5,
and C finds this out, C can bring about a zero by playing rd 5. If R
chooses rd 3, C can bring about a zero by playing bk 3. Similarly, if
C’s choice is found out by R, then R can win 2. So our first result is
that each player must, in some way, prevent the other player from find-
ing out which card he is going to play.

We also note that for a single play of the game there is no difference
between the two strategies, as long as one’s strategy is not guessed by
the opponent. Let us now consider the game being played several times.
What should R do? Clearly, he should not play the same card all the
time, or C will be able to notice what R is doing, and profit by it.
Rather, R should sometimes play one card, and sometimes the other!
Our key question then is, “How often should R play each of his cards?”
From the symmetry of the problem we can guess that he should play
each card as often as the other, hence each one-half the time. (We will
see later that this is, indeed, optimal.) In what order should he do this?
For example, should he alternate bk 5 and rd 3? That is dangerous,
because if C notices the pattern, he will gain by knowing just what R
will do next. Thus we see that R should play bk 5 half the time, but
according to some unguessable pattern. The only safe way of doing
this is to play it half the time at random. He could, for example, toss
a coin (without letting C see it) and play bk 5 if it comes up heads, rd 3
if it comes up tails. Then his opponent cannot guess his decision, since
he himself won’t know what the decision is. Thus we conclude that a
rational way of playing is for each player to mix his strategies, selecting
sometimes one, sometimes the other; and these strategies should be
selected at random, according to certain fixed ratios (probabilities) of
selecting each.

By a mixed strategy for player R we shall mean a command of the
form, “Play row 1 with probability p; and play row 2 with probability
P»”” where we assume that p; > 0 and p, > 0 and p; + p, = 1. Simi-
larly, a mixed strategy for player C is a command of the form, “Play
column 1 with probability ¢; and play column 2 with probability g,,”
where g1 > 0, ¢. > 0, and ¢1 + ¢. = 1. A mixed strategy vector for
player R is the probability row vector (pi, p2), and a mixed strategy

vector for player C is the probability column vector <Zl>
2
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1
Examples of mixed strategies are (%, 1) and (f) The reader may
5

wonder how a player could actually play one of these strategies. The
mixed strategy (3, 1) is easy to realize since it is simply the coin-flip-
ping strategy described above. The mixed

1
strategy (

5

3
since there is no chance device in common
use that gives these probabilities. How-
ever, suppose that a pointer is constructed
with a card that is 4 shaded and % un-
shaded, as in Figure 12, and C simply
spins the pointer (without letting R see
it, of course!). Then, if the pointer stops
on the unshaded part, he plays the first
column, and if it stops on the shaded part,
he plays the second column, and thus
realizes the desired strategy. By varying the proportion of shaded area
on the card other mixed strategies can conveniently be realized.

Consider the nonstrictly determined game

) is more difficult to realize

Figure12

a b

c d

Having argued, as above, that the players should use mixed strategies
in playing a nonstrictly determined game, it is still necessary to decide
how to choose an optimal mixed strategy.

DEeFINITION. For the nonstrictly determined game G the number v is
its value and p° = (p%, p%) and g° = (g8, ) are optimal strategies for R
and C, respectively, if the following inequalities are satisfied.

M P =0t (2 D) 2w
@ i = o) (@)= ()

(If z and w are vectors, the inequality z > wmeans that each component
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of z is greater than or equal to the corresponding component of w.)
The game is fair if v = 0.

If R chooses a mixed strategy p = (p,, p») and (independently) C
chooses a mixed strategy g = <Zl), then player R obtains the payoff
2

a with probability p.g:; he obtains the payoff b with probability pig.;
he obtains ¢ with probability p.gi; and he obtains d with probability
P:q2; hence his mathematical expectation (see Chapter IV, Section 12)
1s then given by the expression

apiq + bpigs + cpxqi + dp.g. = pGy.

By a similar computation, one can show that player C’s expectation is
the negative of this expression.

To justify this definition we must show that if v, p°, g° exist for G,
each player can guarantee himself an expectation of v. Let g be any
strategy for C. Multiplying (1) on the right by ¢, we get p'Gg >
(v, v)q = v, which shows that, regardless of how C plays, R can assure
himself of an expectation of at least v. Similarly, let p be any strategy
vector for R. Multiplying (2) on the left by p, we obtain pGg® <

p (Y) = v, which shows that, regardless of how R plays, C can assure
v

himself of an expectation of at most v. It is in this sense that p® and
g° are optimal. It follows further that, if both players play optimally,
then R’s expectation is exactly » and C’s expectation is exactly v. (Com-
pare Exercise 11.)

We must now see whether there are strategies p® and g° for the game
G. While in more complicated games the finding of optimal strategies
is a difficult task, for a 2 X 2 nonstrictly determined game the follow-
ing formulas provide the solution.

o _ d—c¢
G) = o d—b—¢
0 _ a—2>b
4) L REE T T .
d—b
0 _
®) ql_a-{—d—b—c
0 a—c

© - = T rd—b—c
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ad — bc
™ V= a+d—b—c

It is an easy matter to verify (see Exercise 12) that formulas (3)~(7)
satisfy conditions (1)~(2). Actually, the inequalities in (1) and (2) be-
come equalities in this simple case, a fact that is not true in general for
nonstrictly determined games of larger size.

Formulas (3)~7) look rather complicated, but the mnemonic device
of Figure 13 will make it unnecessary to remember them in detail. Ob-
serve that the numerators of (3)-(6) are the differences of the main

d—b a-—c
d—c a b
a—>b c d

Figure 13

diagonal and the other diagonal entries. We take the difference of the
entry on the main diagonal and the other entry in the first row, and
write it in the second row. Then we take the corresponding difference
in the second row, and write it in the first row. For the column player
we do the same, substituting “column” for “row.” In order to convert
these differences into strategies, simply divide by the sum of the differ-
ences, which is the denominator of each of the expressions (3)—(6).
Finally, to find the value of the game, multiply one of the optimal
strategy vectors into the game matrix. Let us illustrate these ideas on
the two examples discussed earlier.

Example 1 (continued). Applying the rules of Figure 13, we have

d—b=2 a—c=2

d—c=2 2 ‘ 0

a—b=2 0 l 2

The sum a +d — b — ¢ = 2 + 2 = 4, so that the optimal strategies
1

are (3, 3) for R and (i) for C. Hence each player should use the coin-
2
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flipping strategy for optimal results. The value of the game is obtained
by multiplying R’s optimal strategy into the first column of the matrix,

v=(%,1% <(2)> = 1. Thus the game is biased in R’s favor, and he has

an expected gain of $1 per game.
Example 2 (continued). Again applying the rules of Figure 13,

d—b=-2 g—c=—1

d—c= -2 —1 0
a—b= -1 0 -2
The sum is a4+ d — b — ¢ = —3, so that the optimal strategies are
2,3 for R and (f) for C. The value of the gameis (2, 3 <_(1)> = —2
3

which means that the game is biased in Smith’s favor. Smith should
then pay 663 cents to play the game, in order to make it fair, that is, to
make its value zero.

Example 3. As one final example, consider the following matrix
game.

