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INTRODUCTION

In the study of probability theory, we assign a probability measure to the
possible outcomes of an experiment. We then make probability predictions
relating to the experiment. For example, a coin is tossed ten times. We
assign an equal weight to all possible sequences of heads and tails. We then
compute the probability that exactly six heads turn up. We find that this

probability is (160) *($)' = 205. Statistics deals with the inverse problem.

We do not know the basic probability measure, but we are able to carry
out certain chance experiments, from which we obtain information about
the underlying measure.

As an example, assume that in a large population each person holds an
opinion on the question of legalizing marijuana. They either favor this or
are opposed. We choose at random 20 people and ask them their opinions.
Choosing “at random” means that we have an equal chance of obtaining
any group of 20 people from the entire population. If the size of the
population is large, the effect of knowing certain of the opinions will not
significantly change the chance that the next person sampled will say “yes.”
Thus it is reasonable to assume that the underlying chance model is an
independent trials model with probability p for success (answer “yes”) on
each trial, where p is the propornon in the entire population that favor
legalizing marijuana.

On the basis of the sample we would like to estimate p. The intuitive
estimate for the parameter p would be simply the fraction p of persons in
the sample that say “yes.” In Figure 1 we show the result of drawing ten
samples 0of 20 each in a case where p = 4. While our estimates are in general
near the true value .4, our worst estimate is .2, only half the true value.
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Number
Experiment of “yes”
number answers Fraction p
1 6 3
2 8 4
3 9 45
4 4 2
5 7 35
6 6 3
7 6 3
8 9 45
9 5 25
10 7 35

From the binomial measure (see Chapter 3, Section 8) we can calculate
the exact probability that the observed fraction p will lie in a given range.
For example, the values of f(20, x; .4) for x between 6 and 10 add up to
.747. Thus with probability .747 our estimate will be between .3 and .5.

We recall from our study of independent trials that the expected number
of successes in a sample of size n is np and the standard deviation for the
number of successes is \/tﬁ (see Chapter 3, Section 9). Further, the
probability of a deviation of more than 3 standard deviations from the
expected number is very unlikely (.001). Thus if we increase the sample
size to 2400 the expected number of “yes” responses would be 960 and the

standard deviation V2400 X .4 X .6 = 24. Thus our estimate would with

960 — 72 960 + 72 )
a0 — .37 and 00 = .437 in the

high probability lie between

interval [.37, .43].

This suggests that when p is unknown we should try to estimate from
the sample an interval within which we believe the true p lies. We shall
show in Section 4 that this can indeed be done.

In some situations we need to make a choice between two estimates for
p. For example, the incidence of colds may be known and we wish to test
the claim that this can be decreased if people take large doses of vitamin
C. Thus we have to determine whether the incidence of colds among those
taking vitamin C is the same as for the whole population or a smaller value.
Or a manufacturer may assume that his production process is operating
correctly if it produces no more than 1 percent defective items but is not
operating correctly if it produces as many as 5 percent defective items. He
is interested in devising a test to see if the system is operating correctly.

Perhaps the largest statistical test ever conducted was the test designed
in the early ’50s to see if the vaccine developed by Jonas Salk would
effectively cut down the incidence of polio. The average incidence of polio
at that time was about 50 per 100,000 persons. It was not expected that
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the vaccine would be 100 percent effective, but it was hoped that it would
cut down the incidence of polio by at least 50 percent. Thus we can view
the experiment as a test of the hypothesis that a person vaccinated will have
a significantly lower probability of being afflicted with polio than a person
not vaccinated. This type of hypothesis testing will be studied in Section 3.

In applying probability models, predictions from the model are only
reliable if the assumptions made in describing the model are reasonably
met. Similarly, our statistical inferences are based upon certain assump-
tions. We have already mentioned the assumption of randomness in a
sample. There are many pitfalls that one can fall into if care is not taken.
Perhaps the most famous example of this is the celebrated prediction of
the Literary Digest that Alfred Landon would defeat Franklin Roosevelt
in the 1936 presidential election. In this poll the sample was chosen from
names obtained from telephone books and car registrations. In 1936 this
was not at all a “random sample” and the prediction was badly in error.
Opinion polls are still trying to recover from this blunder. We shall discuss
this and other pitfalls in more detail in Section 5.

Before we continue our discussion of statistics we shall need one important
result from probability theory called the central limit theorem. This will
be studied in the next section.

For use in the exercises and in later sections we show the probabilities
for ten independent trials and various values of p in Figure 2.

Table of values of f(10, x; p)

X 0.1 0.25 0.4 0.5 0.6 0.75 0.9

0 0.349 0.056 0.006 0.001 0 0 0

1 0.387 0.188 0.040 0.010 0.002 0 0

2 0.194 0.282 0.121 0.044 0011 0 0

3 0.057 0.250 0.215 0.117 0.042 0.003 0

4 0.011 0.146 0.251 0.205 0.111 0.016 0

5 0.001 0.058 0.201 0.246 0.201 0.058 0.001
6 0 0.016 0.111 0.205 0.251 0.146 0.011
7 0 0.003 0.042 0.117 0.215 0.250 0.057
8 0 0 0011 0.044 0.121 0.282 0.194
9 0 0 0.002 0.010 0.040 0.188 0.387
10 0 0 0 0.001 0.006 0.056 0.349

L. A random sample of ten persons is chosen in New York City at a time
when 60 percent are in favor of Kelly for mayor and 40 percent are
in favor of McGrath. What is the probability that the sample will show
less than 50 percent in favor of Kelly? [Ans. .166.]

2. An independent trials experiment is repeated ten times with six suc-
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cesses. Which value of p in Figure 2 gives the highest probability of
obtaining the outcome of six successes—i.e., the observed outcome?
In Exercise 1 assume that the sample size is increased to 9600. Find
the expected number and the standard deviation for the number of
those in favor of Kelly. What could we say about the range of our
estimates if the number of “yes” responses does not deviate by more
than three standard deviations from the expected number?
In a city there are 100,000 persons who are going to vote on the
question of legalizing marijuana. Of these, 90,000 are under 50 years
of age and 10,000 are 50 or over. Assume that 75 percent of those
under 50 favor legalizing marijuana and of those 50 or older only 20
percent are in favor. What is the probability that a person chosen at
random will favor legalizing marijuana? In a sample of 100 chosen
at random what is the expected number that will answer “yes”? What
is the expected number if a random sample of 100 is chosen, 50 from
each of the two groups?
In an experiment where the probability distribution depends on a single
number, or parameter, the following is a standard method of estimating
this parameter. Choose the value of the parameter which gives the
highest probability of obtaining the observed result. This method is
called the method of maximum likelihood. On the basis of the result
of Exercise 2, what would you guess to be the maximum likelihood
estimator for an independent trials experiment for the probability p
of success when x successes are observed in n trials?
A box has ten items, eight good and two defective. A sample of five
is chosen with replacement—that is, after each item is chosen and
inspected it is replaced (i.e., put back) before the next item is drawn.
Find the probability that the sample has exactly one defective item.

[Ans. 410.]
Answer the same question as in Exercise 6 if the sampling is done
without replacement. That is, a set of five is chosen at random from
all possible subsets of five items of the box. Find the probability that
the sample has exactly one defective item and compare your answer
to that obtained in Exercise 6.

(1))
1/\4

[Ans. %(10) = .556.]
5
A sample of three items is chosen from a box of 1000 of which 80
percent are defective. Show that the probability of obtaining exactly
one defective item is essentially the same whether we sample with or
without replacement.

Assume that the incidence of lung cancer among smokers is estimated
to be 20 per 100,000 and among heavy smokers to be 200 per 100,000.
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Estimate the probability that a person who smokes will not get lung
cancer and compare this with the estimate for a heavy smoker.
[Ans. 9998, .998.]

10. A hardware store receives boxes of 50 bolts. Experience has shown
that they occasionally get a bad lot. When they get a box they choose
two bolts at random and if either is defective they return the box.
Assume that a box has five defective bolts. What is the probability
that the box will be sent back?

11. Referring to Exercise 10, assume that the store receives shipments of
ten boxes each with 50 bolts. It combines the 500 bolts and then
chooses two bolts at random; if either is defective it sends back the
entire lot. If the shipment contains 50 defectives in all, is the proba-
bility of the lot being returned larger than, equal to, or smaller than
the probability in Exercise 10 of a single box with five defectives being
returned? -

12. Toss a coin 100 times. In each group of ten tosses count the number
of heads. Compare the results with Figure 2.

13. Toss a pair of coins 100 times. In each group of ten tosses count
the number of times two heads turn up. Compare the results with
Figure 2.

2 THE CENTRAL LIMIT THEOREM

As we have indicated, to go further in our discussion of statistics we shall
need an important theorem of probability theory called the central limit
theorem. While this is a very general theorem, we shall discuss it in this
section only as it applies to independent trials processes.

As usual, let p be the probability of success on a trial and f(n, p; x) the
probability of exactly x successes in n trials.

