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POLYHEDRAL CONVEX SETS

EXAMPLE 1

Recall that an equation containing one or more variables is called an open
statement. For instance,

(a) —2x; +3x, =6

is an example of an open statement. If we let 4 = (=2, 3), x = (xl), and
X2
b = 6, we can write (a) in matrix form as

Ax = (=2,3) (xl) = —2x,+3x,=6 = b.

X2
For some two-component vectors x the statement Ax = b is true and for

others it is false. Forinstance, if x = (i), itis true,since —2 -3 + 34 = 6;

and if x =(i) , 1t is false, since —2 +2 + 3 -4 = 8. The set of all two-

component vectors x that make the open statement Ax = b true is defined
to be the truth set of the open statement.

In plane geometry it is usual to picture in the plane the truth sets of open
statements such as (a). Thus we can regard each two-component vector x
as being the components of a point in the plane in the usual way. Then
the truth set or locus (which is the geometric term for truth set) of (a) is

For a nontechnical introduction to linear programming the reader should cover the first three
sections; for a more technical exposition including the simplex method, cover the first six
sections. For a nontechnical introduction to the theory of games, cover just Sections 8, 9,
and 10; and for a technical introduction, cover the whole chapter.
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Figure 1

EXAMPLE 2

(©)

(3~

the straight line plotted in Figure 1. Points on this line may be obtained
by assuming values for one of the variables and computing the corre-
sponding values for the other variable. Thus, setting x; = 0, we find x, = 2,

: 0\ ,. . :
so that the point x = (2) lies on the locus; similarly, setting x, = 0, we

find x, = —3. so that the point (_3) lies on the locus; and so on.

0

In the same way inequalities of the form Ax < b or Ax < b or Ax > b
or Ax > b are open statements and possess truth sets. And in the case that
x is a two-component vector, these can be plotted in the plane.

Consider the inequalities (b) Ax <b, (c) Ax > b, (d) Ax < b, and (e)
Ax > b, where A4, x, and b are as in Example 1. They may be written as

(b) —2x, + 3x, <6,
(©) —2x, + 3x, > 6,
(d) —2x, + 3x, <6,
(e) —2x, + 3x, > 6.

Consider (b) first. What points (xl
X

)satisfy this inequality? By trial and
2

error we can find many points on the locus. Thus the point (é) is on it,

since —2+1 4+ 3+2 =4 <6; on the other hand, the point (1) is not on

3
the locus, because —2-1 +3-3 = —2 + 9 = 7, which is not less than 6.
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In between these two points we find ( é), which lies on the boundary—that
3

: . . 1]

is, on the locus of (a). We note that, starting with ( B) on locus (a), by
3

increasing x, we went outside the locus (b); by decreasing x, we came into

the locus (b) again. This holds in general. Given a point on the locus of
(a), by increasing its second coordinate we get more than 6, but by decreasing
the second coordinate we get less than 6, and hence the latter gives a point
in the truth set of (b). Thus we find that the locus of (b) consists of all
points of the plane below the line (a)—in other words, the shaded area in
Figure 1. The area on one side of a straight line is called an open half-plane.

We can apply exactly the same analysis to show that the locus of (c) is
the open half-plane above the line (a). This can also be deduced from the
fact that the truth sets of statements (a), (b), and (c) are disjoint and have
as union the entire plane.

Since (d) is the disjunction of (a) and (b), the truth set of (d) is the union
of the truth sets of (a) and (b). Such a set, which consists of an open
half-plane together with the points on the line that define the half-plane,
is called a closed half-plane. Obviously, the truth set of (e) consists of the
union of (a) and (c) and therefore is also a closed half-plane.

Frequently we want to assert several different open statements at once—
that is, we want to assert the conjunction of several such statements. The
easy way to do this is to let 4 be an m X n matrix, x an n-component column
vector, and b an m-component column vector. Then the statement Ax < b
is the conjunction of the m statements A;x < b;, where A; is the ith row
of A and b, is the ith entry of b.

A box manufacturer makes small and large boxes from a single kind of
cardboard. The small boxes require 2 square feet of cardboard each and
the large boxes 3 square feet each. If the manufacturer has 60 square feet
of cardboard on hand, what are the possible combinations of small and large
boxes that he can make?

In order to set up this problem let x; be the number of small boxes and
X, the number of large boxes to be made. Since it is impossible to make
negative numbers of boxes, we have the obvious constraints

(f) xl Z Oa
(g) Xy > 0.

Also, because of the constraint on the total amount of cardboard on hand,
we have

(h) 2x, + 3x, < 60,

If we now want to state these three inequality constraints simultaneously
in the form Ax < b, we must first change (f) and (g) into < constraints.
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Figure 2

This can be done by multiplying through by —1, so that (f) becomes
—x,; <0 and (g) becomes —x, < 0. If we now define

-1 0 0
A= 0 =1}, x:(xl), b={ 0},
2 3 X2 60

we see that Ax < b is a matrix way of asserting the conjunction of (f), (g),
and (h). The truth set of Ax < b is the intersection of the three individual
truth sets. The truth set of (f) is the right half-plane; the truth set of (g)
is the upper half-plane; and the truth set of (h) is the half-plane below and
on the line 2x, + 3x, = 60. The intersection of these is the triangle (in-
cluding the sides and corners) shaded in Figure 2. The area shaded in Figure
2 contains all those and only those points that simultaneously satisfy (f),
(g), and (h), or, equivalently, Ax < b.

X2

In the examples considered so far we have restricted ourselves to open
statements with two variables. Such statements have truth sets that can be
sketched in the plane. In the same way, open statements with three variables
have truth sets that can be visualized in three-dimensional space. Open
statements with four or more variables have truth sets in four or more
dimensions, which we can no longer visualize. However, applied problems
frequently lead to such statements. Fortunately, we shall develop methods
(in Section 5) for handling them without having to visualize the truth sets
geometrically.

In order to have a notation that will enable us to talk in general about
conjunctions of several open statements in any number of dimensions, we
shall, for the remainder of this chapter, consider b to be an m-component
column vector, x an n-component column vector, and 4 an m X n matrix.
The ith row of 4 will be denoted by A4;. Similarly, the ith component of
b will be denoted by b;. Of course, A4; is an n-component row vector and
b; is a number. We shall let X, denote the set of all n-component column
vectors x. Thus in Example 3 we had m =3 and n =2. 4 wasa 3 X2
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matrix, x a two-component column vector, and b a three-component column
vector. The set of all two-component column vectors x is denoted by X,.
We now set up some definitions that will be used in the later exposition.

Definition The truth set of 4;x = b, is called a hyperplane in X,. The truth
sets of inequalities of the form A4;x < b; or A;x > b; are called open half-
spaces, while the truth sets of the inequalities 4;x < b, or A;x > b; are called
closed half-spaces in X,,.

When we assert the conjunction of several open statements, the resulting
truth set is the intersection of the truth sets of the individual open state-
ments. Thus in Example 3 we have the conjunction of m = 3 open state-
ments in &X,. In Figure 2 we show this geometrically as the intersection
of m = 3 closed half-spaces (-planes) in » = 2 dimensions. Such inter-
sections of closed half-spaces are of special importance.

Definition The intersection of a finite number of closed half-spaces is a
polyhedral convex set.

Theorem Any polyhedral convex set is the truth set of an inequality
statement of the form Ax < b. '

EXERCISES

Proof A closed half-space is the truth set of an inequality of the form
A;x < b;. (An inequality of the form A;x > b; can be converted into one
of this form by multiplying by —1.) Now a polyhedral convex set is the
truth set of the conjunction of several such statements. Since 4 is the matrix
whose ith row is 4; and b is the column vector with components b;, then
the inequality statement Ax < b is a succinct way of stating the conjunction
of the inequalities 4,x < b,,..., A,x < b,,. This completes the proof.

The terminology polyhedral convex sets is used because these sets are
special examples of convex sets. A convex set C is a set such that whenever
u and v are points of C, the entire line segment between u and v also belongs
to C. This is equivalent to saying that all points of the form
z=au+ (1 — a)v for 0 < a <1 belong to C whenever # and v do. In
this chapter we shall be concerned primarily with polyhedral convex sets.

1. Draw pictures of the truth sets of Ax < b, where 4 and b are as given
below. (Construct the truth sets of the individual statements first and
then take their intersection.)

1 0 3
@ A= 0 1], b=\|2].
-2 =3 0
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-2 =3 —6
b)) A=|-1 1], b=1| 2|
1 1 3
2 3 6
) A=[-1 1}, b=1(2}.
1 1 3
0 -1 0
d A=|-1 0], b=|0].
1 0 2
/ 10 /2\
—1 0 2
@ A=1|, 4 °&=|5]
0 —1 3/
3 —6
f) A= = )
o a=(33)  e=(9)
(=3 2 (-6
® A—( 3 2)’ b‘( 6)‘
1 1 0
h) 4 = = .
wa=(7)5) e=())
. 1 0 2
A= b = .
) ( 1 o)’ (—5)
( 3 -2 —6
. 2 -3 —6
0 —1 o/
-2 -1 -7
k) 4= 1 0], b= 0].
0 1 0

In the cardboard-box problem of Example 3 consider the following

additional constraints:

(a) “At least as many small as large boxes should be made.” Write
a constraint involving x, and x, that expresses this and find A
and b. Draw the picture of the resulting convex set.

[Partial ans. —x,; + x, < 0.]

(b) In addition to the constraints above add a constraint expressing;

“at most 20 small boxes should be made.” Find 4 and b and
sketch the convex set. [Partial ans. x; < 20.]

Of the polyhedral convex sets constructed in Exercise 1, which have

a finite area and which have infinite area?

[Partial ans. (c), (d), (f), (h), and (j) are of infinite area; (g) is a line;

(1) and (k) are empty.]
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For each of the following half-planes give an inequality of which it

is the truth set.

(a) The open half-plane above the x; axis. [Ans. x5 > 0]

(b) Theclosed half-plane on and above the straight line making angles
of 45 degrees with the positive x; and x, axis.

Exercises 5 through 9 refer to a situation in which a retailer is trying to
decide how many units of items X and Y he should keep in stock. Let x
be the number of units of X and y be the number of units of Y. X costs
$4 per unit and Y costs $3 per unit.

5.

6.

10.

One cannot stock a negative number of units of either X or Y. Write
these conditions as inequalities and draw their truth sets.

The maximum demand over the period for which the retailer is con-
templating holding inventory will not exceed 600 units of X or 600
units of Y. Modify the set found in Exercise 5 to take this into account.
The retailer is not willing to tie up more than $2400 in inventory
altogether. Modify the set found in Exercise 6.

The retailer decides to invest at least twice as much in inventory of
item X as he does in inventory of item Y. Modify the set of Exercise 7.
Finally, the retailer decides that he wants to invest $900 in inventory
of item Y. What possibilities are left? [Ans. None.]

Assume that a pound of meat contains 80 units of protein and 10 units
of calcium while a quart of milk contains 15 units of protein and 60
units of calcium. I1fan adult’s minimum daily requirements are 40 units
of protein and 30 units of calcium, what consumption quantities of
meat and milk will yield at least these minimum daily requirements?
A convenient way to summarize the data is by the following data box:

Food Protein Calcium
Meat 30 units Erotein 10 units calcium
b meat Ib meat
Milk 15 units Er.otem 60 units cal‘cmm
qt milk qt milk
Requirements 40 units protein 30 units calcium
day day

(a) Let w, be the number of pounds of meat and w, be the number
of quarts of milk consumed per day, and let w = (wy, w,). Write
inequality constraints that will solve the above problem. Find 4
and ¢ so that they can be written wA > c.
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(b) Sketch the set of feasible vectors. Show that it is unbounded (that
it has infinite area).

(¢) Show that another way of indicating units is as in the data box
that follows:

Protein Calcium
Meat 80 10 (per pound)
Milk 15 60 (per quart)
Requirements 40 30 (per day)
(units) (units)

2 EXTREME POINTS; MAXIMA AND MINIMA
OF LINEAR FUNCTIONS

In the present section we first discuss the problem of finding the extreme
points of a bounded convex polyhedral set. Then we find out how to
compute the maximum and minimum values of a linear function defined
on such a set.

We use the following notation: the polyhedral convex set C is the truth
set of the statement Ax < b, where 4 is an m X n matrix, x is an #-com-
ponent column vector, and b is an m-component column vector. We let

Ay, Ay, . . ., A, denote the rows of 4. Hence 4, is an n-component row vector
and
4,
A= A.2
Am
The statement Ax < b is then the conjunction of the statements
Ax <by, Ayx <b,, ..., A,x<bh,,.

Definition We shall call the truth set of the statement 4,x = b, the bound-
ing hyperplane of the half space 4,x < b,.

Thus, in Figure 1 of the preceding section the slanting line (a) is the
bounding hyperplane of the half-space (b).

We found in the previous section that a convex set C is the intersection
of a finite number of half-spaces. The bounding hyperplanes of these
half-spaces that also contain points of C are called bounding hyperplanes
of C. Thus in Example 3 of Section 1 the bounding hyperplanes of the
polyhedral convex set given there are the three boundary lines of the triangle
shaded in Figure 2. Note that these lines intersect in pairs in three points,
the vertices of the triangle.
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Definition Let C be the polyhedral convex set defined by Ax < b, where

x is an n-component vector. Then a point T is an extreme (or corner) point
of Cif it

a. belongs to C, and
b. is the intersection of n bounding hyperplanes of C.

EXAMPLE 1

Figure 3

Find the extreme points of the polyhedral convex set Ax < b, where

2 3 60
A=|-2 =1} x=(x1), b=|-321
0 —1 *2 )

The corresponding inequalities are:

2x, + 3x, < 60,
2x, + x, > 32,
Xy > 2.

The last two inequalities have been multiplied through by —1, and can be
regarded as managerial constraints added to the box-manufacturer problem
of Example 3 of Section 1. A sketch of the three half-planes (Figure 3)

X1

shows that the set of feasible solutions is a triangle. Hence we can find the
extreme points by changing the inequalities to equalities in pairs and solving
three sets of simultaneous equations. We obtain in this way the points

(2 (3 ()

which are the extreme points of the set.
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EXAMPLE 2

Figure 4

Chapter 7

We can now give an interpretation for the various points of the polyhedral
convex set in terms of the system of inequalities. An extreme point lines
on two boundaries, which means that two of the inequalities are actually
equalities. A point on a side, other than an extreme point, lies on one
boundary and hence one inequality is an equality. An interior point of the
polygon must, by a process of elimination, correspond to the case where
the inequalities are all strict inequalities—that is, not only < but < holds.

There is a mechanical (but lengthy) method for finding all the extreme
points of a polyhedral convex set C defined by Ax < b. Consider the
bounding hyperplanes 4;x = b,,. .., 4, x = b, of the half-spaces that de-
termine C. Select a subset of n of these hyperplanes and solve their equa-
tions simultaneously. If the resultis a unique point x°, then (and only then)
check to see whether x° belongs to C. If it does, by the above definition,
x%is an extreme point of C. Moreover, all extreme points of C can be found
in this manner.

Let

_ (-1 0 _ (0
A"( 0 _1) and b“(o)‘
Then the polyhedral convex set C defined by Ax < b is the first quadrant
of the x,, x, plane, shaded in Figure 4. The only extreme point is the origin,
which is the intersection of the lines x; = 0 and x, = 0. This is an example
of an unbounded polyhedral convex set.

X3
VEERN
s Rays
// 4
Ve
4 /
7‘/"' -
y; 7/
y; Ve
P /
/ /
/ /
7/ //
5°
LA,
0 Xy

Notice that the set C in Example 2 contains the ray or half-line that starts
at the origin of coordinates and extends upward to the right making a
45-degree angle with the axes. This ray is dotted in Figure 4. Of course,
this set also contains many other rays; two others are shown in the figure.
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We shall say that a polyhedral convex set is bounded if it does not contain
a ray. A set, such as the one in Figure 4, that does contain rays will be
called unbounded. For simplicity we shall restrict our discussion in most
of this chapter to bounded convex sets.

Consider the box-manufacturer problem of Example 3 of Section 1, and
suppose that the manufacturer makes a profit of $1 on small and $2 on
large boxes. Hence, if he makes x, small and x, large boxes, his profit
function is x; + 2x,, and the inequalities limiting the choice of x; and x,
are given in Example 1. What is the most and what the least profit he can
make?

We must find the maximum and the minimum value of x; + 2x, for point
(x4, X,) in the triangle shaded in Figure 3. Let us first try the extreme points.
At (15,2) we have a profit of 19, at (27,2) a profit of 31, and at (9, 14)
a profit of 37. The last extreme point is most profitable. But what can we
say about the remainder of the triangle? If we start at (9, 14) and try to
move to other points in the triangle, the best thing to do is to move along
the bounding hyperplane 2x, + 3x, = 60, since in this way we can get the
most favorable tradeoff between x; and x,. However, for each unit we
decrease x, along this line we can increase x, by only # units, with a net
loss of profit. Hence the maximum profit is taken on at the extreme point
(9, 14). A similar argument shows that the minimum profit is taken on at
the extreme point (15,2). Thus for this example the maximum and mini-
mum profits are observed at extreme points. We shall show that this is true
in general.

Given a convex polyhedral set C and a linear function
CX = X1 + CoXo + . o+ Xy

where ¢ = (¢4, ¢y, . . ., ¢,), We want to show in general that the maximum
and minimum values of the function cx always occur at extreme points of
C. We shall carry out the proof for the planar case in which n = 2, but
our results are true in general.

First, we shall show that the values of the linear function ¢,x; + ¢ox, on
any line segment lie between the values the function has at the two endpoints
(possibly equal to the value at one endpoint). We represent the points as
X1
X2
by the row vector (¢4, ¢,). Let the endpoints of the segment be

AN xy
() ma 1= ()
P (x’z) ane 9 xy
We have seen in Chapter 4 (see Figure 4) that the points in between p and

g can be represented as tp + (1 — f)g, with 0 < ¢ < 1. If the values of the
function at the points p and g are P and Q, respectively (assume that P > Q),

column vectors ( ) and then we see that our linear function is represented
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then at a point in between the value will be 1P + (1 — ¢)Q, since the function
is linear. This value can also be written as

P+ (1 -00=0+ (-0,

which (for 0 <7 < 1) is at least Q and at most P.
We are now in a position to prove the result illustrated in Example 3.

Theorem A linear function cx defined over a convex polyhedral set C takes
on its maximum (and minimum) value at an extreme point of C.

Figure 5

Proof The proof of the theorem is illustrated in Figure 5. We shall suppose
that at the extreme point p the function takes on a value P greater than
or equal to the value at any other extreme point, and at the extreme point

Minimum corner

value @
g

Maximum corner
value P — p

g it takes on its smallest extreme-point value, Q. Let r be any point of the
polygon. Draw a straight line between p and r and continue it until it cuts
the polygon again at a point u lying on an edge of the polygon, say the
edge between the corner points s and ¢. (The line may even cut the edge
at one of the points s and 7; the analysis remains unchanged.) By hypothesis
the value of the function at any corner point must lie between Q and P.
By the above result the value of the function at ¥ must lie between its values
at s and 1, and hence must also lie between Q and P. Again by the above
result the value of the function at r must lie between its values at p and
u, and hence must also lie between Q and P. Since r was any point of the
polygon, our theorem is proved.

Suppose that in place of the linear function ¢;x,; + ¢,x, we had considered
the function ¢;x; + ¢x, + k. The addition of the constant k merely changes
every value of the function, including the maximum and minimum values
of the function, by that amount. Hence the analysis of where the maximum
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and minimum values of the function are taken on is unchanged. Therefore,
we have the following theorem.

Theorem The function cx + k defined over a convex polyhedral set C takes
on its maximum (and minimum) value at an extreme point of C.

EXERCISES

A method of finding the maximum or minimum of the function cx + &
defined over a convex set C is then the following: Find the extreme points
of the set; there will be a finite number of them; substitute the coordinates
of each into the function; the largest of the values so obtained will be the
maximum of the function and the smallest value will be the minimum of
the function. The method was illustrated previously in Example 3.

In Section 5 we shall describe the so-called simplex method, which is
considerably more efficient for solving the problem in Example 3.

1. Consider the cardboard-box problem of Exercise 2 of Section 1.
Assuming that both constraints stated in (a) and (b) are in effect and
the profit function is x; + 2x,, find the extreme point (or points) that
give maximum and minimum profit.

2. Rework Exercise 1 with profit function 2x; + 3x,. Show that in this
case there is more than one solution for maximum profit.

3. Consider the diet problem of Exercise 10 of Section 1. Suppose that
meat costs $1 per pound and milk costs 30 cents per quart. Find the
lowest-cost diet that will meet minimum requirements.

[Ans. w = (33, 49), cost is $11.]

4. The owner of an oil truck with a capacity of 500 gallons hauls gasoline
and oil products from city to city. On any given trip he wishes to load
his truck with at least 200 gallons of regular gasoline, at least 100
gallons of high-test gasoline, and at most 150 gallons of kerosene.
Assuming that he always fills his truck to capacity, find the convex
set of ways that he can load his truck. Interpret the extreme points
of the set. [Hint: There are four extreme points.]

5. Anadvertiser wishes to sponsor a half-hour television comedy and must
decide on the composition of the show. The advertiser insists that there
be at least three minutes of commercials, while the television network
requires that the commercial time be limited to at most 15 minutes.
The comedian refuses to work more than 22 minutes each half-hour
show. If a band is added to play while neither the comedian nor the
commercials are on, construct the convex set C of possible assignments
of time to the comedian, the commercials, and the band that use up
the 30 minutes. Find the extreme points of C.

[Ans. if x, is the comedian time, x, the commercial time, and
30 — x; — x, the band time, the extreme points are

(5} (5 C5) G3) e ()



328 Linear Programming and the Theory of Games Chapter 7

6.

10.