2 5
3| 6 2
4] 1 4

) for C. The

~3on =

which means that optimal strategies are (2, 4) for R and <

value of the game is (3, 4) (?) = 22,
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? EXERCISES

1. Find the optimal strategies for each player and the values of the follow-

ing games.

1 2 1 0

(a) (b)
3 4 -1 2
2 3 15 3

© @
1 4 -1 2 r
7 -6 3 15

(e ®
5 8 -1 10

0
(dv=3;(1,0); <1> () v = 4% &, 1); @)]
2. Set up the ordinary game of matching pennies as a matrix game. Find

its value and optimal strategies. How are the optimal strategies realized in
practice by players of this game?

[4ns. (a) v = 3;(0, 1);<(1)>- ) v =3;(, %);<

ol wf

3. A version of two-finger Morra is played as follows: Each player holds
up either one or two fingers; if the sum of the number of fingers shown is
even, player R gets the sum, and if the sum is odd, player C gets it.

(a) Show that the game matrix is

Player C
1 2
1 2 -3
Player R
2| -3 4

(b) Find optimal strategies for each player and the value of the game.
[Ans. (7, 725 v = — T¢.]
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4. Rework Exercise 3 if player C gets the even sum and player R gets the
odd sum.

5. Consider the following *“‘war” problem: Some attacking bombers are
attempting to bomb a city that is protected by fighters. The bombers can
each day attack either “high” or “low,” the low attack making the bombing
more accurate. Similarly, the fighters can each day look for the bombers
either “high” or “low.” Credit the bombers with six points if they avoid
the fighters, and zero if the fighters find them. Also credit the bombers with
three extra points for accurate bombing if they fly low.

(@) Set up the game matrix.

(b) Find optimal strategies for each player.

(©) Give instructions to the bomber and fighter commanders so that
by flipping coins they can decide what to do.

[Ans. (c) The bomber commander should flip one coin to decide

whether to go high or low. The fighter commander should flip two

coins and then go high if both turn up heads.]

6. Generalize the problem in Exercise 5 by crediting the bombers with x
points for avoiding the fighters and y points for flying low. (Assume that x
and y are positive.)

(a) Set up the matrix.

(b) If y > x, show that the game is strictly determined and find
optimal strategies.

(c) If y < x, show that the game is nonstrictly determined and find
optimal strategies.

(d) Comment on these results, with special attention to the bombers’

strategies.
a b
7. fG = ——| is nonstrictly determined, prove that it is fair if
c d
and only if

ad — bec = 0.
- 8. In formulas (3)-(7) prove that p, > 0, >0, g: >0, and ¢, > 0.
Must » be greater than zero?

9. Utilizing the results of Exercise 7 of the last section, find necessary
and sufficient conditions that the game

a 0

G =
0 b
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be nonstrictly determined. Find optimal strategies for each player and the
value of G, if it is nonstrictly determined.

[Ans. a and b must be both positive or both negative.
b_p=a, =b, =a,v=ab]
+b’2 a+b’q1 a+b’q2 a+b’ a—l—b'

10. Suppose that R is given bk x and rd y while C is given bk u and rd v
(where x, y, u, and v stand for positive integers). Let them play the matrix
game

D=

bk u rd v
bk x xu —Xxv
dy| —yu »o

Show that the game is always nonstrictly determined and always fair.
11. If G, p%, g°, and v are as in the definition, show that v = P°Gq°.
12. Verify that (3)~«(7) satisfy the conditions (1) and (2).

SUPPLEMENTARY EXERCISES

The remaining exercises refer to a special case of the product payoff game
(due to A. W. Tucker, see Exercises 14-20 of Section 7). In this game, R is
given two numbers x and y such that xy < 0, and C is given two numbers u
and z such that uz < 0. They play the game whose matrix is

u z
x xu Xz
y yu yz

In other words, each player chooses one of his two numbers, and they then
exchange a sum of money equal to the product of these numbers. Since
xy < 0 and uz < 0, each player must have one negative and one positive
number.

13. Assume that x > 0 > yand u > 0 > z. Show that the game is always
nonstrictly determined.

" 14. Show that we can always assume that x, y, , and z satisfy the relation-
ships given in Exercise 13 by, if necessary, relabelling and reordering rows
and columns.
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15. Show that the game is always fair. [Hint: Use Exercise 7.]

16. For the situation in Exercise 13, find optimal strategies for both players.
[Partial Ans. For R the optimal strategy is (—y/(x — y), x/(x — ¥)).]

17. Solve the game forx = 3,y = —5,u =4,and z = —2.
[Partial Ans. For R the answer is (£, §) and v = 0.]

6. MATRIX GAMES

We shall consider a large class of games in this section, and discuss
them in considerable generality. Our games are played between two
players, according to strictly specified rules. Each player performs cer-
tain actions, as specified by the rules of the game, and then, at the end
of the play of the game, one of the players may have to pay a sum of
money to the other player. The game may be repeated many times.

During such a game a player may have to make many strategic de-
cisions. By a (pure) strategy for one of the players we mean a complete
set of rules as to how he should make his decisions. We shall illustrate
this in terms of the game of tick-tack-toe (and nearly the same remarks
would apply to any game in which the players take turns moving). Let
us construct a strategy for the player who moves first. His first decision
concerns the opening move. He may choose any one of nine squares,
and the strategy must tell him which choice to make. Let us say we tell
him to move into the upper left-hand corner. His opponent may answer
this in one of eight ways, and the strategy must be prepared for each
alternative. It must have eight rules, such as “If he moves into the
middle, move into the lower right-hand corner!” For every such move
the opponent may respond with one of several alternatives, and the
strategy must again have an answering move ready for each of them,
etc. Hence the strategy takes into account every conceivable position
of the first player, and instructs what move to make in each one.

A strategy may be thought of as a set of instructions to be given to
a machine, so that the machine will play the game exactly the way we
would have.

We number the strategies of the first player 1,2, ..., m, and those
of the second player 1,2, ..., n. Since each of the players must play
according to one of his strategies, the game may proceed in any one
of mn ways, and if each player chooses a definite strategy, the outcome
is determined. We may think of giving the two strategies to two ma-
chines, and let them work out what happens. Let us suppose that, when
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the first player chooses strategy 7 and the second strategy j, the former
wins an amount a;;. We arrange these numbers a;; into an m X n ma-
trix, the game matrix. We may then think of the game as consisting of
a choice of a row by the first player, and a column by the second player.
Hence we see that any game specified by rules may be thought of as a
matrix game.

Conversely, every matrix can be considered as a game. An m X n
matrix may be thought of as a game between two players, in which
player R chooses one of the m rows and player C simultaneously
chooses one of the n columns. The outcome of the game is that C
pays to R an amount equal to the entry of the matrix in the chosen
row and column. (A negative entry represents a payment from R to
C, as usual.)

In an m X n matrix game, the player R has m pure strategies, and
the player C has n. We have seen in the last section that, in addition,
we must consider the mixed strategies of the two players. We extend
this concept to m X n games.

