BUILDING A PADOVAN CUBOID SPIRAL

You can create spirals for both of these sequences:
A Fibonacci spiral of Squares and a Padovan Spiral of Equilateral Triangles

DIAGRAM OR EXAMPLE OF STIMULI

Why does the Spiral lie in a plane?

Equation of the spiral plane:
\[x - y = 0 \]
Each diagonal is such that either:
\(x = y \) OR \(x = -y \) OR \(x = z \) OR \(y = z \)

Notice that the Padovan Triangular 2D spiral is the same as the Cuboid Spiral!

HOW TO PROGRAM?

Starting Simple with the Fibonacci Spiral:

Keeping track of starting corner (star) and direction of diagonal movement (arrow)
- The magnitude of the direction is the Fibonacci number
- The signs of the direction are determined by a modulus 4 pattern
- The starting corner is the sum of the last starting corner
- The magnitude of the direction is the Fibonacci number

For the Cuboid Spiral:

Needed to figure out patterns for how to determine the next starting point, direction of motion, and dimension of the diagonal from that information from previous squares
- The pattern repeats based on modulus 6
For example:
\[d = 1 \]
\[p = 5 \]
\[k = 1 \]
\[n = 2 \]

For this method I stored previous values of starting point, direction of motion, and dimension of the diagonal in lists so there was no need for a Padovan function because you are storing the values instead of having to recalculate them recursively each time. This is good because it keeps the program from going too slow.

ACKNOWLEDGEMENTS

Thank you to Professor Doyle for helping me with this project.
I also looked at a few websites:
http://mathworld.wolfram.com/PadovanSequence.html