In Exercise 4 suppose that the o1l truck operator gets 3 cents per gallon
for delivering regular gasoline, 2 cents per gallon for high-test, and
1 cent per gallon for kerosene. Write the expression that gives the total
amount he will get paid for each possible load that he carries. How
should he load his truck in order to earn the maximum amount?
[Ans. He should carry 400 gallons of regular gasoline, 100 gallons of
high test, and no kerosene.]
In Exercise 6, if he gets 3 cents per gallon for regular and 2 cents per
gallon for high-test gasoline, how high must his payment for kerosene
become before he will load it on his truck in order to make a maximum
profit?

[Ans. He must get paid at least 3 cents per gallon of kerosene.]
In Exercise 5 let x,; be the number of minutes the comedian is on and
X, the number of minutes the commercial is on the program. Suppose
the comedian costs $200 per minute, the commercials cost $50 per
minute, and the band is free. How should the advertiser choose the
composition of the show in order that its costs be a minimum?
Consider the polyhedral convex set P defined by the inequalities

-1 <x, <4,
0 <x, <6.

Find four different sets of conditions on the constants a and b that
the function F(x) = ax; + bx, should have its maximum at one and
only one of the four corner points of P. Find conditions that F should
have its minimum at each of these points.

[Ans. For example, the maximum is at (2) ifa>0and b >0.]

A well-known nursery rhyme goes, “Jack Sprat could eat no fat, his

wife could eat no lean....” Suppose Jack wishes to have at least one

pound of lean meat per day, while his wife (call her Jill) needs at least

4 pound of fat per day. Assume they buy only beef having 10 percent

fat and 90 percent lean, and pork having 40 percent fat and 60 percent

lean. Jack and Jill want to fulfill their minimal diet requirements at
the lowest possible cost.

(a) Let x be the amount of beef and y the amount of pork they
purchase per day. Construct the convex set of points in the plane
representing purchases that fulfill both persons’ minimum diet
requirements.

(b) Suggest necessary restrictions on the purchases that will change
this set into a convex polygon.

(c) If beef costs $1 per pound, and pork costs 50 cents per pound,
show that the diet of least cost has only pork, and find the mini-
mum cost. [Ans. $.83.]

(d) If beef costs 75 cents and pork costs 50 cents per pound, show
that there is a whole-line segment of solution points and find the
minimum cost. [Ans. $.83.]
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(e) If beef and pork each cost $1 a pound, show that the unique
minimal cost diet has both beef and pork. Find the minimum
cost. [4ns. $1.40.]

(f) Show that the restriction made in part (b) did not alter the answers
given in (c)-(e).

11. In Exercise 10(d) show that for all but one of the minimal-cost diets
Jill has more than her minimum requirement of fat, while Jack always
gets exactly his minimal requirement of lean. Show that all but one
of the minimal-cost diets contains some beef.

12. In Exercise 10(e) show that Jack and Jill each get exactly their minimal
requirements.

13. In Exercise 10 if the price of pork is fixed at $1 a pound, how low
must the price of beef fall before Jack and Jill will eat only beef?

[Ans. $.25.]

14. In Exercise 10 suppose that Jack decides to reduce his minimal re-
quirement to .6 pound of lean meat per day. How does the convex
set change? How do the solutions in 3(c), (d), and (e) change?

3 LINEAR PROGRAMMING PROBLEMS

EXAMPLE 1

An important class of practical problems are those that require the determi-
nation of the maximum or the minimum of a linear function ¢x + k defined
over a polyhedral convex set of points C. We illustrate these so-called linear
programming problems by means of the following examples. In Section 5
we shall discuss the simplex method for solving these examples.

An automobile manufacturer makes automobiles and trucks in a factory
that is divided into two shops. Shop 1, which performs the basic assembly
operation, must work 5 man-days on each truck but only 2 man-hours on
each automobile. Shop 2, which performs finishing operations, must work
3 man-hours for each automobile or truck that it produces. Because of men
and machine limitations shop 1 has 180 man-hours per week available while
shop 2 has 135 man-hours per week. If the manufacturer makes a profit
of $300 on each truck and $200 on each automobile, how many of each
should he produce to maximize his profit?

Before proceeding, let us summarize the problem in the data box of Figure
6. (The term data box is due to A. W. Tucker.) Notice that the numbers
introduced above appear in the data box with their physical dimensions
attached. When doing dimensional analysis, in the sense of physics, we may
manipulate these dimension quantities just like algebraic quantities. We
shall see in Section 6 that we can obtain interpretations for dual variables
by means of dimensional analysis. The reader is strongly advised to set up
a similar data box for every linear programming example he works.

An alternate and slightly more elegant way of indicating the units in the
data box is shown in Figure 7. The reader should compare it with Figure
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Trucks Autos Capacities
Shop 1 Sl-manhr 2 Sl-manhr 180 S1-manhr
truck auto week
Shop 2 3 S2-manhr 3 S2-manhr 135 S2-manhr
truck auto week
Profits 300 —2 200 3
. truck auto
Figure 6
Trucks Autos Capacities
Shop 1 5 2 180 (Man-hours)
Shop 2 3 3 135 (Man-hours)
Profits 300 200 ($)
Figure 7 (per truck) (per auto) (per week)

6 to see the correspondence between them. When in doubt, use the more
explicit indications of Figure 6.

A dimensional fraction such as “Sl-manhr/truck” is read “shop 1 man-
hours per truck.” Suppose we now introduce two variables x, with dimen-
sions “trucks/week,” which will become the number of trucks per week we
should produce, and x, with dimensions “autos/week.” Then the first
constraint of the data box of Figure 6 becomes:

(5 S1-manhr ) ( trucks) ( S1-manhr ) (
)l x, + {2 X
truck week auto

Now, by canceling the common term “truck” from numerator and denomi-
nator of the first term, and similarly canceling the common dimension “auto”
from the numerator and denominator of the second term, we see that the
resulting dimensions of each term are “Sl-manhr/week”—the same as the
dimensions of the capacity term on the right-hand side of the inequality.
A similar dimensional analysis can be carried out for the second capacity
constraint. Dropping dimensions, we have the following restrictions:

autos Sl-manhr
< 180 =——=—,
2 Week) - week

S5xy + 2x, < 180,
3x; + 3x, < 135,

together with the obviously necessary nonnegative constraints x, > 0 and
x, > 0.
Subject to these constraints we want to maximize the profit function:

$ ) ( trucks ) ( $ ) ( autos )
300 —/—
( truck / \™ “week +1200 auto ) \*2 week /'
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Canceling out the common terms, we see that the dimensions of this function
are simply “$/week.”

In order to state the problem as a linear programming problem we define
the quantities:

5 2 180)
A = 5 b = s et
(3 3) (1 35 and ¢ = (300, 200),

which are immediately evident from the data boxes in Figure 6 and 7. Then
our problem is:

X1
X2
profit, given by the quantity cx, is a maximum subject to the inequality
constraints Ax < b and x > 0. The inequality constraints insure that the
weekly number of available man-hours is not exceeded and that nonnegative
quantities of automobiles and trucks are produced.

Maximum problem: Determine the vector x = ( ) so that the weekly

The graph of the convex set of possible x vectors is pictured in Figure
8. This is a problem of the kind discussed in the previous section.

X3

(36)\ \ "1

The extreme points of the convex set C are

0 36 0 30
L= (o)’ L= ( 0)’ Ty = (45)’ and 7, = (15)'
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EXAMPLE 2

Figure 8

Figure 10

Following the solution procedure outlined in the previous section, we test
the function cx = 300x; + 200x, at each of these extreme points. The
values taken on are 0, 10,800, 9000, and 12,000. Thus the maximum weekly
profit is $12,000, achieved by producing 30 trucks and 15 automobiles per
week.

A mining company owns two different mines that produce a given kind of
ore. The mines are located in different parts of the country and have
different production capacities. After crushing, the ore is graded into three
classes: high-grade, medium-grade, and low-grade ores. There is some
demand for each grade of ore. The mining company has contracted to
provide a smelting plant with 12 tons of high-grade, 8 tons of medium-grade,
and 24 tons of low-grade ore per week. It costs the company $200 per day
to run the first mine and $160 per day to run the second. However, in a
day’s operation the first mine produces 6 tons of high-grade, 2 tons of
medium-grade, and 4 tons of low-grade ore, while the second mine produces
daily 2 tons of high-grade, 2 tons of medium-grade, and 12 tons of low-grade
ore. How many days a week should each mine be operated in order to fulfill
the company’s orders most economically?

Before proceeding, we again summarize the problem in the data boxes
of Figures 9 and 10. The reader should compare these two figures to see
the correspondence between them. We shall make use of these dimensions
when we give interpretations of the dual variables in Section 6.

High- Medium- Low-
grade grade grade
Ore Ore Ore
HG MG LG Cost
. tons-HG tons-MG tons-LG $
1 2 4 =—>"== 1200
Mine Ml-day ~ Ml-day M1-day M1-day
. tons-HG tons-MG tons-LG $
2 2 12 160
Mine M2-day M2-day M2-day M2-day
Requirements | 12 tons-HG g tons-MG 24 tons-LG
week week week
High- Medium- Low-
grade grade grade
Ore Ore Ore Cost
Mine 1 6 2 4 200 (per day)
Mine 2 2 2 12 160 (per day)
Requirements 12 8 24 (per week)

(tons) (tons) (tons) $)
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Let v = (v, v,) be the two-component row vector whose component v,
gives the number of days per week that mine 1 operates and v, gives the
number of days per week that mine 2 operates. If we define the quantities

200)

_ (6 2 4 _ _
A_( ), c = (12,8,24), and b—<160

2 2 12

which are immediately evident from the data box of Figure 9, we can state
the problem above as a minimum problem.

Minimum problem: Determine the vector v so that the weekly operating
cost, given by the quantity vb, is a minimum subject to the inequality
restraints v4 > cand v > 0. The inequality restraints insure that the weekly
output requirements are met and the limits on the components of v are not
exceeded.

This is a minimum problem of the type discussed in detail in the preceding
section. In Figure 11 we have graphed the convex polyhedral set C defined
by the inequalities v4 > c.

vy
0, 6)
©0,4)

0,2)

2.0 @0 60 "

The extreme points of the convex set C are
T, = (6,0), T, =31, T; = (1, 3), T, = (0, 6).

Testing the function vb = 200v; + 160v, at each of these extreme points,
we see that it takes on the values 1200, 760, 680, and 960, respectively.
We see that the minimum operating cost is $680 per week and it is achieved
at T;—that is, by operating the first mine one day a week and the second
mine three days a week.
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EXAMPLE 3

EXAMPLE 4

EXERCISES

Observe that if the mines are operated as indicated, then the combined
weekly production will be 12 tons of high-grade ore, 8 tons of medium-grade
ore, and 40 tons of low-grade ore. In other words, for this solution low-grade
ore, is overproduced. If the company has no other demand for the low-grade
ore, then it must discard 16 tons of it per week in this minimum-cost solution
of its production problem. We shall discuss this point further in Section 6.

As a variant of Example 2, assume that the cost vector is
_ (160},
b= (200)’
in other words, the first mine now has a lower daily cost than the second.
By the same procedure as above we find that the minimum cost level is
again $680 and is achieved by operating the first mine three days a week
and the second mine one day a week. In this solution 20 tons of high-grade
ore, instead of the required 12 tons, are produced, while the requirements

of medium- and low-grade ores are exactly met. Thus 8 tons of high-grade
ore must be discarded per week.

As another variant of Example 2, assume that the cost vector is

b (200);
200

in other words, both mines have the same production costs. Evaluating the
cost function vb at the extreme points of the convex set, we find costs of
$1200 on two of the extreme points (7; and 7,) and costs of $800 on the
other two extreme points (7, and T3). Thus the minimum cost is attained
by operating either one of the mines three days a week and the other mine
one day a week. But there are other solutions, since if the minimum is taken
on at two distinct extreme points it is also taken on at each of the points
on the line segment between. Thus any vector v where 1 < v, <3,
1 <v, <3, and v, + v, =4 also gives a minimum-cost solution. For
example, each mine could operate two days a week.

It can be shown (see Exercise 2) that for any solution v with 1 < v, < 3,

1 < v, <3, and v; + v, = 4, both high-grade and low-grade ore are over-
produced.

1. In Example 1, assume that profits are $200 per truck and $300 per
automobile. What should the factory now produce for maximum
profit?

2. In Example 4, show that both high- and low-grade ore are overpro-
duced for solution vectors v with 1 <v; <3, 1 v, <3, and
Uy + Uy = 4,

3. A manufacturer has two machines, M; and M,, which he uses to



Section 3

Linear Programming and the Theory of Games 335

manufacture two products, P, and P,. To produce one unit of P, three
hours of time on M, and six hours on M, are needed. And to produce
one unit of P, takes six hours on M, and five hours on M,. Each
machine can run a maximum of 2100 hours per year. If the manufac-
turer sells product P; for a net profit of $40 and P, for a net profit
of $50 each, what production mix shall he produce to maximize his
total profit?

(a) Set up the data box for the problem, marking the dimensions of

all numbers.
(b) Find A4, b, and c.
(c) Draw the set of possible production vectors and find the optimum

100
300
Two breakfast cereals, Krix and Kranch, supply varying amounts of
vitamin B and iron; these are listed together with one-third of the daily
minimum requirements (MDR) in the table below:

profit point.  [dns. x0 = ( ) with yearly profit of $19,000.]

Cereal Vitamin B Iron
Krix .15 mg/oz 1.67 mg/oz
Kranch .10 mg/oz 3.33 mg/oz
1 MDR .12 mg/day 20 mg/day

Krix costs 8 cents an ounce and Kranch 10 cents an ounce. How can

we satisfy 4 MDR at minimum cost?

(a) Let v, be the amount of Krix eaten and v, the amount of Kranch
eaten. Write a minimizing linear programming problem for the
above. Set up the data box and find 4, b, and c.

(b) Draw the convex set of possible amounts eaten defined by the
inequalities in (a).

(¢) What is the lowest-cost feasible diet?

[Ans. v° = (.6, .3) with cost 7.8 cents.]

A farmer owns a 200-acre farm and can plant any combination of two

crops I and II. Crop I requires 1 man-day of labor and $10 of capital

for each acre planted, while crop II requires 4 man-days of labor and
$20 of capital for each acre planted. Crop I produces $40 of net revenue

per acre and crop Il $60. The farmer has $2200 of capital and 320

man-days of labor available for the year. What is the optimal planting

138) with $8400 revenue.]

In Exercise 5 assume that the revenue from crop II is $90 per acre.

(a) Find the new maximum-revenue scheme, and show that now the
best thing for the farmer to do is to leave 30 acres unplanted.

(b) Explain why the farmer should leave part of his land fallow in
this case.

strategy? [Ans. x° = (
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/)7.

Suppose that a pound of meat contains 1 unit of carbohydrates, 3 units
of vitamins, and 12 units of proteins and costs $1. Suppose also that
one pound of cabbage contains 3, 4, and 1 units of these items, respec-
tively, and costs 25 cents per pound. If these are the only foods
available and the minimum daily requirements are 8 units of carbohy-
drates, 19 units of vitamins, and 7 units of protein, what is the
minimum-cost diet? [Ans. v° = (2, 4.6) with cost $1.35.]
Suppose that the minimum-cost diet found in Exercise 7 is unpalatable.
In order to increase its palatability, add a constraint requiring that at
least a half pound of meat be eaten, and resolve the problem. How
much is the cost of the minimum-cost diet increased owing to this
palatability constraint? [Ans. $.24.]
In Exercise 8 suppose that we add a different kind of palatability
constraint—namely, that at most two pounds of cabbage be eaten. Now
how much is the cost of the minimum-cost diet increased?

[Ans. $2.82.]
A manufacturer produces two types of bearings, A and B, utilizing three
types of machines; lathes, grinders, and drill presses. The machinery
requirements for one unit of each product, in hours, are expressed in
the following table:

Machine
Bearing Lathe Grinder Drill Press
A 01 03 03
B 02 01 015
Weekly machine
capacity (hr) 400 450 480

He makes a Profit of 10 cents per type A bearing and 15 cents per
type B bearing. What should his weekly production of each bearing
be in order to maximize his profits?

[Ans. x = ( 8000

16,000) with weekly profits of $3200.]

4 THE DUAL PROBLEM

As the examples of the preceding sections have shown, some linear pro-
gramming problems are maximizing and some are minimizing. Thus we
might be interested in maximizing profits, production, or market share—or
we might want to minimize costs, completion times, or raw-material usage.
We shall show that to each maximizing problem there is a well-defined
minimizing problem that uses the same data and whose solution has impor-
tant mathematical implications concerning the original maximizing prob-
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lem. Similarly, to each minimizing problem there is a well-defined maxi-
mizing problem that uses the same data and is similarly related.

First, we recall that every linear programming problem can be put into
one of the two following forms:

Maximize c¢x
(1) subject to Ax < b } the MAXIMUM problem.
x>0
or
Minimize vb
) subject to vA > ¢ ; the MINIMUM problem.
v>0

If the components of 4, b, ¢ are the same, then the two problems (1) and
(2) are called dual linear programming problems. Every linear programming
problem, whether of the maximum or minimum type, has a dual that can
be formally stated as above. The dual of a given problem frequently has
important economic meaning and always has mathematical significance—see
the discussion in Section 6.

To set up a maximum problem proceed as follows: Let the variables to
be determined be x,, ..., x,; set up the data box as in Figure 12, with the
x-variables appearing as labels on the top of the box. It then follows that,
taking 4, b, and ¢ from the data box, the maximum problem is in form
(1) above.

xl X2 xn
ayy Ay Ay, b,
ay ayy Aop b,
aml amZ amn bm
c, Cy c,

To set up a minimum problem proceed as follows: Let the variables to
be determined by vy, ..., v,,; set up the data box as in Figure 13 with the
v-variables appearing as labels to the left of the box. It then follows that,
taking A4, b, and ¢ from the data box, the minimum problem is in form (2)
above.

Uy an o Ain b,

Uy ay ass Aoy b,

Um aml am2 amn bm
o o c,
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We now make two important observations. First, the dual problem to
a maximum problem with data box as in Figure 12 can be obtained by
merely labeling the rows vy, ..., Up; and the dual problem to the minimum
problem whose data box is in Figure 13 can be obtained by labeling the
columns x, . .., X,. Second, the dimensions of the dual variables in either
case can be obtained by dividing the dimensions of the b’s or ¢’s by the
corresponding @’s, as the following examples will make clear. We shall see
that the interpretations of the dual variables are easy, once their physical
dimensions are determined.

The reader may wonder why we introduce the dual problem instead of
concentrating on the original problem alone. The reason is that the simplex
method to be discussed later automatically produces the optimum solution
to both problems simultaneously. Also, the solution to the dual problem
often has important managerial and economic interpretations.

Before we can describe how the simplex method works, we must make
a change in the formulation of the dual programs. What we shall do is
to add slack variables to the inequalities stated in expressions (1) and (2)
of this section in such a way as to make them into equations. To see how
this is done, consider as an example the system of inequalities

—u 4+ 2v <5, where u > 0 and v > 0.
We now add a new slack variable w and obtain a new system of expressions:
—u+ 204+ w=23, where u > 0, v >0, w > 0.
Thus we obtain the equation
—u+2v+w=5

in nonnegative variables. Notice that the new system of expressions is
equivalent to the old system, since any solution of the new system that has
w = 0 represents a case for which —u + 2v =5, and a solution of the new
system for which w > 0 represents a case for which —u + 2v <5. More-
over, we can write any solution of the old system as a solution of the new
system by properly choosing a nonnegative value of w. Thus the truth sets
of the two systems are identical.

Now we want to reformulate the constraints of problems (1) and (2). Let
» be an m-component vector of slack variables y;, and let f be a number;
then (1) is equivalent to

Maximize cx=f
(3) subject to  Ax + y = b,
x,y > 0.

To see this, rewrite the constraint of (3) as follows:
4) Ax — b= —y;

then y > 0 is equivalent to —y < 0, and the latter is, from (4), the same
as Ax < b. The number f/ = c¢x measures the current value of the objective
function of the maximum problem.



Section 4

Figure 14

Linear Programming and the Theory of Games 339
Similarly, let u be an n-component row vector of slack variables u;, and
let g be a number; then (2) is equivalent to

Minimize vb =g
) subject to vA — u = ¢,
u,v> 0.

To see the equivalence rewrite the equality constraint of (5) as
(6) VA — ¢ = u;

then it is obvious that u > 0 and v4 > c are the same. The number g = vb
measures the current value of the objective function of the minimizing
problem.

Next we show that the pair of dual problems in (3) and (5) can both be
represented in the same tableau, and that the tableau can be obtained by
extending either of the data boxes in Figure 12 or 13. Consider the (Tucker)
tableau, which we shall later call the initial simplex tableau, in Figure 14.

Uy ayy aqy ay, b, =N
U, ax, ayo Aoy b, = =)o
Um aml am2 amn bm = _.ym
—1 c c, ¢, 0 =f

= Uy :112 = U :g

Notice that Figure 14 can be obtained from Figure 12 by adding the 0

entry in the lower right-hand corner, putting variables vy, ..., v,, and —1
along the left margin, putting — 1 above the (n + 1)st column, marking the
right-hand side with = —y,,..., = —y,,, and = f, and marking the bottom
of the matrix with = u,..., = u,, and = g. Figure 14 can be obtained

in a similar manner from Figure 13. The reason for this labeling is as
follows: if we drop the x’s and —1 down to the first row of the matrix,
multiply by the coefficients there, and set equal to the label on the right,
we have

Ay Xy + Xy + ...+ apx, — by = —yy,

which is just exactly the first equation of (4). Dropping the labels at the
top down to the other rows will give the other equations of (4). Finally,
dropping the labels down to the last row gives

X1+ Coxg + ...+ x, =,

which is just the definition of f.
In a similar manner, if we move the labels on the left of Figure 14 into
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EXAMPLE 1

Figure 15

EXAMPLE 2

Figure 16

each column of the tableau, multiply, and set equal to the label at the
bottom, we have the various equations of (6) together with the definition
of g.