DEFINITION. An m-component row vector p is a mixed-strategy vector
for R if it is a probability vector; similarly, an n-component column
vector ¢ is a mixed-strategy vector for C if it is a probability vector.
(Recall from Chapter V that a probability vector is one with nonnega-
tive entries whose sum is 1.) Let ¥ and V' be the vectors

v )
v
V=(nv...,v) and V' = : \ 1 components,
m components '
v J

where v is a number. Then v is the value of the game and p°® and ¢° are
optimal strategies for the players if and only if the following inequali-
ties hold.

PG>V

Gg* < V.

In Sections 4 and 5 we have given several examples of such matrix
games together with their solutions. Notice that we have not proved
that an arbitrary matrix game has a value and optimal strategies for
each player; that question will be discussed later.
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Theorem 1. If G is a matrix game which has a value and optimal
strategies, then the value of the game is unique.

Proof. Suppose that v and w are two different values for the game G.
Let V= (v,v,...,v) and W = (W, w,...,w) be m-component row
vectors, and let

v w
w

V' = and W' =
) w

be n-component column vectors. Then let p° and ¢° be optimal mixed
strategy vectors associated with the value v so that

(a) PG>V,
®) Gg < V',

Similarly, let p! and ¢! be optimal mixed strategy vectors associated
with the value w so that

(© . p'G=> W,
(d) Gqt < W',

If we now multiply (a) on the right by ¢!, we get pGq! > Vq' = v.
In the same way, multiplying (d) on the left by p°® gives p°Gg! < w.
The two inequalities just obtained show that w > .

Next we multiply (b) on the left by p' and (c) on the right by g°,
obtaining v > p!Gq° and p'Gg® > w, which together imply that » > w.

Finally, we see that v < w and v > w imply together that v = w, that
is, the value of the game is unique. '

Theorem 2. If G is a matrix game with value v and optimal strate-
gies p° and ¢°, then v = p°Gq°.

Proof. By definition, v, p° and g° satisfy
p’G>V and Gg°* < V.

Multiplying the first of these inequalities on the right by ¢° we get
p°Gg® > v. Similarly, multiplying the second inequality on the left by
p’ we obtain p°Gg® < v. These two inequalities together imply that
v = p°Gq°, concluding the proof.



356 LINEAR PROGRAMMING AND THE THEORY OF GAMES Chap. VI

Theorem 2 is important because it permits us to give an interpreta-
tion of the value of a game as an expected value in the sense of proba-
bility (see Chapter IV, Section 12). Briefly the interpretation is the
following: If the game G is played repeatedly and if each time it is
played player R uses the mixed strategy p° and player C uses the mixed
strategy ¢°, then the value v of G is the expected value of the game for
R. The law of large numbers implies that, if the number of plays of G
is sufficiently large, then the average value of R’s winnings will (with
high probability) be arbitrarily close to the value v of the game G.

As an example, let G be the matrix of the game of matching pen-
nies, i.e.,

1 —1

G =

-1 1

As was found in Exercise 2 of the last section, optimal strategies in this
game are for R to choose each row with probability 3 and for C to
choose each column with probability 3. The value of G is zero. Notice
that the only two payoffs that result from a single play of the game are
41 and —1, neither of which is equal to the value (zero) of the game.
However, if the game is played repeatedly, the average value of R’s
payoffs will approach zero, which is the value of the game.

Theorem 3. If G is a game with value v and optimal strategies p°
and g°, then v is the largest expectation that R can assure for himself.
Similarly, v is the smallest expectation that C can assure for himself.

Proof. Let p be any mixed strategy vector of R and let ¢° be an opti-
mal strategy for C; then multiply the equation Gg° < V'’ on the left by
p, obtaining pGg® < v. The latter equation shows that, if C plays opti-
mally, the most that R can assure for himself is v. Now let p® be optimal
for R; then, for every g, p°Gqg = v, SO that R can actually assure himself
of an expectation of ». The proof of the other statement of the theorem
is similar.

Theorem 3 gives an intuitive justification to the definition of value
and optimal strategies for a game. Thus the value is the “best” that a
player can do and optimal strategies are the means of achieving this
“best.”

Matrix game theory would not be of very great interest unless we
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knew under what conditions such a game has a solution. The funda-
mental theorem of game theory is that every matrix game has a solution.
The proof of this theorem is too difficult to be included here, but we do
discuss its proof for the 2 X 2 case.

Theorem 4 (Fundamental theorem). Let G be any m X n matrix
game; then there exists a value v for G and optimal strategies p° for
player R and ¢° for player C. In other words, every matrix game
possesses a solution.

Proof for 2 X 2 matrices. If G is strictly determined, the value and
optimal strategies were found in Section 4. If G is not strictly deter-
mined, formulas (3) through (7) of Section 5 give the optimal strategies
and value for G. Since G must be either strictly determined or non-
strictly determined, we have covered all cases.

EXERCISES

1. Find the value and optimal strategies for the following games.

15 2 -3
0
(@) 6 5 7 [Ans. v = 5;(0,1,0); | 1 ).]
0
-7 4 0

®) 1 1 0 1 ©

2. Verify that the strategies p® = (%, 1, 1) and

(1)
@ =\3

are optimal in the game G whose matrix is
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1 0 0
G = 0 1 0
0 0 1

What is the value of the game?

3. Generalize the result of Exercise 2 to the game G whose matrix is the
n X n identity matrix.

4. Suppose that player R tries to find Cin one of three towns X, Y, and Z.
The distance between X and Y is five miles, the distance between Y and Z
is five miles, and the distance between Z and X is ten miles. Assume that
R and C can go to one and only one of the three towns and that if they both
go to the same town, R “catches” C and otherwise C “escapes.” Credit R
with ten points if he catches C, and credit C with a number of points equal
to the distance he is away from R if he escapes.

(a) Set up the game matrix.

(b) Show that both players have the same optimal strategy, namely,
to go to towns X and Z with equal probabilities and to go to town
Y with probability %.

(c) Find the value of the game,

5. A version of five-finger Morra is played as follows: Each player shows
from one to five fingers, and the sum is divided by three. If the sum is exactly
divisible by three, there is no exchange of payofis. If there is a remainder of
one, player R wins a sum equal to the total number of fingers, while if the
remainder is two, player C wins the sum.

(@) Set up the game matrix. [Hint: Itis 5 X 5.]

(b) Verify that an optimal strategy for either player is to show one or
five fingers with probability 3, to show two or four fingers with
probability £, and to show three fingers with probability 3.

(c) Is the game fair? [Ans. Yes.]

6. Consider the following game:

a 0 0
G = 0 b 0
0 0 c

(a) If a, b, and c are not all of the same sign, show that the game is
strictly determined with value zero.
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(b) If a, b, and c are all of the same sign, show that the vector

be ca , ab
ab + bc+ca ab+ bc + ca ab + bec + ca

fs an optimal strategy for player R.

(c) Find player C’s optimal strategy for case (b).

(d) Find the value of the game for case (b) and show that it is positive
if a, b, and c are all positive, and negative if they are all negative.

7. Two players agree to play the following game. The first player will
show one, two, or four fingers. The second player will show two, three, or
five fingers, simultaneously. If the sum of the fingers shown is three, five, or
nine, the first player receives this sum. Otherwise no payment is made.

