Computer
Programming

S

1

INTRODUCTION

Modern high-speed computers have made all forms of computation vastly
easier. Calculations that used to take several days to complete can now be
carried out in a few seconds. The availability of a modern computer can
take a great deal of drudgery out of mathematical computations and makes
possible large-scale computations that would otherwise be impossible. This
is particularly true in the area of finite mathematics, since each of the
branches of mathematics introduced in this book is well suited to computer
applications.

It is the purpose of this chapter to give a first introduction to the use
of high-speed computers. A computer is an electronic device designed to
carry out arithmetical operations and to follow a long list of instructions
as to what calculations should be carried out. A computer does no more
and no less than a human user instructs it to do; however, it can carry out
tasks at tremendous speed and with great accuracy. The key to the use of
a computer is learning how to write a set of instructions. Such a set of
instructions is called a program, and the art of writing such instructions is
known as programming. This chapter will give a number of examples of
programs for high-speed computers designed to carry out calculations in
finite mathematics. Although only elementary programming techniques will
be illustrated, they will be sufficient to carry out many significant mathe-
matical tasks.

The chapter is written so that it may profitably be studied without having
a computer available. However, being able to try out examples on a com-
puter will significantly improve the learning experience. Each section will
include many exercises that do not require the use of the computer and
also some exercises that must be completed on a computer.

225

226 Computer Programming Chapter 5

In order to communicate with a human being, it is necessary to understand
the language he speaks. Similarly, a user must learn a suitable language
for communicating with a computer. Fortunately, there are several easily
learned languages that most computers “speak.” One language widely used,
particularly in educational uses, is BASIC. The present chapter provides
a brief introduction to the language BASIC. The reader interested in more
sophisticated applications, including many further applications to finite
mathematics, is referred to the book Basic Programming, which is listed in
the suggested readings at the end of the chapter.

Since the language BASIC is almost self-explanatory, it is simplest to learn
it by looking at some actual programs. The program EXAMPLE1 is designed
to compute several factorials—specifically, 4!,6!, and 10'. The program
consists of five lines, each of which contains one instruction for the com-
puter. It will be noted that each line starts with a line number. These
numbers are required in BASIC to make it easy to enter corrections to a
given program. For example, if a user wishes to correct a given line, he
simply retypes that line with the same line number and the correction is
automatically made by the computer. Or, if it is desired to insert a line
between, say, lines 20 and 30, one may type the new instruction with any
number between 20 and 30 and a correction is automatically made. Thus
it 1s good practice to choose line numbers with gaps between them (for
example, multiples of 10) to allow for the insertion of additional instructions.
An additional use of line numbers will be explained in the next section.

Most of the variables in this chapter are represented by capital letters,
since many computer terminals print only capitals.

Look now at EXAMPLE1. Line 10 in EXAMPLE1 instructs the computer
to compute 4!, i.e, 1 X 2 X 3 X 4. To avoid the ambiguity between the
dot as a multiplication sign and as a decimal point, BASIC uses an asterisk
(*) to indicate multiplication. Specifically, the LET command in line 10 tells
the machine to compute 1 X 2 X 3 X 4 and to call the answer “X.”) Thus
after the computer has carried out the instruction in line 10, X will equal
24. This quantity may now be used in the rest of the program. In line 20
the computer is asked to take X and multiply it by 5 and then by 6, and
to call the result Y. Thus Y will equal 6! or 720. Similarly, on line 30 the
previous result is multiplied by 7, 8, 9, and 10, thus obtaining 10!, and calling
the result Z. The instruction LET is designed to carry out a wide variety
of computations. The format for the LET command is always to put on
the right-hand side of the equals sign the computation that is to be carried
out and to indicate the name of the result on the left-hand side of the equals
sign.

Computations are useless unless the user can see the result. In a long
program there are many partial results that are of no interest to the user
and that would take too long to be typed, so that we don’t want to print
every result. Therefore there is an instruction in BASIC called PRINT which
tells the computer to print or type only the desired results. Line 40 instructs
the computer to type out X, Y, and Z. It is up to the programmer to

Section 1

Computer Programming 227

EXAMPLEL
18 LET X = 1x2x3x4
29 LET Y = Xx5x%6

330 LET 2 = Yx7*x8x9x%x]13Q
42 PRINT X,Y,2

58 END

READY

BUN

EXAMPLEL
24 720 36288229

d.262 S5EC.
READY

remember that the results stand for 4!, 6!, and 10!, respectively. The final
instruction, in line 50, is END. In all programs the last instruction must
be an END statement. This line both indicates the physical end of the
program and tells the computer to stop.

Immediately after the program we show the results that are printed as
the program is executed or “RUN.” Three numbers are printed which are
the desired results. It is important to note that the computations took only
a small fraction of a second.*

Many interesting and useful programs can be written with the minimal
vocabulary of LET, PRINT, and END. A more sophisticated example is
shown in EXAMPLE2. Line 10 carries out a subtraction and an addition.
Line 20 shows one decimal fraction being divided by the sum of two other
decimal fractions. Note that parentheses are inserted as usual. Line 30
requires an additional word of explanation. One usually communicates with
a computer through a typewriterlike terminal device, and this imposes
certain limitations on the way formulas are typed. Specifically, each formula
must be contained on a single line. This was already illustrated by the form
of division on line 20. Since it is not possible to type an exponent on a
higher line, an upward arrow (1) is used to indicate an exponent. Thus line
30 asks the computer to raise the number 2.15 to the sixth power and to
let the answer be Z.

Line 40 illustrates some additional options available for the PRINT
instruction. In EXAMPLE1 a comma (,) separated the variables, which is
the signal to BASIC to line up the answers in predetermined columns (also
called fields), normally up to five columns per line. If one is not interested

*The reader will note that in the computer output zeros appear as ‘@’. This is done to
distinguish the number zero from the letter ‘O’. Unfortunately, different conventions for this
are used on different computer terminals.

228 Computer Programming Chapter 5

Bl CXAMPLE?

EXERCISES

19 LET X = 397-128+511
28 LET Y = +57/(.23+.82)
38 LET Z = 2.1516

44 PRINT X3VY3iZ:;2xX3YxZ
5@ END

READY

RUN

EXAMPLE2

780 04542857 98.7713 1562 53.56187

B.859 SEC.
READY

in a special format but would simply like to have answers printed one after
the other, the answers are separated by semicolons (;), as shown in EXAM-
PLE2. This example also shows that computation instructions may take
place within a PRINT statement. In addition to printing X, Y, and Z, we "
have also asked the computer to PRINT 2+X and Y*Z. Recall that an
asterisk (*) is used to denote multiplication to the computer. The results
are again shown.

These examples illustrate the fact that once the user masters a simple
language for entering requests to the computer, all the hard work can be
left to the machine. One of the nice features of modern computers is the
fact that one can become quite expert in their use without necessarily having
any understanding of how computers work. This is similar to the fact that
millions of people use telephones and drive automobiles without having any
understanding of the nature of telephone-switching networks or of automo-
bile engines. That is why in this chapter we are concentrating entirely on
the art of programming and not on the operation of computers. The
following sections will introduce, step by step, some more powerful com-
mands in the language BASIC which will enable the reader to use the
computer for more complex calculations.

Only Exercises 7-11 require the use of a computer.

1. Write a program that will compute and print the sum of the first three
positive integers, of the first five positive integers, and of the first ten
positive integers.

2. Write a program to compute the cube root of 100. (You will need to
recall that a cube root is the same as the 1 power.)

Section 2 Computer Programming 229

3. Write a two-instruction program to compute (;)

4. The following program contains three illegal instructions, that is,
instructions not satisfying the rules we have prescribed. Identify them.
10 LET X = .12345/.54321
20 LET Y = X1Z
30 LET U = XY
40 LET X = X=X
50 PRINT X,Y,U+Z
60 PRINT X,Y,Z?
70 END
80 LETX =Y+ Z
5. Without using a computer, figure out what would be printed when the
following program is run.
10 LET X =2
20 LETY =7-4
30 LET Z = Y1X
40 LET Z = Z-2*Y +X
50 PRINT Z/X
60 END [4ns. 2.5.]
6. Without using a computer, figure out what would be printed when the
following program is run.
10 LET X = 20/5
20 LET Y = X1(1/2)

30 LET Z = 1%2%3
40 LET U = Z—-3*Y
50 PRINT U
60 END

7. Try the program of Exercise 4 on a computer to see what error messages
are printed.

8. Run the program of Exercise 2 on a computer. What is the cube root
of 1007 [Ans. 4.64159.]

9. Use a computer to compute
(.54321/.12345)+(40/37)13.

10. Using a computer, employ a trial-and-error method to find the small-
est integer whose fifth power is greater than 1,000,000.

11. Use a computer to compute (270) [Ans. 77520.]

2 MORE ON THE LANGUAGE BASIC

The programs in Section 1 are not typical in that each instruction is carried
out only once by the computer. Such calculations could easily be done with
a desk calculator. To make the best use of the great speed of high-speed
computers it is desirable to give short programs which result in hundreds,

230 Computer Programming Chapter 5

thousands, or even millions of computer operations. One technique for this
is the application of the same instructions to many different sets of data.
This will be illustrated in the present section. An even more powerful
technique will be shown in next section.

Let us suppose that we wish to carry out a number of divisions. Instead
of writing a separate instruction for each operation, we can write a single
instruction and use it over and over again, as shown in the program DI-
VIDE. Line 20 instructs the computer to PRINT the numbers A,B and their
quotient. The trick is to specify various pairs A,B. This is accomplished
by storing on line 40 a set of data and instructing the computer on line
10 to pick off two of these numbers. The READ statement instructs the
computer to pick the next two numbers on the DATA line and call the first
number A and the second number B.