In Figure 3 we have plotted bar graphs which represent f(n, .3; x) for
n = 10, 50, 100, and 200. We note first of all that the graphs are drifting
off to the right. This is not surprising, since their peaks occur at np, which
is steadily increasing. We also note that while the total area is always 1,
this area becomes more and more spread out.

We want to redraw these graphs in a manner that prevents the drifting
and the spreading out. First of all, we replace x by x — np, assuring that
our peak always occurs at 0. Next we introduce a new unit for measuring
the deviation, which depends on #n, and which gives comparable scales. As
we saw in Chapter 3, Section 9, the standard deviation \/@7] 1s such a unit.

We must still insure that probabilities are represented by areas in the
graph. In Figure 3 this is achieved by having a unit base for each rectangle,
and having the probability f(n, p; x) as height. Since we are now represent-
ing a standard deviation as a single unit on the horizontal axis, we must
take f(n, p; x)\Vnpg as the heights of our rectangles. The resulting curves
for n = 50 and n = 200 are shown in Figures 4 and 5, respectively.
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34+
n=10,p=.3
24
1-
10 20 30 40
N n=50,p=23
0 10 20 30 40
14+ n=100,p=.3
0 10 20 30 40 50 60
d+ n=200,p=23
0 10 20 30 40 50 60 70 80

We note that the two figures look very much alike. We have also shown
in Figure 5 that it can be approximated by a bell-shaped curve. This curve
represents the function®

6-12/2

V27 ’

and is known as the normal curve. 1tis a fundamental theorem of probability
theory that as n increases, the appropriately rescaled bargraphs more and
more closely approach the normal curve. The theorem is known as the
central limit theorem, and we have illustrated it graphically.

More precisely, the theorem states that for any two numbers a and b,
with a < b,

Jx) =

*The number e is the base of natural logarithms and its numerical value 1s 2.71828182. ...
Its derivation and most important properties are discussed in most calculus books.
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n=50,p=.3
Normalized

-4 —3 -2 - 0 1 2 3 4
Figure 4
X —np
Pr [a < — b]
Vnpg

approaches the area under the normal curve between a and b, as n increases.
This theorem is particularly interesting in that the normal curve is symmetric
about 0, while f(n, p; x) is symmetric about the expected value np only for
the case p = L. It should also be noted that we always arrive at the same
normal curve, no matter what the value of p is.

[n Figure 6 we give a table for the area under the normal curve between
0 and d. Since the total area is 1, and since it is symmetric about the origin,
we can compute arbitrary areas from this table. For example, suppose that

n=200,p=.3
Normalized

x 60
V200 (.3) (.7) —~3 I~2 I -1 f
45 50 55 60 65 70 75

-0
———p
—
—
[\
.
w 4

Figure 5
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_—~ A(d) = area of
shaded region

0 d

d A d  A@d) d  Ad) d A(d)
0 .000 1.1 364 2.1 482 3.1 .4990
1 040 12 385 22 486 32 4993
2 079 13 403 23 489 33 .4995
3 118 14 419 24 492 34 4997
4 155 1.5 433 25 494 35 4998
5 191 1.6 445 26 495 36 4998
6 226 17 455 27 497 37 4999
7 23% 1.8 464 28 497 38 49993
8 288 19 471 29 498 39 49995
9 316 20 477 30 4987 40 49997
10 341 50 49999997

we wish the area between —1 and +2. The area between 0 and 2 is given
in the table as .477. The area between —1 and 0 is the same as between
0 and 1, and hence is given as .341. Thus the total area is .818. The area
outside the interval (—1,2) is then 1 — 818 = .182.

Let us find the probability that s differs from the expected value np by as

much as d standard deviations.

X —np
hpq

and hence the approximate answer should be the area outside the interval
(—d, d) under the normal curve. For d = 1,2, 3 we obtain

1—(2x341) =318, 1—(2X.477) = .046

Prljx — np| > dVnpqg] = Pr[ \ > d],

and
1 — (2 X .4987) = .0026,

respectively. These agree with the values given in Chapter 3, Section 9, to
within rounding errors. In fact, the central limit theorem is the basis of
those estimates.

In Chapter 3, Section 9, we considered the example of tossing a coin 10,000
times. The expected number of heads that turn up is 5000, and the standard
deviation is V10,000-4-3 = 50. We observed that the probability of a
deviation of more than two standard deviations (or 100) is very unlikely.
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On the other hand, consider the probability of a deviation of less than .1
standard deviation—that is, of a deviation of less than 5. The area from
0 to .1 under the normal curve is .040, and hence the probability of a
deviation from 5000 of less than 5 is approximately .08. Thus, while a
deviation of 100 is very unlikely, it is also very unlikely that a deviation
of less than 5 will occur.

The normal approximation can be used to estimate the individual proba-
bility f(n, x; p) for large n. For example, let us estimate f(200, 65; .3). The
graph of the probabilities (200, x; .3) was given in Figure 5 together with
the normal approximation. The desired probability is the area of the bar
corresponding to x = 65. An inspection of the graph suggests that we should
take the area under the normal curve between 64.5 and 65.5 as an estimate
for this probability. In normalized units this is the area between

45 5.5
- d —— |
V20037 T V200(3)(.7)

or between .6944 and .8487. Our table is not fine enough to find this area,
but from more complete tables, or by machine computation, this area may
be found to be .046 to three decimal places. The exact value to three decimal
places is .045. This procedure gives us a good estimate.

If we check all of the values of £(200, x; .3) we find in each case that we
would make an error of at most .001 by using the normal approximation.
There is unfortunately no simple way to estimate the error caused by the
use of the central limit theorem. The error will clearly depend upon how
large n is, but it also depends upon how near p is to 0 or 1. The greatest
accuracy occurs when p is near 4.

L. Let x be the number of successes in n trials of an independent trials

process with probability p for success. Let x* = =%  For large
hpq
n estimate the following probabilities:
(a) Prix* < -235] [Ans. .006.]
(b) Pr[x*<2.5)
(¢) Prix*> -3].
(d) Pri—1.5 < x*<1] [Ans. .774.]
2. A coin is biased in such a way that a head comes up with probability
8 on a single toss. Use the normal approximation to estimate the
probability that in a million tosses there are more than 800,400 heads.
3. Plot a graph of the probabilities £(10, x; .5). Plot a graph also of the
normalized probabilities as in Figures 4 and 5.
4. An ordinary coin is tossed 1 million times. Let x be the number of
heads which turn up. Estimate the following probabilities:
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(a) Pr[499,500 < x < 500,500].
(b) Pr[499,000 < x < 501,000].
(c) Pr[498,500 < x < 501,500].

[Ans. .682;.954; 997 (approximate answers).]
Assume that a baseball player has probability .37 of getting a hit each
time he comes to bat. Find the probability of getting an average of
.388 or better if he comes to bat 300 times during the season. (In 1957
Ted Williams had a batting average of .388 and Mickey Mantle had
an average of .353. If we assume this difference is due to chance, we
may estimate the probability of a hit as the combined average, which
is about .37.) [Ans. .242.]
A true-false examination has 48 questions. Assume that the probability
that a given student knows the answer to any one question is 3. A
passing score is 30 or better. Estimate the probability that the student
will fail the exam.
In Example 3 of Section 9 in Chapter 3, assume that the school decides
to admit 1296 students. Estimate the probability that they will have
to have additional dormitory space. [Ans. Approximately .115.]
Peter and Paul each have 20 pennies. They each toss a coin and Peter
wins a penny if his coin matches Paul’s, otherwise he loses a penny;
they do this 400 times, keeping score but not paying until the 400
matches are over. What is the probability that one of the players will
not be able to pay? Answer the same question for the case in which
Peter has 10 pennies and Paul has 30.
In tossing a coin 100 times, the probability of getting 50 heads is, to
three decimal places, .080. Estimate this same probability using the
central limit theorem. [Ans. .080.]
A standard medicine has been found to be effective in 80 percent of
the cases where it is used. A new medicine for the same purpose is
found to be effective in 90 of the first 100 patients on which the
medicine is used. Could this be taken as good evidence that the new
medication is better than the old?
Two railroads are competing for the passenger traffic of 1000 passengers
by operating similar trains at the same hour. If a given passenger is
equally likely to choose one train as the other, how many seats should
the railroad provide if it wants to be sure that its seating capacity is
sufficient in 99 out of 100 cases? [Ans. 537.]

3 TEST OF HYPOTHESES

We turn now to our first typical statistical problem. As we indicated in the
introductory section, our problem is often to decide between two or more
competing probability measures. We shall illustrate this in terms of an
example.
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EXAMPLE  Smith claims that he has the ability to distinguish ale from beer and has

bet Jones a dollar to that effect. Now Smith does not mean that he can
distinguish beer from ale with 100 percent accuracy, but rather that he
believes that he can distinguish them a proportion of the time which is
significantly greater than 3.