(a) Set up the game matrix.

(b) Use the results of Exercise 6 to solve the game.

(c) How much should the first player be willing to pay to play the
game? [Ans. $%.]

8. Consider the (symmetric) game whose matrix is

0 —a —b
G = a 0 —c
b c 0

(@) If a and b are both positive or both negative, show that G is
strictly determined.

(b) If b and ¢ are both positive or both negative, show that G is
strictly determined.

(© Ifa>0,b6<0, and ¢ > 0, show that an optimal strategy for
player R is given by

c —b a .
a—b+c a—b+c a—b+c
(d) In part (¢) find an optimal strategy for player C.
() If a < 0,5 >0, and ¢ < 0 show that the strategy given in (c) is
optimal for R. What is an optimal strategy for player C?
(f) Prove that the value of the game is always zero.

9. In a well-known children’s game each player says “stone’” or “scissors”
or “paper.” If one says “‘stone” and the other “scissors,” then the former wins
a penny. Similarly, “scissors” beats “paper,” and “paper” beats *“‘stone.” If
the two players name the same item, then the game is a tie.

(a) Set up the game matrix.
(b) Use the results of Exercise 8 to solve the game.
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10. In Exercise 9 let us suppose that the payments are different in different
cases. Suppose that when “stone breaks scissors,” the payment is one cent;
when “‘scissors cut paper,” the payment is two cents; and when *‘paper covers
stone,”” the payment is three cents.

(a) Set up the game matrix.
(b) Use the results of Exercise 8 to solve the game.

% 1 ¢¢ 1 1 ¢

[Ans. % “‘stone,” 3 “scissors,” 1 “paper”; v = 0.]

SUPPLEMENTARY EXERCISES

FExercises 13-17 refer to a special case of the exponential payoff game. (See
also Exercises 14-20 of Section 8.) To play this game we first select a number
b > 0. Then R is given two numbers x, y such that xy < 0, and C is given
two numbers , z such that uz < 0. They play the matrix game

u Z
x + bz+u -4 bz+z
y 4 pytu S hvts

where the plus payoff is exchanged if the two numbers chosen are of the same
sign, and the minus payoff is exchanged if the two numbers chosen have
opposite sign.

11. Forb = 2,x = 3,y = —2,u = 1,and z = —4, show that the game is

16 -

W

|
(S
3+

12. Assume thatx > 0> yandu > 0> z
(a) Show that the game matrix is

u Z
x bx+u — bz+z
y —_ bu+u by+z

(b) Show that the game is always nonstrictly determined.
(c) Show that the game is always fair.

13. Show that we can always assume that x > 0> yand ¥ > 0 > z by, -
if necessary, relabelling and reordering rows and columns.
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14. For the situation in Exercise 12 find optimal strategies for each player.
Show that these are also optimal for the three cases found in Exercise 13.
[Partial Ans. For R the optimal strategy is (5/(b + bv), b5/(b* + bv)).]

15. Solve the game in Exercise 11.
[Partial Ans. For R the optimal strategy is (%, $3).]

7. MORE ON MATRIX GAMES

We recall from Section 4 that a matrix game G is strictly determined
if there is an entry g;; in G that is the minimum entry in the ith row and
the maximum entry in the jth column. (By rearranging and renumber-
ing the rows and columns of a strictly determined matrix game G we
can assume that gy is an entry that is the minimum of row 1 and the

maximum of column 1.)

Theorem 1. If G is a strictly determined matrix game, arranged as
indicated in the definition, the value of the game is v = gn. Moreover,

optimal strategies for the players are
1

0
0

p°=(1’0:03---,0) and q0=

0
[These optimal strategies simply say that R should choose the row that
contains the entry gy, (the first row) and C should choose the column
that contains the entry gi; (the first column).]
Proof. We set v = gy; and let p® and ¢° be the strategies as defined in
the statement of the theorem. We have
POG = (gu, 812y ¢ « oy g1n)
2 (gll’ 811, ¢« o gll) = V’
where we have used the fact that g, was the minimum of the first row.
Similarly, using the fact that g); is the maximum of the first column,

we have .
gu gu
821 gu

IA

gm1 gu
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From these two inequalities and the definition of a matrix game given
above, we conclude that » is the value of the game and p° and ¢° are
optimal strategies.

Theorem 2. If gy, and g;; are two entries of G that are the minima
of the rows and the maxima of the columns in which they occur, then
V=8u = &1 = 8a = &

Proof. Using the facts that gy; and g;; are the minima of the rows and
the maxima of the columns in which they occur, we see that

gij = &5 = &u, gi < ga < gu
(These inequalities are redundant but still true if either i = 1 orj = 1.)

These two sets of inequalities imply that g;; = g1; = ga = gu = v, com-
pleting the proof of the theorem.

Example 1. Although we have proved that the value of a game is
unique, it may happen that a game has more than one pair of optimal
strategies. For instance, let G be the game

1 5 1 7
G=| -2 8 0 -9
1 12 1 3

Then we see that G is strictly determined with value 1, and optimal
strategies are (1, 0, 0) and (0, O, 1) for player R and

1 0
0 0
0 and 1
0 0

for player C. In the next theorem we shall see that there are still other
optimal strategies for this game.

DerINITION. Let r and s be two strategies for a player in a matrix
game; then by a convex combination of the two strategies, we mean an
expression of the form

ar + (1 — a)s,

where a is a number satisfying 0 < a < 1.
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Theorem 3. If p® and p! are two optimal strategies for R in a matrix
game G then the convex combination

p=a’+ {1 —ap, 0<a<ll

is also an optimal strategy for R.
Similarly, if g° and ¢* are optimal strategies for C in G, then the con-
vex combination
g=a"+(1—-ag, 0<a<l

is also an optimal strategy for C.

Proof. We shall prove the first statement only and leave the second
as an exercise (see Exercise 3). It is easy to show that p is a probability
vector. By hypothesis, we have p°G > ¥ and p'G > V. Hence we see
that :

PG = [ap® + (1 — a)p']G
= ap’G + (1 — a)p'G
ZaV+ (1 —aV=y/,

which shows that p is also an optimal strategy, completing the proof of
the theorem.

Example 1 (continued). Theorem 3 implies that, in Example 1, con-
vex combinations of strategies of the form a(1, 0, 0) + (1 — a)(0,0, 1) =
(a,0,1 — a) are optimal for R. It is easy to check that (3,0, 1) and
(1,0, %) are optimal and of this form. By similar reasoning, all strate-
gies of the form

1 0 a

0 0 0
alo|td=—al )=l ,_.)

0 0 0

for 0 < a < 1, are optimal for C.

Theorem 4. If k is a nonnegative number, i.e., kK > 0, and G is a
matrix game with value v, then the game kG is a matrix game with
value kv, and every strategy optimal in G is also optimal in kG. (Recall
that the matrix kG is obtained from G by multiplying every entry of G
by the number k.)