Thus the first time line 10 is executed, A will equal 12 and B will equal
4, and thus on line 20 this pair of numbers will be printed as will their
quotient A/B = 3. The next time line 10 is executed, A will equal 144 and
B will equal 12. This will continue until all the data has been used up.

After reading a pair of numbers and printing the result, we would like
the computer to go back and do the same two instructions over again. This
is accomplished by a GOTO statement. Line 30 instructs the machine to
GOTO 10—that is, to go to line 10, which in this case happens to be the
beginning of the program. This is another important use of line numbers,

I D!VIDE

13 READ ALB
22 PRINT A,B,A/B

386 GOTO 12
43 DATA 12,4,144,12,18,3.45,197%2,345
58 END
READY
RUN
DIVIDE
12 4 ' 3
la4 12 12
19 3.45 2.839855
19782 345 57.3391
QUT OF DATA AT 1@
STOP
2.8679 SECe.

READY

Section 2

Computer Programming 231

40 DATA 169,13,2.97,1.23,-208,-508,12345,1289
RUN

DIVIDE

169 13 13

2497 1.23 2441463
-202 -50 4

12345 1289 9.57719
OUT OF DATA AT 10
STOP
3.088 SEC.
READY

S PRINT "FIRST NO«",'""SECOND NO+","QUOTIENT"
RUN

DIVIDE
FIRST NO. SECOND NO. QUOTIENT
169 13 13

2497 1.23 241463
-200 -50 4

12345 1289 957719
QUT OF DATA AT 1@
STOP
.89 SEC.
READY

We include with a listing of the program the results that are obtained.
It will be noted that the four pairs of numbers are printed on separate lines
with the quotient in each case printed in the third column. This run also
illustrates that there are two different ways of terminating a computer
program. One is by reaching an END instruction; the other is for some
condition to occur under which the computer can no longer proceed. In
this particular case the fifth time it is asked to READ numbers A and B,
it finds that there are no numbers left and therefore it prints the OUT OF
DATA message. This is a perfectly legitimate way of terminating a program.

The advantage of writing a program with READ and DATA statements
is twofold. First, it shortens the program significantly. Second, if the user
wishes to reuse the program with different pairs of numbers, he only has
to change line 40 and the rest of the program is still valid. If one retypes
line 40 with different data and types “RUN” again, the new results will be
obtained. This is shown as a second RUN of the program DIVIDE.

We would like to illustrate one more capability of the PRINT instruction.

232 Computer Programming Chapter 5

It is often convenient to label the output of a computer program. A PRINT
instruction will PRINT any label contained between quotation marks exactly
as you typed it. We can add labels to the program DIVIDE as follows:

5 PRINT “FIRST NO.”, “SECOND NO.”, “QUOTIENT"".

Making the line number “5” indicates to the computer that the instruction
should be inserted at the beginning of the program (i.e., before line 10).
The three labels will be printed exactly as indicated. The fact that the labels
are separated by commas indicates to the machine that they should be typed
in separate columns and they will automatically line up with the three
columns of output. A new RUN is shown. Such labels may be inserted
anywhere in a PRINT statement, as will be seen in the next program.

A simple computer program will allow us to convert a probability to odds.
We recall (see Chapter 3, Section 2) that if the probability that an event
will occur is P, and Q = 1 — P, then the odds in favor of the event may
be expressed as P/Q to 1. This is carried out in the program ODDS.

A set of probabilities is provided on line 90. Line 10 reads one of these
probabilities and calls it P. Line 15 computes Q. Line 20 does double duty,
both computing the odds and printing the answers. Note that in line 20

B 0DDS

S5 PRINT “PROBABILITY"," 0ODDS '
13 READ P

1S LET Q@ = 1-P

28 PRINT PLP/Q3"TO 1"

36 GOTO 10

99 DATA ¢5,475,465,43333333,.1
99 END

READY

RUN

ODDS

PROBABILITY 0DDS

@e5 1 TO 1

Be75 3 TO 1

Beb6 1.5 TO 1
@.333333 .5 TO 1

Bl Gellllll TO 1
OUT OF DATA AT 10

STOP

P.0383 SEC.

READY

Section 2

Computer Programming 233

P is followed by a comma so that the probability will occur in one column
and the odds in a separate column. After P/Q we have inserted a semicolon
(;) so that the quotient is immediately followed by the phrase “TO 1.” The
effect of this PRINT format is clearly shown in the RUN. Line 30 simply
instructs the program to go back and carry out the computations for the
next probability.

As we look at the output we notice that while the first three lines look
very clear, the last two are somewhat unnatural. One does not usually say
that the odds are 0.5 to 1 in favor of an event; rather one would prefer
to say that the odds are 1 to 2 in favor, or 2 to 1 against the event. To
achieve this one must have one output format if the odds are in favor of
the event (i.e., P greater than Q), and another format if they are not. We
must be able to tell the computer that if a certain relationship holds then
one thing should happen, and that otherwise something else should happen.
This is provided for in BASIC by the IF ... THEN instruction.

In the program ODDS2 we have inserted a test at line 17. If P is less

ODDS2

S PRINT "PROBABILITY",'" ODDS "
13 READ P

1S LET Q = 1=-P

17 IF P<Q THEN 40

26 PRINT P,LP/Q3"TO 1"

33 GOTO 19

43 PRINT PL," 1 TQY:;Q/P
586 GOTO 10

9% DATA 5, ¢755 656333333351
99 END '
READY

RUN

0obDS2

PROBABILITY 0DDS
Be5 1 TO 1
Be75 3 TO 1
@e6 1.5 TO 1
3333333 i TO 2.
Bl 1 TO 9
QUT OF DATA AT 1@

STOP

2.8903 SEC.

READY

234 Computer Programming Chapter 5

EXERCISES

than Q then the computer is instructed to skip to line 40 and use the alternate
output format. But if P > Q the computer goes on to line 20. On line 40
we compute the odds as 1 to Q/P rather than the form used on line 20.
A RUN of the modified program is shown and the reader will note that
the odds are now in both a simpler and a more natural form.

The significance of the IF . .. THEN statement is that the computer can
be instructed to go in one of two different directions. And where it goes
depends on the result of previous computations. In those cases where P
turns out to be greater than or equal to Q, the computer proceeds with lines
20 and 30. However, if P is less than Q then the computer skips to lines
40 and 50. Thus the same computer program can handle both cases, and
uses a simple test to distinguish between them.

The general form of this instructions is:

IF [relationship}] THEN [line number].

The line number may be any line number in the program. For the rela-
tionship we may use six relational symbols: = (equals), < (is less than),
> (is greater than), < = (is less than or equal to), > = (is greater than
or equal to), and <> (is not equal to). A more complex example is the
following;:

IF (X*Y + 3)< =Z THEN 35.

If the current value of X+Y + 3 is less than or equal to the current value
of Z, the program takes line 35 as its next instruction. If not, it will proceed
in the normal order.

Only Exercises 10-14 require the use of a computer.

L. Write a program that will READ a list of numbers and compute and
print their fifth powers.

2. There are many ways of avoiding the “OUT OF DATA” message. One
is to have a dummy number at the end of the DATA (say —99999) and
to have the computer terminate when that number is READ. Modify
the program of Exercise 1 by adding an IF statement so that it will
terminate in this manner.

3. Modify the program ODDS2 so that instead of “1 TO 9” it will print

“9 TO 1 AGAINST.”

Modify the program ODDS2 to avoid the “OUT OF DATA” message.

If the DATA in the program ODDS contains an illegal probability (i.e.,

a negative number of a probability greater than 1), the result will be

meaningless. Insert a test to make sure that P is between 0 and 1.

6. Write a program that will read a list of numbers from DATA and find
its largest element. You will have to avoid the “OUT OF DATA”
termination. (See Exercise 2.)

7. Modify the program of Exercise 6 to find the smallest element.

hoa

Section 3

3 LOOPS

Computer Programming 235

8. The absolute value Y of a number X may be computed in BASIC by
writing LET Y = ABS (X). Design a test to check whether two num-
bers A and B are within 0.001 of each other.

9. In BASIC, INT(X) is the greatest integer less than or equal to the
number X. For example, INT(6.235) = 6, INT(10.999) = 10,
INT(15) = 15, and INT(—3.52) = —4. Design a test to check
whether an integer X is an even number.

10. By means of the IF ... THEN statement we can remove the trial-and-
error method from Exercise 10, Section 1. Design and RUN a program
that will READ a number A (A > 0), and find the smallest integer N
whose fifth power is greater than A.

11. Try out the program of Exercise 6 on a computer. Does it work
correctly when all the numbers in the DATA are negative?

12. In BASIC, SQR(X) is the square root of X. Use a computer to print
a table of square roots for the first ten integers.

13. Modify the program of Exercise 12 to print the square roots of every
fifth number between 100 and 200 (i.e., 100, 105, 110, ..., 200).

14. There is a fast computational technique for finding the square root
of a number A without using the “built-in” SQR function. One lets
X be a guess at the square root. (For example, X = 1 is all right.)
Let Y = A/X. If X is the correct square root, then Y = X. If not,
one uses the average of X and Y as the next guess, and repeats the
process until X and Y differ by less than a predetermined small er-
ror—say 0.000001. (See Exercise 8.) Write and RUN a program which
carries out this technique. Check the answers by means of SQR.

Let us return to the problem of computing factorials. To compute 10! it
is possible to proceed as in EXAMPLE1, or to write a single instruction:

LET X = 1%2+3%4x5x6x7+8%9+10.