Assume that it is possible to assign a number p which represents the
probability that Smith can pick out the ale from a pair of glasses, one
containing ale and one beer. We identify p = } with his having no ability,
p > % with his having some ability, and p < } with his being able to distin-
guish, but having the wrong idea which is the ale. If we knew the value
of p, we would award the dollar to Jones if p were <3, and to Smith if
p were >1. As it stands, we have no knowledge of p and thus cannot make
a decision. We perform an experiment and make a decision as follows.

Smith is given a pair of glasses, one containing ale and the other beer,
and is asked to identify which is the ale. This procedure is repeated ten
times, and the number of correct identifications is noted. If the number
correct is at least eight, we award the dollar to Smith, and if it is less than
eight, we award the dollar to Jones.

We now have a definite procedure and shall examine this procedure from
both Jones’s and Smith’s points of view. We can make two kinds of errors.
We may award the dollar to Smith when in fact the appropriate value of
pis <4, or we may award the dollar to Jones when the appropriate value
for p is >]. There is no way that these errors can be completely avoided.
We hope that our procedure is such that each of the bettors will be convinced
that, if he is right, he will very likely win the bet.

Jones believes that the true value of p is 4. We shall calculate the proba-
bility of Jones winning the bet if this is indeed true. We assume that the
individual tests are independent of each other and all have the same proba-
bility } for success. (This assumption will be unreasonable if the glasses
are too large.) We have then an independent trials process with p =1 to
describe the entire experiment. The probability that Jones will win the bet
is the probability that Smith gets fewer than eight correct. From the table
in Figure 2 we compute that this probability is approximately .945. Thus
Jones sees that, if he is right, it is very likely that he will win the bet.

Smith, on the other hand, believes that P 1s significantly greater than 3,
If he believes that p is as high as .9, we see from Figure 2 that the probability
of his getting eight or more correct is .930. Then both men will be satisfied
by the bet.

Suppose, however, that Smith thinks the value of p is only about .75,
Then the probability that he will get eight or more correct and thus win
the bet is .526. There is then only an approximately even chance that the
experiment will discover his abilities, and he probably will not be satisfied
with this. If Smith really thinks his ability is represented by a p value of
about £, we would have to devise a different method of awarding the dollar.
We might, for example, propose that Smith win the bet if he gets seven
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or more correct. Then, if he has probability % of being correct on a single
trial, the probability that he will win the bet is approximately .776. If p = 4,
the probability that Jones will win the bet is about .828 under this new
arrangement. Jones’s chances of winning are thus decreased, but Smith may
be able to convince him that it is a fairer arrangement than the first proce-
dure.

In the theory of hypothesis testing it is common to refer to one hypothesis,
say p = 3, as the null hypothesis H,, and an alternate hypothesis as H,.

In the above example, it was possible to make two kinds of errors. The
probability of making these errors depended on the way we designed the
experiment and the method we used for the required decision. In some
cases we are not too worried about the errors and can make a relatively
simple experiment. In other cases, errors are very important, and the
experiment must be designed with that fact in mind. For example, the
possibility of error 1s certainly important in the case that a vaccine for a
given disease is proposed and the statistician is asked to help in deciding
whether or not it should be used. In this case it might be assumed that there
is a certain probability p that a person will get the disease if not vaccinated
and a probability r that he will get it if he is vaccinated. If we have some
knowledge of the approximate value of p, we are then led to construct an
experiment to decide whether r is greater than p, equal to p, or less than
p- The first case would be interpreted to mean that the vaccine actually
tends to produce the disease, the second that it has no eflect, and the third
that it prevents the disease; so that we can make three kinds of errors. We
could recommend acceptance when it is actually harmful, we could recom-
mend acceptance when it has no effect, or finally we could reject it when
it actually is effective. The first and third might result in the loss of lives,
the second in the loss of time and money of those administering the test.
Here it would certainly be important that the probability of the first and
third kinds of errors be made small. To see how it is possible to make the
probability of both errors small, we return to the case of Smith and Jones.

Suppose that, instead of demanding that Smith make at least eight correct
identifications out of ten trials, we insist that he make at least 60 correct
identifications out of 100 trials. (The glasses must now be very small.) Then,
if p =4, the probability that Jones wins the bet is about 98: so that we
are extremely unlikely to give the dollar to Smith when in fact it should
go to Jones. (If p <3 it is even more likely that Jones will win.) If p >4,
we can also calculate the probability that Smith will win the bet. These
probabilities are shown in the graph in Figure 7. The dashed curve gives
for comparison the corresponding probabilities for the test requiring eight
out of ten correct. Note that with 100 trials, if p is §, the probability that
Smith wins the bet is nearly 1, while in the case of eight out of ten, it was
only about 3. Thus in the case of 100 trials, it would be easy to convince
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Probability that Smith wins

both Smith and Jones that whichever one is correct is very likely to win
the bet.

Thus we see that the probability of both types of errors can be made
small at the expense of having a large number of experiments.

In applications it is important to have some estimate of the number of
experiments that are necessary to reduce the probabilities of errors to
acceptable levels. Assume, for example, that we are trying to decide for
an independent trials process whether the true probability is p, or p;.
Assume that p, < p,. We want to design a test so that the probability of
error under either hypothesis is at most . We choose a number s so that
the area under the normal curve beyond s is a. We perform n experiments.
If py is correct, the probability of the number of successes x exceeding the
expected number np,, by s standard deviations is a. That is, if p, is correct,
then

Prix > np, + sVnpyg,l = a.

On the other hand, if p, is correct, the probability that the number of
successes will be more than s standard deviations below the expected value
of np, is also a. That is, if p, is correct, then

Prix <np, —sVnp,q,] = a

Assume, then, that we can choose n so that

npo + SVApoGy < npy — SVAPyq,.

Then we can choose a value ¢ greater than the first number but such that
t — 1 is less than the second number. We accept py if x <t — 1 and p,
if x > ¢. The test will have a probability of error of at most a under either
hypothesis. We can achieve this inequality if

Vinpy + sVpoge < Vnp, — s\Vpq,

or

s[\/Po‘]o + \/plc/l]< i
P1 = Po
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or

n> 52 [ VPodo + VPids ]2‘
P1 = Po
For example, in our beer and ale example, assume that p, = .5 and

p1=.75. We would like to be 90 percent certain of being correct. Then
from Figure 6 (Section 2) we see that s = 1.3. Thus we must have

VIX S5+ VI5X 25
a5 -5

We would need only a moderate number of experiments, namely 24,
Then np, + sVnpyq, = 15.18 and np, — s\Vnp,q, = 15.24. Jones is 90
percent sure that Smith will have fewer than 16 correct guesses, while Smith
is 90 percent sure that he will have more than 15 correct guesses. Thus
we award the bet to Smith if he guesses correctly at least 16 times out of
24 experiments.

Consider, however, the Salk vaccine experiment. In this experiment we
want to test p, = .00025 against p; = .00050—that is, whether the vaccine
will reduce the incidence of polio from 50 to 25 per 100,000. We would
want a great deal of reliability for such a test. Let us choose s so that the
probability of error is less than .001. We can have this by choosing s = 3.1.
Then we must have

V00025 X 99975 + /0005 x .9995
00025

n> (1.3)2[ ]2 =235,

n> 3.1)2 X [ ] = 223.956.

In one of the major parts of the Salk vaccine experiment the vaccine was
given to 200,000 students. Of these vaccinated students 57 contracted polio.
In Exercise 10 you are asked to design an experiment to test the hypothesis
p1 = 00050 against the hypothesis p, = .00025.

1. Assume that in the beer and ale experiment Jones agrees to pay Smith
if Smith gets at least nine out of ten correct.
(a) Whatis the probability of Jones paying Smith even though Smith
cannot distinguish beer and ale, and guesses? [Ans. .011.]
(b) Suppose that Smith can distinguish with probability .9. What is
the probability of his not collecting from Jones? [Ans. .264.]
2. Suppose that in the beer and ale experiment Jones wishes the proba-
bility to be less than .1 that Smith will be paid if, in fact, he guesses.
How many of ten trials must he insist that Smith get correct to achieve
this?
3. In the analysis of the beer and ale experiment, we assume that the
various trials were independent. Discuss several ways that error can
enter, because of the nonindependence of the trials, and how this error
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can be eliminated. (For example, the glasses in which the beer and

ale were served might be distinguishable.)

Consider the following two procedures for testing Smith’s ability to

distinguish beer from ale.

(a) Four glasses are given at each trial, three containing beer and
one ale, and he is asked to pick out the one containing ale. This
procedure is repeated ten times. He must guess correctly seven
or more times.

(b) Ten glasses are given him, and he is told that five contain beer
and five ale, and he is asked to name the five which he believes
contain ale. He must choose all five correctly.

In each case, find the probability that Smith establishes his claim by

guessing. Is there any reason to prefer one test over the other?