Proof. Let p® be an optimal strategy for R in the game G, that is,
P°G > V. Then we have

PUKG) = k(p°G) 2 kV.
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Similarly, if ¢° is optimal for C in the game G, then
(kG)g® = k(Gg®) < kV".

These two inequalities show that kv is the value of kG and also that
optimal strategies in G are also optimal in the game KG.

It should be observed that it was essential for the proof of this theo-
rem that k be nonnegative, since multiplying an inequality by a negative
number has the effect of reversing the direction of the inequality sign.
The following example shows that the above theorem is false for nega-
tive k’s.

Example 2. Let k = —1 and let G and (— 1)G be the matrices

2 3 -2 -3
G = and (—1)G =
-1 0 1 0

Observe that each of these games is strictly determined but that the
value of the first game is 2, while the value of the second is O [which
is not equal to (—1)2 = —2]. Moreover, optimal strategies in G are
for R to play the first row with probability 1, and for C to play the
first column with probability 1, but neither of these strategies is optimal
in the game (—1)G.

Theorem 5. Let G be an m X n matrix game with value v; let E be
the m X n matrix each of whose entries is 1; and let k be any constant.
Then the game G + kE has value v + k, and every strategy optimal in
the game G is also optimal in the game G + kE. (The game G + kEis
obtained from the game G by adding the number k to each entry in G.)

Proof. Let p°® and ¢° be optimal strategies in G; then p°G > V and
Gg° < V'. We have

PG + kE) = p°G + p%kE)
= p°G + k(p°E)
>v...,0+ &k k, ..., k)
=@+ kot+k...,0+ k)

Similarly, we have

eI R Sy R ;; 7y RO IR L S e A PSR By ¢ ey A R R ¥R R ST

KA, s

rn
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(G + kE)q° = Gg° + k(Eq")

k v+ k
k v+ k

< + ’ = :
z; k v—|.—k

These inequalities show that the value of the game G+ kEis v+ k
and also show that each strategy optimal in G is optimal in G + kE.

Theorem 6. Let G be an m X n matrix game with value v; then
there exist K > 0 and M > 0 so that the game ALI(G + kE) has the

same optimal strategies as G and has all its entries between 0 and 1.

Proof. Let k be the absolute value of the most negative entry in G,
or 0 in case there are no negative entries. Then by Theorem 5 the game
G + kE has the same optimal strategies as G. By construction it is clear
that G 4+ kE has all entries > 0. Now let M be the maximum positive
entry in G + kE, or 1 in case there are no positive entries. Hence

M > 0. By Theorems 4 and 5 the game ALI(G + kE) has the same

optimal strategies as G, and by the choice of M all entries liec between
Oand 1.

The last three theorems show that the actual units used to measure
the game payoffs are irrelevant as far as optimal strategies go. The
only thing that is important for them is the relative magnitudes of the

payofs.

EXERCISES

1. Find the value of and all optimal strategies for the following games.

5 |10 6 5

@) 5 7 8 5 ()
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@l 1]lolojo]| @]|6]2]|7

a 0
[4ns. @) v = 5,(a,1 — a, 0), 8 (v =2,@al—a, 0),(1).]
0
1 —

2. Let G be a strictly determined game with value ». Let / be the number
of rows which R can choose as an optimal strategy, and let k be the number of
columns which C can choose as an optimal strategy. Prove that v occurs at

least /- k times in G. Can it occur more than this number of times ?
[Ans. Yes.]

3, If g° and ¢ are optimal strategies for C in the matrix game G, show
that the strategy

a

g = aq® + (1 — a)g’,
where a is a constant with 0 < a < 1, is also optimal in the game G.

4. Find the values of the games kG and G + kE for each of the games G
whose matrices are given in Exercise 1 of Section 6, if £ takes on the values
3,0,and —2.

5. If G is any matrix game and k£ = 0, find all optimal strategies for each
player in the game kG. [Ans. Any strategy is optimal.]

6. If G is any matrix game and k > 0, show that every strategy optimal
in kG is also optimal in G. [Hinz: Multiply by 1/k.]

7. If G is any matrix game and k is any constant, show that every strategy
optimal in the game G 4 kE is also optimal in the game G.

8. Suppose that before C and R play a matrix game G, player C gives
to player R a payment of k dollars. In this case we shall say C has made a
side payment of k to R. (If k is negative, then, as usual, this will be a side
payment of R to C.)
(a) If C has made a side payment of k to R before playing the game G,
show that the game they actually play is G + KE.
(b) If v is the value of the game G, find the value of the game G — vE.
(c) Using the results of (a) and (b), show that any matrix game G
with value » can be made into a fair matrix game by requiring
that C make a side payment of —v to R before they play the
game G.

’n
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9. Show that any matrix game G can be made into a fair matrix game,
with each entry in the matrix lying between —1 and 1, by adding the same
number to each entry in the matrix and by multiplying each entry by a posi-
tive number.

10. Show that the sets of optimal strategies for each player are unchanged
by the transformation suggested in Exercise 9. How does the value of the
game change?

11. Consider the matrix game

a b b
b a b |, wherea > b.
b b a

(a) Show that this can be obtained from the identity matrix by multi-
plying it by a suitable number, and then adding bE.
(b) Use the results of Section 6, Exercise 2, to solve the game.
[Ans. v = (a/3) + (26/3).]

12. Suppose that the entries of a matrix game are rewritten in new units
(e.g., dollars instead of cents). Show that the monetary value of the game has
not changed.

13. Consider the game of matching pennies whose matrix is

1 -1

—1 1

If the entries of the matrix represent gains or losses of one penny, would you
be willing to play the game at least once? If the entries represent gains or
losses of one dollar, would you be willing to play the game at least once?
If they represent gains or losses of one million dollars would you play the
game at least once? In each of these cases show that the value is zero and
optimal strategies are the same. Discuss the practical application of the
theory of games in the light of this example.

SUPPLEMENTARY EXERCISES

The remaining exercises refer to the product payoff game (due to A. W,
Tucker). Two sets, S and T, are given, each set containing at least one posi-
tive and at least one negative number (but no zeros). Player R selects a num-
ber s from set S, and player C selects a number ¢ from set T. The payoff is st.
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14. Set up the game for the sets S = {1, —1,2} and T = {1, -3, 2, —4}.

1 | -3 2 | -4
[4ns. | —1 3 | -2 4 |
2 | -6 4 | -8

15. Consider the following mixed strategy for either player: “Choose a
positive number p and a negative number n with probabilities —»n/(p — n)
and p/(p — n) respectively.” Assume that R uses this strategy.

(@) If C chooses a positive number, show that the expected payoff to
Ris 0.

(b) If C chooses a negative number, show that the expected payoff to
R is 0.

16. Rework Exercise 15 with R and C interchanged.

17. Use the results of Exercises 15 and 16 to show that the game is fair,
and that the strategy quoted in Exercise 15 is optimal for either player.

18. Find all strategies of the kind indicated in Exercise 15 for both players
for the game of Exercise 14.
[Partial Ans. For R they are (3, %, 0) and (0, £, 1).]

19. By subtracting ten from each entry, show that the following game is
derived from a product payoff game, and find all strategies like those in Exer-
cise 15 for both players. What is the value of the game?