The data box for the automobile/truck example of the last section is shown
in Figures 6 and 7; hence its initial simplex tableau is as given in Figure 15.

Xy Xy -1
vy ® 2 180 = —y
Uy 3 3 135 = —y,
-1 300 200 0 =f
=U = Uy =§

The primal equations for this problem corresponding to (4) are
S5x;+ 2x,— 180 = —py,
3x1 + 3.X2 — 135 = _y2’
300x, + 200x, = f.
The dual equations for this problem corresponding to (6) are
5v, + 3v, — 300 = u,,
2v, +  3v, — 200 = u,,
180v, + 1350, =g

These are obtained in the manner described above.

The data box for the mining example of the last section is shown in Figures
9 and 10; hence its initial simplex tableau is as given in Figure 16.

X4 Xy X3 —1
vy ® 2 4 200 = —y
U, 2 2 12 160 - —,
.y 12 8 24 0 =f

= u1 = le = u3 = g

The primal equations for this problem corresponding to (6) are

6v, + 2v, — 12 = uy,
20, + 20, — 8 = uy,
4v, + 12v, — 24 = ug,
2000, + 160v, =g,
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and the dual equations corresponding to (4) are

6x; + 2xy + 4x3 — 200 = —y,,
2x; + 2x5 + 12x5 — 160 = —yp,,
12x, + 8x, + 24x, =/

The reader should set up in an analogous way the initial simplex tableaus
for Examples 3 and 4 of Section 3.

We next show that from equations (4) and (6) we can immediately derive
Tucker’s duality equation:

(7) g—f=uvy+ ux
This follows easily since
g—f=vb—cx =v(dAx +y) — (4 — u)x = vy + ux,

where we used the substitutions b = Ax + y from (4) and ¢ = v4 — u
from (6).

Nonnegative vectors x, y, u, and v that satisfy (4) and (6) will be called
Jfeasible vectors for the equality form of the linear programming problem.
Note that the duality relation (7) is true for all solutions x,y,u, and v
satisfying (4) and (6) whether nonnegative or not. However, the following
theorem shows that a pair of feasible vectors for one of the problems implies
a bound on the objective function of the other problem.

Theorem (a) Let x%, )%, and f° be optimal solutions to maximizing problem
(3), and let u, v, and g be feasible solutions to the dual minimizing problem
(5); then cx® = f9 < g = vb; in other words, for any feasible vector v, the
value g = vb is an upper bound to the maximum value f© = cx® of the
maximizing problem (3).

(b) Let u°, v, and g° be optimal solutions to the minimizing problem (5),
and let x, y, and f be feasible solutions to the dual maximizing problem
(3); then v° = g° > f = cx; in other words, for any feasible vector x, the
value f = c¢x is a lower bound to the minimum value g° = v% of the mini-
mizing problem (5).

EXAMPLE 1
(continued)

Proof (a) If u,v, x° and »° are all nonnegative vectors, then it follows that
vy® > 0 and ux® > 0, so that, from (7), we have

g—f°=uv’ + ux® >0,
or, in other words, g > f9, as asserted.
The proof of (b) is similar.

We illustrate the theorem by returning to the previous examples.

If we consider the automobile/truck example whose initial tableau is given
in Figure 15, we can easily check that the following quantities solve the
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EXAMPLE 2
(continued)

EXERCISES

primal problem: x; = 10, x, = 10, y; = 110, y, = 75. These were obtained
by selecting arbitrary but not too large values for x; and x, and then solving
for y, and y,. From this feasible solution we calculate cx = 300 - 10 +
200 - 10 = 3000 + 2000 = 5000; hence we know that 5000 < g% = v%b; that
is, we have found a lower bound to the optimum value g° of the dual
minimizing problem.

Similarly, we can select v; and v, to be fairly large, but otherwise arbitrary,
and solve for u; and u,. Forinstance,v; = 50,v, = 40,4, = 70,and u, = 20
are a feasible choice for these quantities. From them we know that f* = ¢x°
is definitely not greater than vbh = 18050 4 135-40 = 9000 + 5400 =
14,400.

Since we know that the optimum value is f° = 12,000, and we will later
show that /0 = g we see that, in fact, the lower and upper bounds are
correctin this instance. The reader should try several other feasible solutions
for this example.

Let us check the theorem for the mining example shown in Figure 16.
Suppose we choose x; = 20, x, = 20, x; = 5, so that y; = 20 and y, = 20.
We thus obtain the lower bound on g® as cx = 12-20 + 8-20 + 24-5 =
240 + 160 + 120 = 520.

Similarly, we can choose v; = 2, v, = 2, and correspondingly u, = 4,
u, = 0, and u; = 8, so an upper bound for f° is vb =200-2 + 160-2 =
720.

Since the true value is 680, we see that the upper and lower bounds again
are correct.

1. Illustrate the theorem of this section by finding other feasible solutions

to the primal and dual problems for the automobile/truck example,

and show that the upper and lower bounds so obtained are correct.

Repeat Exercise 1 for the mining example.

3. For Example 3 of Section 3:

(a) Set up and label the initial tableau.

(b) Write the primal and dual equations.

(c) Find feasible solutions to the primal equations and determine
a bound to the dual problem.

(d) Find feasible solutions to the dual problem and derive a bound
on the primal problem.

Repeat Exercise 3 for Exercise 4 of Section 3.

Repeat Exercise 3 for Exercise 5 or Section 3.

Repeat Exercise 3 for Exercise 7 of Section 3.

Repeat Exercise 3 for Exercise 10 of Section 3.

Let x° and v° be nonnegative vectors such that 0 = cx® = 1% = g°,

Ax® < b, and v°4 > c.

g

® NS
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(a) Show that if x is any other feasible vector, then
cx < vPAx < v% = ¢x°,

so that x° solves the maximum problem.
(b) Similarly, show that v° solves the minimum problem.
(¢) Show that ¢x°® = v°% = v°4x°.
9. Use (7) to show that if x, y, u, and v are vectors related as in (4) and
(6), then ux >0 and vy > 0 imply g > f. (Note that this is true
whether or not x, y, u, and v are nonnegative.)

If x, y,u, and v are vectors related as in (4) and (6), then they are said
to have the complementary slackness property if and only if

ux =0 and vy =0.
The remaining exercises refer to this property.

10. Use (7) to show that if x,y,u, and v satisfy the complementary
slackness property, then g = f. Is the converse true?
*11. If x, y, u, and v are nonnegative vectors, show that g = fif and only
if they have the complementary slackness property.
*12.  Use Exercises 8, 10, and 11 to show that nonnegative vectors related
as in (4) and (6) are optimal if and only if they satisfy the comple-
mentary slackness property.

5 THE SIMPLEX METHOD

In Section 3 we solved simple linear programming problems having two
variables by sketching convex sets in the plane. To solve such problems
in more than two variables by the same method would require visualizing
convex sets in more than two dimensions, which is extremely difficult. But
fortunately there is an algorithm, called the simplex algorithm, that permits
us to solve such large-scale linear programming problems without such
visualizations. The reader will recall that in Chapter 4 we developed an
algorithm for solving simultaneous linear equations that was algebraic (not
geometric) in nature and avoided similar visualization problems.

For simplicity we shall make the following two assumptions in the present
and next sections:

I. The Nonnegativity Assumption We shall assume b > 0; that is, every
component of b is nonnegative.

II. The Nondegeneracy Assumption The extreme points of the convex set
of feasible vectors are each the intersection of exactly n bounding hyper-
planes, where n is the number of components of the vectors involved.

In Section 7 we shall indicate how these two assumptions can be dropped.
We emphasize, however, that for linear programming problems derived from
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Figure 17

EXAMPLE 1

Chapter 7

actual applications both assumptions will be satisfied, or else the problem
can be reformulated so that they are. Moreover, when codes are written
for computers to solve linear programming problems, precautions are taken
to insure that these assumptions hold.

We now proceed to describe the simplex method. In the next section we
shall discuss reasons why the simplex method works.

After the data box has been set up for either a maximizing or minimizing
problem, the simplex method begins with the initial simplex tableau (the

* Tucker tableau) of Figure 14. Note that it was derived from the data box

as described in the previous section. The simplex algorithm will change the
initial tableau into a second one, that into a third, and so on, until finally
a tableau is obtained that displays the optimum answers to both the primal
and dual problems. A typical tableau in this computational process is shown
in Figure 17. Note that the variables have been identified as being of two

Nonbasic x- and y-variables —1
. ! { ! ! = — .
Nonbasic [” 112 11" I“‘“ _ Basic
u- and v- 21 22 2n 2.n+1 - X~ and y_
variables ’ variables
tml [m2 tnm tm.n+1 = -
-1 Lo+t L T lntin Lttt :f
Indicators
prownd fanacd = = g

Basic u- and v-variables

kinds: basic and nonbasic. The basic variables appear on the bottom and
right-hand sides of the tableau and the nonbasic variables on the left and
top. As we shall see, in any tableau, if we set the nonbasic variables equal
to zero, then the corresponding values of the basic variables can be read
from the last row and last column of the tableau. The other important thing
to note is that the entries of the first n columns of the last row are called
indicators.

The flow chart in Figure 18 describes how the simplex method works.
Look at box 1 in the upper left-hand corner. We see that for the automo-
bile/truck and mining examples of the previous section we have already
carried out the directives there: the problems are set up and the initial
tableaus formed. We now discuss in detail the rest of the computation for
these two examples.

The initial tableau for the automobile/truck example appears in Figure 15.
To solve this problem using the simplex method we go next to box 2 of
the flow chart in Figure 18. We note that in the initial simplex tableau of
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Halt. Computation ended.
Basic variables have indicated
value and nonbasic variables

/ | are zero.

Are there one
Or more positive
indicators?

lSet up data box for ]
the problem. Construct
linitial tableau.

L 00 0> A b
Select a positive indicator: e @ Label the new tableau the
say it is in column J. Call same as the old tableau excepr
column J the pivotal column. interchange the variable at top
of column J with variable at

right of row /, and interchange
variable at bottom of column J
with variable at left of row /.

(4] Y F——————- - © ‘

Are all the Halt. Maximum

|
entries ¢;yin problem has l
i unbounded solution. LT
Minimum problem ! other entries in pivotal column
|
|

Replace 7, J entry of new
tableau by 1/¢;;. Replace all

column J negative
or zero lextcfpt has no feasible by—~ty /.
ast. | solution.
_______ _I 1
o [
v

e For each i each (except I)

Choose a row / so that subtract #y times the /th row
1 n + 1/t is a minimum value of the new tableau from the ith
of t; » 4 1/ty for all i such that row of old tableau and enter

ty > 0. Call tjy the pivot. Call result in new tableau.

I the pivotal row.

S\

a Divide the Ith row of old tableau
by the pivot, ¢;7, and enter result
in Ith row of new tableau.

The simplex algorithm for problems with nonnegative righthand sides

Figure 15 there are positive indicators, so the answer to the question in box
2 is “yes.” Hence we proceed to box 3, which says, “Select a positive
indicator.” Suppose we select 300, which makes column I the pivotal column
and J = 1. We now go to box 4 and observe that there are positive entries
in column 1, so that the answer to the question there is “no,” and we go
on to box 6. We must now find the pivotal row. For this we examine the
ratios t; ,,,/t;; for i = 1 and 2. These ratios are 180/5 = 36 and 135/3 =
45. Since the smaller ratio occurs in the first row, we see that the 5 entry
in the first column of Flgure 15 is the pivot and I = 1, so that the first row
is pivotal. The pivot is circled in Flgure 15.

Next we carry out the directives in boxes 7 and 8 of Figure 18, which
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Figure 19

Figure 20

Figure 21

construct the rows of the new tableau. In box 7 we find we must divide
through the pivotal row of the old tableau by the pivot and insert it in the
new tableau (Figure 19). Then we multiply this new row by 3 and subtract

1 2 36
0 g 27
0 80 — 10,800

it from the second row of the old tableau to form the second row of the
new tableau. In vector form, this computation is

—3(1 2 30)+(3 3 135=0 2 27)

Similarly, we multiply the new row by 300 and subtract from the third row
of the old tableau to form the third row of the new tableau as shown. To
complete the new tableau we must replace the pivotal column as described
in box 9 of Figure 18; the result is given in Figure 20. Also we must

1 Xo —1
U 1 z 36 = —x,
Vs —4 ® 27 = )
—1 —60 80 —10,800 =f
Indicators
=l = Uy =&

interchange the labels of the variables at both ends of the pivot row with
the variables at both ends of the pivot column as described in box 10 of
Figure 18. The completed new second tableau appears in Figure 20.

We now find ourselves back at box 2 of the flow chart of Figure 18. Since
the 80 in the second column, last row of Figure 20 is positive, the answer
to the question in box 2 is “yes,” so we go to box 3. Clearly we must choose
J = 2. The answer to question in box 4 is “no,” so we g0 on to box 6 to
choose the pivot. The two ratios to be considered are 36/2 = 90 and
27/3 = 15, so that the second row is pivotal and £ (circled in Figure 20)
is the new pivot. Carrying out the instructions in boxes 7 and 8 of the flow
diagram gives the tableau in Figure 21, and finishing up with boxes 9 and
10 gives the completed third tableau (Figure 22).

1 0 30
-1 1 15
— 100 0 — 12,000
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1 Yo —1
Uy —3 8 15 = =X
—1 —%0 —189 —12,000 =f
Indicators
= U1 = 1)2 = g

We again find ourselves in box 2 of the flow diagram. But this time we
find no positive indicators for the tableau of Figure 22; hence the answer
to the question there is “no” and we go to box 11, which says that the
computation is ended. The answers to both the primal and dual problems
are displayed in the final tableau. To see what they are, we first set the
nonbasic variables equal to zero as instructed in box 11 of the flow diagram.
Hence we have u; = u, = y; = y, = 0, since the nonbasic variables appear
on the left and top of the final tableau. Knowing that y; =0 fori = 1,2,
we drop the variables at the top of the final tableau down to the first row
and multiply, obtaining —30 = —x; or simply x; = 30. Dropping these
down one row further gives x, = 15. And dropping them down to the last
row gives f = 12,000, which is the final value of the objective function. Thus
the optimal solution vectors to the maximizing problem are:

30
0
= (15)’

Note that this is the same solution that we found in the previous section.

We can also find the optimal solution to the dual problem. (The inter-
pretation of this solution will be given in the next section.) Knowing u; = 0
for j = 1,2, we move the variables on the left of Figure 22 into the first
column, multiply, and obtain v; = 142 Moving them to the second column
gives v, = 442 and moving them to the third column gives g = 12,000, the
value of the objective function of the minimizing problem. Hence the
optimal solution vectors to the minimizing problem are:

u®=(0,0), and g°= 12,000.

W = (8), and £ = 12,000.

UO - (.lg—o’ M))

The reader should substitute x° and )° into the primal, and v° and u«°
into the dual equations written down previously and show that they are
satisfied. Note also that f© = v% = cx® = g° at an optimum solution. This
is always true, and will be discussed further in the next section.

Let us solve the mining example using the simplex method. The initial
tableau is in Figure 16. The first indicator 12 was selected so that the first
column is pivotal. The pivot is 6, which is circled in the figure, and was
chosen because the two ratios involved are 1§2 which is smaller than
189 = 80, hence the first row is pivotal and the pivot is 6. Carrying out steps
7 through 10 of the flow diagram (Figure 18), we construct the second
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Figure 23

Figure 24

EXAMPLE 3

M1 X3 X3 —1
W[ 31 3 3 ® |=-x
Uy -3 @ ¥ 230 = )2
—1 -2 4 16 —400 =f
Indicators
=U = Uy = U3 =8

tableau in Figure 23. There are two positive indicators, and we choose the
first one, 4, so that the second column is pivotal. The new pivot is 4, which
is circled in the second (pivotal) row. Carrying out the rest of the steps
of the flow diagram, we obtain the third tableau (Figure 24). All indicators

1 Yo X3 -1
Uy % —% -2 10 = —X;
Uy —% % 8 70 = — X
—1 —1 -3 —16 —680 -
Indicators
=U = Uy = U =£

in this tableau are negative, so the computation is complete. We read off
the optimum answers to the primal minimizing problem as

w0 = (1, 3), u® =(0,0,16), and g°%= 680,

and the final minimum operating cost for the mines is $680 per week. These
are the same answers as the graphical procedure gave.

The optimum answers to the dual maximizing problem can also be
obtained as

10 0
x0 =170}, yO:( ), and f° = 680.
0 0

Interpretations for these will be given in the next section.

Our next example illustrates the fact that a given variable may first be basic,
become nonbasic, then become basic again, and so on, several times during
the course of the simplex computation. Figures 25 through 28 give the
necessary tableaus, and the pivots are circled there. There is another way
of working this problem that requires only two tableaus. It starts with a
pivot in the first column instead of the second (see Exercise 9). This illus-
trates the rule that it is frequently (but not invariably) better to start the
simplex method with a column having the most positive indicator. Note
that y, started out basic, became nonbasic, then became basic again. And
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Figure 25

Figure 26

Figure 27

Figure 28
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Xy Xy —1
Uy 2 @ 3 = -
Uz 3 1 4 = _yz
—1 17 5 0 =f

= L{l pae Ll2 = g

X1 Y1 -1
Us @ —1 1 = )2
—1 7 -5 —15 =f

= U =U =4

Yo M1 -1
u, -2 ©) 1 = —X,
Uy 1 -1 1 = —X;
—1 -7 2 22 =f

= 1)2 = U1 — g

Yo Xo —1
Uy —3 3 3 =N
w | 3 i |=-x
-1 -y g | ;| =g

procand 1)2 = u2 = g

X, was initially nonbasic, became basic, and ended up nonbasic. The final
optimal answers are:

v? = (0, 1), u® = (0, %), g% = 223

4 }
o) 2=() rou

The reader has undoubtedly wondered about box 5 of the flow diagram
in Figure 18, since we have not yet ended in it. Actually, if we are solving
an applied problem that is correctly formulated so that it has a solution,
we shall never end in it. Consider, however, the problem whose initial
tableau is in Figure 29. Both the first two columns have positive indicators.
If we choose the first one and pivot, we obtain the tableau of Figure 30.
Now there is one positive indicator in the second column, so J = 2. But
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Figure 29

Figure 30

EXERCISES

X4 X —1
Ul — 1 = —-y1
Uy -1 = —)2
—1 1 1 0 =f
= ul = u2 = g
Yo X2 —1
ul | —1 1 = —xl
-1 -1 2 -1 =g
e 1)2 = u2 = g

the answer to the question in box 4 of Figure 18 is “yes,” so we arrive at
box 5, which says that the maximum problem has an unbounded solution
and the minimum problem has no feasible solution.

To see this let us write the constraints for the maximum problem of Figure
29. They are

—x; + x5, < 1, xy >0,

These inequalities are satisfied if x, and x, are equal and positive. Hence
we can make the objective function f = x,; + x, as large as we wish. Two
constraints of the minimum problem of Figure 29 are

If we add these, we obtain the contradiction O > 2, and hence the minimum
problem has no solution.

For practical purposes, however, we can ignore the no-solution possibility,
since we will be dealing with well-formulated problems that have solutions.

1. Use the simplex method to solve Example 3 of Section 3.

2. Use the simplex method to solve Example 4 of Section 3 even though
the nondegeneracy hypothesis is not satisfied. Show that there are two
ways to proceed, each one leading to a different solution of the mini-
mum problem.

Use the simplex method to solve Exercise 3 of Section 3.

Use the simplex method to solve Exercise 4 of Section 3.

Use the simplex method to solve Exercise 5 of Section 3.

Use the simplex method to solve Exercise 6 of Section 3.

SANLIE o
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o0

10.
11.

12.

13.

14.

15.
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Use the simplex method to solve Exercise 7 of Section 3.

Use the simplex method to solve Exercise 8 of Section 3.

Solve the problem in Example 3 by choosing the first pivot in the first
column. Show that the answer can be obtained in one step.

Use the simplex method to solve Exercise 10 of Section 3.

A nut packager has on hand 121 pounds of peanuts and 49 pounds
of cashews. He can sell two kinds of mixtures of these nuts: a cheap
mix that has 80 percent peanuts and 20 percent cashews, or a party
mix that has 30 percent peanuts and 70 percent cashews. If he can
sell the party mix at 80 cents a pound and the cheap mix at 50 cents
a pound, how many pounds of each mix should he make in order to
maximize the amount he can obtain?

[Ans. Let x, be the number of pounds of party mix and x, the number
of pounds of the cheap mix. Then the data are

(3 8 (121 _
A_(.7 '2), b_(49), and ¢ = (80, 50).

The packager should make 30 pounds of the party mix and 140 pounds
of the cheap mix. His income is $94.]

The operator of all oil refinery can buy light crude oil at $6 per barrel
and heavy crude at $5 per barrel. The refining process produces the
following quantities of gasoline, kerosene, and fuel oil from one barrel
of each type of crude:

Type Gasoline Kerosene Fuel Oil
Light crude S 25 2
Heavy crude 4 3 25

Note that in each case 5 percent of the barrel of crude is lost in the
form of gases (which have to be burned) and unusable sludge. During
the summer months the operator has contracted to deliver 50,000
barrels of gasoline, 30,000 barrels of kerosene, and 10,000 barrels of
fuel oil per month. How many barrels of each type of crude should
he process in order to meet his production quotas at minimum possible
cost?

During the winter months the refinery operator of Exercise 12 contracts
to deliver 36,000 barrels of gasoline, 12,000 barrels of kerosene, and
18,000 barrels of fuel oil. What is his optimal winter production plan?
In Exercises 12 and 13 show that there is an excess production of at
least one of the goods during each time of the year. Discuss practical
ways in which this excess production can be used.