However, this is a nuisance even for 10! and becomes very inconvenient
for 25!. It also means that if we wish to compute several different factorials
we have to write a different line for each one. We would instead like to
write a simple set of instructions which say roughly, “Take the numbers from
1 to 10 and multiply them together.” This can be accomplished by the pair
of instructions FOR and NEXT.

The heart of the program FCTRL is contained in the “loop” on lines
30-50. The letter K will consecutively stand for the integers 1 through 10.
The letter F will contain all the partial results and will eventually equal
10!. To understand line 40 we must remember that in a LET instruction
the computer first computes the right-hand side and then lets the letter on
the left equal the result. Thus F is multiplied by the current value of K
and this becomes the new value of F. Line 50 instructs the computer to
go on to the next value of K until all ten numbers have been used up.

236 Computer Programming Chapter 5

Ml FCTRL

20 LET F
30 FOR K
48 LET F
S8 NEXT K
680 PRINT F
99 END
READY

=

1 TO 18
FxK

nuu

RUN
FCTRL

36288049

@.052 SECo.
READY

Before starting the loop we must tell the computer what the “initial value”
of F should be. In computing a product the initial value must always be
1. If we were computing a sum we would start with 0 (see Exercise 6).
After the loop is completed we PRINT the final answer on line 60 and then

Line no. Result
20 F=1
30 K=1
40 F=1+«1 =1
50 GOES BACK TO 30
30 K=2
40 F=142 =2
50 GOES BACK TO 30
30 K=3
50 GOES BACK TO 30
30 K=10
40 F = (362880)*10 = 3628800
50 K EXHAUSTED, DOES NOT GO BACK
60 PRINT VALUE OF 10!
. 99 STOPS
Figure 1

Section 3

Computer Programming 237

line 99 instructs the computer to stop. Figure 1 shows what actually happens
as each step in the computation is performed.

It is easy to modify this program to compute the factorial of an arbitrary
number. In FCTRL2 we first PRINT labels and then READ the number
N whose factorial we are trying to compute. In line 30 K now goes from
1 to N. In line 60 we have elected to PRINT both N and its factorial. Line
70 instructs the program to go back and read the next number. Line 90
contains five different values for N. The RUN shows the factorials of
these five numbers.

Two comments are in order concerning the output. First, 20! is a number
too large for all of the digits to be printed out. Therefore the computer
prints it in “scientific notation.” The abbreviation E + 18 stands for 1018,
In other words, the answer is 2.4329 x 1018, It is also worth noting that
0! came out to be 1 without any special instruction to the computer. This
is one more way of showing that 0! = 1 is the “natural convention.”

FCTRL2
5 PRINT "NUMBER",'FACTORIAL"
18 READ N
280 LET F = |
38 FOR K =1 TO N
48 LET F = FxK
53 NEXT K
60 PRINT NLF
72 GOTO 1o
980 DATA 4,7,10,20,0
99 END
READY
RUN
FCTRL2
NUMBER FACTORIAL
4 24
7 S840
19 3628800
29 244329 E+18
@ l
OUT OF DATA AT 1@
STOP
B.282 SEC.

READY

238 Computer Programming Chapter 5

As our next illustration of loops we shall write a short program that
computes an expected value. We recall from Chapter 3, Section 11, that
an expected value is computed for an experiment whose possible outcomes
are numbers by multiplying the numerical outcome A with the probability
P of the outcome for each possible outcome, and adding up the results.
This is carried out in the program EXPECT.

Bl EXPECT

18 LET E
20 FOR K
380 READ ALP

43 LET E = E + A%P

58 NEXT K

69 PRINT E

9@ DATA 1103J2J0235)095)‘11025)"2102
99 END

READY

1 TO 5

RUN
EXPECT
@3

G859 SEC.
READY

Since the expected value E is computed as a sum, its initial value is set
to 0. In the loop of lines 20-50, for each of the five possible outcomes we
first read the numerical value A and the probability P. We then add to
the previous value of E the quantity A*P. This will become the new value
of E. After the loop is completed (by going through all five cases) E will
be the expected value. This is printed by line 60. Note that the variable
K acts as a counter only and does not otherwise enter the computation.

We see that the expected value in this simple illustration is 0.3. Of course
in this case the answer could have been obtained more easily by hand
computation. However, if the number of cases were significantly larger and
the numbers were not as nice, the computer would indeed be useful.

Let us now turn to an application for which a computer is indispensable.
We shall write a computer program for the “birthday problem” treated in
Chapter 3, Section 4. (This example should be skipped by those who have
not read that section.)

The problem was to compute the probability that among R people there
are at least two with the same birthday. The trick was to compute first the

Section 3

Computer Programming 239

probability Q that all the birthdays are different, given by a formula in
Section 4 of Chapter 3; then the probability we desire will be P = 1 — 0.
In the program BIRTHDAY lines 15-45 carry out this computation in five
simple instructions. The remaining lines are designed to allow us to compute

BIRTHDAY

S PRINT "PEOPLE",“PROBABILITY"

10 READ R

15 LET Q@ = |

20 FOR K = | TO R

30 LET Q@ = Q@ * (366-K)/365
43 NEXT K S
45 LET P = 1-Q T

50 PRINT R,P T T,
60 GOTO 1@ ’
93 DATA 10,20,22,23,30, 58

99 END
READY
RUN
BIRTHDAY
PEOPLE PROBABILITY

10 0.116948

20 8.411438

22 B«475695

23 B.507297

39 0.736316

50 0.978374

OUT OF DATA AT 190

STOP

@.180 SEC.

READY

the answer for several different values of R and to PRINT the answers. The
reader is invited to compare the results with those given in Figure 1 of
Chapter 3. That the results agree (except for the fact that these numbers
are rounded to three places in Figure 1) is not surprising since they were
originally obtained by means of a computer. This is a good example in
which a simple computer program and one-tenth of a second of computer
time can save hours of laborious hand calculations.

The question is often raised: What is the probability of having more than

240 Computer Programming Chapter 5

one coincidence of birthdays in a given group? That is, what are the chances
that there will be three people with the same birthday or two pairs of
identical birthdays or even larger coincidences? This probability can be
computed in two steps. One first computes (as above) the probability of
having some kind of coincidence. Then one computes separately the proba-
bility of having precisely one pair of people with the same birthday. The
difference of these two quantities will give the probability of a multiple
coincidence.

B BIRTH2

S PRINT "“PEOPLE",'"PROBABILITY"

13 READ R

15 LET Q@ = 1

20 FOR K = 1 TO R .

30 LET Q@ = Q * (366-K)/365

48 NEXT K :

45 LET P = 1=-Q "
S8 LET E = 1 T ~
68 FOR K = 1 TO R~I S oseE-
65 LET E = E * (366-K)>/365 e
78 NEXT K P -
75 LET E = E/365

77 LET E = E*R*(R-1)/2

83 PRINT R,P-E

85 GOTO 14

90 DATA 20,25,30,35,36,43,583

99 END

READY

RUN

BIRTH2

PEOPLE PROBABILITY

27 8.82398 E-2

25 @.189257

30 B.326101

35 B.480722

36 3.511803 ~

49 2.630989 -

59 B+.855524

OUT OF DATA AT 10

STOP

B.134 SEC.

READY

Section 3

Figure 2

EXERCISES

-~ R A S Cew A

Computer Programming 241

The program BIRTH2 is designed to compute this probability for various
numbers of people. The quantities Q and P are computed as before. The
quantity E will stand for the probability of exactly one pair with the same
birthday. Let us first calculate the probability that the first two people have
a specific birthday, say October 26, and that all the other people have
different birthdays. This probability is 345 X -4 X 394 x 383 % How-
ever, the same two people could have had a coincidence of birthdays on
any of 365 days, and therefore we must multiply the answer by 365. This
will cancel the first factor of 4z. This calculation is carried out in BIRTH2,
lines 50-75. We must still correct this answer since we have so far assumed
that it is the first two people who have a coincidence of birthdays. Such a
coincidence may occur for any pair from among the R people, and there-
fore we must multiply the answer by <§) = 5)(_(;1—_12 which is carried
out in line 77. You should “step through” the program BIRTH2 by hand
to see that it is actually carrying out the calculations described above.

The program prints the probability of a multiple coincidence for several
different numbers of people. We notice that for 25 people—a number for
which we already have a better-than-even chance of having some coinci-
dence—the probability of a greater coincidence is less than .2. The smallest
number of people for which a multiple coincidence has better than an even
chance is 36. We note that for 50 people the probability of a multiple
coincidence is very high.

We have now discussed nine instructions in BASIC. It is significant that
these nine instructions are sufficient to write many interesting programs.
They are summarized in Figure 2 for the reader’s convenience.

Instructions for nine-word BASIC

Instruction Example Purpose
LET _ LET X =243 Carries out computations
PRINT PRINT X,Y X+Y Prints results
END END Terminates computation
READ READ A,B Enters numbers from DATA
DATA DATA 5,—-2,34 Stores data
GOTO GOTO 20 Transfers program control
IF ... THEN IF X>3 THEN 20 Performs a test
FOR FORN=1TO 8 Starts a loop
NEXT NEXT N Closes a loop

Only Exercises 9-14 require the use of a computer.

1. Use FOR and NEXT to write a program that will compute the seventh
powers of the first ten positive integers.

242 Computer Programming Chapter 5

2.

3.

10.
11.
12.

13.

14.

Write a program that will compute the cube roots of the integers from
1 to 20.