[Ans. (a) .003; (b) .004.]
A testing service claims to have a method for predicting the order in
which a group of freshmen will finish in their scholastic record at the
end of college. The college agrees to try the method on a group of
five students, and says that it will adopt the method if, for these five
students, the prediction is either exactly correct or can be changed into
the correct order by interchanging one pair of adjacent men in the
predicted order. If the method is equivalent to simply guessing, what
is the probability that it will be accepted? [Ans. ]

The standard treatment for a certain disease leads to a cure in 1 of

the cases. It is claimed that a new treatment will result in a cure in

§ of the cases. The new treatment is to be tested on ten people having

the disease. If seven or more are cured, the new treatment will be

adopted. If three or fewer people are cured, the treatment will not
be considered further. If the number cured is four, five, or six, the
results will be called inconclusive, and a further study will be made.

Find the probabilities for each of these three alternatives first, under

the assumption that the new treatment has the same effectiveness as

the old, and second, under the assumption that the claim made for
the treatment is correct.

Three upperclassmen debate the intelligence of the freshmen class.

One claims that most freshmen (say 90 percent of them) are intelligent.

A second claims that very few (say 10 percent) of them are intelligent,

while a third one claims that a freshman is just as likely to be intelligent

as not. They administer an intelligence test to ten freshmen, classifying
them as intelligent or not. They agree that the first man wins the bet
if eight or more are intelligent, the second if two or fewer, the third
in all other cases. For each man, calculate the probability that he wins

the bet, if he is right. [Ans. 930, 930, .890.]

Ten men take a test with ten problems. Each man on each question

has probability 4 of being right, if he does not cheat. The instructor

determines the number of students who get each problem correct. If
he finds on four or more problems there are fewer than three or more
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than seven correct, he considers this convincing evidence of commu-
nication between the students. Give a justification for the procedure.
[Hinz: The table in Figure 2 must be used twice, once for the probability
of fewer than three or more than seven correct answers on a given
problem, and the second time to find the probability of this happening
on four or more problems.]

9. An instructor claims that a certain student knows only 70 percent of
the material. The student claims that he knows 85 percent. Design
a test that will settle the argument with probability .9,

[Ans. 50 questions, student must get 40 correct answers.]

10. Assume that the Salk vaccine is to be given to 225,000 students. It
is claimed that the probability of getting polio is <.00025 if vaccinated
and .00050 if not vaccinated. Design a test to decide between these
two alternatives. In the actual experiment there were 28 cases per
100,000 of polio among the 200,000 vaccinated. This would suggest
63 cases in 225,000 students. Would your test establish the claim that
the Salk vaccine was effective, if this few cases of polio occurred in
the experiment?

4 CONFIDENCE INTERVALS

Consider n independent trials with probability p for success on each trial.
We assume that we do not know p but want to make, on the basis of our
observations, some estimate of p. Let a be any number between 0 and 1.
Then from Figure 6 we can find a number s such that the area under the
normal curve beyond s is a/2. For example, if a = .05 then we can choose
s = 2. By the central limit theorem, if x is the number of successes, then

Pr[ X gs]::l —a.
hpq
This is the same as saying that
x/n—p ]
Pr[ — | <s|l=1 —a
vpq/n

Putting p = x/n, we have
Pr(p —pl <sVpg/n]=1—a.

Using the fact that pg < 1 for all p (see Exercise 9), we have
Pr{p—pl <s/2Vn]>1-a.

Thus, no matter what p is, with probability at least 1 — a, the true value
will not deviate from p by more than s/2V/n. We say then that

S §

D — <p<p+
N N~
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63
.59
67
65
.59
65
61
Sl
61
57
58
.59
61
.60
68
.68
.66
.56
.60
.63
Figure 8

.83
79
.87
.85
79
.85
81
1
81
a7
18
19
81
.80
.88
.88
.86
.76
.80
.83
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with confidence 1 — a. We call the interval

[ﬁ_zxjn"ﬁ+é\;;]

a 100(1 — a) percent confidence interval. For example, the 95 percent

1 1
confidence interval requires s = 2, and hence is [ -——,p+ ]
1 N
For example, if in 400 trials a drug is found effective 124 times or .31
of the time, the 95 percent confidence interval for p is

1 1

or [.26, 36]. The 99 percent confidence interval would be found by using
s = 2.6. This gives

26 26
3126 3y .26
[31 207 +40]’

or [.245, .375]. Of course, as we demand more confidence our prediction
i1s more conservative, i.e., the interval is larger.

Itis important to realize that the interval obtained depends upon the value
of p, which in turn depends upon the value of x. Thus p is a chance quantity.
We are assuming that the true value p, though unknown, is not a chance
quantity. Thus our confidence interval itself is a chance quantity which may
or may not cover the true value p. When we choose a 95 percent confidence
interval we mean that the probability is .95 that the interval will cover the
true value p. Thus by the law of large numbers we expect this to be the
case about 95 percent of the time.

In Figure 8 we give the results of computing the 95 percent confidence
intervals based upon several experiments with n = 100 trials for a true value
of p = .7. We carried out this experiment 20 times. It will be noted that
in each case the interval does include the true value, though sometimes just
barely. We should not have been surprised if in one or two cases it did
not.

The use of the inequality pg < 1 was for convenience and simplicity of
our computations. It results in slightly larger confidence intervals than are
necessary for a given confidence level. Without making this approximation
it is possible to transform the first inequality into an inequality about 7 to
obtain a more exact confidence interval (see Exercise 14).

As a second example of confidence intervals consider the following prob-
lem. In a small town lottery tickets numbered from 1 to N are being sold
weekly and a prize is given to the person who holds the ticket having the
lucky number drawn at random from the numbers from 1 to N. The value
of N is not publicly announced, but is the same every week. A man buys
lottery tickets for ten weeks, receiving numbers 27,46, 77, 85, 34, 24, 34,
46, 34, and 89. Before buying a ticket the following week, he wants to
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1
n (05)1/n
51 1.821
6 | 1.648
7] 1.534
8 | 1454
91 1.395
10 | 1.349
Figure 9
M | M/(051)
100 134
96 129
89 120
88 118
99 133
93 125
97 130
85 114
74 99
99 133
82 110
98 132
97 130
91 122
93 125
96 129
97 130
90 121
91 122
98 132
Figure 10
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estimate his chance of winning; i.e., he wants to estimate N. Of course he
knows that N is at least 89, the highest number that he has drawn.

Let us see how we would obtain confidence intervals for the unknown
“parameter” N. The man has in effect drawn a number from the N possible
numbers 7 times. Let M be the maximum of the numbers drawn. Then
for fixed » and N, M may be considered a chance quantity. For any A,

PrM < A] = (%)"

As before, let a be any number between 0 and 1. We can choose A so that
A = a"N. Then

1/n ANy
Pr{M < a'/"N] z(i#: a
or
M
pr[al/n SN]Z‘J
That is,

Pr[N<%]: l —a
a

Since M < N, we can write this as

M
Pr[M§N< al/n]: l —a.
Thus the interval [M, M/a'~"] has probability 1 — a of covering N and hence
is a 100(1 — a) percent confidence interval for N. In any given example,
for a 95 percent confidence interval, we choose a = 05 and hence
M/aV™ = 89 /(.5)/1° = 120.1. Hence the man can be 95 percent sure that
there are at most 120 lottery tickets.

For such calculations the table in Figure 9 is useful.

In Figure 10 we have indicated the result of twenty experiments with N
equal in each case to 100 and n = 10. We have computed the 95 percent
confidence intervals. In this case we see that one interval does not include
the true value of N. Thus the intervals include the true value of N precisely
95 percent of the time.

The Fish and Game Department is interested in estimating the number of
troutin a pond (which contains only trout). They take out a sample of 1000
fish and mark them. Later they take another sample of 1600 and find that
120 of them are marked. What is a reasonable estimate for the total number
of trout?

Let n be the unknown total. Since 1000 of them were marked, there is
probability p = 1000/n that a fish in the second sample will be marked.
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The observed fraction is p = 120/1600, and the 95 percent confidence
interval yields

120 1 o, o120 N 1
1600 /1600 == 1600 /1600
or
3 ] 3 1
20 "0 P S30 T
or
1 1
0 <p< 1o
Hence
] 1000 _ 1
20 "n S0
and we obtain the estimate 10,000 < »n < 20,000.

A prospective college student visits a college and sits in on a class of
50 students. She notes that there are 39 men and 10 women in the
class. She decides to compute the 95 percent confidence interval for
the proportion of women in the school. She will reject the school if
this interval excludes the possibility that 4 of the students are women.
Does she reject the school for this reason?
A young ballplayer in his first season is at bat 400 times and gets 100
hits for a batting average of .250. Find 90 percent confidence limits
for his batting average based upon his first season. Is it reasonable
to believe that he may in fact be a .300 batter?
[Ans. [209, 291]; maybe, next year.]
A large company has as many as a million accounts. It wishes to
estimate the number that are at least three months delinquent in their
payments. A thousand accounts are randomly selected and of these
it is observed that 30 are at least three months delinquent. Find the
95 percent confidence limits for the proportion of customers that are
at least three months behind in their payments.
Opinion pollsters in election years usually poll about 3000 voters.
Suppose that in an election year 51 percent favor candidate A and
49 percent favor candidate B in a poll. Construct 95 percent confi-
dence limits on the true percentage of the population in favor of A.
[Ans. 492, .528.]
An experimenter has an independent trials process and she has a
hypothesis that the true value of p is p,. She decides to carry out a
number of trials, and from the observed p calculate the 95 percent
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confidence interval of p. She will reject p, if it does not fall within
these limits. What is the probability that she will reject p, when in
fact it is correct? Should she accept p, if it does fall within the confi-
dence interval?
A coin is tossed 100 times and turns up heads 61 times. Using the
method of Exercise 5, test the hypothesis that the coin is a fair coin.