11 7 12 6
9 13 8 14
12 4 14 2

[Hint: Use Exercises 14, 18, and Theorem 5.]

20. If a player in the product payoff game has m positive and n negative
numbers in his set, show that he has mn strategies like those in Exercise 15.

8. GAMES IN WHICH ONE PLAYER HAS
TWO STRATEGIES

After the 2 X 2 games, the simplest matrix games are the 2 X n and
m X 2 games, i.e., where one of the players has only two strategies.
Here we discuss the solution of such games.
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Example 1. Suppose that Jones conceals one of the following four
bills in his hand: a $1 or a $2 United States bill or a $1 or a $2 Canadian
bill. Smith guesses either “United States” or “Canadian’ and gets the
bill if his guess is correct. The matrix of the game is the following.

Smith Guesses

U.S. Can.
$1 | —1 0
U.S.
Jones $21 -2 0
Chooses
$1 0 -1
Can.
$2 0 -2

It is obvious that Jones should always choose the $1 bill of either
country rather than the $2 bill, since by doing so he may cut his losses
and will never increase them. This can be observed in the matrix above,
since every entry in the second row is less than or equal to the corre-
sponding entry in the first row, and every entry in the fourth row is less
than or equal to the corresponding entry in the third row. In effect we
can eliminate the second and fourth rows and reduce the game to the
following 2 X 2 matrix game.

Smith Guesses

U.S. Can.
Jones U.S. $1 | —1 0
Chooses
Can. $1 0 -1

The new matrix game is nonstrictly determined with optimal strategies
1

4, 1) for Jones and <f> for Smith. The value of the game is —3, which
3

means that Smith should pay 50 cents to play it.

DErFINITION. Let 4 be an m X n matrix game. We shall say that row
i dominates row h if every entry in row i is as large as or larger than the
corresponding entry in row 4. Similarly, we shall say that column j
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dominates column k if every entry in column j is as small as or smaller
than the corresponding entry in column k.

Any dominated row or column can be omitted from the matrix game
without affecting its solution. In the original matrix of Example 1
above, we see that row 1 dominates row 2, and also that row 3 domi-
nates row 4.

Example 2. Consider again the card game of Section 4, this time
giving R a bk 5 and rd 3, while C receives a bk 6 and a bk 5 and a
rd 4 and a rd 5. The matrix of the game is

bk6 bkS5 rd4 rdS5

bk51|0|—1‘0

rd3-—3|—2'1l2

Observe that column 3 dominates column 4; that is, C should never
play rd 5. Thus our game can be reduced to the following 2 X 3 game.

bk6 bk5 rd4

bk 5 1 0 -1

rd 3| -3 —2 1

No further rows or columns can be omitted ; hence we must introduce
a new technique for the solution of this game. It can be shown (though
we will not attempt to do so here) that, in any 2 X n game, the column
player C has an optimal mixed strategy that uses only two pure strate-
gies. Hence he may consider the game matrix two columns at a time,
and select the 2 X 2 game he likes best. That is, he solves each of the
2 X 2 games consisting of two columns of the matrix, and selects the
one having the smallest value.

In the above 2 X 3 game we find three games derived in this manner,

bk 6 bk 5 bk 6 rd 4 bk § rd 4
bk 5 1 0 bk 5 1 —1 bk 5 0 -1
rd 3| —3 -2 rd 3| —3 1 d3]| —2 1

B

La%Y
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The first game is strictly determined and fair, the second has value — 3,
and the third value —%. Hence player C selects the third game, i.e., he
decides to use only strategies bk 5 and rd 4. The optimal strategy for
the latter game is to play each card one-half of the time, hence his
optimal strategy for the 2 X 4 game is

QO e e O

Since R knows that C will select this particular 2 X 2 game, R’s opti-
mal strategy is his optimal strategy in this 2 X 2 game, which is (3, ).
For an m X 2 game, the row player can select which two rows to
use, and he does this by selecting the 2 X 2 game with largest value.
Then the value of the game and the optimal strategies are found by
solving this 2 X 2 game. Similarly, for the 2 X n case, C selects the
two columns so that the 2 X 2 game resulting gives the smallest possible
value (smallest loss), and then we need only solve this 2 X 2 game.

Example 3. A numerical example of a 3 X 2 game is

6 -1
0 2
4 3

Here the game is strictly determined, since the entry 3 is the minimum
of its row and the maximum of its column. The value of the game is 3,

and optimal strategies are p® = (0,0, 1) and ¢° = <(1)>

Example 4. Another numerical example is

1 -1 2 -3

-1 1 0 1

Here the fourth column dominates the second, and the first column
dominates the third. The game is then reduced to



372 LINEAR PROGRAMMING AND THE THEORY OF GAMES Chap. VI

1 -3

-1 1

ol ool
SN’
- e

whose value is —1, and optimal strategies are p° = (3, $) and ¢° = (

the latter strategy extends to the strategy

wie O O Wi

which is optimal in the original game.

Example 5. Our final example shows that there may be a multi-
plicity of subgames that can be chosen to give optimal strategies. Con-
sider the 4 X 2 game whose matrix is

13 -7
3 8
-1 14
9 -1

. 4
Since there are four rows, there are <2> = 6 ways that R can choose a

2 X 2 subgame. Of these six ways, the one that chooses the first and
last row has value — 1, and the one that chooses the second and third
row has value 3. Each of the other four subgames has value 5. They
give rise to the following four optimal strategies for R.

(3,4,0,0)
(#,0,4,0)
©,0,%,3)
©, 3,0, 3).

oo onjeo
\./

Player C has a unique optimal strategy, namely, (
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EXERCISES

1. Solve the following games.

3 0
@@ | -2 3 [4ns. v = 5; (0, 0, 1); (
7 5
10 5 4 6
()
18 3 3 4
1 0 2
©) [Ans. v = 3; (3, 1);
0 3 2
0 2
1 3
@
-1 0
2 0
1 2 3 0
(e) [Anans. v =2;3,8);11 )]
4 2 1
1 0 1 1 2
®
0 -1 -2 -3 —10
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2. Solve the following games.

0 15
8 0
(@
—-10 20
10 12
-1 -2 0 -3 —4
(b)
-2 1 0 2 5
—1 5 -1 -2 8 10
©
3 -6 0 8 -9 | -8
[dnans. v = —3; (3, %

3. Solve the game

1

2

3

3

2

1

Chap. Vi

cooltdo

Since there is more than one optimal strategy for C, find a range of optimal
strategies for him. (See Section 7, Exercise 3.)

4. In the card game of Example 2 suppose that R has bk 9, bk 5, rd 7 and
rd 3, while C has bk 8 and rd 4. Set up and solve the corresponding matrix

game.

[Ans. v = 1; R shows bk Sandrd 7 each with probability §; C shows

each of his cards with probability 3.]

5. Suppose that Jones conceals in his hand one, two, three, or four silver
dollars and Smith guesses “even” or “odd.” If Smith’s guess is correct, he
wins the amount which Jones holds, otherwise he must pay Jones this amount.
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Set up the corresponding matrix game and find an optimal strategy for each
player in which he puts positive weight on all his (pure) strategies. Is the
game fair?