In the tableau of Figure 16 make the pivot be the 2 entry in the first
column rather than the circled 6 entry shown. Show that this leads
to a negative value of x,;, and hence explain the reasons in box 6 of
Figure 18 for the special choice of the pivot.
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6 DUALITY INTERPRETATIONS AND RESULTS

As we saw in the previous section, the simplex method is the same for both
maximizing and minimizing problems. The only difference in setting up
the two problems is the choice of row or column vectors for the various
quantities involved. In either case we ended up with a data box containing
a matrix 4, a column vector b, and a row vector c. Using these data we
stated both a maximizing and a minimizing problem—only one of which
initially interested us. The other problem is called the dual linear program-
ming problem. The dual of a maximizing problem is a minimizing problem,
and vice versa. And the dual of the dual problem is, in either case, the
original problem.

We saw that the simplex method solves both the original problem and
its dual simultaneously. It is therefore of interest to see what interpretation,
if any, can be given to the dual of a linear programming problem. We shall
see that we can always give the dual problem mathematical and economic
or managerial interpretations that are of considerable interest.

The first step in interpreting the solution to the dual problem is that of
determining the dimensions of the variables involved. Recall that in Section
3 we set up for each linear programming problem a data box, and the
numbers in the data box had dimensions. We now need to determine the
dimensions of the variables of both the primal and dual problems. The
following rule tells how to do this.

Rule for Determining Dimensions of Variables

(a) The dimension of x; is the ratio of the dimension of b; divided by
the dimension of g;; for any .

(b) The dimension of v; is the ratio of the dimension of ¢; divided by
the dimension of a;; for any ;.

EXAMPLE 1

In working with dimensions we use the rules of ordinary algebra for cancel-
ing and so on, as explained earlier in Section 3.

Let us return to the auto/truck example; its data box is given in Figure
6. We have already found the dimensions of the primal variables x,
(trucks/week) and x, (autos/week). Let us use rule (b) above to determine
the dimensions of the dual variables v, and v,. For v, we have

dimension of v; = (dimension of ¢;)/(dimension a,,)

_ S Sl-manhr
truck truck
__S ., _ truck
truck Sl-manhr
$

Sl-manhr’
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Figure 31

Figure 32
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In Exercise 1 the reader is asked to show that we would have obtained the
same result if we had divided the dimension of ¢, by the dimension of a;,.
In the same manner we have

dimension of v, = (dimension of c,)/(dimension a,,)

§ . truck
truck S2-manhr

$

S2-manhr’

Figure 31 summarizes the complete data box for the auto/truck example,
indicating the dimensions of all variables and constants.

trucks autos -
1 “week Xy ok Capacities
$ Sl-manhr S1-manhr S1-manhr
e S ——= 2 == 180 =———
Y1 Sl-manhr truck auto week
$ S2-manhr S2-manhr S2-manhr
_— 3= 3= 135 =————
& S2-manhr truck auto week
Profits $ 200 3
truck auto
$ S $ Costs

1 on-HG 2 onnMG 3 ton-LG

v MI1-days 6 tons-HG 5 tons-MG 4 tons-LG 200 $

1 week Ml-da MIl-da M1-da M1l-da
y y y y
M2-days 5 tons-HG 2 tons-MG 12 tons-LG 160 $
* week M2-day M2-day M2-day M2-day
Requirements | 12 tons-HG 8 tons-MG 24 tons-LG
9 week week week

The data box for the mining example is given in Figure 9. We already know
that the dimensions of v; and v, are mine l-days/week and mine
2-days/week, respectively. Let us use rule (a) above to find the dimensions
of Xyq- \

dimension of x, = (dimension of b,)/(dimension of a;,)

___ ¥ /tons—ILg
~ Ml-day/ Ml-day

__ 3
tons-Hg’
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EXAMPLE 1
(continued)

Figure 33

A similar application of rule (a) gives the dimensions of x, and x; as
$/ton-Mg and §/ton-LG, respectively.

Figure 32 shows the data box for the mining example, indicating dimen-
sions for all variables and constants.

Determining the dimensions of the dual variables is the first step in their
interpretation. The next step is to look at the optimal dual solutions for
the examples above and give their interpretations.

In Example 1 of Section 5 we found the optimal solution to the auto/truck
example to be

30
= (15)’ o0 = (2,400),  f0 = g0 = 12,000.
We know that v = 1§2has dimensions $/S1-manhr, which sound like a value
for shop 1 man-hours. We shall show that this is in fact the case. Suppose
we increase the number of shop 1 man-hours from 180 to 183. Our problem
is then summarized in the data box of Figure 33, where the dimensions

X, x,  Capacities
o8 5 2 183
Uy 3 3 135
Profits 300 200

are the same as in Figure 31 and are therefore omitted. The reader will
be asked to show in Exercise 2 that the optimal solution to this problem
is

x=(31) ana v = g, o)

with objective value 12,100. Notice that the objective value has increased
by 100, which is just three times the dual variable v? = 12, Hence we see
that v§ = 33.33 is the imputed value of an additional hour of shop 1 man-
hours. It should be remarked right away that the imputed-value inter-
pretaiion holds over only a limited range of changes in shop 1 man-hours.
Hence we should more properly say that v = 33.33 is the imputed value
of an additional hour in shop 1 provided the dual solution is not changed
by adding this extra capacity.

Note also that the imputed value is determined independently of the cost
of providing the extra man-hours in shop 1. In order to provide extra
man-hours it would be necessary to pay workers overtime and rent additional
equipment, or else do subcontracting, or the like. What the optimal dual
variables tell us is the cost of providing extra hours in shop 1 should not
be more than their imputed value, or else it is not optimal to get them.
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(continued)

Figure 34
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In Exercise 3 the reader will be asked to show that the optimal dual
variable v = 430 = 44,44, which has dimensions $ per shop 2 man-hour,
is the imputed value of an additional hour in shop 2 provided the optimal
dual solution does not change after the extra time is added. As before, it
is the maximum amount one should be willing to pay to obtain the extra
time. :

In Example 2 of Section 5 we found the optimal solutions to the mining
example to be

10
W=(1,3), x°=[70], and f°=g°=680.
0

We know that x¢ = 10 has dimensions $ per ton of high-grade ore, which
sounds like the imputed cost of producing an additional ton of high-grade
ore, and we shall show that this is the case. Suppose we increase the
requirements for high-grade ore production from 12 to 16 tons. The new
data box is shown in Figure 34, the dimensions being the same as in Figure

X, Xy X3 Costs
vy 6 2 4 200
U, 2 2 12 160
Requirements 16 8 24

32. In Exercise 4 the reader will be asked to show that the optimal solution
to the new problem is

10
W=(@2,2), x°=]{70
0

, and f9= g0 ="720.

Notice that the costs of production have increased from 680 to 720, which
is4+x9 =4-10 = 40. Hence x§ = 10 was the per-ton cost of each of the
additional 4 units of high-grade ore.

In Exercise 5 you will be asked to show that xJ can be similarly interpreted
as the imputed or marginal cost of producing an additional ton of medium-
grade ore, provided the additional production does not cause a new dual
solution to appear.

Now let us look at xJ = 0, which has dimension § per ton of low-grade
ore. What this says is that low-grade ore is free in the sense that producing
an additional ton has zero cost. What does this mean? If we look at the
slack vector #° = (0, 0, 16) found in Section 5, we observe that there is an
over-production of low-grade ore by 16 tons beyond the requirements. In
other words we have already overproduced, so the additional ton will cost
zero to produce since it already exists. However, this is true only within
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Figure 35

X, Xo X3 Costs
vy 6 2 4 200
U 2 2 12 160
Requirements 12 8 56

limits. For suppose we change the requirement for low-grade ore to 56 tons,
giving the data box of Figure 35. In Exercise 6 the reader will be asked
to show that the optimal solution to the problem in Figure 35 is

275
0 = (5,4.5), xX0={ 0 |, and f° = g0 = 820.
8.75

Note that we now have a new dual solution, so that the old dual variable
x5 = 0 did not hold for the entire range of changes in the requirements
for low-grade ore.

Let us try to give general interpretations to a pair of dual linear program-
ming problems. For either problem the matrix 4 will be called the matrix
of technological coefficients, since it indicates how activity vectors are com-
bined into the constraining inequalities. Then we can give different inter-
pretations to the vectors ¢, b, x, and v, depending on whether our original
problem is a maximizing or a minimizing one.

If the original problem is maximizing, we interpret x as the activity vector.
Then the vector b is interpreted as the capacity-constraint vector, whose
components give the amounts of the various “scarce resources” that can be
demanded by a given activity vector. The vector c is the profit vector, whose
entries give the unit profits for each component of the activity vector x.
Finally, the vector v is the imputed-value vector, whose entries give the
imputed values of each of the scarce resources that enter into the production
process, provided the changes in scarce resources are sufficiently small that
the dual solution remains optimal.

If the original problem is minimizing, we interpret v as the activity vector.
Then c is interpreted as the requirements vector, whose components give
the minimum amounts of each good that must be produced. The vector
b is the cost vector, whose entries give the unit costs of each of the activities.
Finally, the vector x is the imputed-cost vector, whose components give the
imputed costs of producing additional amounts of each of the required
goods, provided the changes in requirements are sufficiently small that the
dual solution remains optimal.

Next we shall briefly discuss two important theorems in linear program-
ming. First we restate the dual problems:
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The MAXIMUM Problem The MINIMUM Problem
Maximize cx =f Minimize vb =g
subject to (1) Ax + y = b, subject to (3) v4 —u =c,

2y x>0,y >0. 4) v>0,u>0.

Vectors x and y satisfying (1) and (2) and vectors v and u satisfying (3)
and (4) are called feasible vectors.

In all the examples solved above we found that f = g at the optimum
solution. It is no accident that the dual problems share common values.
The next theorem, which is the principal theorem of linear programming,
shows that this will always happen whenever the problems have solutions.

The Duality Theorem The maximum problem has as a solution a feasible
vector x°, such that ¢cx® = max cx, if and only if the minimum problem has
a solution that is a feasible vector v°, such that v°% = min vh. Moreover,
the equality cx® = v% holds if and only if x® and v° are solutions to their
respective problems.

The duality theorem is extremely powerful, for it says that if one of the
problems has a (finite) solution, then the other one necessarily also has a
(finite) solution, and both problems share a common value. Another conse-
quence of the theorem is that if one of the problems does not have a solution,
then neither does the other.

The proof of the duality theorem is beyond the scope of this book, but
some parts of it are indicated in Exercises 25 and 26, and in Exercise 8
of Section 4. We saw an example of a linear programming problem without
a solution in Example 4 in Section 5. Another example is in Exercise 27.

The duality theorem states that g® = f?at the optimum solution. Applying
this to Tucker’s duality equation [(7) in Section 4], we obtain:

(5) 0= gO _fO — UO)/O + uOXO_

However, since v°, »°, 1% and x° are all feasible optimal vectors, they are,
in particular, nonnegative. Hence v%° > 0 and u°x® > 0. But the only way
that two nonnegative numbers can add up to zero is for both of them to
be zero. Therefore

(6) v =0,
@) u'x% = 0.

If we now simply restate (6) and (7), we obtain the following important
theorem:
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The Complementary Slackness Theorem

(A) For each i, either 19 = 0 or y? = b, — 2 a..x? = 0.

(¢ ]
i=1

m
(B) For each j, either x{ =0 or uf = > via;; — ¢; = 0.
i=1

EXAMPLE 2
(continued)

Proof The proof of this theorem is simple because (6) says that the sum
of the products vy? must equal zero, but each term of the product is
nonnegative so each product must itself be zero, which gives (A). The proof
of (B) follows similarly from (7).

From the final tableau in Figure 24 of the previous section we found that
the complete solution to the mining problem to be

10 0
v? = (1, 3), u® = (0,0, 16), x0=1[70), Hy'= (O)
0
We see that since u§ = 16—that is, in the optimal solution low-grade ore
is overproduced—the imputed cost of low-grade ore must be zero; and it
is, since x = 0. Also, since both v{ and vJ are positive, both components
of y° must be zero, which they are. The reader should state the other
consequences of the complementary slackness theorem for this example.

Let us conclude by discussing the reasons for the various steps of the
simplex method. If we always think of the nonbasic variables, which appear
at the left and on the top of the tableaus (see Figures 14 and 17), as being
set equal to zero, then in the initial tableau of Figure 14 we see the initial
solution vectors

) x =0, y = b, v=0, and u = —c.

Since we have assumed b > 0, we see that the first three vectors are non-
negative, but u 1s nonnegative only if ¢ was initially nonpositive. In the latter
case the initial tableau is optimal (see Exercise 11). Since this is not normally
the case, there is usually at least one positive indicator, so that the first
answer to the question in box 2 of Figure 18 is “yes.” Thus we must go
around the loop and carry out at least one pivot. As we do so, the simplex
method systematically changes the tableau in order to make u into a non-
negative vector without destroying the nonnegativeness of x, y, or v, and
also keeping f = cx = vb = g at all times.

In step 6 of Figure 18 the pivot was chosen in order to have the smallest
ratio f; /1y so that no current x; or y; should become negative. The reader
may verify that if the pivot is chosen not to have this property, then some
such variable is made negative (see Exercise 15 of the preceding section).
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The nondegeneracy assumption made in Section 4 can be used to show (see
Exercise 25) that on each pivot step the value of the current f will actually
increase. In Exercise 26 you will be asked to show that at most a finite
number of pivot steps can be made. Hence, if the problem has a solution,
we must arrive in a finite number of steps at a tableau having all positive
indicators. At each step the current solution in a tableau satisfies equations
(1), (2), and (3) above, and when all indicators are positive we have also
satisfied (4), so that v > 0 and u > 0. By the duality theorem, if we have
found x9, »°, v°, and u° satisfying (1)-(4) and also f© = ¢x® = v% = g°, then
an optimum solution to the programming problem has been found.

1. In Example 1 show that the same answer for the dimension of v,
can be obtained by dividing the dimension of ¢, by the dimension
of a,,.

2. Show that the vectors

0= (31) and w0 =g

solve the problem in Figure 33. [Hint: Substitute into the primal

and dual problems.]

3. (a) Use the optimal solution to the automobile/truck problem in
Figure 31 to predict how the objective function, which meas-
ures profit, will change if the capacity of shop 2 is changed
from 135 to 144 man-hours per week.

(b) Solve the problem in Figure 31 with the 135 changed to 144
and use its solution to show that your prediction in (a) was
correct.

[Ans. Profit 12,400, x° = (gg) 00 = (190, 490) ]

4. Show that the solution to the mining example in Figure 34 is

v=(2,2), x9 as before, f=g="720.

5. (a) Use the solution to Exercise 4 to predict what will happen in
the mining problem if the requirement for medium-grade ore
is increased from 8 to 10.
(b) Solve the mining problem in Figure 34 with the 8 replaced
by 10 and show that your prediction in (a) was correct.
[Ans. v° = (1.5,3.5), x° as before, f = g = 860.]
6. Show that the solution to the problem in Figure 35 is

27.5
v° = (.5,4.95), x0=10 , [f=g=2820
8.75

Interpret the solution.
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7.

10.

11.

12-20.

21-24.

*28S.

*26.

In the automobile/truck example of Figure 31, suppose that the
manufacturer can subcontract up to 18 of either shop 1 or shop
2 man-hours at $38 per hour. What is his optimal action? [Hint:
You can answer this question without solving a linear programming
problem.]
In the mining example of Figure 32 suppose the mining owner can
sell 10 more tons of medium-grade ore at $55 per ton. Should he
do so?
Consider again the general interpretation of a maximizing problem
in which x is an activity vector, b the capacity-constraint vector,
and ¢ the profit vector. Let v° be the optimum dual solution vector.
Discuss the following managerial interpretation of the components
vY of 1°. “Additional amounts of scarce resource i should be acquired
only if its cost is less than the component v? that gives the imputed
value of an additional (sufficiently small) quantity.”
Consider again the general interpretation of a minimizing problem
in which v is the activity vector, ¢ the requirements vector, and b
the cost vector. Let x? be the optimum dual solution vector. Discuss
the following managerial interpretations of the components x? of
x. “Additional amounts of the jth good should be produced only
if they can be sold with gross profit at least as large as the compo-
nent x;, which gives the imputed cost of producing an additional
(sufficiently small) quantity.”
Consider the dual maximum and minimum problems in equality
form as expressed above. If ¢ <0, prove that the intial solution
(8) is optimal. [Hini: Use the duality theorem.]
For each of Exercises 1-9 of Section 3 carry out the following steps:
(a) Find the dimensions of the dual variables.
(b) Set up the initial tableau with the dimensions of all variables
and numbers indicated.
(c) Read the answers to both primal and dual problems from the
final tableau.
(d) Interpret the dual solutions for the specific problems in each
case.
(e) State the complementary slackness theorem for each problem
and interpret.
Rework Exercises 11-13 of Section 5 using steps (a)-(e) of Exercises
12-20, above.
The assumption of nondegeneracy stated in Section 5 can be shown
to be equivalent to the following: At no time in the pivoting process
of the simplex method are any of the entries in the first m rows
of the last column of the tableau ever zero. Use this fact to show
that on each pivot step the value of f = cx increases.
Show that there are only a finite number of ways that the compo-
nents of the x- and y-vectors can be used to label the top and
right-hand side of the various tableaus during the pivoting process.
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Use the result of Exercise 25 to show that no tableau can ever be
repeated in the course of solving a nondegenerate problem by the
simplex method. Hence, conclude that the simplex method de-
scribed in Figure 18 must stop in a finite number of steps with the
optimal solution to the linear programming problem, or else with
proof that the problem has no finite solution.

27. Use the flow diagram of Figure 18 to show that the problem whose
initial tableau is

—1 1 4
—4 8
2 3 0

does not have a solution. Verify algebraically and geometrically
the statements in box 5 of that flow diagram.

*7 EQUALITY CONSTRAINTS AND THE
GENERAL SIMPLEX METHOD

In this (optional) section we shall discuss the removal of the nonnegativity
and nondegeneracy assumptions that we imposed at the beginning of Section
5 on linear programming problems. As stated there, most problems will
automatically satisfy these assumptions. If not, they can usually be changed
so that they do. We illustrate the latter first.

EXAMPLE 1 Consider again the automobile/truck example of Figure 6. Suppose we add
the managerial constraint that at least 20 automobiles should be produced
—perhaps because we have orders for them. The inequality that will do
this is x, > 20, but it is a > inequality instead of a < inequality as is
required for a maximizing problem. Multiplying through by —1 gives
—x3 < —20. Hence the maximizing problem is

Maximize 300x, + 200x,

(1) subject to  5x; + 2x, < 180,
3x; + 3x, < 135,
—x, < —20,
Xy, Xg 2> 0.
-~ We see that the b vector is
180
2) b= 135],
-20

which does not satisfy the nonnegativity assumption. However, let us set up
the initial tableau and see what we can do with it. It is shown in Figure 36.
Notice that in the third row where the —20 entry is, there is also a —1.
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Figure 36

Figure 37

Figure 38

Chapter 7
X, Xy -1
vy 5 2 180 | = -y,
Us 3 3 135 = —y,
v 0 ) 20 |= —y,
—1 300 200 0 =f
= “1 = ll2 = g

If we were to pivot on the —1, using the usual rules as given in Figure
18, we could change the —20 into a +20. Carrying out this pivot operation
gives the tableau of Figure 37, which has a positive b vector. Hence we

X1 V3 -1
vy 5 2 140 = —y
vy ® 3 75 = —y,
Uy 0 1 20 = —X,
—1 300 200 —4000 :f

= “1 e U3 - g

can now proceed in the usual way. Choosing the most positive indicator,
which is 300, we determine that the pivot should be the 3 circled in the
first column. Carrying out the rest of the pivot steps as in Figure 18 gives
the tableau in Figure 38. Since all indicators there are negative, we have

V2 V3 —1
Ul —% -3 65 = -
Uy 1 1 25 = —x
Uy 0 1 20 = —X2
—1 —100 — 100 — 11,500 =f

ot U2 et U3 = g

determined the optimal solution, namely

X0 = (33) W = (0,100,100), and [ = g% = 11,500.
In other words, the optimum decision now is to produce 25 trucks and 20
automobiles for a gross profit of $11,500. Notice that the gross profit has
gone down, which is not surprising since we are satisfying an additional
constraint. Notice also that the dual solution indicates that for each auto-
mobile less that we require to be made, an additional $100 profit can be
realized. This follows because v§ = $100, indicating that if we increase the
right-hand side of the third constraint by 1, that is, change —20 to —19,
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then the profit should increase by $100. Notice also that the imputed value
of shop 1 man-hours has gone to zero! This is because y1 = 65, indicating
that we are not using all of the shop 1 man-hours. Also the imputed value
of shop 2 man-hours has jumped from $44.44 to $100 per hour, which
indicates that shop 2 has become a more important “bottleneck” in the
production process.

The previous example shows one way of deriving a problem that has
negative b vector coefficients—namely, by imposing a < constraint with
positive right-hand side on the maximizing problem. Another way is to
impose an equality constraint. For example, consider the equation

(3) 2xy + 5x, — Txy = 12.
We can replace it by the two inequalities
4) 2x; + 5x, ~ Tx3 < 12 and 2x; 4 5x, — x5 > 12,

but the second of these is a > constraint. We can change it into a <
constraint by multiplying by a —1, obtaining

(5) 2x) 4 5x, — Tx3 < 12 and —2x; = 5x, 4+ Tx3 < =12

as a pair of < inequalities that are equivalent to the single equality (3).

When solving simple problems such as in Example 1 by hand it is usually
quite easy to see how to pivot on negative numbers in the tableau in such
a way that the problem becomes one having nonnegative right-hand sides.
However, for large problems, and particularly for computing-machine com-
putation, it is necessary to have a set of rules that will always work, without
depending upon the ingenuity of the user. Such an algorithm is presented
in Figure 39. It is usually called “phase I” of the simplex method, and what
it does is to put the tableau in the standard form so that the flow diagram
of Figure 18 can be applied. We illustrate it with an example.