[Ans. Reject.]
In an experiment with independent trials we are going to estimate p
by the fraction p of successes. We wish our estimate to be within .02
of the correct value with probability .95. Show that 2500 observations
will always suffice. Show that if it is known that p is approximately
.1, then 900 observations would be sufficient.
In the Weldon dice experiment, 12 dice were thrown 26,306 times and
the appearance of a 5 or a 6 was considered to be a success. The mean
number of successes observed was, to four decimal places, 4.0524. Is
this result significantly different from the expected average number of
4?7 [Ans. Yes.]
Prove that pg < 1. [Hint: write p = 1 + x.]
Suppose that out of 1000 persons interviewed 650 said that they would
vote for Mr. Big for mayor. Construct the 99 percent confidence
interval for p, the proportion in the city that would vote for Mr. Big.
In a pond 400 fish are marked. If in a subsequent sample of 225 there
are 45 marked fish, find the 90 percent confidence interval for the total
number of fish.
In a large city each taxi is assigned a number. A man observes the
numbers 125, 135, 356, 344, 25,299, and 320 on seven occasions that
he takes a cab. On the basis of this, compute the 95 percent confidence
limits for the number of cabs in the city. If he knows that the number
of cabs is a multiple of 100, can be determine the total?
Suppose that the man in Exercise 12 takes three more cabs numbered
76, 421, and 211. Can he be 95 percent sure of the total?

[Ans. Yes.]

In this section we have approximated confidence limits on p such

that Pr [!ﬁ —-pl <s /%] = 1 — a. The expression inside the brackets

1 —
is equivalent to (p — p)? < s? (y) Substituting equality for

inequality we obtain a quadratic equation which can be solved for p
in terms of p, s, and n. There will be two roots r; and r,, where r; < r,
and the above inequality will be satisfied for all p such thatr, < p < r,.
Use this information to obtain more exact confidence intervals than
that obtained by setting pg = 1.

A hundred names are picked at random out of a large telephone book.
It is found that 70 of these names have eight letters or less. Place 95
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percent confidence limits on the fraction of names in that telephone

book containing eight letters or less:

(a) Using the estimate developed in the text.

(b) Using the limits developed in exercise 14. [Ans. .602, .783.]

(¢) Suppose we were using the method of Exercise 5 to test the
hypothesis that 79 percent of the names have eight or less letters.
Which of the above intervals would be better?

5 SOME PITFALLS

586
91
594
59

594
598
591
591
592
595
59

583
588
591
603
59

592
597
595
588

Figure 11

618
623
626
622
626
.63

623
623
625
627
622
616
.62

623
635
622
624
629
627
62

Statistics properly used is a very powerful tool. If it is not properly used
it can lead to incorrect predictions and thereby cause considerable distrust
in its methods. We have already mentioned the example of the poll of the
Literary Digest in the 1936 presidential election between Roosevelt and
Landon. In this poll about 10 million postcards were sent to persons whose
names were obtained from telephone directories and car registrations.
Several million cards were returned, with 40.9 percent in favor of Franklin
Roosevelt. A few weeks later in the actual election, Roosevelt obtained 60.7
percent of the vote.

There are two obvious flaws in the above procedure. The first, and the
one which is normally blamed for the error, is that people who had tele-
phones or cars at that time were not truly representative of the voting
population as a whole. The second is the possibility that people change
their minds between the time a poll is taken and the election takes place.
They may even deliberately tell the poll taker one thing and vote another.
Of course, with many millions of people it is difficult to choose a truly
random sample. However, let us assume that there were in fact 60.7 percent
of the people in favor of Roosevelt at the time of the poll and that we could
choose a random sample of only 10,000 voters. In Figure 11 we indicate
the result of simulating 30 such samples and determining the 99 percent
confidence intervals. We see that in every case we would have picked
Roosevelt to win. This is on the basis of only 10,000 samples rather than
the millions which led to a wrong answer. Thus if statistics can be properly
used it is a very powerful tool.

Because of the difficulties indicated above there is still, with some justice,
skepticism of polls. However, there is also some danger in refusing to use
statistical methods. For example, assume that an all-male college wishes
to know the opinion of its alumni on the question of becoming a coeduca-
tional institution. Assume that there are 30,000 alumni and in fact 60 percent
are in favor of the college admitting women. This is a situation in which
any person not asked could conceivably challenge the poll. Assume then
that it is decided to poll by mail al/ the alumni. Also assume that a propor-
tion p of those who favor coeducation will respond to the query and a
proportion 2p of those who oppose will respond because they feel more
strongly about the matter. Then the expected number of yes answers would
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be 18,000p and the no answers would be 24,000p. Thus, neglecting sampling
errors, the vote would be 18,000p /42,000p = .43 in favor, and coeducation
would be defeated. On the other hand, as we have seen, a relatively small
random sample in which the response of each person sampled was recorded
would give a much more reliable indication of the true feelings of the
alumni. For example, a sample of 1000 was taken in such a poll and a
95 percent confidence interval of (.559, .621) was obtained. Here is a
situation where one could also use the method of hypothesis testing discussed
in Section 3.

As we have indicated previously, a number of precautions had to be taken
in the experiment to test the effectiveness of Salk vaccine. First, although
initially the incidence of polio was only about 50 per 100,000, there was
considerable variability from year to year and from region to region. So
a reduction from 50 to 25 in a sample of 100,000 could easily be caused
by reasons having nothing to do with the effectiveness of the vaccine. Thus
it was decided to have control groups. In one part of the experiment a
population of students was divided into two groups of about 200,000 each.
All were inoculated at the same time. The first group received the Salk
vaccine and the second a harmless and useless salt solution (a “placebo™).
The decision as to which students received the real vaccine was made
randomly, and the knowledge of whether a student was given the vaccine
or the placebo was not made known to the student or to the physician
observing the student. The reason for this is that in such experiments
knowledge of whether the subject has been treated or not has been found
to introduce a bias in the diagnosis and in the behavior of the subject. As
indicated earlier, the test did show a significantly lower rate among those
vaccinated. The test led to further development of vaccines and the virtual
elimination of polio in the United States.

There have been a large number of statistical studies to determine if
smoking is injurious to one’s health. It is now widely believed that this is
the case. However, the problem of establishing this has been exceedingly
difficult, and there are still statisticians who feel that more testing must be
done. In the case of the polio vaccine it was possible to select two groups
and randomly give one half the vaccine and the other half a placebo.
Random selection eliminates the effect of biases which can creep in, such
as differences in age, place of residence, economic status, etc. To do the
corresponding experiment for smoking would require one randomly selected
group to become heavy smokers and the rest to abstain. This is clearly not
possible, and many of the studies have had to rely on choosing groups in
a less random way and studying their smoking and health patterns. In the
exercises some of these methods are briefly mentioned and you are asked
to consider possible pitfalls. While statisticians who criticize these tests or
refuse to accept their conclusions are often accused of being overly cautious,
their criticisms have led to the development of more careful methods of
statistical tests in these very difficult areas. It should be emphasized that
demonstrating that more heavy smokers than nonsmokers get lung cancer
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does not demonstrate that smoking is a cause of lung cancer. It seems likely
that there will still be controversy about this question until more knowledge
is obtained as to what is the essential cause of cancer.

In the Literary Digest poll the particular people that responded to the
postcard inquiry was a chance quantity. In effect, the size of the sample
was random. While pollsters do not intentionally take advantage of this,
the results under such circumstances can be distorted. We illustrate this in
an extreme case where the experimenter deliberately tries to take advantage
of the randomness of the size of the experiment.

Assume that Mr. Esp claims that he has extrasensory perception. An
experiment is arranged in which he is to tell, when a card is placed face
down, whether it has a circle or a square on it. Of course we would want
to run a large number of experiments, but for the point we are trying to
make we can take a small number, say four. If Mr. Esp is just guessing,
we can find his expected score (percentage correct) in the usual manner.
The tree and tree measure are shown in Figure 12, and his expected score

SIXFH+HiXF+IXFHIxA+0xg=4

Score Probability
4 1 &+
3 3/

< 4
% 1/_1 %\2/ 1
7 \1/% \2 . N
2 0/ \1/ 2 16
\0< >1 3 %

0
\0 0 L

Assume now that the experimenter, eager to find a good subject, stops
the experiment the first time (if any) that Mr. Esp’s score is greater than
3. Then the new tree measure, still assuming guessing, is shown in Figure 13.