6. Consider the following game: Player R announces “one” or “two”;
then, independently of each other, both players write down one of these two
numbers. If the sum of the three numbers so obtained is odd, C pays R the
odd sum in dollars; if the sum of the three numbers is even, R pays C the
even sum in dollars.

(@) What are the strategies of R? [Hint: He has four strategies.]

(b) What are the strategies of C? [Hint: We must consider what C
does after “one” is announced after a “two.” Hence he has four
strategies.]

(c) Write the matrix for the game.

(d) Restrict player R to announcing *“two,” and allow for C only those
strategies where his number does not depend on the announced
number. Solve the resulting 2 X 2 game.

(e) Extend the above mixed strategies to the original game, and show
that they are optimal.

(f) Is the game favorable to R? If so, by how much?

7. Answer the same questions as in Exercise 6, if R gets the even sum and
C gets the odd sum (except that in part (d) restrict R to announce “one”).
Which game is more favorable for R? Could you have predicted this without
the use of game theory?

8. Rework the five-finger Morra game of Section 6, Exercise 5, with the
following payoffs: If the sum of the number of fingers is even, R gets one,
while if the sum is odd, C gets one. Suppose that each player shows only one
or two fingers. Show that the resulting game is like matching pennies. Show
that the optimal strategies for this game, when extended, are optimal in the
whole game.

9. A version of three-finger Morra is played as follows: Each player shows
from one to three fingers; R always pays C an amount equal to the number
of fingers that C shows; if C shows exactly one more or two fewer fingers
than R, then C pays R a positive amount x (where x is independent of the
number of fingers shown).

(a) Set up the game matrix for arbitrary x’s.
(b) If x = %, show that the game is strictly determined. Find the value.
[Ans. v = —4.]
(c) If x = 2, show that there is a pair of optimal strategies in which
the first player shows one or two fingers and the second player
shows two or three fingers. [Hint: Solve a 2 X 2 derived game.]
Find the value, [Ans. v = —3.]
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(d) If x = 6, show that an optimal strategy for R is to use the mixed
strategy (3, 3, 3). Show that the optimal mixed strategy for C is to
choose his three strategies each with probability 4. Find the value
of the game. :

10. Another version of three-finger Morra goes as follows: Each player
shows from one to three fingers; if the sum of the number of fingers is even,
then R gets an amount equal to the number of fingers that C shows; if the
sum is odd, C gets an amount equal to the number of fingers that R shows.

(a) Set up the game matrix.

(b) Reduce the game to a 2 X 2 matrix game,

(c) Find optimal strategies for each player and show that the game is
fair,

11. Two companies, one large and one small, manufacturing the same
product, wish to build a new store in one of four towns located on a given
highway. If we regard the total population of the four towns as 100 per cent,
the distribution of population and distances between towns are as shown.

2

Assume that if the large company’s store is nearer a town it will capture 80
per cent of the business; if both stores are equally distant, then the large
company will capture 60 per cent of the business; if the small store is nearer,
then the large company will capture 40 per cent of the business.

(a) Set up the matrix of the game.

(b) Test for dominated rows and columns,

(c) Find optimal strategies and value for the game and interpret your

results.
[Ans. Both companies should locate in town 2; the large company
captures 60 per cent of the business.]

3 4

12. Rework Exercise 11 if the per cent of business captured by the large
company is 90, 75, and 60, respectively.

13. We have stated without proof that any 2 X n game can be solved by
considering only its 2 X 2 derived games. Verify that this is the case for a
game of the form (@ > 0,6 > 0):
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C
a 0 1
R
0 b 1

(@) Show thatif a <1 or b < 1, then column 3 is dominated. Hence
solve the game.

() If a > 1 and b > 1, solve the three 2 X 2 derived games. [Hint:
Two of them are strictly determined.]

() Ifa>1,5b>1, but ab < a + b, then show that the strategies of
the nonstrictly determined derived game are optimal for both
players.

(d) If ab > a + b, then show that R has as optimal strategy the same
strategy as in part (c), but C has a pure strategy as optimal strategy.

(e) Using the previous results, show that the value of the game is
always the smallest of the values of the three derived games.

SUPPLEMENTARY EXERCISES

Exercises 14-20 refer to the exponential payoff game. To play the game a
number 4 > 0 is chosen. Two sets, S and T, are specified, each set contain-
ing at least one positive and at least one negative number (but no zeros).
Player R selects a number s from set S, and player C selects a number ¢
from T. If st > 0, the payoff is b**¢ and if st < 0, the payoff is — b+,

14. Set up the game for b = 2 and the sets S = {1, —1,2} and T =

{1, —3,2, —4}. 1 -3 2 —4
1 4 -1 8 -3

[dns. —1 | —1 s -2 ]
2| 8 -1 16 —1

15. Consider the following mixed strategy for either player: “Choose a
positive number p and a negative number n with probabilities 67/(b? + b)
and b7/(b? + b"), respectively.” Assume that R uses this strategy.

(a) If C chooses a positive number, show that the expected payoff to
Ris 0.

(b) If C chooses a negative number, show that the expected payoff to
Ris 0.
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16. Rework Exercise 15 with R and C interchanged.

17. Use the results of Exercises 15 and 16 to show that the game is fair,
and that the strategy quoted in Exercise 15 is optimal for either player.

18. Find all strategies of the kind indicated in Exercise 15 for both players
for the game of Exercise 14.
[Partial Ans. For R they are (3,4, 0) and (0, §, $).]

19. If a player in the exponential payoff game has m positive and n nega-
tive numbers in his set, show that he has mn strategies like those in Exercise 15.

20. Find an optimal strategy for player R which is not of the kind indicated
fn Exercise 135. :
21. Consider the product payoff game described in Exercises 14-20 of

Section 7.
(a) If either player has exactly two numbers in his set, show that his

optimal strategy is unique.
(b) If either player has more than two numbers in his set, show that

he has more than one optimal strategy.

99, Consider the product payoff game described in Exercises 14-20 of
Section 7. If player R has two numbers in his set, and C has n (> 2) in his
set, show that no column in the resulting game dominates any other column.
Do the same for row dominance in the case that C has exactly two numbers

in his set.
23. Rework Exercises 21 and 22 for the exponential payoff game.

94. Show that, except for the addition of 5 to each matrix entry, Example
5 is the product payoff game with R choosing from tbe set {4, —1, —3, 2}
and C choosing from the set {2, —3}.

9. SIMPLIFIED POKER

In order to illustrate the procedure of translating a game specified by
rules into a matrix game, we shall carry it out for a simplification of a
well-known game. The example that we are about to discuss is a sim-
plification (by A. W. Tucker) of the poker game discussed on pp. 211-
219 in the book The Theory of Games and Economic Behavior, by John
von Neumann and Oskar Morgenstern.

