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Abstract

We give a max-min formula for the Perron-Frobenius eigenvalue of
a positive matrix.

Let A be a square matrix with positive entries, or more generally, with
non-negative entries, enough of which are positive so that the Perron-Frobenius
theorem will apply to guarantee that A has positive row and column eigenvec-
tors. These eigenvectors ν̄ and φ̄ are unique up to positive scalar multiples,
and they share a common positive eigenvalue λ:

ν̄A = λν̄,

Aφ̄ = λφ̄.

Given vectors ν and φ, we denote by ν ∗φ their element-by-element prod-
uct:

(ν ∗ φ)i = νiφi.

We write νφ for the usual scalar product:

νφ =
∑

i

νiφi.
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This is justified because if we think of ν and φ as row and column vectors,
respectively, νφ is just the usual matrix product.

Proposition.

λ = max
µ

min
ν∗φ=µ

νAφ

νφ
.

Here and throughout µ, ν, and φ denote vectors with strictly positive entries.
Proof. For any ν we have

νAφ̄

νφ̄
= λ,

so taking φ = φ̄ shows that

max
µ

min
ν∗φ=µ

νAφ

νφ
≤ λ

To prove the inequality in the other direction, take µ = ν̄ ∗ φ̄, and suppose
that ν ∗ φ = µ = ν̄ ∗ φ̄. Write

νi = ν̄ifi,

so that
φi = φ̄i/fi.

Then

νAφ − ν̄Aφ̄

=
∑

ij

ν̄iAijφ̄j(
fi

fj

− 1)

≥
∑

ij

ν̄iAijφ̄j log
fi

fj

=
∑

ij

ν̄iAijφ̄j log fi −
∑

ij

ν̄iAijφ̄j log fj

=
∑

i

ν̄iλφ̄i log fi −
∑

j

λν̄jφ̄j log fj

= λ(
∑

i

ν̄iφ̄i log fi −
∑

j

ν̄jφ̄j log fj)

= 0.
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Thus
νAφ ≥ ν̄Aφ̄ = λν̄φ̄ = λνφ,

so

max
µ

min
ν∗φ=µ

νAφ

νφ
≥ λ.

Corollary.

λ = max
µ

min
φ

∑
i µi

(Aφ)i

φi∑
i µi

.

Note. I found this result and proof back in 1984 by painstakingly dis-
cretizing Charles Holland’s variational characterization of the principal eigen-
value of a second-order linear elliptic equation [3, 4]. This theorem applies in
particular to diffusion-with-drift processes. To discretize Holland’s result, I
created a continuous process on a 1-dimensional simplicial complex with ‘fat
nodes’, and took a limit under which diffusion-with-drift on this 1-complex
approached a continuous-time but discrete-space Markov chain. Taking the
limit of Holland’s proof, so to speak, yielded the proof here. This discretiza-
tion process took far longer than you would imagine, and it was made more
painful by the ever-present suspicion that it should be possible just to write
down the discrete analog of Holland’s result. I could likely have done this if I
had paid more attention to the closely related work of Donsker and Varadhan
[1, 2].
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