We see now that his expected score is

EX3+EXE+IXE+IXH+0X & =18 =69,

which is considerably better than before.

It is extremely important in designing a statistical test to decide upon the
criteria for acceptance or rejection before the test is carried out. Of course,
we should not be surprised if we find some unlikely feature of an experiment
by looking after the fact for something of small probability. A local expert
on probability theory would occasionally be roused from bed at one in the
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morning to have an excited colleague ask, “What is the probability of being
dealt a hand of all hearts in bridge.” He would answer, “The same as any
other hand,” and then go back to sleep.

1. In the tests of the Salk vaccine 400,000 students volunteered to be
vaccinated. Half were vaccinated and half given placebo. Among these
400,000 people 199 got polio. Assuming that a person who had polio
was equally likely to be in either of the groups, place 99 percent con-
fidence limits on the number of people in the vaccinated group that
got polio. Does the fact that of the 199 reported cases 142 were in the
placebo group suggest that the vaccine was effective?

2. Referring to Exercise 1, data was taken also on 340,000 students who
did not volunteer to be inoculated. Assuming that these people had
the same probability of getting polio as those who received the placebo,
place 99 percent confidence limits on the number of people among this
group to get polio. What does the fact that among this group there
were 157 polio cases suggest? How might we explain this result?

3. In many of the major studies of smoking and health the samples are
obtained by interviewing whomever happens to be at home when the
interviewer calls. This person answers questions relating to everyone
in the family over 21. Comment on some possible defects in this method
of sampling ~

4. In one major study of smoking and health two groups were compared,
one that had lung cancer and another that was chosen by virtue of
having similar backgrounds to the group that had cancer. Comment
on this technique of sampling.

5. This exercise is designed to show that optional stopping in sampling
can significantly change the results. Consider the following game. A
box contains five balls, three of which are red and two blue. If a red
ball is drawn we lose a dollar, if a blue ball we win a dollar.

(a) Find the expected value of the game if one ball is drawn.
[Ans. —20 cents.]
(b) Show that the game becomes increasingly unfavorable if two, three,
four, or five balls are drawn.
(c) Show that the game is favorable if you are allowed to stop at any
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time. Use the following strategy: If the first draw is blue, stop.
Otherwise, play until you are even or until all five balls are drawn.
[Partial ans. Value is +20 cents.]

6. In a certain college 25 out of 324 faculty members with Ph.D.’s are
women. Nationally approximately 20 percent of all Ph.D.’s are awarded
to women. Test the hypothesis that the faculty members were picked
from the national pool without regard to sex.

7. Inregarding the significance of Exercise 6 as evidence of discrimination,
what other factors would have to be taken into account? For example,
is it sufficient to know the present percentage of women among Ph.D.’s?
And should one know something about the distribution among disci-
plines?

8. The President of the United States announces a major policy decision.
His mail the following week contains 25,000 irate letters and 10,000
favoring his decision. Would it be reasonable to conclude that a majority
of people oppose his decision?

APPLICATIONS

In many problems in statistics the theory is straightforward but the
computations are very difficult. This makes statistics an important area for
computer applications. We shall first illustrate this by the computation of
confidence intervals considered earlier in this chapter, then we shall intro-
duce the important technique of simulation.

In Section 4, for the example of the lottery ticket, the only difficulty in
computing the confidence interval for the total number of tickets is the
necessity of raising a decimal fraction to the 1/n power. This is simply done
in BASIC. In the program LOTTERY we supply N (the number of tickets
bought), M (the largest number observed), and C (the percentage confidence

LOTTERY

18 READ N,M,C

260 LET A = 1-C

38 PRINT M, M/ZAt(Ll/N)
99 DATA 10,89,.95

99 END

READY

RUN
LOTTERY
89 126.086

B.B608 SEC.
READY
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desired). The entire computation is carried out in two instructions. The
RUN shows the 95 percent confidence interval if among ten tickets bought
the highest number was 89.

The program CONFIDE computes three confidence intervals for an inde-
pendent trials experiment in which we observed x successes in 7 trials. The

CONFIDE

16 READ X,N

20 LET P = X/N

38 LET D = 2%SQR(N)
40 FOR K = 1 TO 3

53 READ S

68 PRINT P-S/D,P+S/D
780 NEXT K

80 DATA 61,100

98 DATA 1.65,2,2.6
99 END

READY

RUN
CONFIDE

B+.5275 B.6925
B.51 Q.71
0.48 @.714

B.278 SEC.
READY

DATA in Line 90 supplies the number of standard deviations for 90, 95,
and 99 percent confidence. The rest of this simple program is a direct
translation of the formula obtained in Section 4. The RUN shows that if
we observe 61 successes in 100 trials we can be 90 percent sure that the
true value of p is below .7, but we cannot be 95 percent sure. It also shows
that we can be 95 percent sure that p > .5, but not 99 percent sure.

Other formulas in this chapter may similarly be translated into simple
computer programs. (See the Exercises.)

Probabilistic models prevail in the social sciences. While many of them
can, in principle, be treated by the methods studied in this book, in practice
they frequently are much too complicated to obtain precise theoretical
results. In such cases, simulation by a high-speed computer may be a
powerful tool.
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Simulation is a process during which the computer acts out a situation
from real life. Typically, the relevant facts about an experiment are supplied
to the computer, and it is instructed to run through a large series of experi-
ments, perhaps under varying conditions. This enables the scientist to carry
out in an hour a series of experiments that would otherwise take years, and
at the same time all the important information is automatically tabulated
by the computer.

Of course, the computer cannot duplicate the exact circumstances of an
experiment. The facts fed to it are based on a model (or theory) formed
by the scientist, and the value of the simulation depends on the accuracy
of the model. Thus the main significance of simulation is that it enables
a scientist to study the kind of behavior predicted by his model. For very
complicated models this may be the only procedure open to him.

In addition to the use of simulation for theoretical studies, there are two
very important types of pragmatic uses of simulation: (1) It can be used
as a planning device. If there are various alternative courses of action open,
the computer is asked to try out the various alternatives under different
conditions, and report the advantages and disadvantages of each course.
(2) Simulation may be used as a training device. For example, business
schools are making increasing use of “business games” in which fledgling
executives may try their skill at decision making under realistic circum-
stances. :

We shall first discuss how computers simulate stochastic processes, and
then illustrate simulation in terms of examples previously considered in this
book. Simulation depends on the generation of so-called random numbers.
In BASIC this is achieved by an instruction using “BND,” such as

LET X = RND.

Every time this instruction is executed, BASIC generates a real number
between 0 and 1 by a process that is reasonably random.

Actually, the computer is forced to cheat, in that it has only a finite
capacity for expressing numbers. Thus it may in reality divide the unit
interval into a million (or more) numbers, and give them in a quite random
order. When its supply is exhausted, it will start again giving the same
numbers in the same order. However, if one needs only 100,000 numbers,
or even a million numbers, the results are highly satisfactory.

We illustrate this by means of the program RANDOM, which generates
30 random numbers. In looking at the output the reader should recall that
E-2 indicates multiplication by 10-2; thus 8.5 E-2 = .085. The distribution
1s reasonably random. For example, 6 out of 30 numbers lie between .3
and .5, which is what we would expect. However, there are “too many”
numbers between .2 and .3. Whether this is statistically significant needs
to be checked (see Exercise 5).

Very often instead of random numbers we need random integers. For
example, to simulate the roll of a die we need random integers from 1 to
6. We show the process for generating these in the other two RUNSs of
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RANDOM. First we print out 6 times the random numbers. They are now
spread evenly on the interval (0, 6). Thus if we take their integer parts, the
numbers 0, 1,2, 3,4, 5 will turn up with equal probabilities, at random. By
taking integer parts and adding one, we obtain the “roll of a die.”

One common use of random numbers is to simulate an independent trials
process. Such a process with p = .3 may be simulated as follows:

100 IF RND < .3 THEN 200
100 PRINT “FAILURE”

200 PRINT “SUCCESS”

It is in the nature of the process that generates random numbers that the
probability of RND <C.3 is precisely .3. Of course any other probability
may be used in place of .3.

Craps. Let us simulate the game of shooting craps. This is carried out by
the program CRAPS, which closely follows the flow diagram in Figure 14,
on page 304.