Consider the linear programming problem

Maximize 2x, + x,
6) subject to  x; + x, <20,
Xy + 2x, = 30,
X1, X > 0.

The set of feasible x-vectors is the line segment between the points ( 105)

and (}8) shown darkened in Figure 40. In order to solve (6) we replace

the equality constraint by a pair of inequalities and obtain the problem:

, Maximize 2x; + x,
@) subject to X+ x, <20,
x; + 2x, < 30,
—xy — 2x, < =30,
Xy, Xe > 0.
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Figure 39

| Set up data box for the
problem, putting rows
I with negative b;’s last.

Is there at least
one negative t; » 4+ 1

fori=1,...,m?

Select the row K with
bx <0, and K the
largest i such that

b; <0.

Qo
Are all the entries
in row K positive or zero

except the last?

No |

| Halt. The maximum
problem has no
feasible solution.
Minimum problem
has an unbounded
solution.

Choose a column J <n
so that 1,y <O0.

Choose row I 2 K so
that ¢; » + 1/t isa
minimum value of

tin + l/t,'j fori = K and
all i > K such that ;7 >
0. Call ¢;; the pivot, call
I the pivotal row, and
call J the pivotral
column.

T~

I
I
|
|
I

/

Chapter 7

| Halt. Tableau now

satisfies the nonnegativity |
assumption and can be
solved using the flow I
l diagram in Figure 18.

L e J

Label the new tableau the
same as the old tableau
except interchange the
variable at top of column
J with variable at right of
row I, and interchange
variable at bottom of
column J with variable at
left of row .

ﬁ

Replace I, J entry of new
tableau by 1/t;;. Replace
all other entries in pivotal
column by —ty/t;;.

4

For each i (except [)
subtract ¢;; times the /th
row of the new tableau
from the ith row of old
tableau and enter result
in new tableau.

Divide the Ith row of old tableau by
the pivot, #;7, and enter result in /th

row of new tableau.

Thus we obtain a problem that does not satisfy the nonnegativity assumption.

Let us solve the problem by following the flow diagram of Figure 39.
We set up the initial tableau with the negative b;’s last as instructed in box
1 of that figure. The initial tableau is given in Figure 41. The answer to
the question in box 2 of Figure 39 is “yes,” so we go to box 3, where we
must choose K = 3. The answer to the question in box 4 is “no,” so we
go on to box 6. Since both entries in the first two columns of the third
row of Figure 41 are negative, J can be either 1 or 2; we choose J = 1.
Then the ratio rule in box 6 gives I = 3. Carrying out the pivot steps in
boxes 7-10 of Figure 39 gives the next tableau shown in Figure 42. Notice
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Set of feasible x-vectors

Gr G

0 0
Figure 40
that a new negative has appeared in the third column of the first row! So
the answer to the question in box 2 of Figure 39 is again “yes,” and we
must go around the main loop of the flow diagram again. We find that
X, X, —1
o, |1 1 20 = —y
v, 1 2 30 = -y,
U3 @ -2 -30 = =3
—1 2 1 0 =f
Figure 41 = u, = u, =g
K =1and J =2 are the only possible choices, and these give I =1, so
that we must pivot on the —1 circled in the first row of Figure 42. After
3 X2 ~1
v, 1 @ —10 = =N
U2 1 0 0 = _yz
U, —1 2 30 = —Xx
—1 2 -3 —60 =f
Figure 42 = U, = u, =g

pivoting, the new tableau is as shown in Figure43. Since both indicators are
negative, we have obtained the optimal solution without further pivoting.
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Y3 Y1 —1
Uy —1 -1 10 = —X,
02 1 0 O = __y2
Uy 1 2 10 | = —x
—1 -1 -3 —-30 =
Figure 43 = U, = U, =g

It 1s

xO - (ig)’ Uo = (3’0’ 1)9 and fO — gO — 30

The reader should locate the solution on the diagram of Figure 40.

The last topic of this section is the question of removing the nondegen-
eracy assumption stated in Section 5. A complete discussion of the problem
is beyond the scope of this book, but an interested reader may wish to refer
to one of the more advanced texts listed at the end of this chapter. We
shall indicate the essential ideas here, however. An example will suffice for
this purpose.

EXAMPLE 3 Consider the problem:

Maximize x; + x,
8) subject to  x; <4,
x, < 4,
2x; + x5, < 8,
Xy, Xy > 0.

¢

Three bounding' .
lines pass through

|~/ the point (4)
0

Figure 44
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The set of feasible x-vectors is shown shaded in Figure 44. Notice that the
set has four extreme points and that each is the intersection of exactly two

bounding lines except for the point (g), which has three bounding lines

through it. We shall show that this can lead to the appearance of a zero
in the b area of the tableau after some pivoting, and when this happens
it is possible to pivot without improving the objective function. The initial
tableau for the problem is given in Figure 45.

X, Xy —1
Uy @ 0 4 = —N
02 O 1 4 _— __y2
U3 2 1 8 - _'_ys
—1 1 1 0 =g
= lll = Ll2 - g

Since both indicators are positive, suppose we choose the first one. The
minimum-ratio rule then selects the first row to be pivotal, and we pivot
on the one circled. (Note that we could also pivot on the 2 in the third
row, first column, and the results will be similar; see Exercise 11.) The new
tableau is given in Figure 46. Notice that a zero did appear in the third

N X —1
7 1 0 4 = —Xx
UZ 0 1 4 = —)}2
Us -2 @ 0 + € = —Jy3
—1 —1 1 —4 =f
=U = Uy =5

row, third column, of Figure 46. In order to make it into something positive
a small amount ¢ is added to it. This is called a perturbation. Geometrically
it corresponds in Figure 44 to moving the line 2x; + x, = 8 parallel to itself

upward slightly. This makes the extreme point (g) have just two bounding

lines through it, and adds a new extreme point (j) nearby. We will find

it on the next iteration. The second column has a positive indicator, and
the minimum-ratio rule selects the third row to be pivotal and 1 the pivot,
circled in Figure 46. The new tableau is given in Figure 47.

Now we observe that column 1 has a positive indicator, so we must still
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Figure 47

Figure 48

N )3 —1
Uy 1 0 4 = —Xx
Uy @ —1 4 — ¢ = —,
Us -2 1 0+ ¢ = —X,
-1 ' 1 -1 —4 — ¢ =
=U = U3 =8
V2 Y3 —1
Uy —3 —3 2+ (5) ==X
Uy 1 —3 2 - =N
Uy —1 0 4 = —Xo
N

pivot again. The ratio rule selects as pivot the 2 in the first column, circled
in Figure 47. The next tableau is given in Figure 43.

Since both indicators in Figure 48 are negative, we have the optimal
solution. Notice that if we replace € by 0 we still have an optimal tableau,
hence our perturbation did not affect the original problem enough to change
the solution, which is

x0 = (i), 0 =(0,4,%), and f0=g°=6.

Actually, if we had ignored the 0 in the last column of Figure 47 and
just gone ahead with the simplex method as given in Figure 18, we would
have arrived at the same solution without difficulty. But notice that in going
from tableau 46 to 47 we then would not have increased the objective
function f at all. It can happen with larger problems that the computation
could go from one tableau to the next several times in a row without
changing f, and after a finite number of pivots return to a tableau constructed
earlier. From then on the computational process will go through the same
sequence of tableaus indefinitely without changing f. This is called cycling.
Actually it rarely happens in practice. The smallest known example in which
it can occur has seven variables. For small problems that can be worked
by hand it never occurs.

There are several ways of avoiding cycling for computer codes that handle
large problems. One way is the process of perturbation illustrated above.
There only one 0 was found and it was made positive by adding +¢€ to
it. If a second zero were found, then +€2 would be added; and if a third
were found, then +€3 would be added; and so on. The final tableau will
then have numbers plus polynomials in € in the last column. By selecting
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€ not to be equal to any of the finite number of zeros of these polynomials
and also very small, we can prove that there always is a perturbation of
the components of the b-vectors that will avoid cycling, and that has the
same solution as the original problem when e is replaced by 0 in the final
tableau.

Still another (practical) way of avoiding cycling is the following. When-
ever a zero is about to appear in a tableau, there will be more than one
choice of pivotal row in box 6 of the flow diagram of Figure 18. This can
be seen in Figure 45, in which, given the pivotal column J = 1, we can
choose either I = 1 or I = 3 when applying the test. Suppose now we choose
between these two at random, instead of always choosing the first one. It
can be shown that if this method is used to “break ties” when selecting
pivotal rows, then the simplex method will not cycle with probability 1.
For practical purposes this provides an adequate safeguard against the very
rare possibility of cycling in computations.

L. Write pairs of < inequalities that are equivalent to each of the

following = constraints:
(@) 12x; + 3x, — Tx3 = 15.
(b) 3x; —2x, +4x; =0 and —4x; + x, — 2x; =7.

2. Consider the mining example (Example 2 of Section 3) again with
the additional constraint that exactly 16 tons of high-grade ore should
be produced per week. Show that the tableau has a nonnegative
b-vector.

3. Show that a minimizing problem with 4 > 0 can always be solved
using Figure 18 regardless of the form of the additional constraints
that may be imposed on the minimizing problem.

4. InExample 1 of Section 3 show that the additional constraint x, < 15
can be imposed and the problem solved using Figure 18.

S. Show that a maximizing problem with only < constraints and positive
b-vector can be solved using Figure 18 regardless of how many
additional < constraints are added, as long as the right-hand sides
of such additional constraints are nonnegative.

6. Use the results of Exercises 3-5 to show that the phase I computation
of Figure 39 is needed only when a < constraint with negative
right-hand side is added to the maximizing problem.

7. Apply the phase I simplex method of Figure 39 to the following

examples.
(@) Maximize 2x, + x, (b) Maximize x,
subject to  x; + x, < 10, subject to  x, > 2,
X+ x, > 6, Xy > 3,
X, <8, 3x, + 2x, < 24.

Xy, X9 > 0.
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8. Apply the phase I computation to the problem whose initial tableau

is given by
1 1 20
—1 -2 —50
2 1 0

and show that the computation ends up in box 5 of Figure 39. Draw
the constraint sets of the primal and dual problems and give a geo-
metric interpretation to the statements in box 5 of Figure 39.

*9, Show in general that if the computation of Figure 39 ends up in box
5, then the statements given there are correct.

¥10. Show that phase I is needed if and only if x = 0 is nor a feasible

vector for the maximizing problem.

11. Start with Figure 45 and carry out pivoting steps, starting with the
pivot in the third row, first column. Show that equivalent results are
obtained.

12. Show that even if we do not add +¢ in the third row, third column,
of Figure 46, the simplex method will yield the correct solution.

13. Add the constraint —x; + x, < 4 to the problem in (8) and show
that no matter which column is chosen for the first pivot, a 0 is still
produced in the b-vector after one pivot. Show that the simplex
method still works.

*14. (a) Show that the phase I simplex method will eventually make the
last inequality with negative right-hand side into one with posi-
tive (or zero) right-hand side without making the right-hand sides
of later inequalities negative.

(b) Show that in a finite number of steps all negative right-hand
sides will be made nonnegative, or else the computation will end
up in box 5 of the flow diagram in Figure 39.

8 STRICTLY DETERMINED GAMES

In Sections 1-7 we discussed linear programming problems that involve
optimization—that is, the maximization or minimization of a (linear) func-
tion subject to linear constraints. In order to optimize a function it is
necessary to control all relevant variables.

Game theory considers situations in which there are two (or more) persons,
each of whom controls some but not all the variables necessary to determine
the outcome(s) of a certain event. Depending upon which event actually
occurs, the players receive various payments. If for each possible event the
algebraic sum of payments to all players is zero, the game is called zero-sum,
otherwise it is nonzero-sum. Usually the players will not agree as to which
event should occur, so that their objectives in the game are different. In
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the case of a matrix game, which is a two-person zero-sum game in which
one player loses what the other wins, game theory provides a solution. The
solution is based on the principle that each player tries to choose his course
of action so that, regardless of what his opponent does, he can assure himself
of a certain minimum amount. Matrix games are discussed in Sections 8
through 11. We shall not discuss nonzero-sum games in this chapter. We
refer an interested reader to the suggested readings at the end of the chapter
for treatments of this important class of games.

Most recreational games such as ticktacktoe, checkers, backgammon,
chess, poker, bridge, and other card or board games can be viewed as games
of strategy. On the other hand, such gambling games as dice, roulette, and
0 on are not (as usually formulated) games of strategy, since a person
playing one of these games is merely “betting against the odds.”

In this and the following sections we shall formulate simple games that
illustrate the theory and are amenable to computation. We shall base these
games on applications in business situations and on recreational games.

Two stores, R and C, are planning to locate in one of two towns. As in
Figure 49, town 1 has 60 percent of the population while town 2 has 40
percent. If both stores locate in the same town they will split the total
business of both towns equally, but if they locate in different towns each
will get the business of that town. Where should each store locate?

Store C locates in

00 @ 1 2
1 50 60

Town 1 Town 2 Store R.
locates in 5 40 50
Figure 49 Figure 50

Clearly this is a game situation, since each store can control where it
locates but cannot control at all where its competitor locates. Each store
has two possible “strategies”: “locate in town 1” and “locate in town 2.”
Let us list all possible outcomes for each store employing each of its strate-
gies. The result is given in the payoff matrix of Figure 50. The entries of
the matrix represent the percentages of business that store R gets in each
case. They can also be interpreted as the percentage losses of business by
C for each case. If both stores locate in town 1 or both in town 2, each
gets 50 percent of the business, hence the entries on the main diagonal are
50. If store R locates in town 1 and C in 2, then R gets 60 percent of the
business as indicated in entry in row 1 and column 2. (This entry also
indicates that C loses 60 percent.) Similarly, if R locates in 2 and C in
1, then R gets 40 percent (and C loses 40 percent) as indicated in row 2
and column 1.

How should the players play the matrix game in Figure 507 It is easy
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to see that store R should prefer to locate in town 1 because, regardless
of what C does, R can assure himself of 10 percent more business in town
1 than in town 2. Similarly, store C also prefers to locate in town 1 because
he will lose 10 percent less business—that is, gain 10 percent more busi-
ness—in town 1 than in 2. Hence optimal strategies are for each store to
locate in town 1; that is, R chooses row 1 and C chooses column 1 in Figure
50. The value of the game is 50, representing the percentage of the business
that R gets.

In Example 1 we started with an applied situation and derived from it
a matrix game. Actually, we can interpret any matrix as a game, as the
following definition shows.

Definition Let G be an m X n matrix with entries g;; fori=1,...,m
and j = 1,...,n Then G can be interpreted as the payoff matrix of the
following matrix game: player R (the row player) chooses any row i, and
simultaneously player C (the column player) chooses any column j; the
outcome of the game is that C pays to R an amount equal to g;;. (If g;; <O,
then this should be interpreted as R paying C an amount equal to —g;;.)

EXAMPLE 2

Figure 51

Consider the matrix in Figure 51 as a game. Thus, if R chooses row 1 and
C chooses column 1, then C pays 5 units to R; if R chooses row 1 and C

C Chooses
| 2
1 5 —10
R Chooses
2 0 |

chooses column 2, then R pays 10 units to C; and so on. How should the
players play this game?

Player R would like to get the 5 payoff, and is tempted to play row I.
However, player C clearly prefers to play column 2, since each entry in it
is lower than the corresponding entry in column 1. And since player R
realizes this, he will play row 2 to avoid the —10 payoff. The optimal
strategies then are “play row 2” for R, and “play column 2” for C. The
value of the game is g,, = 0.

The solutions in the first two examples have the following in common.
In each case the value is an entry that is the minimum of its row and the
maximum of its column. Such an entry is called a saddle value. When such
a saddle value exists, it is always the value of the game, and the game is
strictly determined. To see this, consider any game G with an entry g;; = v
which is a saddle value. Then, since v is the minimum of row /, R can by
playing row i assure that he will win at least v. And since v is the maximum
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of column j, C by playing column J can assure that R will not win more
than v. This justifies the definition:

Definition Consider a matrix game with payoff matrix G. Entry 8:; 1s said
to be a saddle value of G if gi; 1s simultaneously the minimum of the ith
row and the maximum of the jth column. If matrix game G has a saddle
value, it is said to be strictly determined, and optimal strategies for it are:

For player R: “Choose a row that contains a saddle value.”
For player C: “Choose a column that contains a saddle value.”

The value of the game is v = gij» Where g;; is any saddle-value entry. The
game is fair if its value is zero.

EXAMPLE 3

Figure 52

In order to justify this definition it must be shown that if there are two
or more saddle values then they are all equal. A proof of this fact is outlined
in Exercise 10. The next example illustrates it.

Let us consider an extension of Example | in which the stores R and C
are trying to locate in one of the three towns in Figure 52. We shall assume
that if both stores locate in the same town they split all business equally,
but if they locate in different towns then all the business in the town that

Town 1

15 miles

0 Y

Town 2 Town 3

doesn’t have a store will go to the closer of the two stores, The percentages
of people in each town are marked in the circles. The distances between
the towns are marked on the lines connecting them.

The payoff matrix for the resulting game is shown in Figure 53. In
Exercise 13 the reader is asked to check that these entries are CcorTect.

Each of the four 50 entries in the 2 % 2 matrix in the upper left-hand
corner of Figure 53 is a saddle value of the matrix, since each is simulta-
neously the minimum of its row and maximum of its column, Note that
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Figure 53

EXAMPLE 4

Store C locates in

1 2 3
1 50 50 g0
Store R 50 50 80
locates in
3 20 20 50

the 50 entry in the lower right-hand corner is not a saddle value. Hence
the game is strictly determined, and optimal strategies are:

For store R: “Locate in either town 1 or town 2.”
For store C: “Locate in either town 1 or town 2.”

In a real-life location problem one might want to take into account not only
present populations of cities, but also rate of population growth. In Exercise
14 the reader is asked to criticize the above strategies from this point of
view.

Instead of the somewhat indefinite description of the optimal strategy for
player R as “Locate in either town 1 or 2,” we can employ the following
device: since we don’t care which town we locate in, we can just flip a coin,
or use any other chance device, and on the basis of the outcome make the
choice between the towns. So we can also use the following strategy: “Select
one of the numbers 1 or 2 by means of a random device with arbitrary
probabilities for each outcome, and locate in the corresponding town.” This
strategy is also optimal.

Note that if we multiply the matrix in Figure 53 on the left by the vector
(1,0,0), we get the first row; hence we shall use this vector to represent
the strategy “Locate in town 1” for store R. Similarly, the strategy “Locate
in town 2” is represented by the vector (0, 1, 0), since multiplying the matrix
on the left by it gives the second row. Then the vector

(@1 —-a,0)=a(l1,0,0) + (1 —a)0,1,0) for 0<a<1

represents the strategy “Choose row 1 with probability a and row 2 with
probability 1 — a.”
Similarly, for store C, the column vectors

1 0 a
0], 1], and |1l —a] for 0<a<1
0 0 0

represents the strategies “Locate in town 1,” “Locate in town 2,” and “Locate
in town 1 with probability a and in town 2 with probability 1 — a,” respec-
tively.

Consider the game G whose matrix is in Figure 54. It is not hard to see
that the game is strictly determined with value 1, and there are four saddle
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Figure 54

Figure 55

EXERCISES
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Player C
1 5 1 7
Player R -2 8 0 -9
1 12 1 3

values. Optimal strategies are (1,0,0) and (0,0, 1) for player R, and

1 0
0 0
0 and X
0 0

for player C. The four ways we can pair optimal strategies for player R
with those for player C give the four saddle values. Besides the optimal
strategies above we have their convex combinations

a(1,0,0) + (1 — a)(0,0,1) = (4,0, 1 — a),
which is optimal for R for any a satisfying 0 < a < 1, and

1 0 a

0 I 0
Aot == 24l

0 0 0

which is optimal for player C for any a in the same range.

As the reader may have already found out for himself, not all matrix
games are strictly determined. For instance, the two games shown in Figure
55 are not strictly determined. The solution of such games will be discussed
in succeeding sections.

0 1 5 -2 3
2 0 -5 0 7
(a) 3 4 ~1

(b)

L. Determine which of the games given below are strictly determined and
which are fair. When the game is strictly determined, find optimal
strategies for each player.



(a)

(0)

(e)

(2)

)
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0 2
—~1 4
3 1
4 0
3 1
—4 0
7 0
0 0
0 0
0 0

(b)

(d)

()

(h)

0

Chapter 7
5 0
0 2
1 —1
—1 1
0 4
0 2
0 0
0 -7

[Partial Ans. (a) Strictly determined and fair; R play row 1, C play
column 1; (b) nonstrictly determined; (e) strictly determined but not
fair; R play row 1, C play column 2; (j) strictly determined but not

fair; both players can use any strategy.]

2. Find the value and all optimal strategies for the following games:

(a)

(c)

15 2 -3

6 5 7 (b)
-7 4 0

0 5 6 -3

| -1 2 3

1 2 3 4 (d)
—1 0 7 5

0

—1

—1

0 1
_3 7

1 —12 6
0 —4 1
3 -7 2
3 _4 2
_5 _4 7

0
[Ans. (a) v = 5; (0, 1, 0); (1); (d) ©0,a,0,1 — a,0), (1), v = —4]

0

0

3. Find the values of and all optimal strategies for the following games:
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5 10 6 5
) 0 -1
(a) 5 7 8 5 (b)
_5 7 8
0 5 6 5
0 0 1 0 3 2 3
(c) 1 0 0 0 (d) 6 2 7
1 0 1 0 5 1 4
g 0
[Ans. (@) v = 5; (@, 1 — a, 0); Nk Dv=2;(@l—-a0)|1]]
0
1 —a

Each of two players shows one or two fingers (simultaneously) and C
pays to R a sum equal to the total number of fingers shown. Write
the game matrix. Show that the game is strictly determined, and find
the value and optimal strategies.