A loop need not run through all the integers specified in the FOR
statement. For example, the instruction

FOR N =1TO 15 STEP 2

will run through the odd numbers from 1 to 15. Write a program to
compute the cube roots of the multiples of 10 from 10 to 100.
Write a program to print the fifth powers of the even integers up to
30.

If we know how many numbers there are on the DATA list, we may
avoid the OUT OF DATA message by reading the data within a loop.
Modify DIVIDE in this manner. [Hin/: Remember that a pair of
numbers is READ each time.]

Write a program to compute the sum of the first 100 integers. What
must the initial value of the sum be?

Modify the program of Exercise 6 to READ a number N and then to
compute the sum of the first N integers.

Write a program to compute the sum of an arithmetic series. READ
only the numbers A, D, N, and have the computer construct the sum
of the series with N terms, starting with A, and increasing by D each
time. l.e., the series is

A+(A+D)+(A+2D)+ ... +(A+(N—1)D).

RUN the program of Exercise 7 for several values of N. Check that
the answer is always N(N +1)/2,

In BASIC, LOG(X) is the natural logarithm of X. Print a table of
natural logarithms for the first ten integers.

RUN the program of Exercise 3 on a computer.

Write a program that computes the sum of the first N odd integers.
RUN it for several values of N, and guess what the general formula
for the sum is.

The technique described in Exercise 5 is not the best one, since when
the number of DATA elements is changed, the loop must also be
changed. This may be avoided by starting DATA with a single number
that tells us how many times we have to go through the loop. Say
this is N. Then we start our loop with

FOR K = 1TO N.

Modify DIVIDE accordingly, and RUN it.

In the Land of Oz the calendar year has 534 days. Modify the programs

BIRTHDAY and BIRTH2 accordingly.

(a) How many people should we have in order to have a better-
than-even chance of a coincidence? [Ans. 28.]

(b) How many for a better-than-even chance of a multiple coinci-
dence?

Section 4 Computer Programming 243

4 LISTS AND TABLES

In many applications we wish to work with an entire array of numbers at
the same time. For this BASIC provides “lists” and “tables.” A list can
be used to store a sequence of numbers, while a table contains a two-
dimensional array of numbers. We shall see in the next section that lists
can also be used as vectors and tables also as matrices, in the sense of
Chapter 4, allowing us to carry out matrix operations.

We have had previous arrays of numbers contained in our DATA state-
ment. However, in each case we READ the numbers one or two at a time,
and once we made use of them, we could afford to forget them. A list
becomes important when the entire array must be remembered. For exam-
ple, if we wish merely to read a sequence of numbers, multiply each one
by 5, and print the results, there is no need to employ a list. However, an
application as simple as reading a sequence of numbers and printing them
out in the opposite order requires the use of a list. This is shown in the
program BACK.

Bl BACK

1 FOR I =1 TO 8

28 READ L(I)

38 NEXT 1

49 FOR 1 = 8 TO | STEP -1

58 PRINT L(1); '

68 NEXT 1

99 DATA 1,3,6,108,15,21,28,36
99 END

READY

RUN
BACK
36 28 21 15 18 6 3 1

B.B366 SEC.
READY

BASIC allows one list or table for each letter of the alphabet. For
example, if the letter L is used to designate a list, then L(3) will stand for
the third element of the list, while L(7) will stand for the seventh element.
It would be more common mathematical notation to write these as L, and
L;. However, these cannot be typed on the devices one uses to communicate
with computers. Lists and tables are nonetheless often referred to as “sub-

244 Computer Programming Chapter 5

scripted variables” because of the more usual mathematical notations for
them.

We have found it convenient in earlier chapters of this book to refer to
an arbitrary element of a list of numbers by a notation such as L;. The
analog in BASIC is to write the formula L(I). Then as | runs through the
numbers 1,2, ..., the quantity of L(l) will run through the various elements
of the list. We take advantage of this possibility in the program BACK as
lines 10-30 read the entire list of eight elements. The first time through
the loop | equals 1 and therefore on line 20 we read L(1); thus the data
element “1” on line 90 becomes the first element of the list. The second
time | =2 and therefore we read L(2) and thus the data element “3”
becomes the second element of the list. Finally, the data element “36” will
become L(8).

To print out the list in reverse order we can again employ a three-instruc-
tion loop. We want to print each L(l); however, we want | = 8,7, . . . , 1.
Line 40 shows an additional flexibility of the FOR instruction. One can
specify any step size by which the program proceeds. (If no step 1s specified,
the computer assumes that the step size is 1.) In this case we specify
STEP —1; thus | = 8 the first time, then 7, then 6, etc.

The semicolon (;) on line 50 will assure that the numbers are printed one
after the other without any extra space. If instead of a semicolon we had
used a comma (,) the numbers would be printed in columns. If we had
used no punctuation at the end of the line, each component would have
been printed on a new line.

The program DICE computes the probability of winning in the game of
craps (see Chapter 3, Section 11). We shall use the list P to store the
probabilities for various possible sums when two dice are rolled. For exam-
ple. P(5) will be the probability of shooting a 5, which we know to be =
Whenever a list is used in BASIC, space is automatically allocated in the
computer for up to ten elements. Similarly for any table, BASIC will allocate
for a table of size up to a 10 X 10. If larger lists and tables are desired,
one must specify this through the use of a DIM or dimension statement.
Thus in the program DICE we indicate the list P will have 12 elements.
In case several different uses are contemplated for the same list, one must
specify a DIM large enough to accommodate the longest list.

Lines 20-40 set up the probabilities for rolling a 2 through a 7. We leave
to the reader the verification of these formulas. Lines 50 through 70 take
advantage of the symmetry of the problem; e.g. the probability of an 8 is
the same as the probability of a 6. At the end of this loop all the various
probabilities for different totals on a single roll have been computed and
the next step is to compute the probability W for winning in the game of
craps.

You will recall that if a 7 or 11 turns up on the first roll, we win immedi-
ately. This is reflected in line 100. To this probability we must add the
probability of “making our point.” That is, if the initial roll is 4,5,6,8,9,
or 10, then we must keep rolling until we either repeat that number (in

Section 4

Computer Programming 245

Bl DICE

10 DIM P(12)

280 FOR K = 2 TO 7

38 LET P(K) = (K-1)/36
480 NEXT K

58 FOR K = 8 TO 12

680 LET P(K) = P(l4-K)

79 NEXT K

108 LET W = P(7) + P(11)

116 FOR K = 4 TO 14

112 1IF K=7 THEN 130

115 LET C = P(K)/(P(K)+P(7))
1280 LET W = W + P(K)*C

13@ NEXT K

178 PRINT W

180 PRINT 2447495
199 END

READY

RUN
DICE

B.492929
0.492929

B.076 SEC.
READY

which case we win) or until a 7 turns up.

This calculation is carried out in the loop on lines 110-130. Since our
“point” may be 4,5,6,8,9, or 10, we allow the loop to run from 4 to 10.
However we must exclude 7 as a possibility and this is the reason for line
12:if K'is 7, we jump to the end of the loop—in other words, we eliminate
this possibility. Line 115 computes the conditional probability that the
number K will be repeated given that we shall get either K or a 7. This
is the simplest way of computing the probability of getting a K before we
get a 7. On line 120 we add to our previous winning probability the
probability that we both have K as our initial point and that we win with
it. By the time the loop is completed W will equal the probability of winning
at craps. This is printed on line 170. We had calculated this probability
in Chapter 3 as 2% and we also print this quantity for comparison. We
note from the RUN that the two answers are identical.

Let us now consider the use of tables. If T stands for a table, we must

246 Computer Programming Chapter 5

indicate which row and which column in the table we are looking at. Thus
T(3,5) will stand for the table entry in row 3 and column 5. As usual the
arguments (or subscripts) may be variables. Thus T(!,J) will stand for the
entry in row | and column J, which is more usually indicated by 7;;. As
an illustration we shall recompute one of the tables previously computed
in the book. This will be the table of binomial coefficients, usually known

as the Pascal triangle. We shall compute the quantities (‘]]V) for the values
N=0,1,2,...,30 and all possible values of J, namely J=0,1,..., N.

Only two facts are needed to compute the Pascal triangle. One is the fact

0 N
is equal to the sum of the two entries immediately above it.

that (N) = <N) = 1. The other is the fact that any entry “inside” the triangle

Bl BINOMC

18 DIM B(38,38)

26 FOR N = @ TO 3@

30 LET B(N,@) = 1

43 LET B(N,N) = 1

S FOR J = 1 TO N-1

60 LET B(N,J) = B(N=-1,Jd-1) + B(N-1,J)
79 NEXT J

83 NEXT N

92

183 PRINT ' N"," J","BINOM"
118 FOR K =1 TO 4

122 READ N»J

133 PRINT N,J,B(N,J)

149 NEXT K

190 DATA 18,5,15,3,25,18,308,15
199 END

READY

RUN
BINOMC

N

19
15
25
30

BINOM
252
455
3268760
1.55118 E+8

- U1 C,

(&)]

@«188 SEC.
READY

Section 4

Bl BINOMPR

10
20
38
42
50
69
79
80
90
100
119
120
130
140
193
199
REA

RUN

BINOMPR

N

10
15
30

DIM
FOR
LET
LET
FOR
LET

Computer Programming 247

In the program BINOMC, line 10 saves enough space for a 30 x 30 table.
The entry B(N,J) will stand for (}j) The entire calculation of the triangle
is carried out on lines 20-80. We let N run from 0 through 30. For each
given N we first fill in the (‘8[) and (%) on lines 30 and 40. Then we start

the loop on J in which J runs from 1 through N — 1 to compute the “inside”
entries. Line 60 simply states that a given entry of B is the sum of two
entries on the previous row. Lines 70 and 80 close the two loops.