CRAPS

S FOR N =1 TO 12

19 LET Dl = INT(6%RND)+!
28 LET D2 = INT(6*RND)+]1

30 LET D = Dl + D2
35 PRINT D;

40 IF D < 4 THEN 309
56 IF D = 12 THEN 309
66 IF D = 7 THEN 200
70

128 REM TRY TO MAKE POINT
118 LET X = D

122 LET DI = INT(6*xRND)+1!
138 LET D2 = INT(6*RND)+1
142 LET D = D! + D2

158 PRINT D;

162 IF D = X THEN 220

178 IF D = 7 THEN 329

182 GOTO 129

190

200 REM PLAYER WINS

212 PRINT "YOU WIN'.

220 GOTO 440

239
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328 REM PLAYER LOSES
318 PRINT "YQOU LOSE"
329

4080 REM START OQOVER
420 NEXT N

439

999 END

READY

RUN
CRAPS

18 8 5 YOU VIN
8 6 4 6 7 YOU LOSE
YOU LOSE
5 8 S5 7 YOU LOSE
2 11 7 YOU LOSE
4 8 YOU VWIN
YOU WIN
YOU LOSE
S YOU wIN
YOU WIN

QU QXD OW—U0

B.117 SEC.
READY

One may consider running a program like CRAPS a large number of
times, keeping count of the amount won or lost, and use it to estimate the
expected value of the game. (In Chapter 3, Section 11, this was found to
be —.0141.) Let us suppose that we try to simulate 10,000 games. How
good an estimate can we expect? We know that the 95 percent confidence
interval for a probability near .5 is 1/v/n. But if the fraction of successes
is high by that amount, the fraction of losses will be low by the same amount,
and vice versa. Thus we should expect errors up to 2/V/n on either side
of the expected value. For n = 10,000 this is an error of .02. In five such
simulations the values obtained were: — 0238, —.0298, —.0090, +.0016,and
—.0084. All are within the 95 percent confidence interval, but one simula-
tion shows a loss twice the expected size and one actually shows a profit.

Thus, while a simulation provides an easy rough approximation to the
answer, a good approximation requires a substantial computer effort. A
simulation 0f 250,000 games requires about three minutes of computing time,
much longer than the other examples we have shown in this book. Two
such RUNs produced values of —.0115 and —.0154, which are much closer
to the real value (see Exercise 4).
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Poker. In the exercises of Section 3 in Chapter 3 we computed the proba-
bilities for various poker hands. Let us obtain estimates for the same by
simulation.

Our problem here amounts to selecting five cards at random from a deck
of 52 cards. We first number the cards from 1 to 52, in any convenient
manner. Then we select one card by generating a random integer from the
set 1 through 52. (This can be achieved by computing INT(52*RND + 1).)
Next we select one of the 51 remaining cards at random, etc. When we
have five cards, we determine how good a hand we drew.

This simulation was carried out for 10,000 poker hands on the Dartmouth
Computer. The results were as in Figure 15.

You will be asked, in the exercises, to compare these figures with the
expected values.

Land of Oz. Models in the social sciences often depend on Markov chain
processes. While there are powerful theoretical tools for treating Markov
chains, sufficiently complex models may have to be simulated. We shall
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Number
Type of hand of times
Bust 5046
One pair 4169
Two pairs 508
Three of a kind 191
Straight 43
Flush 11
Full house 25
Four of a kind 6
Straight flush 1

illustrate this for a simple Markov chain, which we have already treated
theoretically.

Consider the Land of Oz (Chapter 4, Section 7, Exercise 12). Suppose
that we wished to find the fraction of times that the weather is “nice,” “rain,”
or “snow,” by simulation. We would first pick a starting state, say “rain.”
We then know that the probability of “rain” is 4, of “nice” 4, and of “snow”
i We can achieve this by generating an RND; if it is less than § we decide
on “rain,” if it is between 4 and 3 then “nice” is next, while if RND >3
then “snow” is next.

The program RANDOMOZ carries out 1000 simulations for each starting
state. After reading the transition probabilities, it starts a loop on S, the
starting state. S1 is the current state. The list N is used for counting—e.g.,
N(1) is the total number of nice days. The only other comment needed
is the explanation of line 90. Suppose that the probabilities of stepping into
the three states is currently .25, .5, and .25. Then we should compare the
random number successively with .25, 25 + .5 = .75, and .25 + .5 +
25 = 1. The same result may more simply be achieved by successive
subtraction of .25, .5, and .25 until the number turns negative.

The program prints the number of times in each state for each starting
state. While the values are reasonably close to the expected values of 200,
400, and 400, they are not close enough to be convincing. We show a second
RUN with 10,000 simulations for each starting state and this time the
fractions are much closer to the limiting probabilities .2, .4, and 4.

Central Limit Theorem. By simulating an independent trials process a large
number of times we can hope to obtain an approximation of the central
limit theorem. The program CLTH uses this method to approximate four
values in Figure 6. Since the same distribution is obtained for any value
of P, its choice is not crucial. The program uses P = 3. It carries out 100
experiments and counts the number of successes, noting how many standard
deviations we are off the expected value. It repeats this 1000 times to get
a frequency distribution.



306 Statistics

Bl RANDOMOZ

18 MAT READ P(3,3)
20 DATA B, e55 5
21 DATA ¢25,¢5,.25
22 DATA ¢25,¢255 5
33 FOR S =1 TO 3
42 LET S1 = S
S3 LET NC(1)=N(2)=N(3)=0
60 FOR N = 1 TO 1009
72 LET X = RND
g3 FOR I =1 TO 3
99 LET X = X-P(Sl,1I1)
128 1IF X<@ THEN 120
119 NEXT I

120 LET N(I) = NCIJ)+!
136 LET S1 =1

148 NEXT N

158 PRINT NC1JI3INC2)I53NC3)
160 NEXT S
999 END
READY
RUN
RANDOMOZ

211 391 398

186 428 394

199 378 423

1.819 SEC.
READY

60 FOR N =1 TO 10000
RUN
RANDOMOZ

2806 3997 3997
1976 3982 4942
2868 3973 3959
9.286 SEC.
READY

Chapter 6
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CLTH starts by setting up P, N, the expected value E, and the standard
deviation S. Then the loop of 1000 repetitions is started. For each repeti-
tion, X, the number of successes, is initially set to 0. Lines 50-80 count the
number of successes in 100 trials. On line 60, if RND > .3 we have a failure,
and hence the next line is skipped. For a success, X is increased by 1. Line
90 computes the number of standard deviations. We shall keep track only
whether it is between 0 and 1, between 1 and 2, etc. This is accomplished
on lines 100 and 110. When all 1000 repetitions are completed, we wish

CLTH

16 LET P = .3

20 LET N = 1490

25 LET E = Nx%P

30 LET S = SQR(N*Px%(1-P))
49 FOR I = 1 TO 120¢

45 LET X = 0

58 FOR J =1 TO N

68 IF RND > .3 THEN 89
76 LET X = X+1

88 NEXT J

99 LET Y = ABS((X-E)/S)
1880 LET K = INT(Y)+1
110 LET NC(K) = N(K)+I
128 NEXT 1

130 PRINT "STD'S","AREA"
149 FOR D 1 TO 4

156 LET A A+N(D) /2200
162 PRINT D,A

173 NEXT D

199 END

READY

RUN

CLTH

STD'S AREA
1 @334
2 Be4795
3 Be4975
4 de5

Se466 SEC.
READY
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to print the approximate areas. A comment concerning line 150 is in order.
We wish to compute the cumulative areas, as in Figure 5; hence we keep
adding the new area to the previous value of A. The reason for dividing
the total number of occurrences N(D) by 2000 rather than 1000 is that we
want the area on one side of the expected value, while our counting method
lumped the two sides together.

We note that the computed values agree quite well with the true values.
The true values are .341, .477, .4987, .49997.

Baseball. The game of baseball is a good example of a game having a model
for which a complete theoretical treatment is not practical, and hence much
can be gained from simulation.

How would we build a simulation model for a given team, in order to
study the way they produce runs? Fortunately, some very detailed statistics
are kept, over long periods, which are ideal for building such a model. Let
us suppose that a given batter comes to bat. We know from past experience
what the probabilities are for his making an out, getting a walk, or getting
a hit of various kinds. We simply generate an RND, and use it to decide
what the batter did.

For example, if he has probabilities .1 for a walk, .64 for an out, .2
for a single, .03 for a double, 01 for a triple, and .02 for a home run, we
can generate a random integer from 1 through 100, and interpret it as in
Figure 16.

Range Result Probability
1-10 Walk 1
11-74 Out 64
75-94 Single 2
95-97 Double .03
98 Triple 01
99-100 Home run 02

We can then bring the next batter to bat, and arrive at a result based
on his past performance. The running on the bases may be simulated
similarly. For example, we can feed into the machine the probability that
a man on first reaches third on a single. Just how realistic we wish to make
the model depends entirely on how much work we are willing to do.

It should be noted that we are simulating only the batting of one team.
We do not here consider the batting of the other team, or questions of
defensive play.

Such a model would be most useful in training young managers. The
computer could make all decisions (many of them stochastic) having to do
with the performance of the players, while the manager could make all
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decisions normally open to managers. For example, he could call for a
hit-and-run play, and the machine would simulate the results. He could
call for a steal, or send in a pinch hitter, or tell a batter to try to hit a long
fly ball.

By the use of a computer a new manager could gain an entire season’s
experience in a few days—and he would not be learning at the expense
of his team.