The deck that is used in simplified poker has only two types of cards,
in equal numbers, which we shall call “high” and “low.” For example,
an ordinary bridge deck could be used with red cards high and black
cards low. Each player “antes” an amount a of money and is dealt a
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single card which is his “hand.” By a “deal” we shall mean a pair of
cards, the first being given to player R and the second to player C.
Thus the deal (H, H) means that each player obtains a high card. There
are then four possible deals, namely,

(H’ H)’ (H’ L)’ (L’ H)’ (L! L)’

Ignoring minor errors (see Exercise 1), if the number of cards in the
deck is large, each of these deals is “equally likely,” that is, the proba-
bility of getting a specific one of these deals is 1.

After the deal, player R has the first move and has two alternatives,
namely, to “see,” or to “raise” by adding an amount b to the pot. If
R elects to see, the higher hand wins the pot or equal hands split the
pot equally. If R elects to raise, then C has two alternatives, to “fold,”
or to “call” by adding the amount & to the pot. If C folds, player R
wins the pot (without revealing his hand). If C calls, then the higher
hand wins the pot or equal hands split the pot equally. These are all
the rules.

A pure strategy for a player is a command that tells him exactly what
to do in every conceivable situation that can arise in the game. An
example of a pure strategy for R is the following: “Raise if you get a
high card, and see if you get a low card.” We can abbreviate this
strategy to simply raise-see. It is easy to see that R has four pure
strategies, namely, raise-raise, raise-see, see-raise, and see-see. In the
same manner, C has four pure strategies, fold-fold, fold-call, call-fold,
call-call.

Given a choice of a pure strategy for each player, there are exactly
four ways the play of the game can proceed, depending on which of
the four deals occurs. For example, suppose that R has chosen the see-
raise strategy, and C has chosen the fold-fold strategy. If the deal is
(H, H), then R sees, and they split the pot, so neither wins; if the deal
is (H, L), then R sees and wins the pot, giving him a; if the deal is (L, H),
then R raises and C folds, so that R wins a; and if the deal is (L, L), then
R raises and C folds, so that R wins a. Since the probabilities of each
of these deals is 1, the expected value of R’s gain is 3a/4. Let us com-
pute another expected value, namely, suppose that R uses see-raise and
C uses call-fold. Then, if the deal is (H, H), R sees and wins nothing;
if the deal is (H, L), then R sees and wins a; if the deal is (L, H), then
R raises, C calls, and C wins @ + b; and if the deal is (L, L), then R
raises, C folds, and R wins a. The expected value for R here is (@ — b)/4.
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Continuing in this manner, we can compute the expected outcome for
each of the 16 possible choices of pairs of strategies. The payoff matrix
so obtained is given below.

g e e S s e e e e

High fold fold call call
Low fold call fold call
see see 0 0 0 0
. 3a 2a a—>b =b
see raise - —
4 4 4 4
) a a+ b b
raise see - 0 -
4 4 4
] . 4da 3a+b a—b
raise raise — 0
4 4 4
The reader should observe that we have just completed the translation

of a game specified by rules into a matrix game.

Since a and b are positive numbers, we see that, in the matrix above,
the fourth row dominates the second, and the third row dominates the
first. Similarly, the third column dominates the first and second col-
umns. We can reduce the 4 X 4 matrix to the following 2 X 2 matrix.

Conservative Bluffing
High call call
Low fold call
. b
Conservative raise see 0 :1
. ) a—>b
Bluffing raise raise 2 0

Notice that we have labeled the raise-see strategy as “conservative” for
R, since it seems sensible to raise when he has a high card and to see
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when he has a low one. The strategy raise-raise which says, raise even
if you have a low card, we have labeled “bluffing,” since it corresponds
to the ordinary notion of bluffing. In the same manner we have labeled
the call-fold strategy ‘“‘conservative,” and the call-call strategy “bluff-
ing,” for player C.

Example 1. Suppose a = 4 and b = 8. Then the matrix becomes

Conservative Bluffing
Conservative 0 2
Bluffing -1 0

Here the game is strictly determined and fair, and optimal strategies
are for each player to play conservatively.

Example 2. Suppose a = 8 and b = 4. Then the matrix becomes

Conservative Bluffing
Conservative 0 1
Bluffing 1 0

Here the value of the game is 1, meaning that it is biased in favor of R.
Optimal strategies are for each player to bluff with probability 4 and
to play conservatively with probability 1.

Here we have one of the most interesting results of game theory,
since it turns out that, as part of an optimal strategy, one should actually
bluff part of the time.

EXERCISES

1. Suppose that the simplified poker game is played with an ordinary
bridge deck where red is “high’ and black is “low.” Compute to four decimal
places the conditional probability of drawing a red card, given that one red
card has already been drawn. From this, discuss the accuracy of the assump-
tion that the four deals are equally likely. How could the accuracy of the

assumption be improved ?
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9. Substitute @ = 4 and b = 8 into the 4 X 4 matrix above, and reduce
it by dominations to a 2 X 2 matrix game. Isitthe one considered in Example
1 above? Do the same for @ = 8 and b = 4 and compare with Example 2.

3. If @ < b, show that the simplified poker game is strictly determined
and fair. Show that both players’ optimal strategy is to play conservatively.

4. If a > b, show that the simplified poker game is biased in favor of R.
Show that, to play optimally, each player must bluff with positive probability,
and find the optimal strategies.

5. If a > b, discuss ways of making the game fair.

6. When b > a, show that the optimal strategy of player R is not unique.
Show that although he has two “optimal” strategies, the raise-see strategy 18
in a sense better than the other.

7. Show thatin the case a = 8, b = 4, the strategy of R can be interpreted
as follows: “On a high card always raise, on a low card raise with probability
1.” Reinterpret C’s mixed strategy similarly.

The remaining exercises concern a variant of the simplified poker game.
Real poker is characterized by the fact that there are very many poor hands,
and very few good ones. We can make the above model of poker more real-
istic by making the draw of a low card more probable than that of a high
card. Let us say that the probability of drawing a high card is only 3. The
rules of the game remain as in the text.

8. Calculate the probabilities of (H, H), (H, L), (L, H), and (L, L) deals.

9. The strategies of the two players are as in the text, hence we will get a
similar 4 X 4 game matrix. Calculate the see-raise vs. fold-fold entry of the
matrix, just as in the text, but using the results of Exercise 8. Do the same
for the see-raise vs. call-fold entry. [Ans. 24a/25; (16a — 4b)/25.]

10. Fill in the remaining matrix entries.

11. Show that two rows are dominated, and that two columns are domi-
nated.

12. Show that the resulting 2 X 2 game is strictly determined if and only
if b > 4a. What is the value of the game in these cases?

13. Let a = 4, b = 8, as in the text, and solve the game. Compare your

solution with that in the text. .
[Ans. Each player should bluff half the time; » = 4£; in the previous
version there was no bluffing in this case, and the game was fair.]
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14. Let a = 8, b = 4, as in the text, and solve the game. Compare your
solution with that in the text.
[4ns. Each player plays more conservatively; game is slightly more
favorable to R than in the previous version.]

15. The players have agreed that the ante will be $4. They are debating
the size of the raise. What value of 4 should player R argue for? [Hint: He
does not want the game to be fair. Then what are the possible values of 52
Find the value of the 2 X 2 game for any such 4, and find its maximum value
by trying several values of 4.]
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