This is our first example of a “double loop.” Such a double loop is legal
as long as one loop is completely contained within the other one. The
interpretation is very simple: the computer picks a first value for N and
then runs through all the indicated values of J; it then picks the next value
of N and repeats the procedure; and so on. Note that in this example the

B(30,38)

N =0 TO 39

B(N,B) = |

B(N,N) = |

J =1 TO N-1

B(N,J) = B(N=1,J=1) + B(N-1,J)

NEXT J
NEXT N

PRINT ' N'," J",'" P"," PR(OB."

FOR K =1 T0O 3

READ N,J,P

PRINT NoJsP,BI(NL,JI4*PtJdx (1 =-P)t(N-J)
NEXT K

DATA 10,5,+3,15, 17, *4,30,15,45

END

DY

PROB.

B.102919
B.177284
Belaaqgeq

-3 0 C,
(SRR N e}
e o o
(61 RF ~ S A

B.185 SEC.
READY

248 Computer Programming Chapter 5

EXERCISES

range of the second loop depends on the value of N in the first loop (see
line 50). It is in this way that we fill out a triangle. If we were instead
filling out a rectangle or a square, the possible values of J would not depend
on the value N.

Just to show that the calculations are correct, we end up by printing four
binomial coefficients. It is worth noting that the entire calculation of nearly
500 binomial coefficients—including some very large ones, as can be seen
on the last line of the output—took only about two-tenths of a second. The
same calculation by paper and pencil is a formidable task.

Some additional comments are in order. Line 90 is blank. This has no
effect on the computations, but it separates the two major portions of the
program for easier reading. On line 100 we PRINT appropriate labels. It
should be noted that since we use commas both here and on line 130, the
outputs automatically line up. The loop on lines 110-150 is employed to
avoid the “OUT OF DATA” message.

Once we have binomial coefficients computed, they can be used for the
solution of many kinds of problems. As an illustration we have included
the program BINOMPR which computes binomial probabilities. Lines 10-90
are identical with the previous program since these simply compute the
Pascal triangle. In the rest of the program we read the value of N, J, P,
and compute the probability of precisely J successes in N trials with proba-
bility P for success on each trial. In line 130 we print N, J, and P and then
compute and print the binomial probability by the well-known formula (see
Chapter 3, Section 8). For example, the second line of the output shows
that if we have 15 experiments with probability 4 for success on each
experiment, then the probability of precisely 7 successes is about .177. (See
previous page.)

Only Exercises 8-12 require the use of a computer.

1. We wish to read N numbers from a DATA list and perform a task on
them. Which of the following tasks require that the numbers be stored
in a list?

(a) Find the largest number.

(b) Print the even-numbered entries.

(c) Print first the even-numbered and then the odd-numbered entries.
(d) Find the sum of the numbers.

(e) Find the sum of the first and last entries.

(f) Arrange the numbers in order. [Ans. (c) and (f).]

2. To use the same program for tables of different dimensions, one should
read first the dimensions of the table, and then read the table. (Other-
wise one does not know how many rows and columns to read.) Write
such a program.

3. Write a program that will read a table and compute the row sums.

4. Write a program to read a list of four entries and a list of seven entries

Section 5

10.

11.

12.

Computer Programming 249

and construct a table T so that T(l,J) is the product of the lth entry
of the first list and Jth entry of the second list.

Write a program to read a list and arrange the numbers in increasing
order.

Modify the program of Exercise 5 to arrange the numbers in decreasing
order.

Write a program to calculate the probability of winning in the dice
game of Chapter 3, Section 11, Exercise 18.

Use the program DICE to compute the expected value of the game
if §1 is bet each time.

Use DICE to compute the expected value of the game if we win $2
on 7 or 11, lose $3 on 2, 3, or 12, and win or lose $1 for making or
failing to make our point,

Compute the row sums of the Pascal triangle for N =0,1,...,10.
Use the binomial theorem to explain the results.

]JV) 27/, Use the binomial

ForN=0,1,...,10 compute the sum of(
theorem to explain the results.

This is an exercise in modular arithmetic. For LJd=1,2,...,6 let
T(l.J) be I*J reduced by 7’s. That is, if the product is 7 or greater,
keep subtracting 7 until the result is less than 7. Print the table. What

pattern do you observe?

5 VECTORS AND MATRICES

A natural use of lists and tables is to use them for vectors and matrices
and to carry out matrix operations with them. BASIC recognizes this use
by having a special set of instructions that enable one to carry out the matrix
operation in a single step. We shall illustrate this by writing two programs
for the addition of vectors, one not using the special instructions and one
using them.

In the program VECADD the calculations are accomplished in four triples
of instructions (loops). The first three instructions read a seven-component
vector A, the second triple reads a similar vector B, and the third triple
of instructions computes the vector sum letting the vector C stand for the
answer. Finally, lines 100120 print the answer.

HEl VECADD

18 FOR 1 =1 TO 7
20 READ A(I)

30 NEXT 1

48 FOR I =1 TO 7
S@ READ B(1I)

60 NEXT 1

79 FOR'I =1 TO 7

250 Computer Programming Chapter 5

83 LET C(I) = A(CI) + B(l)
93 NEXT 1

166 FOR I =1 TO 7

113 PRINT C(I1);

120 NEXT 1

198 DATA 1,2,3,4,5,6,17
191 DATA 5:8)2)@)‘1)'3)‘7
199 END

READY

RUN
VECADD
6 18 5 4 4 3 0

@.883 SEC.
READY

In the program VECADD2 we have replaced each triple of instructions
(each loop) by a single special instruction. One signals to BASIC that an
instruction is a special matrix instruction by starting with “MAT.” The first
two instructions each read a seven-component vector, the third instruction
carries out the vector addition, and the fourth instruction prints the vector.

Bl VECADD2

18 MAT READ A(7)

46 MAT READ B(7)

7 MAT C = A + B

160 MAT PRINT C:

196 DATA 1,2,3,4,5,6,17
191 DATA 5:8)2;@;‘1)'3)‘7
199 END

READY

RUN

VECADD2

6 10 5 4 4 3 o

B.876 SEC.
READY

Section 5

Computer Programming 251

The comparison of the two programs will show exactly what the MAT
instructions accomplish. Clearly the second program is simpler and shorter.
The saving is even greater when we are dealing with a matrix or if we want
to do more complicated matrix operations.

The next program, MATSUB, is similar to VECADD2 except that we are
dealing with matrices and we perform a subtraction of two matrices. We
have arranged the data for the two 3 X 4 matrices A and B on lines 50-52
and 60-62, respectively. This was done purely for the convenience of the

MATSUB

18 MAT READ A(3.,4)
20 MAT READ B(3.,4)
30 MAT C = A - B
48 MAT PRINT C3

49

50 DATA 1,2,3,4

51 DATA 5,6,7,8

52 DATA 7,6,5,4

59

68 DATA 4,3,2,1

6l DATA @8,-1,-2,-3
62 DATA -2,-3,-2,-1
69

99 END

READY

RUN

MATSUB

=3 -1
5 7
9 9

1 3
9 11
7 5

B.084 SEC.
READY

reader, so that he may easily check the computed answer. One could have
listed the data all on one line, or divided it among several lines in an
arbitrary way, as long as the data appeared in the order in which the
program calls for it. However, it is usually good practice to arrange the
data in a neat format for easier proofreading.

The next program, MATMPY, carries out a matrix multiplication. It reads

252 Computer Programming Chapter 5

a3 X 4 matrix A and a 4 X 2 matrix B and computes the product, a 3 x 2
matrix C = AB. The program MATMPY should be self-explanatory.

B MATMPY

18 MAT READ A(3.,4)
20 MAT READ B(4.,2)
33 MAT C = AxB

40 MAT PRINT C3

49

58 DATA 1,2,3.,4

51 DATA 5,6,7.,8

52 DATA 7,6,5,4

59

68 DATA 2,1

61 DATA 3,2

62 DATA -1.,0

63 DATA -3.,-4

69

99 END

READY

RUN

MATMPY

-7 =11
-3 -15
15 3

B«@79 SEC.
READY

The single most powerful instruction in BASIC is the one-line command
that inverts a matrix. This is illustrated on line 20 of the program MATINV.
Line 10 reads a 3 X 3 matrix A. In line 20 we let B = A~!, We then PRINT
the inverse. The data in the program is taken from Example 2, Section 6
or Chapter 4. Naturally, we obtain the same result as in that section.

Since matrix inversion is available, it provides a convenient method of
solving N equations in N unknowns. We know that we can write equations
in the form AX = B. Here A contains the n X n matrix of coefficients of
the left-hand sides of the equations while B is a vector containing the
right-hand sides of the equations. The vector X contains the unknowns.
If the matrix A has an inverse, then the solution may be written in the form
X = A7'B. This is carried out in the program EQU. To make the program

Section 5

Computer Programming 253

Ml MATINV

18 MAT READ A(3,3)
20 MAT B = INVC(A)
39 MAT PRINT B3

39

48 DATA 1,4,3

41 DATA 2,5.,4

42 DATA 1,-3,-2

49

99 END

READY

RUN

MATINV

20 "10 lo
80 "5' 2c
‘11‘ 70 "‘30

B.082 SEC.
READY

more general, we first read the value of N. This will enable us to solve
different numbers of equations in different numbers of unknowns by simply
changing the data. We then read the matrix A and the vector B, compute
the inverse of A, and compute the solution X on line 50. The answers are
printed on line 60. The reader can easily verify that the solution is correct.