The model is also useful for planning purposes, as we shall illustrate here.
One important task of the manager is to decide on his batting order. He
could feed a variety of batting orders to the computer, have it try each for
a season’s games (or more), and report back the results.

This was actually done on the Dartmouth Computer.

The team used in the simulation was the starting line-up of the 1963 world
champion Los Angeles Dodgers. The line-up of Figure 17 was used
throughout.

Line-up Batting average Slugging average
1. Wills 302 349
2. Gilliam 282 383
3. W. Davis 245 365
4. T. Davis 326 457
5. Howard 273 S18
6. Fairly 271 388
7. McMullen 236 339
8. Roseboro 236 351
9. Pitcher (average) 17 152

An entire season of 162 games was simulated, keeping detailed records
for each player. Of course, this simulation differed from the normal year
in a few respects. For instance, the first eight players played every inning
of every game. Since only the batting was simulated, no allowance was made
for defensive play, nor did the game stop after eight innings if the home
team was ahead. Games were not called on account of rain, and there were
no extra-inning games. But many important features concerning batting
were recreated quite realistically. We shall cite a few of the more interesting
results.

Seven of the batters ended up with batting averages close to their actual
ones, but two did not. Tommy Davis, the league’s leading hitter, had an
even more spectacular year during simulation: he batted an even .350
(compared with .326 in 1963). On the other hand, Fairly, who had batted
271 in actuality, had a bad simulated year, batting only .250. This shows
how much a batting average can change due to purely random factors.

Howard was far ahead in home runs, with 54. This is much higher than
the 28 he had in actuality, but he was only used part-time in 1963, while
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in the simulated year he played all the time. Two of the home runs were
hit by pitchers—just as in real life. In one game Howard hit three home
runs. But mostly it was the balance of the Dodger team that showed up;
there were ten games in which three different players hit home runs.

There were no really spectacular slumps, though Gilliam once went 15
consecutive at-bats without getting a hit. The total number of runs scored
was 652, in excellent agreement with the actual 640. On the other hand,
the 1352 men left on base compared very poorly with the Dodgers’ league-
leading performance of leaving only 1034 men on base. Two factors in this
were the absence of double-plays and pinch hitters in the simulation model.
But there is probably some other relevant attribute of the team that was
missed in the model.

Perhaps the most interesting result is the number of shutouts (of the
Dodgers, of course). There were 11 in the simulation, as compared to the
league-leading performance of only 8 shutouts. In the simulation, two of
the shutouts occurred in the final two games. Thus, if the season ended
in 160 games, the simulation would have been off by only one shutout.
This shows how hard it is to get an accurate estimate for a small probability
through simulation! And there was a four-game stretch late in the season
in which three of the games ended in shutouts. If this had happened in
real life, all the Los Angeles papers would have carried headlines about
a Dodger batting slump.

To compare various possible batting orders, several line-ups were simu-
lated for ten entire seasons. The seven line-ups are shown in the first column
of Figure 18, and the results in the second column. The standard deviation
of the average number of runs per game was about .07. Since the difference
between the best and the worst line-ups is over three standard deviations,
one is tempted to conclude that the batting order really makes a difference
—though not very much of a difference.

However, this simulation—though time-consuming—is not conclusive. We
may still entertain the hypothesis that any line-up averages about 3.95 runs
per game, and all seven outcomes are within two standard deviations of
this. We are forced into an even more substantial simulation run.

The simulation was repeated; this time every line-up had seven sets of
ten entire seasons simulated. The newly computed averages are shown in
the third column of Figure 18, while the maximum and minimum values
obtained for a set of ten seasons are shown in the last column. Since we
have simulated seven times as many games for each line-up, the standard
deviation is reduced by a factor of \/7, to less than .03. The differences
in the averages now look more significant. Also, we note that the ranges
obtained for the first five line-ups don’t overlap (or hardly overlap) the
ranges for the last two line-ups. We may therefore conclude that we have
five “good” and two “poor” line-ups. And this hypothesis stands up under
more sophisticated tests.

What characterizes the poor line-ups? Most noticeably, the pitcher is first,
rather than being last. But also we note that the Dodgers had three weak



Section 6

Figure 18

EXERCISES

Statistics 311

Average number of runs per game
Line-up 10 seasons | 7 X 10 seasons Range
1,2,3,4,5,6,7,8,9 4.06 4.00 3.91-4.06
1,4,2,56,3,8,7,9 4.07 4.02 3.92-4.07
4,5,6,1,2,3,7,8,9 4.00 3.98 3.90-4.04
2,1,3,5,4,6,8,7,9 3.98 4.01 3.95-4.08
1,4,7,2,5,8,3,6,9 3.90 398 3.90-4.05
9,8,7,6,5,4,3,2, 1 3.89 3.82 3.72-3.89
9,6,3,8,5,2,7,4,1 3.83 3.83 3.76-3.92

hitters (numbers 3, 7, and 8), and two of these are near the top of the bad
line-ups. We therefore conclude that poor hitters should be near the end
of the line-up. But little else can be concluded.

We should also note that the difference between best and worst is surpris-
ingly little, and drastic changes in the “best” have practically no effect. Thus
we conclude that the importance of the batting order has been greatly
exaggerated.

One additional remark may be of interest: The first line-up in Figure 18
is, of course, the one actually chosen by the manager. The last five are simply
permutations chosen according to simple patterns. However, the second
line-up was chosen by one of the authors, a Dodger fan, as his attempt to
“manage” the team. He was most pleased that it turned out best! Of course,
.02 is only 5 of a standard deviation, which represents about three runs per
year, and is not significant.

1. Use the RUN of RANDOM to simulate an independent trials process
with probability 4 of success, for 30 trials. How many successes do
you obtain? [Ans. 15.]

2. Simulate three games of craps as follows. To imitate the roll of a pair
of dice choose pairs of outcomes of the last RUN of RANDOM reading
from left to right in successive rows and then proceed according to
the rules of craps.

[Partial Ans. On first game player rolls a 5 and wins.]

3. From Chapter 3, Section 3, Exercises 16, 17, and 18, compute the
expected number of bust, straight, flush, and full house hands in 10,000
poker hands. Also compute the standard deviation for each. Do the
figures given in Example 2 for the simulation look reasonable?
[Partial Ans. Bust: expect 5012; off by less than one standard
deviation.]

4. What would be reasonable 95 percent confidence limits for the devia-
tion from the expected number of wins in 250,000 games of craps?
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Do the simulated results of —.0115 and —.0154 mentioned in the text
fall within these limits?
Using the data of the 30 random numbers between 0 and 1 generated
by RANDOM, test the hypothesis that the probability that a random
number generated this way has probability .1 of falling between .2 and
3.
Use the random numbers produced by the program RANDOM to
simulate 30 days’ weather in the Land of Oz, following a rainy day;
see Example 3.
Change the random numbers generated by RANDOM between 0 and
1 to random numbers between 1 and 100.
Suppose that we have a baseball team whose batters each performs
according to the simulation scheme in Figure 16. Use the random
integers obtained in Exercise 7 to simulate the performance of the first
30 batters on one team. How does the team stand after 30 men have
come to bat? [Ans. End of six innings; four runs scored.]
In 1951, Gil Hodges of the Brooklyn Dodgers was officially at bat 582
times and hit 40 home runs. Estimate his probability of hitting a home
run each time he was at bat. How large a fluctuation in his annual
home-run output is attributable to pure chance?
From 1949 through 1959, Gil Hodges had the following number of
home runs: 23, 32,40, 32,31,42,27,32,27,22,25. Is there a case for
his having had “good” and “bad” years, or may we assign the differ-
ences entirely to chance fluctuations: [Hint: Estimate the expected
value from the data and use Exercise 10.]

[Ans. Explainable as chance fluctuations.]
In Exercise 14 of Section 4, you were asked to derive the more exact
confidence intervals , .y

5 5 1/2
7] L] (AL L. )|
1 + s2/n 2n n 4n?

Write a program to compute these more exact intervals given n, p,
and s.
Use the program of Exercise 11 to rework Exercises 2 and 6 of Section
4. Also rework each of these exercises using the program CLTH given
in this section. For each exercise give one possible value for p which
is ruled out by the more exact confidence interval but is not ruled out
by the approximation used in the program in this section.
Write a program to test the hypothesis p,, against p,, given p,, p,, and
s. Have the program print both the number of experiments needed
and the number of those experiments that must be successful in order
to accept hypothesis p;.
Use the program of Exercise 13 to rework Exercises 9 and 11 of Sec-
tion 3.
Write a program which, given p, simulates 100 tosses of a coin which
comes up heads with probability p. Combine this with the program
for confidence intervals given in the text and compute 95 percent
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confidence limits for p, given the simulated data, and see whether p
is within the confidence interval. Do the same using the more exact
confidence limits which the program of Exercise 11 computes.

16. Run the program of Exercise 15 a total of 500 times and find, for
each method, what fraction of the time p lies within the confidence
interval.
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