Each of two players shows one or two fingers (simultaneously) and C
pays to R an amount equal to the total number of fingers shown, while
R pays to C an amount equal to the product of the numbers of fingers
shown. Construct the game matrix (the entries will be the net gain
of R), and find the value and the optimal strategies.

[Ans. v = 1, R must show one finger, C may show one or two.]
Show that a strictly determined game is fair if and only if there is a
zero entry such that all entries in its row are nonnegative and all entries
in its column are nonpositive.

Consider the game

(a) Show that G is strictly determined regardless of the value of a.
(b) Find the value of G. [Ans. 2.]
(¢) Find optimal strategies for each player.

(d) If a = 1,000,000, obviously R would like to get it as his payoff.
Is there any way he can assure himself of obtaining it? What
would happen to him if he tried to obtain it?

(¢) Show that the value of the game is the most that R can assure
for himself.

Consider the matrix game
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10.

11.

Show that G is strictly determined for every set of values for g, ¢, and
d. Show that the same result is true if two entries in a given column
are equal.

Find necessary and sufficient conditions that the game

should be strictly determined. [Hint: These will be expressed in terms

of relations among the numbers a and b and the number zero.]

(a) Show that if there are two saddle values in the same row, then
they are equal.

(b) Show that if there are two saddle values in the same column, then
they are equal.

(¢) If g;; and g, are saddle values in different rows and columns,
show that g;; = g;;. Also show g = gy

(d) Prove that g;; = gy-

Two companies, one large and one small, manufacturing the same

product, wish to build a new store in one of four towns located on

a given highway. If we regard the total population of the four towns

as 100 percent, the distribution of population and distances between
towns are as shown: '

@

5 mi CO%\ 5 mi @ 5 mi @
3

4

Assume that if the large company’s store is nearer a town, it will capture
80 percent of the business; if both stores are equally distant, then the
large company will capture 60 percent of the business; and if the small
store is nearer, then the large company will capture 40 percent of the
business.

(a) Set up the matrix of the game.

(b) Test for dominated rows and columns, that is, rows or columns
that will never be used by a player who plays optimally.

(c) Find optimal strategies and the value of the game and interpret
your results.
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[Ans. Both companies should locate in town 2; the large company

captures 60 percent of the business.]

12.  Rework Exercise 11 if the percentages of business captured by the large

company are 90, 75, and 60, respectively.
13.  Show that the entries in Figure 53 are correct.

14. In the store location of Example 3 how do the optimal strategies change
if the population of town 1 becomes 51 percent and the population
of town 2 becomes 29 percent of the total? How might they change

if town 2 is growing much faster than town 1?

15.  Show that the following game is always strictly determined for non-
negative a and any values of the parameters b, ¢, d, and e.

2a a 3a
—a c
d —2a e

16. For what values of a is the following game strictly determined?

a 6 2
—1 a —7
-2 4 a

9 MATRIX GAMES

[Ans. —1 < a <2]

As we saw in the numerical examples of the previous section, some matrix
games are nonstrictly determined; that is, they have no entry that is simul-
taneously a row minimum and a column maximum. We can characterize

nonstrictly determined 2 X 2 matrix games as follows:

Theorem The matrix game

a
G =

c

d

is nonstrictly determined if and only if one of the following two conditions

1s satisfied:

(i) a<bp,
(i) a> b,

a <c,
a>ec,

d < b,
d>b,

and d<ec.
and d>c.
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(These equations mean that the two entries on one diagonal of the matrix
must each be greater than each of the two entries on the other diagonal.)

EXAMPLE 1

Figure 56

EXAMPLE 2

Proof 1f either of the conditions (i) or (ii) holds, it is easy to check that
no entry of the matrix is simultaneously the minimum of the row and the
maximum of the column in which it occurs; hence the game is not strictly
determined.

To prove the other half of the theorem, recall that, by Exercise 8 of the
last section, if two of the entries in the same row or the same column of
G are equal, the game is strictly determined; hence we can assume that no
two entries in the same row or the same column are equal. Suppose now
that a < b; then a < c or else a is a row minimum and a column maximum;
then also ¢ > d or else ¢ is a row minimum and a column maximum; then
also d < b or else d is a row minimum and a column maximum. Hence
the assumption a < b leads to case (i) above.

In a similar manner the assumption @ > b leads to case (ii). This com-
pletes the proof of the theorem.

Jones and Smith play the following game: Jones conceals either a $1 or
a $2 bill in his hand; Smith guesses 1 or 2, winning the bill if he guesses
the number. If we make Jones player R (the row player) and Smith player
C, the matrix of the game is as in Figure 56. Because the game satisfies
condition (i) in the theorem above, the game is nonstrictly determined. Later
we shall solve it.

Player C
Smith guesses
1 2
Player R $1 bill -1 0
Jones chooses  §2 bill 0 )

Mr. Sub works for Mr. Super and frequently must advise him on the
acceptability of certain projects. Whenever Mr. Sub can make a clear
judgment about a given project, he does so honestly. But when he has no
reason to either accept or reject a given project, he tries to agree with Mr.
Super. If he manages to agree with him he gives himself 10 points; if he
is unfavorable when his boss is favorable, he credits himself with 0 points;
but when he is favorable and his boss is unfavorable (the worst case), he
loses 50 points. The matrix of the game is given in Figure 57. Since the
matrix in Figure 57 satisfies condition (ii) of the theorem, it is not strictly
determined.

How should one play a nonstrictly determined game? We must first
convince ourselves that no single choice is clearly optimal for either player.
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Player C
Mr. Super’s opinion
Favorable Unfavorable

Player R Favorable 10 —-50
Mr. Sub’s
opinion ~ Unfavorable 0 10

In Example 1, R would like to get one of the 0 payoffs. But if he always
chooses $1 and C finds this out, C can win $1 by guessing 1. And if R
always chooses $2, then C can win $2 by guessing 2. Similarly, if C always
guesses 1 or always guesses 2, and R finds this out, then R can always get
0. So our first result is that each player must, in some way, prevent the
other player from finding out which choice of alternatives he is going to
make.

We also note that for a single play of a nonstrictly determined 2 X 2 game
there is no difference between the two strategies, as long as one’s strategy
is not guessed by the opponent. Let us now consider several plays of the
game. What should R do? Clearly, he should not choose the same row
all the time, or C will be able to notice and profit by it. Rather, R should
choose sometimes one row, sometimes the other. Our key question then
is “How often should R choose each of his alternatives?’ In Example 1
it seems reasonable that player R (Jones) should choose the $1 bill about
twice as often as the $2 bill, because his losses, if Smith guesses correctly,
are half as much. (We shall see later that this strategy is, indeed, optimal.)
In what order should he do this? For instance, should he select the $1 bill
twice in a row and then the $2 bill? That is dangerous, because if player
C (Smith) notices the pattern, he can gain by knowing just what R will do
next. Thus we see that R should choose the $1 bill two-thirds of the time,
but according to some unguessable pattern. The only safe way of doing
this is to play it two-thirds of the time at random. He could, for instance,
roll a die (without letting C see it) and choose the $1 if 1 through 4 turns
up, the $2 if 5 or 6 turns up. Then his opponent cannot guess what the
actual decision will be, since R himself won’t know it. We conclude that
a rational way of playing is for each player to mix his strategies, selecting
sometimes one, sometimes the other; and these strategies should be selected
at random, according to certain fixed ratios (probabilities) of selecting each.

By a mixed strategy in a 2 X 2 game for player R we shall mean a
command of the form “Play row 1 with probability p; and play row 2 with
probability p,,” where we assume that p120andp, >0andp, +p, = 1.
Similarly, a mixed strategy for player C is a command of the form “Play
column I with probability ¢, and play column 2 with probability g,,” where
9,20,¢9,>0,and g, + ¢, = 1. A mixed-strategy vector for player R is
the probability row vector (p,, p,), and a mixed-strategy vector for player

C is the probability column vector (;11)
2
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Figure 58

1

Examples of mixed strategies are (3, 3) and (§> The reader may wonder

how a player could actually play one of these strategies. The mixed strategy
3, 3) is easy to realize, since it can be realized by flipping a coin and choosing

one alternative if heads turns up and the other alternative if tails turns
1

up. The mixed strategy ( ) is more difficult to realize, since no chance device

5
3
in common use gives these probabilities. However, suppose a pointer is
constructed with a card that is ¢ shaded and { unshaded, as in Figure 58,

and C simply spins the pointer (without letting R see it, of course!). Then,
if the pointer stops on the unshaded part he plays the first column, and
if it stops on the shaded part he plays the second column, thus realizing
the desired strategy. By varying the proportion of shaded area on the card,
other mixed strategies can conveniently be realized. An equally effective

and less mechanical device for realizing a given mixed strategy is to use
1

a table of random digits. For the strategy ( ), for example, we could let

5
3
the digits O and 1 represent a play of column 1, and the remaining digits
a play of column 2.

We now want to define what we shall mean by a solution to an m X n

matrix game.

Definition Let G be an m X n matrix with entries g;;, An m-component
row vector p is a mixed-strategy vector for player R if it is a probability
vector; similarly, an n-component column vector g is a mixed-strategy vector
for Cif it is a probability vector. (Recall from Chapter 4 that a probability
vector is one with nonnegative entries whose sum is 1.) Let v be a number,
let e be an m-component row vector all of whose entries are 1, and let f
be an n-component column vector all of whose entries are 1. It follows
that the vectors ve and vf are



Section 9

Linear Programming and the Theory of Games 383

v
v

ve = (v,v,...,v) and vf =1 . n components
—— .
m components v

Then v is the value of the matrix game G and p° and ¢° are optimal strategies
for the players if and only if the following inequalities hold:

(M p°G > ve,
2) Gq° < of.

EXAMPLE 3

In Example 1 of the previous section we had the matrix:
_ (50 60)
¢= (40 50/
We found that the value of this game was v = 50 and that optimal strategies

were for R to choose row 1, which corresponds to the mixed-strategy vector
p° = (1,0), and for C to choose column 1, which corresponds to the mixed-

strategy vector ¢° = ( (1)) Carrying out the calculations in (1) and (2), we
have

50 60
40 50

"= (a0 50)(0)= (o) = () = (}) = ~

In a similar manner the solutions to Examples 2, 3, and 4 of Section 8
can be shown to satisfy the definition above (see Exercises 5, 6, and 7). In
Exercise 16 you will be asked to show that optimal strategies to any strictly
determined game satisfy the definition above.

pOG = (1, 0)( ) = (50, 60) > (50, 50) = 50(1, 1) = pe

and

Let us return now to the nonstrictly determined 2 X 2 game. Consider
the nonstrictly determined game

G =

c d

Having argued, as above, that the players should use mixed strategies in
playing a nonstrictly determined game, it is still necessary to decide how
to choose an optimal mixed strategy.

If R chooses a mixed strategy p = (p,, p,) and (independently) C chooses

91

a mixed strategy g = (q ), then player R obtains the payoff a with probabil-

2



384 Linear Programming and the Theory of Games Chapter 7

ity p,q,; he obtains the payoff b with probability p,g,; he obtains ¢ with
probability p,g,; and he obtains 4 with probability p,g,; hence his mathe-
matical expectation (see Chapter 3, Section 11) is given by the expression

ap1q, + bp1qs + cpoqy + dpogs.

By a similar computation, one can show that player C’s expectation is the
negative of this expression.

To justify this definition we must show that if v, p% ¢° exist for G, each
player can guarantee himself an expectation of v. Let ¢ be any strategy
for C. Multiplying (1) on the right by ¢, we get

P°Gq > (v, v)qg = v,

which shows that, regardless of how C plays, R can assure himself of an
expectation of at least v. Similarly, let p be any strategy vector for R.
Multiplying (2) on the left by p, we obtain

port <5 () =

which shows that, regardless of how R plays, C can assure himself of an
expectation of at most v. It is in this sense that p® and ¢° are optimal.
It follows further that, if both players play optimally, then R’s expectation
is exactly v and C’s expectation is exactly v. Hence we call v the (expected)
value of the game. ‘

We must now see whether there are strategies p® and ¢° for the game
G. For complicated games the finding of optimal strategies will be discussed
in Section 11. For a 2 X 2 nonstrictly determined game the following
formulas provide the solution:

3) p(l):a—i-Z—_—g—c’
@) p8=a+2:2_c,
®) qg:a-{-z:]l))—c’
© qg‘:a+f1:lc9—c’
) =a+az:l;c—c'

It is an easy matter to verify (see Exercise 12) that formulas (3)-(7) satisfy
conditions (1)~(2). Actually, the inequalities in (1) and (2) become equalities
in this simple case, a fact that is not true in general for nonstrictly determined
games of larger size.

The denominator in each formula is the difference between the sums of
the entries on the two diagonals. Since, for a nonstrictly determined game,
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(continued)

EXAMPLE 2
(continued)
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the entries on one diagonal must be larger than those on the other, the
denominator cannot be zero.

Let us use these formulas to solve the examples mentioned earlier.

Applying formulas (3)-(7) to the matrix in Figure 56, we have

0 _ —2-0 _2 o_—1—-0_1
AT 3-0-0~3 P~="_3 =73
o_ —2—-0 2 o —1—=0 1 (=D)(=2)-0 2
ql - -3 - 37 (]2 — _3 -—?, U = 3 = —?_
Thus the game is biased in favor of player C, since v = —2, and optimal

strategies are

2
PP=G@E% and ¢ = (i)

3

Both Jones and Smith should select their first alternative two-thirds of the
time, according to some random pattern.

Let us apply the formulas (3)-(7) to the matrix in Figure 57. We obtain
a+d—-c—b=10+ 10 — 0 4 50 = 70,

so that:
10-0 1 10+5 6
0 — = — 0 X177 2
Pi="Z0 =7 P2 70 7
o_ 10450 _6 0_10-0_1 _10-10-0 _ 10
N="0 =7 =77 =7 70 7

Notice that the game is biased in favor of Mr. Sub, not his boss Mr. Super!
Also Mr. Sub’s optimal strategy is to have an unfavorable opinion 6 out
of 7 times, while Mr. Super’s optimal strategy is to have a favorable opinion
6 out of 7 times! Thus, if this game is at all realistic, a subordinate should
be much more critical than his superior when judging situations in which
there is no clear-cut reason to either accept or reject a project. The con-
clusion is based on game-theory analysis, not on the two persons’ relative
ages, experience, and so on.

We conclude this section by proving three theorems that characterize the
value and optimal strategies of a game.

Theorem If G is a matrix game that has a value and optimal strategies,
then the value of the game is unique.

Proof Suppose that v and w are two different values for the game G. Then
let p° and ¢° be optimal mixed-strategy vectors associated with the value
v such that
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(a) P°G > ve,
(b) Gq° < uf.

Similarly, let p! and g¢* be optimal mixed-strategy vectors associated with
the value w such that

© : PG > we,
(d) Gqt < wf.

If we now multiply (a) on the right by ¢!, we get p°Gg* > (ve)q! = v.
In the same way, multiplying (d) on the left by p° gives p°Gg* < w. The
two inequalities just obtained show that w > v.

Next we multiply (b) on the left by p! and (c) on the right by ¢°, obtaining
v > p'Gq°® and p'Gq® > w, which together imply that v > w.

Finally we see that v < w and v > w imply together that v = w—that
is, the value of the game is unique.

Theorem If G is a matrix game with value v and optimal strategies p® and
g°, then v = p°Gq°.

Proof By definition v, p° and ¢° satisfy
p°G > ve and Gq° < uf.

Multiplying the first of these inequalities on the right by ¢°% we get
p°Gg® > v. Similarly, multiplying the second inequality on the left by p°,
we obtain p°Gg® < v. These two inequalities together imply that v = p°Gg°,
concluding the proof.

The theorems just proved are important because they permit us to inter-
pret the value of a game as an expected value (see Chapter 3, Section 11).
Briefly the interpretation is the following: If the game G is played repeatedly
and if each time it is played player R uses the mixed strategy p® and player
C uses the mixed strategy ¢° then the value v of G is the expected value
of the game for R. The law of large numbers implies that, if the number
of plays of G is sufficiently large, then the average value of R’s winnings
will (with high probability) be arbitrarily close to the value v of the game G.

As an example, let G be the matrix of the game of matching pennies:

1 -1
-1 1

G =

Using the formulas above, we find that optimal strategies in this game are
for R to choose each row with probability  and for C to choose each column
with probability 3. The value of G is zero. Notice that the only two payoffs
that result from a single play of the game are +1 and —1, neither of which
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is equal to the value of the game. However, if the game is played repeatedly,
the average value of R’s payoffs will approach zero, which is the value of
the game.

Theorem If G is a game with value v and optimal strategies p° and ¢°,
then v is the largest expectation that R can assure for himself. Similarly,
v is the smallest expectation that C can assure for himself.

EXERCISES

Proof Let p be any mixed-strategy vector of R and let ¢° be an optimal
strategy for C; then multiply the equation Gg° < uf on the left by p, obtain-
ing pGq® < v. The latter equation shows that, if C plays optimally, the most
that R can assure for himself is v. Now let p° be optimal for R; then, for
every ¢, p°Gg > v, so that R can actually assure himself of an expection
of v. The proof of the other statement of the theorem is similar.

The theorem above gives an intuitive justification to the definition of value
and optimal strategies for a game. Thus the value is the “best” that a player
can assure himself, and optimal strategies are the means of assuring this
“best.”

1. Find the optimal strategies for each player and the values of the
following games:

1 2 1 0
(a) (b)

3 4 —1 2

2 3 15 3
(¢) (d)

1 4 —1 2

7 -6 r 3 15
(e) ()

5 8 —1 10

1 1
ans. @ v =300 () © v =561 (5)

@o=3w0s(1)  @v=1 @& ()

2. Setup the ordinary game of matching pennies as a matrix game. Find
its value and optimal strategies. How are the optimal strategies realized
in practice by players of this game? '
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3.

10.

A version of two-finger Morra is played as follows: Each player holds
up either one or two fingers; if the sum of the number of fingers shown
is even, player R gets the sum, and if the sum is odd, player C gets it.
(a) Show that the game matrix is

Player C
1 2
1 2 -3
Player R
-3 4

(b) Find optimal strategies for each player and the value of the game.

L
12

[Ans. (5, 5), (i) LU= —15.]
12

Rework Exercise 3 if player C gets the even sum and player R gets
the odd sum.
Let G be the matrix in Figure 51 described in Example 2 of Section

8. Withv =0,p%°=(0,1), and ¢° = ((1)), show that formulas (1) and

(2) are satisfied.

Show that the strategies derived in Example 3 of Section 8 satisfy
formulas (1) and (2).

Show that the strategies derived in Example 4 of Section 8 satisfy
formulas (1) and (2).

If

is nonstrictly determined, prove that it is fair if and only if ad = bc.
In formulas (3)-(7) prove that p; >0,p, > 0,4, >0, and ¢, > 0.
Must v be greater than zero?

Find necessary and sufficient conditions that the game

be nonstrictly determined. Find optimal strategies for each player and
the value of G, if it is nonstrictly determined.

[Ans. a and b must be both positive or both negative. p, = b/(a + b);
p:=a/(a+b), qu=0b/(a+b); q,=a/(a+ b); v=ab/(a+ b)]
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Suppose that player R tries to find C in one of three towns X, Y, and

Z. The distance between X and Y is five miles, the distance between

Y and Z is five miles, and the distance between Z and X is ten miles.

Assume that R and C can each go to one and only one of the three

towns and that if they both go to the same town R “catches” C;

otherwise C “escapes.” Credit R with ten points if he catches C, and

credit C with a number of points equal to the number of miles he is

away from R if he escapes.

(a) Set up the game matrix.

(b) Show that both players have the same optimal strategy, namely,
to go to towns X and Z with equal probabilities and to go to town
Y with probability 1.

(¢) Find the value of the game.

Verify that formulas (3)-(7) satisfy conditions (1) and (2).

Consider the (symmetric) game whose matrix is

0 —a —b
G = a 0 —c
b c 0

(a) Ifaand b are both positive or both negative, show that G is strictly
determined.

(b) Ifb and c are both positive or both negative, show that G is strictly
determined.

() Ifa>0, <0, and c >0, show that an optimal strategy for
player R is given by

( ¢ ~b a )

a—b+c¢’ a—-b+c¢’ a—-b+c/

(d) In part (c) find an optimal strategy for player C.

() If a<<0, >0, and ¢ <0, show that the strategy given in (c)
is optimal for R. What is an optimal strategy for player C?

(f) Prove that the value of the game is always zero.

In a well-known children’s game each player says “stone” or “scissors”

or “paper.” If one says “stone” and the other “scissors,” then the

former wins a penny. Similarly, “scissors” beats “paper,” and “paper”

beats “stone.” If the two players name the same item, then the game

is a tie.

(a) Set up the game matrix.

(b) Use the results of Exercise 13 to solve the game.

In Exercise 14 let us suppose that the payments are different in different

cases. Suppose that when “stone breaks scissors” the payment is one

cent; when “scissors cut paper” the payment is two cents; and when

“paper covers stone” the payment is three cents.
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16.

17.

18.

19.

(a) Set up the game matrix.

(b) Use the results of Exercise 13 to solve the game.

[Ans. 3 “stone,” 4 “scissors,” § “paper”; v = 0.]

A strictly determined m X n matrix game G contains a saddle entry

g;; that is simultaneously the minimum of row i and the maximum

of column ;.

(a) Show that by rearranging rows and columns (if necessary) we can
assume that g,, is a saddle value.

(b) Letv = g;; and p° and ¢° be probability vectors with first compo-
nent equal to 1 and all other components equal to 0. Show that
these quantities satisfy (1) and (2).

Verify that the strategies p® = (4,4, 1) and

q° =

QO Culbet COpmt

are optimal in the game G whose matrix is

1 0 0
G = 0 1 0
0 0 1

What is the value of the game?

Generalize the result of Exercise 16 to the game G whose matrix is
the n X n identity matrix.