BN EQU

18 READ N

20 MAT READ A(NJ,N)
38 MAT READ B(N)
48 MAT I = INV(A)
50 MAT X = IxB

69 MAT PRINT X;
69

73 DATA 4

79

80 DATA 4,2,6.,8
8l DATA 1.,2,3.4
82 DATA 4,3,2,1

254 Computer Programming Chapter 5

83 DATA 8,6.,2.,4

89

99 DATA -12,-5,5.,12
99 END

READY

RUN

EQU

l 2. “2- "lo

@.887 SEC.
READY

If the reader has ever attempted to solve four equations in four unknowns,
he will be happy to see that the same solution may be obtained on a
computer in a small fraction of a second. Indeed, the same program will
yield the solution of 50 equations in 50 unknowns in roughly 6 seconds!
Although we illustrate programming techniques in terms of very simple
examples, it is important to remember that the same techniques work on
problems much too large to do by hand and often take only a few seconds
to do on the computer.

One word of warning is in order for the last two programs. Not all
matrices have inverses, and therefore one should really insert in the program
a test as to whether the matrix does have an inverse. Such a test exists
in BASIC but it is beyond the scope of our present treatment.

EXERCISES
Only Exercises 8-12 require the use of a computer.

1. Write a program that will add two matrices without using MAT in-
structions.

2. Write a program that will compute the tenth power of a square matrix
P.

3. In BASIC, a vector of all I’s, say of five components, may be con-
structed by means of the instruction

MAT X = CON(5).

Write a program to read a 7 X 5 matrix A and compute AX (where
X is the vector of all I’s). Interpret AX.

4. In BASIC a vector or a matrix may be multiplied by a number as
follows:

MAT Y = (5.2)*X.

Section 6

Computer Programming 255

ThenY = 5.2X. Write a program to read two five-component vectors
X and Y and to compute
(a) 3Y.
(b) X+2Y.
(c) 5.2X-3.17Y.

S. Write a program that will read two 3 X 4 matrices A and B and
compute
(a) A-3B.
(b) 5.07A +7.98B.

6. Write a program that will read a 3 X 3 matrix 4, compute its inverse
A7, and compute the product 4471,

7. Write a program that will check for two 4 X 4 matrices A and B
whether AB = BA. It should print “YES” if they are equal.

8. Set up DATA for a 3 X 4 matrix A, a 4 X 2 matrix B, and a 2 x 3
matrix C. Compute:

(a) ABC.
(b) BCA.
(c) CAB.
(d) BAC.

9. Setup DATA for a 10 x 10 matrix all of whose components are zeroes
or ones. Attempt to invert it. [Hint: Make sure that no row and no
column consists entirely of zeroes.]

10. Use the computer to verify that (4B)™! = B~14L

I1. RUN the program of Exercise 6. How close is the final matrix to an
identity matrix? (In general one expects some round-off errors.)

12. Try the program of Exercise 7 for several examples. Can you find
examples where AB = BA?

6 APPLICATIONS TO MARKOV CHAINS

Let us illustrate the first theorem of Chapter 4, Section 7. It states that if
P 1s a regular transition matrix, its powers approach a matrix whose rows
are identical, each row being a probability vector with positive components.
This can be illustrated by taking such a transition matrix and raising it to
higher and higher powers. To speed up the process we shall square the
matrix each time, so that we shall compute the powers P2, P4 P8 P16 and
P32,

In the program OZ we have chosen Exercise 12 in Section 7 of Chapter 4,
dealing with the weather in the Land of Oz. We have arranged the transition
matrix so that the first row corresponds to “nice,” the next to “rain,” and
the final row to “snow.” We first read the 3 X 3 transition matrix. Then
in the loop in lines 15-50 we square this matrix five times. Line 20 carries
out the actual squaring and line 30 prints the new matrix. On line 40 we
let S take the place of P so that when we go through the loop again it is
the new matrix that is squared.

Looking at the output we have a dramatic demonstration of the funda-

256 Computer Programming

0z

13 MAT READ P(3.,3)

IS FOR T
20 MAT S

1 TO 5
PxP

30 MAT PRINT S

48 MAT P
S8 NEXT T

S

93 DATA @, e5,¢5
91 DATA ¢255¢5,425
92 DATA ¢25,¢25,45

99 END

READY

RUN

0z

@25 @375 B.375

Q1875 @.4375 ©0.375

@«1875 @.375 B.4375
2.203125 @.398437 B.398437
0.199219 Q@.402344 ©@.398437
0.199219 @.398437 B.402344
2.200012 @.399994 ©.399994
B.199997 @.4000809 2.399994
B.199997 @.399994 @.480009
B2 B4 Bo4

Be2 Bed B4

Be2 Boed Doy

Be2 Qo4 Qo4

Be2 OBed4 Be4

Be2 Bed4 Qe4

@.139 SEC.

READY

Chapter 5

mental theorem. By the third squaring—that is, when we look at P8—the
rows of the matrix are almost identical and have nearly assumed their
limiting values. In the next two printed matrices, P!6 and P32, we see that,
to the accuracy to which results are printed, we have the limiting proba-
bilities of .2 for nice, .4 for rain, and .4 for snow.

Section 6

Computer Programming 257

We shall next turn to absorbing Markov chains as treated in Chapter 4,
Section 8. We shall show how easy it is to compute the basic quantities
N, T, and B on a computer.

In order to specify an absorbing chain, we need to know the number of
transient states* (K) and the number of absorbing states (L). We need also
to specify the two submatrices R and Q. This is accomplished in lines 10
and 20 of the program TRANS and in the DATA statements. The computa-
tion and printing of all the other quantities is accomplished in lines 30-90.
Lines 30 and 40 illustrate two additional MAT commands. We can set up
an identity matrix of specified size and a constant vector (vector of all 1’s)
in single instructions. We then let D = I — Q and compute the inverse
N = (/ — Q). Similarly, we compute T and B. We have thus translated
the three main theorems on absorbing chains into six instructions in BASIC.
Finally, on line 90 we print the matrices N, T, and B. The data used in
TRANS is taken from Example 1 of Section 8 in Chapter 4. The output
may be compared with that example.

Of course, this is too small an example to make it worth using a computer.

*Nonabsorbing states are commonly called transient states.

TRANS

13 READ K,LL
20 MAT READ R(K,L),Q(K,X)

25

30 MAT I = IDN(K,K)
48 MAT C = CONCK)
58 MAT D = I-Q

60 MAT N = INV(D)
7 MAT T = NxC

880 MAT B = N*R

98 MAT PRINT N,T.B
95

166 DATA 3,2

185

113 DATA +5.,8
111 DATA 0,0

112 DATA B, .5
115

129 DATA 0, 5,0
121 DATA +5.,0,.5
122 DATA 0,.5,0
125

199 END

READY

RUN

258 Computer Programming Chapter 5

TRANS
1.5 1 Be5
1 2 1
Be5 1 1.5
3 4 3
@75 .25
Be5 DeS
@25 Be«75
B.116 SEC.
READY

Therefore we change the data to run a more substantial example. Our large
example will be a random walk with ten transient states and with probability
.7 of taking a step to the right. This chain is symbolically indicated in Figure
3. To find the fundamental matrix for this chain we have to invert a 10 X 10
matrix, and therefore we have a more substantial challenge for the com-
puter. It is important to note that the main part of the program does not
have to be changed at all. The only changes needed are in the DATA
statements. (If there were more than ten transient states, one would also
have to insert a DIM statement.) We also elected to omit the printing of
the matrix N, since it is very large and not particularly interesting.

1 2

g —
Absorbing — | Absorbing
63050505050
i g
3 3

Figure 3

We show the new data statements and the run of the program TRANS2,
Looking first at the second half of the output, the matrix B, we note that
for most of the states we are almost certain to end up in the second absorbing
state (i.e., at the right-hand end). It is surprising that even if one starts in
transient state 1, way over on the left, one has a better-than-even chance
of ending up on the right. The vector T, containing the expected number
of steps before being absorbed, is also quite interesting. If we start near
the right-hand endpoint, absorption takes place very fast, as may be ex-
pected. However, the result is not obvious on the left-hand side. For
example, if one starts in transient state 1, there is probability .3 of being
absorbed in a single step. On the other hand, it is more likely that absorption
will take place at the right-hand endpoint, which will take a considerable

Section 6

100
118
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
199

DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
END

READY

Computer Programming 259

18,2

«3,0

2,90

0,0

3,0

2,0

3,0

2,0

0,0

b,0

Bse7
Bs0740,0,08,0,0,08,8,0
03285¢7503,0,0,0,0,0,0
g) ‘3)2"7’@,8}@)@’@)@
g’g-’ .SJGJ.’])Q)ZIQJQJQ
g)@)@) ‘3’@)’7’@)@)@)@
02s0,0005e3505¢7,0,0,0
GJ@J@)@)@) '3)@)'7}@)@
0,050s0105D5350547,8
g)@’ﬁ)@’@.’g)g) .3)E).7
D+0,050,05050,8503,9

RUN

TRANSZ2

13.22
12.33

Be.4285
B.1836
B.B3786
B.8336
2.0144
B.0061
D.0326
B.8010
B.0004
B.0301

17.45 1
9493

B«5715
B.8164
Be.9214
P.9664
29856
39939
B«9974
09990
89996
B.9999

@.288 SEC.

READY

T.84
Ted47

1657
4499

14.69
250

260 Computer Programming Chapter 5

Figure 4

amount of time. We find that the longest time to absorption, 17.84 steps,
1s from transient state 3.

For our final application in this section we consider a “Markov chain
game.” Any absorbing Markov chain can be turned into a game as follows.
First assign a “value” to each absorbing state. A positive value may be
interpreted as a prize one wins if one reaches this state while a negative
value is a penalty to be paid if that state is reached. A player starts at a
given transient state and moves from state to state in accordance with the
transition probabilities of the Markov chain until an absorbing state is
reached, where he receives a payoff or pays a penalty. The interesting
question is what the expected payoff is for various different possible starting
transient states. If the values are collected into a vector V with as many
components as there are absorbing states, then it is very easy to see that
the expected payoff for different starting states is given by the vector BV.

As an illustration we shall consider a game based on a two-dimensional
random walk as shown in Figure 4. There are ten transient states. From

o
o o
Wl

abs | __
3 5
N (s
abs abs
=5 4 Y, s |10

each of these the player moves to any of the states to which it is connected
with equal probabilities. Thus from state 4 there is probability 1 of moving
to states 1, 5, or 7 or to absorbing state 2. There are five absorbing states,
and one receives a prize of $5 at the first one and $10 at the last one and
loses $5 at the other three absorbing states. The payoffs balance out, but
it is intuitively clear that it is advantageous to start at some states and
disadvantageous to start at others. However, if one is offered the chance
to play this game with state 5 as the starting state, should one accept?
To solve this problem we have modified the program TRANS by changing

Section 6

Computer Programming 261

the data and by adding three additional lines. Line 25 will read the vector
V from the data in line 130. And line 81 computes the payoff vector P as
B*V. Also, we print only the vector P. When we run the resulting program
TRANS3 we find that there are some favorable starting states—notably
state 2, where the expected payoff is $1.08—and some highly unfavorable
states, the worst being state 4, where the expected loss is $1.78. We find

25 MAT READ V(L)
8l MAT P = BxV

128 DATA 18,5

112 DATA ¢25,¢25,0,0,0

111 DATA 25,0,0,92.,0

112 DATA 0,0,0,0,0

113 DATA 2,.25,0,0,0

114 DATA 0,0,0,0.,0

115 DATA 3,0, ¢25,08,0

116 DATA 0,08,0,25,0

117 DATA 2,0,0,8,0

118 DATA 0,0,42558, 425

119 DATA 0.,0,0, 425,25

122 DATA 05 ¢25+05¢25,050,03,3,08,0
121 DATA ¢25,05¢25,35625,0,0:3,0,0
122 DATA 05 e5,0,05054¢5,8+08,8,9

123 DATA ¢25,0,0,04 625,05 ¢25:50,08,0
124 DATA @)02519102543;-2599102519:@
125 DATA 0,0, 025535 ¢25,050,85 25,0
126 DATA 050,085 425,053+D5 25,85 625
127 DATA 058,005 02550525535 ¢25, 25
128 DATA 0,0,0505085 025535 ¢25,0,0
129 DATA 9,8.,0,0:0,05 ¢25, «2558,0
130 DATA +5,-5,-5,-5,+10

READY
RUN
TRANSJ3

Q17 +1.88 =-0.02 -1.78 -~0B.46
-1.13 -1+48 -B3eB33 +0 .96 +3 .87

B.292 SEC.
READY

262 Computer Programming Chapter 5

EXERCISES

that in state 5 one almost but not quite breaks even. There is an overall
expected loss of 46 cents; thus one should nor agree to play the game starting
at state 5.

Although we gave this application an interpretation as a game, there are
many other interpretations of a Markov chain game. There are processes
in nature that are described by absorbing Markov chains where one can
in a natural way assign a “value” to ending up at a given terminal. Here
the expected payoff has a natural interpretation. There is also a method
for computing voltages in a simple electric circuit using this technique. (See
Finite Mathematics with Business Applications.) Inrecentyears Markov chains
have acquired considerable importance in applications to many sciences.
It is therefore interesting to see how easy it is to compute fundamental
quantities for Markov chains by means of a high-speed computer.

Only Exercises 5-12 require the use of a computer.

L. Vectors in BASIC are column vectors, but a matrix of one row may
be used as a row vector. Write a program to read a row vector and
a column vector, of four components each, and to compute their
product.

2. If A is probability row vector, and if it is repeatedly multiplied on the
right by a regular transition matrix P, it will approach the fixed vector.
(See Chapter 4, Section 7.) Write a program to carry out this process.

3. For a transient chain, N may be computed as the sum of the infinite
series

N=I1+0+Q>+03+....

Write a program to compute the first 21 terms of this series.

4. Write a program which, for an absorbing Markov chain, will compute
Q and R from N and B. [Hint: Compute N-1]
5. Compute powers of the transition matrix

d 2 3 4
4 3 2 .
F= 3 1 4 2
2 4 1 3
to find the fixed vector.
6. Compute powers of the transition matrix
0 3 0 7
S5 0 5 0
P=lo 6 0 4
2 0 8 0

and explain the result.

Section 7

Computer Programming 263

7. Let h be an arbitrary column vector of three components. Multiply

it repeatedly by the OZ transition matrix and observe that it tends

to a constant vector. Interpret the constant.

Try out the program of Exercise 2 for the Land of Oz.

RUN the program of Exercise 4 to verify that it produces Q and R

correctly.

10. Apply the program TRANS to Exercise 6 of Chapter 4, Section 8.

11. Modify the program TRANS to verify the identity QB = B — R.

12. Design your own Markov chain game and compute the expected values
for various starting positions.

\©

7 LINEAR EQUATIONS

The purpose of this section is to translate the flow diagram of Figure 5 in
Section 5 of Chapter 4 for the solution of linear equations into a computer
program. We shall first do this in a straightforward manner and show that
the program reproduces the results of Chapter 4, Section 5. However, we
shall then note that the program is inadequate; this will give us an opportu-
nity to consider one of the deeper problems of computer programming—
namely, the question of numerical accuracy. We shall assume that there
is no variable all of whose coefficients are O.

The program LINEQU is designed to follow Figure 5 (Chapter 4). Boxes
1-6 correspond to blocks of instructions starting at lines 100,200, 300,
400, 500, and 600. Box 7 is combined with box 2, and box 8 with box 5.
For easy identification each block of instructions starts with a REM (or
“remark”) statement. Such a REM statement is for the convenience of the
programmer and is ignored by the computer. LINEQU is designed to solve
M equations in N unknowns. We start by saving space for our list and table,
reading M and N, and then reading the tableau T of coefficients. It should
be noted that T has N + 1 columns since it contains not only the coefficients
of the left-hand side of the equations but also the numbers on the right-hand
side.

In the remainder of the program | and J will be the subscripts corre-
sponding to the pivot. The auxiliary variables |1 and J1 are used as running
subscripts for rows and columns. The process consists of choosing a pivot
in each row and operating with it; this loop starts at line 100 and ends at
line 500. Lines 200-220 search for a nonzero element in row I. If such an
element is found, we jump to line 300. It should be noted that as we jump
out of the loop of lines 200-220, the subscript J is correctly set for the pivot.
If we complete the entire loop, then the left-hand side of the equation is
zero. In line 230 we check whether the right-hand side is also zero. If it
is not, we jump to line 900 and type out “THERE IS NO SOLUTION.”

At line 300 we note what the pivot is. We also put into the list P the
subscript of the variable we pivoted on. This will make it much easier to
identify the solution of the problem. It should be noted that if the equation
was identically equal to zero, and hence could be ignored, then at line 240

264 Computer Programming Chapter 5

B LINEQU

5

DIM T(208,21),P(283)

18 READ Mu,N
28 MAT READ T(M,N+1)

29

120
112
123
200
205
210
228
230
248
258
260
320
302
385
319
320
330
349
400
485
419
428
432
440
450
460
479
508
513
524
622
685
612
620
625
630
640
645
650
660

REM START MAIN LQOOP
FOR I =1 TO M

REM FIND PIVOT

FOR J =1 TO N

IF T(l,dJd) <> @ THEN 300
NEXT J

IF TCILN+1) <> @ THEN 9020
LET P(I) = 0

GOTO 509

REM DIVIDE BY PIVOT
LET P = T(I.,J)

LET P(I) = J

FOR J! =1 TO N+1l

LET T(I,Jd1) = T(1l,Jl)/P
NEXT dJl

REM SUBTRACT MULTIPLES OF ROV

FOR Il =1 TO M

IF Il = 1 THEN 460

LET C = T(11.,4J)

FOR Jl =1 TO N+l

LET TCIl,Jd1) = T(I1,J1) = CxT(Il,J1)
NEXT Jl1

NEXT Il

REM CLOSE MAIN LOOP
NEXT 1

REM PRINT ANSVWERS

FOR I =1 TO M

LET P = P(I)

IF P = @ THEN 790

LET B = T(I,N+1)

PRINT "X"JSTRS(P)3'" = ";STR$(B);
FOR J =1 TO N

IF J = P THEN 699

LET C = T(I,dJd)

IF C = 8 THEN 690

Section 7

Computer Programming 265

665 IF C<@ THEN 6890

678 PRINT * - '

675 GOTO 687

688 LET C = -C

685 PRINT " + '

687 PRINT STR$(CI;"*x"3"X"3;STR$(J);
690 NEXT J

708 PRINT

798 NEXT 1

860 GOTO 999

990 PRINT "THERE 1S NO SOLUTION.'
985

913 DATA 3,3

923 DATA 1,4,3,1
921 DATA 2,5,4,4
922 DATA 1,-3,-2,5
999 END

READY
RUN
LINEQU
X1

X2
X3

3e
-2,
2

B.166 SEC.
READY

we entered a zero into the list of pivots. Lines 310-330 complete this
particular box of the flow diagram by dividing all coefficients in this row
of the tableau by the pivot P.