Consider the following game:

a 0 0
G = 0 b 0
0 0 c

(@) If a, b, and ¢ are not all of the same sign, show that the game
is strictly determined with value zero.
(b) If a, b, and c are all of the same sign, show that the vector

( bc ca ab )
ab + bc +ca’ ab 4+ bc +ca’ ab + bc + ca

is an optimal strategy for player R.

(¢) Find player C’s optimal strategy for case b.

(d) Find the value of the game for case b, and show that it is positive
if a, b, and c are all positive, and negative if they are all negative.
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20. Suppose that the entries of a matrix game are rewritten in new units
(e.g., dollars instead of cents). Show that the monetary value of the
game has not changed.

21.  Consider the game of matching pennies whose matrix is

1 -1
-1 1

If the entries of the matrix represent gains or losses of one penny, would
you be willing to play the game at least once? If the entries represent
gains or losses of one dollar, would you be willing to play the game
at least once? If they represent gains or losses of one million dollars,
would you play the game at least once? In each of these cases show
that the value is zero and optimal strategies are the same. Discuss the
practical application of the theory of games in the light of this example.

10 SOLVING MATRIX GAMES
BY A GEOMETRIC METHOD

EXAMPLE 1

In Section 8 we found that a strictly determined game of any size could
be solved almost by inspection. In Section 9 we found formulas for solving
nonstrictly determined 2 X 2 games. In Section 11 we shall discuss the
application of the simplex method to solve arbitrary m X n matrix games.
In the present section we shall discuss special matrix games in which one
of the players has just two strategies, and we shall find that a simple
geometric method suffices to solve such games rather easily.

Suppose that Jones conceals one of the following four bills in his hand:
a $1 or a $2 United States bill or a $1 or a $2 Canadian bill. Smith guesses
either “United States” or “Canadian” and gets the bill if his guess is correct.
We assume that a Canadian dollar has the same real value as a United
States dollar. The matrix of the game is the following:

Smith guesses

U.S. Can.
Sl -1 0
uU.s.
Jones $2 -2 0
chooses :
$1 0 -1
Can.
$2 0 -2

It is obvious that Jones should always choose the $1 bill of either country
rather than the $2 bill, since by doing so he may cut his losses and will
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never increase them. This can be observed in the matrix above, since every
entry in the second row is less than or equal to the corresponding entry
in the first row, and every entry in the fourth row is less than or equal to
the corresponding entry in the third row. In effect we can eliminate the
second and fourth rows and reduce the game to the following 2 X 2 matrix
game:

Smith guesses

U.S. Can.
Jones U.S. $1 —1 0
chooses  Cap. $1 0 ~1

The new matrix game is nonstrictly determined with optimal strategies (3, %)

1
for Jones and (f) for Smith. The value of the game is —4, which means

2
that Smith should be willing to pay 50 cents to play it.

Definition Let A be an m X n matrix game. We shall say that row i
dominates row h if every entry in row i is as large as or larger than the
corresponding entry in row A. Similarly, we shall say that column j dominates
column k if every entry in column j is as small as or smaller than the
corresponding entry in column k.

EXAMPLE 2

Any dominated row or column can be omitted from the matrix game
without materially affecting its solution. In the original matrix of Example
1 above, we see that row 1 dominates row 2, and also that row 3 dominates
row 4.

Consider the game whose matrix is:

1 0 -1 0
-3 -2 | 2

Observe that column 2 and column 3 each dominate column 4; that is, player
C should never play the last column. Thus the game can be reduced to
the following 2 X 3 game:

1 0 —1
-3 -2 1

Gl

No further rows or columns can be omitted because of domination; hence
we must introduce a new technique for the solution of this game.
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Suppose that player R announces he is going to use the mixed strategy
P = (p1,p2). Using the relation p, =1 — p,, we can write this as
p = (1 = p,, py). Assume for the moment that player C knows R will use
this strategy. Then he can compute his expected payment y from choosing
each of his alternatives in G’ as follows:

If he chooses column 1:
y=1lp=3:po=(010~py) —3p,=1—4p,
If he chooses column 2:
y=0:p, —2:py = —2p,
If he chooses column 3:
y=—lpitlopy=—(l=p)+p=—1+2p,

Notice that each of these expectations expresses y as a linear function of
p»- Hence the graphs of these expectations will be a straight line in each
case. Since we have the restriction 0 < p, < 1, we are interested only in
the part of the line for which p, satisfies the restriction. In Figure 59 we

¥ axis ' : i “:
Column 3 '
1 y=—1+2p;
p2 =0 1 )
§‘ ) ¢ pa axis
_1 H p2 =1
2
—1 i
Maximum
= Column 2
y==2p;
Column |
y=1—4p;

Figure 59 i s

have shown p, plotted on the horizontal axis and y on the vertical axis.
We have also drawn the vertical line at p, = 1. The graphs of each of the
lines above are shown. Observe that the ordinates of each line when p, = 0
are just the entries in the first row of G’, and the ordinates of each line
when p, = 1 are just the entries in the second row. Since we can easily
find these two distinct points on each line, it is easy to draw them.

We now can analyze what C will do. For each value of p, that completely
determines R’s mixed strategy p = (1 — p,, p,), player C will minimize his
own expectation—that is, he will choose the lowest of the three lines plotted
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EXAMPLE 3

in Figure 59. For each p, the lowest line has been drawn in heavily, resulting
in the broken-line function shown in the figure. Now R is the maximizing
player, so he will try to get the maximum of this function. By visual
inspection this obviously occurs at the intersection of the lines corresponding
to column 2 and column 3, when p, = 1 and the “height” of this function
at that point is —4. From the figure it is clear that —3 is the maximum
R can assure himself, and he can obtain this by using the strategy p = (4, 3)
corresponding to p, = 1. We can find optimal strategies for player C by
considering the 2 X 2 subgame of G (and G’) consisting of the second and
third columns:

0 —1
-2 1

GII —

Applying the formulas of the preceding section, we obtain as optimal
strategies:

1
PO = (%, :11‘)9 qO - (i)> L= _12'

2

We can extend ¢° to an optimal strategy for player C in G by adding two
zero entries thus:

q° =

O Mo N O

Player R’s strategy and the value remain the same, as the reader can easily
verify.

We have already seen examples where a player has more than one optimal
strategy. The game whose matrix is

is another example. To carry out the same kind of analysis as before, assume
that R chooses p = (py, po) = (1 — py, py). Then

If C chooses column 1:  y =3(1 — py,) =3 — 3p,.
If C chooses column 2: y=(1—p,) +p, =1
If C chooses column 3:  y = 3p,.
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¥ axis o Column 3
' y=3py:

Maximum

Column 2
1 v=1

pa axis

Column |
y=3-—3m

The graphs of these three functions are shown in Figure 60, and the mini-
mum of the three is shown darkened. Since the darkened graph has a flat
area on the top, the entire flat area represents the maximum of the function.
The endpoints of the flat area are (4, 4) and (4, §), and the intervening points
that are convex combinations of these, such as

aGd + (1 - adh =4a+ 12 - a),

are also optimal strategies, as the reader can verify by inspection. The
unique optimal strategy for the column player is to choose the second
0
column, so ¢° = |1 |. Of course, v = 1.
0

Theorem The set of optimal strategies for either player in a matrix game
is a convex set. That is, if p® and r° are optimal for player R, then ap® +
(1 — a)r’is also optimal for him, for any a in therange 0 < a < 1. Similarly,
if ¢° and s° are optimal for player C, then so is ag® + (1 — a)s° for a in
the same range.

We shall not give a formal proof of the theorem here, but it is clearly
illustrated in Figure 60. In the next section we shall show that a matrix
game is equivalent to a linear programming problem, and then the theorem
becomes a consequence of the corresponding theorem in linear program-
ming.
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EXAMPLE 4

Figure 61

So far we have illustrated cases in which the row player had just two
strategies and the column player had three or more. A similar method works
to solve games in which the column player has just two strategies and the
row player has more. Consider the game whose matrix is

6 —1
G = 0 4
4 3

Suppose we reverse the analysis above and assume that the column player

selects a mixed strategy
-()-( 3
92 92

and then considers what action R will take. Again there are three choices:

If he chooses row 1: vy =69, — ¢, = 6(1 — ¢5) — g, = 6 — ¢,
If he chooses row 2: v = 4q,.
If he chooses row 3: vy =4q, + 3g, = 4(1 — ¢,) + 3¢, =4 — q,.

In each case y is the expectation that player R has for each choice. Since

he is the maximizing player, he will want to maximize his expectation. In
Figure 61 we have shown the three straight lines corresponding to each of

y axis

Row 2
y =44,

Minumum

Row 3
y=4—q

g, axis

2=0 ~1 Ngy =1
Row |
y=6—"q
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these expectations and have darkened the maximum of each of these. Player
C will want to choose the smallest value on the darkened broken-line
function marked in the figure. Since it corresponds to p, = £, the corre-
3

1)

To find the corresponding optimal strategy for the row player we consider

the 2 X 2 in the last two rows of the matrix:

sponding optimal strategy for the column player is (

0 | 4
4 | 3

Using the formulas of the previous section, we have optimal strategies:

1
P =) v=w
5
We can extend the optimal row strategy to one optimal for the original game
by adding a zero. Thus

P°=0,%4%

is optimal in the game G originally stated.

By using graph paper and a ruler, the reader will be able to solve in a
similar manner other games in which one of the players has just two strate-
gies. In principle the graphical method could be extended to larger games,
but it is difficult to draw three-dimensional graphs and impossible to draw
four- and higher-dimensional graphs, so that this idea has limited usefulness.

The geometric ideas presented in this section are useful conceptually. For
instance, the following theorem is intuitively obvious from the geometric
point of view.

Theorem Let G be an m X n matrix game with value v; let E be the m X n
matrix each of whose entries is 1; and let k& be any constant. Then the game
G + kE has value v + k, and every strategy optimal in the game G is also
optimal in the game G + kE. (Note that the game G + kE is obtained from
the game G by adding the number & to each entry in G.)

If we apply this theorem to any of the previous examples, its truth is clear,
since adding k to each entry in G merely moves all the lines in each graph
up or down by the same amount. Hence the locations of the optimum points
are unchanged, and the value is changed by the amount k.

One consequence of this theorem is the fact that a matrix game G can
be replaced by an equivalent game all of whose entries are positive and
whose value is positive. One simply chooses a sufficiently large k and forms
the game G + kE. We shall use this fact in the next section.
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EXERCISES

1.

Chapter 7

Solve the following games:
3 0
(a) -2 3 [Ans. v =5; (0,0, 1); ((1))]
7 5
) 10 5 4 6
18 3 3 4
) : 0 2 [ 3. (31 % ]
(c Ans.v=4% (33| 3 )
0 3 2 0
0 2
C) : >
-1 0
2 0
1 2 3 , 0
e A . = 2; ,2; 1 .
(e 2 5 | [An ans. v (3,2 O]
©) 1 0 1 1 2
0 —1 -2 -3 —10
Solve the following games:
0 15
8 0
@) —10 20
10 12
-1 -2 0 -3 —4
®) -2 1 0 2 5
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0

1

iz

11
[An ans. v = —%; 4, d); 62 ]

0

0

Solve the game

Since there is more than one optimal strategy for C, find a range of
optimal strategies for him.
Consider the game whose matrix is

13 -7
3 8
-1 14
9 -1

(a)
(b)

(c)
d)

Find player C’s optimal strategy by graphical means.
Show that there are six possible subgames that can be chosen by
player R.
Of the six possible subgames show that two are strictly determined
and do not give optimal strategies in the original game.
Show that the other four subgames have solutions that can be
extended to optimal strategies in the original game.

[4ns. (3,4,0,0), (,0,4,0), (0,0,2,3), (0,3,0,3)]

Suppose that Jones conceals in his hand one, two, three, or four silver
dollars and Smith guesses “even” or “odd.” If Smith’s guess is correct,
he wins the amount that Jones holds; otherwise he must pay Jones
this amount. Set up the corresponding matrix game and find an
optimal strategy for each player in which he puts positive weight on
all his (pure) strategies. Is the game fair?

Consider the following game: Player R announces “one” or “two”;
then, independently of each other, both players write down one of these
two numbers. If the sum of the three numbers so obtained is odd,
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10.

C pays R the odd sum in dollars; if the sum of the three numbers

is even, R pays C the even sum in dollars.

(a) What are the strategies of R? [Hint: He has four strategies.]

(b) What are the strategies of C? [Hint: We must consider what C
does after “one” is announced or after a “two.” Hence he has
four strategies.]

(¢) Wirite down the matrix for the game.

(d) Restrict player R to announcing “two,” and allow for C only those
strategies where his number does not depend on the announced
number. Solve the resulting 2 X 2 game.

(e) Extend the above mixed strategies to the original game, and show
that they are optimal.

(f) Is the game favorable to R? If so, by how much?
Answer the same questions as in Exercise 6 if R gets the even sum
and C gets the odd sum [except that, in part (d), restrict R to announce
“one”]. Which game is more favorable for R? Could you have pre-
dicted this without the use of game theory?
Two players play five-finger Morra by extending from one to five
fingers: If the sum of the number of fingers is even, R gets one, while
if the sum is odd, C gets one. Suppose that each player shows only
one or two fingers. Show that the resulting game is like matching
pennies. Show that the optimal strategies for this game, when ex-
tended, are optimal in the whole game.

A version of three-finger Morra is played as follows: Each player shows

from one to three fingers; R always pays C an amount equal to the

number of fingers that C shows; if C shows exactly one more or two

fewer fingers than R, then C pays R a positive amount x (where x

is independent of the number of fingers shown).

(a) Set up the game matrix for arbitrary x’s.

(b) Ifx = 4, show thatthe game is strictly determined. Find the value.

[Ans. v = —3.]

(¢) If x =2, show that there i1s a pair of optimal strategies in which
the first player shows one or two fingers and the second player
shows two or three fingers. [Hint: Use domination.] Find the
value. [dns. v = —4.]

(d) If x = 6, show that an optimal strategy for R is to use the mixed
strategy, (,3,%). Show that the optimal mixed strategy for C is
to choose his three strategies each with probability 3. Find the
value of the game.

Another version of three-finger Morra goes as follows: Each player

shows from one to three fingers; if the sum of the number of fingers

is even, then R gets an amount equal to the number of fingers that

C shows: if the sum is odd, C gets an amount equal to the number

of fingers that R shows. |,

(a) Set up the game matrix.

(b) Reduce the game to a 2 X 2 matrix game.
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(¢) Find optimal strategies for each player and show that the game
is fair.
Consider the game:

a

¢ d

(@) Draw the graph of expectations for the row player when a = b
and prove graphically that the game is strictly determined.

(b) Draw the same graph whena > b,a > c¢,d > b, d > ¢, and show
that the game is nonstrictly determined.

(¢) Draw the same graph when a < b,a < c¢,d < b,d < ¢, and show
that the game is nonstrictly determined.

(d) Draw graphs to illustrate cases in which (b) and (c) do not hold
and show that the resulting game is strictly determined.

Consider the game of Exercise 11 with the same amount k added to

each matrix entry. Show graphically that the value of the game is

changed by k and that optimal strategies are the same in both games.

The remaining exercises refer to the product payoff game (due to A. W.
Tucker). Two sets, S and 7, are given, each set containing at least one
positive and at least one negative number (but no zeros). Player R selects
a number s from set S, and player C selects a number ¢ from set 7. The
payoff is sz.

13.

14.

15.
16.

17.

Set up the game for the sets S = {1, —1,2} and T = {1, —3,2, —4}.

1 -3 2 -4
[Ans. —1 3 -2 4
2 -6 4 —8

Consider the following mixed strategy for either player: “Choose a
positive number p and a negative number n with probabilities
—n/(p — n) and p/(p — n), respectively.” Assume that R uses this
strategy.
(a) If C chooses a positive number, show that the expected payoff
to R is 0.
(b) If C chooses a negative number, show that the expected payoff
to R is 0.
Rework Exercise 14 with R and C interchanged.
Use the results of Exercises 14 and 15 to show that the game is fair,
and that the strategy quoted in Exercise 14 is optimal for either player.
Find all strategies of the kind indicated in Exercise 14 for both players
for the game of Exercise 13.
[Partial ans. For R they are (3,4,0) and (0, %, 4).]
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18. By subtracting 10 from each entry, show that the following game is
derived from a product payoff game, and find all strategies like those
in Exercise 14 for both players. What is the value of the game?

11 7 12 6
9 13 8 14
12 4 14 2

[Hint: Use Exercises 13 and 17 and the last theorem.]
19. If a player in the product payoff game has m positive and n negative

numbers in his set, show that he has mn strategies like those in Exercise
14.

11 THE SIMPLEX METHOD FOR SOLVING
MATRIX GAMES

We have so far restricted our attention to examples of matrix games that
were simple enough to be solved by unformalized computations. However,
games of realistic size frequently lead to very large matrices for which these
simple techniques are not adequate. A clue to a general technique may
be found in the fact that the row player is a maximizing player while the
column player is a minimizing player. Hence the problems they are trying
to solve sound somewhat like the dual linear programming problems of
Section 4. So if a matrix game can be formulated as a linear programming
problem, it can be solved by the simplex method discussed in Section 5.

There are several ways of showing that a matrix game is equivalent to
a linear program. We choose a very simple approach here, based on the
fact, stated in Section 10, that every matrix game is equivalent to one in
which all entries are positive and hence whose value is positive.

Besides finding an equivalent linear programming problem, we shall give
a proof, based on the duality theorem of linear programming, that every
matrix game has a solution. And we shall present a simplex format suitable
for the solution of any matrix game.

Let G be an m X n matrix game and let E be the m X n matrix all of
whose entries are 1’s. The second theorem of Section 10 states that G and
G + kE have the same optimal strategies, and the value of the second game
is k plus the value of the first game. Hence if we start with any game G
we can replace it by a game G’ all of whose entries are positive, and which
has the same optimal strategies. For instance, to get G’ we could add 1
minus the most negative entry in G to every entry in G.

Thus without loss of generality we let G be a positive matrix game. We
also let e be the n-component row vector all of whose entries are 1’s, and
let f be the m-component column vector all of whose entries are 1’s. Let
z be an m-component row vector and x an n-component column vector.
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We now consider the following dual linear programming problems:

Minimize zf Maximize ex
) subject to: subject to:
zG > e Gx <f
z>0 x > 0.

Note that x = 0 satisfies the constraints of the maximizing problem; also,
because the entries of G and f are positive, there is at least one nonzero
x vector that will satisfy these constraints. Moreover, the set of feasible x
vectors is bounded. Because of these facts, and because e has all positive
entries, the maximizing problem has solution x° such that ex® > 0. Hence,
by the duality theorem, the minimum problem has a solution x° and

t = 20Gx0 = 20 = ex® > 0.
We now set
0 0

0 - < Ozx— d :l
p s q [’ an U t,

and observe that p° and ¢° are probability vectors.
It is easy to see that p° is an optimal strategy for player R in G, since
x9 satisfies the constraints of the minimizing problem, and hence

0
pOG:iIQZ%:ve.

In Exercise 1 the reader is asked to show similarly that G¢° < vf.
We summarize these results in the following theorem:

Theorem (a) Solving the matrix game G with positive entries can be
accomplished by solving the dual linear programming problems (1).

(b) Every matrix game has at least one solution; solutions to such games
can be found by the simplex method.

Actually, it is not necessary that the matrix game be positive in order
that the simplex method work. It is enough that its value be positive.
However, in Exercise 3 the reader is asked to work a specific example for
which the linear programming problem as described above has no solution
if applied to a game with zero value.

Before proceeding to specific examples, let us outline the procedure to
be followed in setting up a matrix game for solution by the simplex method.

1. Set up the matrix of the game.

2. Check to see whether the game is strictly determined; if so, the
solution is already obtained.

3. Check for row and column dominance and remove dominated rows
and columns.
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4. Make certain that the value of the game is positive. It is sufficient
for this to add 1 minus the most negative matrix entry to every entry
of the matrix. Let k be the amount added, if any, to each matrix
entry.

5. Let G be the matrix of the resulting game; suppose it 1s m X n.
Construct the following matrix tableau:

G f
e 0

6. Carry out the steps of the simplex algorithm until all indicators are
nonpositive. Determine the solutions 2% and x° to the dual linear
programming problems, and let ¢ = 2% = ex?. We know ¢ > 0.

7. The solutions to the original matrix game are given by

0 0 1
pozi—, qozit- and v=-t——k.

(If dominated rows or columns were removed from the game, the
strategy vectors may have to be extended by the addition of some
Z€ro components.)

EXAMPLE 1 We know that the matching-pennies game is fair—that is, it has value zero.

EXAMPLE 2

To make its value positive, we add k = 2 to each matrix entry, yielding
the following game:

Obviously this game is not strictly determined and it does not have domi-
nated rows or columns. We set up the simplex tableau and solve it as shown
in Figure 62(a)-(c). (Note that we have called the variables on the left z,
and z, instead of v, and v,, since we are now using v for the value of the
game.) From the final tableau in Figure 62(c) we can see that the value
of the game is 2 (the reciprocal of 7 = }), so that the value of the matching-
pennies game is 0, which we know already. Also, optimal strategies are

ZO xO 1
p=T=ap amd ===}

2

which we had discovered earlier.

Let us solve the two-finger Morra game of Exercise 3 of Section 9. To convert
the game into one with positive value let us add 3 to each entry of the matrix,
.
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X4 X —1
Zl @ 1 1 fonnd —)’1
Z2 1 3 1 = —-y2
—1 1 1 0 =
=u = Uy =g
(a)
)1 X -1
Uy 3 3 3 = =X
Zy -1 5 = =2
-1l s [ e
=1z = u, =g
(b)
)1 Y2 —1
Uy g -3 i =%
Uy | —3 g i = —X2
R
= Z1 = 22 = g
Figure 62 (©)

noting that this will give two zeros in the resulting game matrix. These zeros
will simplify the simplex calculations. The game matrix now is

Figure 63(a)-(c) shows the initial and two subsequent simplex tableaus. The
value of the game, from Figure 63(c), is 33, which means that the value of
the original game is 33 — 3 = —4. Optimal strategies agree with the answer
stated in Exercise 3, Section 9.