We must now subtract suitable multiples of the pivotal row from the other
rows. This is accomplished in lines 400-460. The subscript 11 will run
through all the rows; however, on line 410 we make sure that we skip over
the pivotal row. C is equated to the appropriate multiplier and the subtrac-
tion is carried out in the loop in lines 430-450. When this double loop is
completed, on line 500 we go on to the next row. It should be noted that
the entire heart of the program is contained in lines 100-500, a total of only
20 instructions in BASIC.

The answers are printed in the loop of lines 600-790. This piece of code
could be much simpler except for two complications: First, we want to have
a nice format for the answer. Second, we want to handle not only the case

266 Computer Programming Chapter 5

of a unique solution but find all possible solutions in case there are infinitely
many of them. To obtain a nice-looking form for the answers, we need to
introduce an additional feature of BASIC. (It should be noted that there
are many other advanced features of BASIC not covered in this book.)
When BASIC prints the numerical value of a variable, it either starts with
a minus sign or a blank and places a blank after the number. This is very
convenient when we simply want to print a list of numbers one after the
other. However, it spoils the output when we want to print, for example,
“X5.” But writing the string command “STR$(P)” will print a numerical
value of P without initial or trailing blanks. (This command is not available
in all versions of BASIC.)

If the solution were always unique, the output would be accomplished
by the six instructions in lines 600-630 and 790. We look at each equation
once, and look up in the list of pivots what the subscript P of the pivot was.
If this is 0, then the equation is identically 0 and therefore can be ignored.
Otherwise B is the value of the variable and, on line 630, we print out an
answer that may look like “X5 = 3.2.” Here is where we see the advantage
of having remembered the element we pivoted on. Its coefficient ends up
being 1, and hence the right-hand side of the equation is its value.

The loop in lines 640-690 handles the case of infinitely many solutions.
If the solution is not unique, then variables other than the pivot are left
over with nonzero coefficients. These variables may be given arbitrary
values. We usually indicate this by “bringing the variable to the right-hand
side.” Thus we search in the loop to see whether any variable other than
the pivot has a nonzero coefficient. If it does, we print it with a suitable
coeflicient after the value we have already printed on the right-hand side.
It should be noted that we had to test on line 665 whether the coefficient
was positive or negative and the two cases are treated separately. It is left
as an exercise for the reader to step through this part of the program by

hand.
928 DATA 1,-2,-3,2
921 DATA 1,-4,-13,14
922 DATA -3,5,4,0
READY
RUN

Bl LINEQU2

Xl = =19 - 7%X3
X2 = =6 = 5x%X3

@.153 SEC.
READY

Section 7

Computer Programming 267

The data in LINEQU is taken from Example 1 in Section 5 of Chapter
4. The printed answer agrees with the answer found earlier.

To show that the program also works in the case of infinitely many
solutions or no solutions, we change the data to those of Examples 2 and
3 (of Section 5 in Chapter 4) respectively. These are shown in LINEQU2
and LINEQUS. It should be noted that the output format for the case of
infinitely many solutions is very easily readable. It shows that X3 may take
on any value and it indicates what the corresponding values of X1 and X2
must be.

922 DATA -3,5,4.,2
READY

RUN

LINEQU3

THERE IS NO SOLUTION.

B+167 SEC.
READY

Next we try out the program with a larger data base. In LINEQU4 we
have four equations in five unknowns. The result seems reasonable; indeed,

913 DATA 4,5

920 DATA 3,2,1,2,3,11

921 DATA =-1,-1,-2,1,1,-6
922 DATA 1,2,3,4,5,3

923 DATA 2,2,0,8,108,2

READY
RUN
LINEQU4

X1 45 + Je5%X4

X2 = =le = Te5%X4
X3 = 1 + 2.5%X4
XS = =0@.5

d.179 SEC.,

READY

268 Computer Programming Chapter 5

if we check it all the indicated solutions are correct. However, a more careful
check will show that we have failed to find all the solutions! We have run
into one of the subtleties of computer programming: a program that to all
appearances is correct produces incorrect results. The problem is one of
round-off errors. When this happens, one must do troubleshooting on the
computer program, or as it is commonly phrased, one must “debug” it. A
very useful procedure is to ask the computer to print out not just the final
solution but also the intermediate steps. This may be accomplished by
replacing line 500 by:

500 MAT PRINT T;

With this change the tableau will be printed after each iteration. A look
at the output would indicate that something went wrong between the third
and fourth iterations. The last line in the third iteration would appear as
follows:

2X 1077 x X5 = —1x 1077

From this the computer concludes that X5 equals —0.5. However, the very
small numbers appearing in this equation represent round-off errors and
should actually be zero. The reason for round-off errors is the fact that a
computer can only carry a fraction to a limited number of decimal places
(usually six to nine). Furthermore, it works with a number system to base
2. Whether a rounding is necessary depends on the base. Therefore one
must anticipate that in hand calculations where no round-off error appears,
one may appear on the computer, or vice versa. In this particular case this
very minute round-off error changes the whole nature of the solution. The
equation should actually be 0 = 0, and therefore X5 should be available
as a variable whose value may be chosen arbitrarily. Therefore, due to a
minute error, we lost infinitely many available solutions.

The lesson that we learn is that if a variable’s value was computed through
complicated calculation, we cannot assume that a 0 will come out to be
exactly 0. This forces us to modify lines 210, 230, and 660. We shall assume
that any sufficiently small number is produced by a round-off error and
should really be a 0. Of course, the question is just what does “sufficiently
small” mean? This is a deep and difficult question, and there is no uni-
versally satisfactory answer to it. For any proposed solution to this problem
one can find a set of equations for which the program will produce the wrong
results. We shall, however, show one quite common solution to this dilemma
that will handle “normal” cases. Our assumption will be that any coeflicient
that turns out to be less than 107¢ is a round-off error and should be 0.

Thus on line 660 instead of asking whether the coefficient C is equal to
0, we shall ask whether its absolute value is less than 1076, In BASIC one
computes the absolute value of C by writing “ABS(C).” The corresponding
corrections must also be made on line 210 and line 230. We show these
corrections and the corrected run in LINEQUS. This time we have found
all the solutions to the problem.

Section 7

EXERCISES

Computer Programming 269
219 IF ABS(T(I1,J)) > 1E-6 THEN 300
230 IF ABS(T(I,N+1)) > lE-6 THEN 920

668 IF ABS(C) < 1E-6 THEN 690

READY

RUN

LINEQUS

Xl = 6«5 + 3e5%xX4 + VIR 3:45)
X2 = =5.5 = TeS5%X4 - 94%X5
X3 = 205 + 205*)(4 + 30*X5
2202 SEC.

READY

The resulting program is of quite general use in solving linear equations.
The exercises will show modifications of this program that may be used for
other purposes—e.g., inverting a matrix. We again see that a relatively short
BASIC program, and surprisingly short computing times, can solve impor-
tant practical problems.

This section has also given the reader a first taste of the complex field
of finding numerical solutions to mathematical problems. This field is known
as numerical analysis. 1t treats the wide variety of difficulties one runs into
in finding numerical solutions, and also searches for the most efficient
numerical methods of solving a variety of problems.

Only Exercises 4-10 require the use of a computer.

L. Modify the program LINEQUS to solve simultaneously two sets of
equations with identical left sides but different right sides.

2. If the coeflicients of the left side of a set of equations form an n X n
matrix A4, and if one successfully pivots on every row (no left side
becomes identically zero), then 41 exists. This is true irrespective of
the right side of the equation. Modify LINEQUS5 to serve as a test
of whether a given square matrix has an inverse.

3. Write a program to invert a square matrix using the method of Section
6 in Chapter 4.

4. Use LINEQUS to solve the equations of Exercise 5 in Section 5 of
Chapter 4.

270 Computer Programming Chapter 5

5. Use LINEQUS to solve the following equations:

4X, —3X, +2X; — X, + 5X, = -10
X —2X, +3X;+ X, — X; =12
2X, + X, — X34+ 2X, + 5X, = —1
3X; = 2X, + X3 — X, +2X; = -6
2X, — X, +2X; — X, + X, =0.

[Ans. 1,2,3,4, —2]]

6. Use LINEQUS on Exercise 12 of Section 5 in Chapter 4 for several
values of k. Check the answer there given.

7. RUN the program of Exercise 1 using the DATA of LINEQUZ2 and
LINEQUS.

8. Apply the program of Exercise 2 to the matrices in Exercise 3 of Section
6 in Chapter 4.

9. Apply the program of Exercise 3 to the matrices in Exercise 1 of Section
6 in Chapter 4.

10. Use the program of Exercise 3 to invert the following matrix:

9 -1 -2 -3 -1

—.2 8 =1 0 -2
A=|-2 =2 J -1 =1}

—.1 0 -2 g -3

-1 -3 -2 -1 9

SUGGESTED READING

Barrodale, Ian, et al. Elementary Computer Applications. New York: John Wiley,
1971.

Gross, Jonathan L., and Brainerd, Walter S. Fundamental Programming Conceplts.
New York: Harper and Row, 1972.

Kemeny, John G., A. S. Schleifer, Jr., J. Laurie Snell, and Gerald L. Thompson.
Finite Mathematics with Business Applications. 2nd ed. Englewood Cliffs, N.J.:
Prentice-Hall, 1972.

Kemeny, John G., and Kurtz, Thomas E. Basic Programming. 2nd ed. New York:
John Wiley, 1972.