EXAMPLE 3 Consider the following game: R and C simultaneously display 1, 2, or 3
pennies. If both show the same number of pennies, no money is exchanged;
but if they show different numbers of pennies, R gets odd sums and C gets
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X4 X, —1
z| ® 0 1 | = -y
Zy 0 7 1 = —J,
—1 1 1 0 |=f
=U = Uy =&
(a)
)1 X9 —1
1 1 - _
BT Y [ )
~1 = Ty =r
=2 = Uy =8
(b)
N Y2 —1
Uy 3 0 3 =%
Uy 0 1 3 = —Xp
1t =4 - |8 |=s
=z =z =g
Figure 63 (©

even sums. The matrix of the game is

C shows
1 2 3 J——
1 o |3 | -4 Ly 7 c;\‘\\
R shows 2 3 0 5 ’ 7 0 9 !
3 _4 5 0 | s 9 4 z

Since the second row has all nonnegative entries, the game is, if anything,
in R’s favor. And if R plays the first two rows with equal weight, his
expectation is positive. Hence the value of the game is positive, and we
do not have to add anything to the matrix entries. The simplex calculations
needed to solve the game are shown in Figure 64(a)-(d). From this we see
that the value of the game is 1/7 = 32, and that optimal strategies are

0 ZO QO xO
P '—“t—:(fi,%’ﬁ) and ¢ ==

N
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Xy X, X5 —1
Zl 0 3 -—4 1 — _);1
Z2 ® 0 5 1 = )2
zg —4 5 0 1 = —J3

—1 1 1 1 0 =f

= “1 = u2 = u3 = g

(a)

Yo X X3 -1
zy 0 ©) —4 1 | =—y
Uy 3 0 3 1 ==X
Z3 3 5_ 2 g = )3

-t 1w [y =y

= 22 = u2 = u3 = g

(b)

Yo M1 X3 -1
w03 g [ 4 ]=-x
Uy 1 0 g 3 —X
Z3 3 -3 3 = 73

-1l -4 a5 [ =y

=2z, =2z = u3 = g

()

Yo )2 Vs —1
Uy % 8 1o £ = —X
uy 3 7 -3 i = —X
U o —3 T % | = —X3

i e R

= 22 = z1 = 23 = g

Figure 64 (d)

The reader should check that these strategies do solve the game.

The examples just solved could have been worked directly, without the
use of the simplex method. However, the simplex method works just as
well for much larger games for which there is no easy direct method.
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EXERCISES
1. If g° = x°/t, where x° solves the maximum problem stated in (1), and

t = exV, show that ¢° is an optimal strategy for player C in the matrix

ame G.
@olve the following games by the simplex method.

1] 0 3 ) 3 0] 5] —6
@ | —2 | 3 0| o 3| -4 510 7
4] 5| -6 —4 5 | -6 |7 0

3. Consider the matching-pennies game with matrix

‘ 1 —1
1 —1 1

(a) Substitute it directly into the simplex format described in rule (3)
above, and show that the simplex method breaks down.
(b) Consider the linear programming problem defined in (1) with this
G and show directly that it has no solution.
4. Use the simplex method to derive formulas (3)-(7) of Section 9 for
optimal strategies in a nonstrictly determined 2 X 2 game.
5. Rework Exercise 19 of Section 9 using the simplex method.
6. Rework Exercise 13 of Section 9 using the simplex method.
A passenger on a Mississippi riverboat was approached by a flashily
dressed stranger (the gambler) who offered to play the following game:
“You take a red ace and a black deuce and I'll take a red deuce and
a black trey; we will simultaneously show one of the cards; if the colors
don’t match you pay me and if the colors match I'll pay you; moreover
if you play the red ace we will exchange the difference of the numbers
on the cards; but if you play the black deuce we will exchange the
sum of the numbers. Since you will pay me with $2 or $4 if you lose
and I will pay you either $1 or $5 if I lose, the game is obviously fair.”
Set up and solve the matrix game using the simplex method. Show
that the game is not fair. Find the optimal strategies.
[Partial ans. The gambler will win an average of 25 cents per game.]
8. Consider the following game: R chooses 0 or 1 and reveals his choice
to C; C chooses 0 or 1, but does not reveal his choice to R; R then
chooses 0 or 1 a second time. The sum of the three numbers chosen
is computed and R receives odd sums while C receives even sums.
(a) Show that R has four strategies: 00, 01, 10, 11.
(b) Show that C has four strategies: (1) always choose 0, (2) choose
the same as R, (3) choose opposite to R, (4) always choose 1.
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(c) Show that the payoff matrix is

(1) (2) (3) 4)

00 0 0 1 1
01 1 1 _2 )
10 1 _2 1 ~2
11 _2 3 —2 3

(d) Solve the game by the simplex method, finding its value and
optimal strategies.

[4ns. p°® = (3,1,0,0), q° = , U =4]

O 8|&o ke

Rework Exercise 8 assuming that the players choose 1 or 2 each time.
The Silent Duel. Two duelists each have a pistol that contains a single
bullet and is equipped with a silencer. They advance toward each other
in N steps, and each may fire at his opponent at the end of each step.
Neither knows whether his opponent has fired, and each has but one
shot in the game. The probability that a player will hit his opponent
if he fires after moving k steps is k/N. A player gets 1 if he kills his
opponent without being killed himself, —1 if he gets killed without
killing his opponent, and 0 otherwise. Each player has N strategies
corresponding to firing after steps 1,2,. .., N. Let i be the strategy
chosen by R and let j be the strategy chosen by C.

(a) If i</, show that the expected payoff to R is given by

NG —)) +if
N? '

(b) Ifi> j, show that the expected payoff to R is given by

NG = )) — f
lad

(¢) Ifi=j, show that the expected payoff to R is 0.

In Exercise 10, prove that the game is strictly determined and fair for
N =2,3,and 4. Show that the optimal strategy for N = 3,4 is to fire
at the end of the second step in each case. For N = 2, show that any
strategy is optimal.

In Exercise 10, show that the game is nonstrictly determined and fair
for N =5, and find the optimal strategies.

[Ans. p® = (0, &, %, 0, 1), and ¢° is the column vector having the same
components.]
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13.

14.
15.

16.

A symmetric matrix game G is one for which g;; = —g; for i,
j=1,2,...,n Inother words, for every payment from C to R there
is an equal payment from R to C. Show that every symmetric game
is fair. [Hint: Show that if x0 is optimal for R, then the column vector
y with y, = x9 for k = 1,. .., n is optimal for C. From this deduce
that the value of the game is zero.}

Use Exercise 13 to show that the silent duel is fair for every N.
Consider a matrix game G with positive value in which the first row
strictly dominates the second row. Show that in the simplex algorithm
no entry in the second row will ever be chosen as a pivot in the first
step.

Consider a matrix game G with positive value in which the first column
dominates the second column. Show that if the pivot is chosen in the
first column, after the end of the first simplex calculation the indicator
for the second column will be nonnegative.

12 COMPUTER APPLICATIONS

The
it is

simplex method is ideal for solving linear programming problems, but
difficult to carry it out by manual calculations. Actually, the method

was designed for computers, and we shall show how to program it in BASIC.

The program LP follows Figure 18 closely. It starts with a DIM statement
that allows a matrix A of 20 rows and 20 columns, and hence a 21 X 21
tableau. In the body of the program lines 100-1199 correspond to the 11
boxes in the figure, with each box starting at a new multiple of 100. Thus,
for example, box 6 corresponds to the block of instructions starting at line

600.

E Lr

19

20

120
112
120
132
140
150
169
170
188
200
210
220
239
240
308
310
400

The remainder of the program prints answers and contains the DATA.

DIM T(21,21),M(20,4),X(2083,Y(28),UC281,V(22)

READ MoN
MAT READ T(M+1l,N+1)
FOR J =1 TO N

LET M(J,1) = M(JL3) = J
NEXT J

FOR I =1 TO M

LET M(I,2) = M(I1,4) = =1

NEXT I

FORJ =1 TO N

IF T(M+1,J) > 1E-6 THEN 300
NEXT J

GOTO 11949

REM J 1S THE PIVOTAL COLUMN

FOR I =1 TO M
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418
420
430
5892
518
520
530
683
610
620
630
640
650
662
680
690
699
702
710
715
720
730
742
803
812
822
830
835
849
850
869
8748
909
919
922
930
940
970
980

1098
1812
1020
1238
1343
1250
1860
1072
1160
11¢5
1110
1115

Linear Programming and the Theory of Games 411

IF T(l,dJd) > 1E-6 THEN 600
NEXT 1

PRINT "MAXIMUM PROBLEM HAS UNBOUNDED SOLUTION."
PRINT "MINIMUM PROBLEM HAS NO SOLUTION."
GOTO 1999

LET Ml = 1E30@

FOR I =1 TO M

IF T(1,J) < 1E-6 THEN 688
LET Q@ = TCILN+1)/TC1,d)
IF @ >= M1 THEN 680

LET Ml = @
LET Il = 1
NEXT 1

LET I = 11

LET C = T(1,J)

FOR Jl =1 TO N+l

IF J1 = J THEN 730

LET TC(I,J1) = T(l,J1)/C
NEXT Jli

FOR Il =1 TO M+l

IF Il = I THEN 860

LET C = T(Il,J)

FOR Jl =1 TO N+l

IF J1 = J THEN 8592

LET TCI1,Jd1) = T(Il,J1) = CxT(l,J1)
NEXT Jl

NEXT 11

LET C = T(1.,J)

LET T(I,dJd) = 1/C

FOR Il =1 TO M+l

IF 1l = 1 THEN 970

LET TC(Il,d) = =T(1l,d)/C
NEXT 11

LET A = M(J,1)

LET M(J,1) MC(I,2)
LET M(I,2) A

LET A = M(J,3)

LET M(J,3) MCIs4)
LET M(CI,4) A

GOTO 2009

s

MAT X
MAT Y
MAT U
MAT V

ZER(N)
ZER(M)
ZERC(N)
ZER(M)

L1 LI | I 1}
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1120 FOR I =1 TO M
1125 LET A = TC(I,N+1)
11386 LET S = M(I,2)

1135 1IF S<@ THEN 1150
1149 LET X(S) = A
1145 GOTO 1155

1158 LET Y(=S5S) = A
1155 NEXT 1

1168 FOR J = 1 TO N
1165 LET A = -T(M+1,J)
1178 LET S = M(J,3)

1175 IF S<@ THEN 1190
1183 LET U(S) = A
1185 GOTO 1195

1199 LET V(=-S) = A
1195 NEXT J

1196

121@ PRINT "VALUE = '; -T(M+1,N+1)
1228 PRINT "X = "3
1238 MAT PRINT XJ
1248 PRINT "Y = "3
125@¢ MAT PRINT Y;
1268 PRINT "U = '3
1272 MAT PRINT U;
1288 PRINT "V = '
1293 MAT PRINT Vs
1299

1998 DATA 2,3

1919 DATA 6.,2,4,200

1911 DATA 2,2,12,168
1912 DATA 12,8,24,0

1928

1999 EZND

READY

RUN

LP

VALUE = ©688Q.

X =

1. 178. 0

2.279 SEC.
READY
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Since the flow diagram is, in effect, an explanation of the program, only
a few comments are necessary. We have used only one tableau T, and hence
the changes are made within the tableau, rather than copying it over. This
is possible as long as we are careful in boxes 7 and 8 not to change the
entries of the pivotal column. Then the original entries are still available
for box 9. Also, in testing for positive entries we have elected to check
whether the entry is greater than 106, to avoid round-off errors.

The only major change from Figure 18 to the program LP is the matrix
M. We have to keep track of where the various variables are placed around
the margin of the tableau. The matrix M has four columns, corresponding
to the four margins. The first column keeps track of the variables on top,
the second column of the right side, the third of the bottom, and the fourth
of the left-side margin. In each case the entries are the subscripts of the
variables, except that negative entries indicate that we have y or v rather
than x or u. For example, if M(3,2) = 1, then in the third row the right-
hand marginal is x,; while if M(3,2) = —1, then it is y,. Similarly, if
M(1,3) = 4, then the first variable on the bottom is u,, while a —4 would
indicate v,.

The DATA in LP is taken from Example 2 in Section 5, and the RUN
shows the results previously obtained. By changing the DATA we work out
two other previous examples: LP2 corresponds to Example 3, and LP3 to
Example 4—which has no solution.

1980 DATA 2,2
1913 DATA 2,1,3
1911 DATA 3,1.,4
1912 DATA 17,5.,0

READY
RUN
LP2

VALUE = 22.6667
X =
1.33333 &
Y =
@.333333 ¢
U =
@ B.666667
UV =
B 5.66667

Be242 SEC.
READY
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1980 DATA
1913 DATA
1911 DATA
1912 DATA
READY

RUN

B Lr3

MAXIMUM PROBLEM HAS UNBOUNDED SOLUTION.

2.2
-l,1,1
1,-1,1
1,1,0

MINIMUM PROBLEM HAS NO SOLUTION.

B.226 SEC.

READY

Chapter 7

To show the power of the computerized simplex method we need a larger
example. The program LP4 solves the following maximum problem. The

1988 DATA
1910 DATA
1911 DATA
1912 DATA
1913 DATA
1914 DATA
1915 DATA
1916 DATA

READY
RUN

I Lr4

VALUE =
X =
4@ e 4D

B 166.667 @ @

D314 SEC.

READY

6,3
e8,¢55,43,82
e155e2,42,30
055025 2,30
Bseld5,415,16
Bse55e1,10
0,8,38554
25,40, 75,9

8600 .

82

133.333

566667
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Tasty Nut Company packages three kinds of boxes of mixed nuts. Each
box contains a pound of nuts, according to the following rules:

Cheap mix:  80% peanuts, 15% almonds, 5% cashews.

Medium mix: 50% peanuts, 20% almonds, 20% cashews, 5% walnuts, 5%
hazelnuts.

Fancy mix: 30% peanuts, 20% almonds, 20% cashews, 15% walnuts,
10% hazelnuts, 5% Brazil nuts.

The manufacturer has on hand 82 lb of peanuts, 30 Ib almonds, 30
Ib cashews, 16 1b walnuts, 10 Ib hazelnuts, and 4 1b Brazil nuts. If he makes
a profit of 25 cents on the simple mix, 40 cents on the medium mix, and
75 cents on the fancy mix, how much of each should he package? The
program LP4 contains the appropriate tableau and solves the problem. We
find a value of 8600, i.e., a profit of $86. From the vector X we note that
the optimal solution is to package 40 lb each of the two cheaper mixes,
and 80 1b of the fancy mix. From Y we note that we shall have left over
6 1b of peanuts and smaller amounts of cashews and walnuts. The vector
V is particularly interesting. It imputes to almonds, hazelnuts, and Brazil
nuts per pound values of $1%, $14, and $5%, respectively. This makes it very
tempting to buy more Brazil nuts.

The program LP5 differs from LP4 only in adding 4 Ib of Brazil nuts
to the stock. We note that the profit has increased by one-half of the imputed

1915 DATA 0,3, 05,45
RUN

LP5S

VALUE = 8883.33

X =

53.3333 20. 99

Y =

2433333 @ 5433333 1.5 9 0

6 0 @
@ 1664667 B @ 133+333 566.6067

G+356 SEC.
READY

value of $5%, which is what we would expect from adding 3 1b. Itis interest-
ing to note that so small a change in the inventory results in the drastic
change in the optimal production schedule.

The program LP6 illustrates the fact that the interpretation of imputed
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1915 DATA 8,0,4+85,5
RUN

B LP6

3 D25 6475 1 B 2.89557 E-8

31.25 @ @ @ 656.25 0

2.331 SECe.
READY

values is correct only as long as the nature of the solution does not change.
It differs from the original LP4 by adding one full pound of Brazil nuts.
However, the profit goes up only $5, less than the imputed value. We find
an explanation for this by noting that now peanuts have become a critical
commodity instead of Brazil nuts. And we no longer produce the medium
mix. The nature of the dual solution changes somewhere between 4.5 and
51b of Brazil nuts, and hence the imputed value holds for only part of the
change.

We next consider some computer applications to the solution of matrix
games. The program STRICT tests whether a given matrix game is strictly
determined, and if it is, it finds the saddle values. We first read the game
matrix. Then we set V to an incorrect value. If during the computation
we discover a saddle value, we shall then know the value of the game and
reset V. If V is not reset during the program, then we shall know that the
game is not strictly determined.

The strategy of the program is to look at every entry in the matrix to
see whether it is a saddle value. We start the double loop, which will run
through all rows and all columns, at line 100. At line 150 we ignore the
entry if it is different from the value of the game. However, if we have
not yet found the value of the game this test is inapplicable, and that 1s
the reason for line 140. In the loop at lines 210-230 we reject the entry
if there is a smaller entry on the same row. In the loop at lines 260-280
we reject it if there is a larger entry in the same column. If it passes both
of these tests, it is a saddle value. At lines 310-330 we set V to the correct
value, print the saddle value, and go on to the next entry. At lines 610-630
we either print the value of the game or we indicate that the game is not
strictly determined.

The data for the first RUN is from Example 3 in Section 8. This is a
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Ml STRICT

18 READ M,N

20 MAT READ G(M,N)

30 LET V = -99999

49

160 REM LOOK AT EVERY ENTRY
112 FOR I =1 TO M

120 FOR J = | TO N

132 LET VI = G(I,J)

146 IF V = -99999 THEN 200
156 IF V1 <> V THEN 409
160

260 REM IS IT A ROW MIN

212 FOR J! =1 TO N

220 IF G(I1,J1) < V1 THEN 42¢
23@ NEXT JI

240

258 REM IS IT A COLUMN MAX
260 FOR Il =1 TO M

278 IF G(I1,J) > V1 THEN 428
280 NEXT 11

299

302 REM IT IS A SADDLE

316 LET V = Vi

320 PRINT "ROW"3;1I;"- COLUM "3J3'"1IS A SADDLE"
338 GOTO 500

340
402 REM NOT A SADDLE, IGNORE

419

508 REM NEXT ENTRY

519 NEXT J

520 NEXT I

530 |

660 REM IS IT STRICTLY DETERMINED
610 IF V = -99999 THEN 658

628 PRINT "STRICTLY DETERMINED. VALUE ='";
638 GOTO 999

650 PRINT 'NOT STRICTLY DETERMINED."

660

9980 DATA 3,3

918 DATA 50.,58,80

911 DATA 52,508,803

912 DATA 28,208,590

999 END

READY
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RUN

STRICT

ROW 1 - COLUMN 1 IS5 A SADDLE
ROW 1 - COLUMN 2 IS A SADDLE
ROW 2 - COLUMN ! IS A SADDLE
ROW 2 - COLUMN 2 IS A SADDLE
STRICTLY DETERMINED. VALUE = 58
@.125 SEC.

READY

939 DATA 2,2
913 DATA 0,1
911 DATA 2,0
RUN

STRICT
NOT STRICTLY DETERMINED.

P.118 SEC.
READY

strictly determined game. For the second RUN we have chosen the example
of Figure 55(a), which is not a strictly determined game.

The most interesting computer application to games is modifying the
program LP to apply to matrix games. If in our DATA we have the enlarged
game matrix, including a last column and last row of all 1’s (except for a
zero in the lower right-hand corner), then we know from Section 11 that
we may apply the simplex method directly. The only change necessary to
our program LP is to modify the output, since the value is 1/, and the
vectors X and V have to be multiplied by this value. In the program GAME

Bl CAME

1208 LET T = -T(M+1,N+1)

1218 PRINT "VALUE = "31/T
1223 PRINT "STRATEGY FOR R:"J
1230 MAT V = (1/THi*V

1243 MAT PRINT Vi

1258 PRINT 'STRATEGY FOR C:";
1268 MAT X = (1/T)*X

1278 MAT PRINT X
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1299

19868 DATA 3,3

1919 DATA 08,3,-4,1
1911 DATA 3,98.,5.,1

1912 DATA -4,5,0,1
1913 DATA 1,1,1,0

1920

1999 END

READY

RUN

GAME

VALUE = 1.42857

STRATEGY FOR R:

0357143 B.571429 7.14286 E-2
STRATEGY FOR C:

G.357143 @.571429 7.14286 E-2

B.269 SEC.
READY

we show only the modifications we make, starting with line 1200. As our
example we have used Example 3 of Section 11. We obtain the same results
as 1 the text.

A computer version of the simplex method allows one to solve both very

large linear programming problems and very large matrix games.

Only Exercises 5-12 require the use of a computer.

1.

2.

o »n

Modify the program LP so that it will print the current tableau after
each iteration. Be sure to print the variables in the margins.

In the RUN of LP5, for the optimal solution X(1) = 53.3333, what
should the manufacturer do if he produces only one-pound boxes?
The program GAME works only if the value is positive. Modify it so
that if there are any negative entries it will add a sufficiently large
positive number to all entries. [Hint: If you do this, the value of the
game changes.] '

Describe an alternate strategy for the program STRICT. Which do
you think is faster?

Use LP to solve the tableaus in Figures 34 and 35 (Section 6).

Use LP to solve Exercises 12, 13, and 14 in Section 5.

How does the optimal strategy of the Tasty Nut Company change if
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the profits on the three kinds of mixes are 30, 50, and 90 cents, respec-
tively? [Ans. It does not change.]

8. Redo Exercise 7 for profits of
(a) 20, 30, and 40 cents.
(b) 25, 40, and 40 cents.

9. Use STRICT on the games in Exercise 2 of Section 8.

10. Use STRICT on the games in Exercise 3 of Section 8.

11. Try an alternate program for STRICT (see Exercise 4) to see whether
it is faster.

12. Try the program of Exercise 3 on the following game:

3 -1 0
—11 0 5
0 -7 7
8 3 -9
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