Max-min approach to Perron-Frobenius

Peter Doyle

Version 1.0 dated 22 October 2009
GNU FDL

Abstract

We give a max-min formula for the Perron-Frobenius eigenvalue of a positive matrix.

Let A be a square matrix with positive entries, or more generally, with non-negative entries, enough of which are positive so that the Perron-Frobenius theorem will apply to guarantee that A has positive row and column eigenvectors. These eigenvectors $\bar{\nu}$ and $\bar{\phi}$ are unique up to positive scalar multiples, and they share a common positive eigenvalue λ:

\[\bar{\nu}A = \lambda \bar{\nu}, \]
\[A\bar{\phi} = \lambda \bar{\phi}. \]

Given vectors ν and ϕ, we denote by $\nu \ast \phi$ their element-by-element product:

\[(\nu \ast \phi)_i = \nu_i \phi_i. \]

We write $\nu \phi$ for the usual scalar product:

\[\nu \phi = \sum_i \nu_i \phi_i. \]

*Copyright (C) 2008 Peter G. Doyle. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, as published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts.
This is justified because if we think of $ν$ and $φ$ as row and column vectors, respectively, $νφ$ is just the usual matrix product.

Proposition.

$$\lambda = \max_{\mu} \min_{\nu \ast \phi = \mu} \frac{νAϕ}{νφ}.$$

Here and throughout $μ$, $ν$, and $φ$ denote vectors with strictly positive entries.

Proof. For any $ν$ we have

$$\frac{νAϕ}{νφ} = \lambda,$$

so taking $φ = \bar{ϕ}$ shows that

$$\max_{\mu} \min_{\nu \ast \phi = \mu} \frac{νAϕ}{νφ} \leq \lambda$$

To prove the inequality in the other direction, take $μ = \bar{ν} * \bar{ϕ}$, and suppose that $ν * \phi = μ = \bar{ν} * \bar{ϕ}$. Write

$$ν_i = \bar{ν}_i f_i,$$

so that

$$ϕ_i = \bar{ϕ}_i / f_i.$$

Then

$$νAϕ - \bar{ν}A\bar{ϕ}$$

= \sum_{ij} \bar{ν}_i A_{ij} \bar{ϕ}_j \left(\frac{f_i}{f_j} - 1 \right)$$

\geq \sum_{ij} \bar{ν}_i A_{ij} \bar{ϕ}_j \log \frac{f_i}{f_j}$$

= \sum_{ij} \bar{ν}_i A_{ij} \bar{ϕ}_j \log f_i - \sum_{ij} \bar{ν}_i A_{ij} \bar{ϕ}_j \log f_j$$

= \sum_i \bar{ν}_i \lambda \bar{ϕ}_i \log f_i - \sum_j \lambda \bar{ν}_j \bar{ϕ}_j \log f_j$$

= λ(\sum_i \bar{ν}_i \bar{ϕ}_i \log f_i - \sum_j \bar{ν}_j \bar{ϕ}_j \log f_j)$$

= 0.
Thus
\[\nu A \phi \geq \nu A \phi = \lambda \nu \phi = \lambda \nu \phi, \]
so
\[\max_{\mu} \min_{\nu \ast \phi = \mu} \frac{\nu A \phi}{\nu \phi} \geq \lambda. \]

Corollary.
\[\lambda = \max_{\mu} \min_{\phi} \frac{\sum_i \mu_i (A \phi)_i}{\sum_i \mu_i}. \]

Note. I found this result and proof back in 1984 by painstakingly discretizing Charles Holland’s variational characterization of the principal eigenvalue of a second-order linear elliptic equation [3, 4]. This theorem applies in particular to diffusion-with-drift processes. To discretize Holland’s result, I created a continuous process on a 1-dimensional simplicial complex with ‘fat nodes’, and took a limit under which diffusion-with-drift on this 1-complex approached a continuous-time but discrete-space Markov chain. Taking the limit of Holland’s proof, so to speak, yielded the proof here. This discretization process took far longer than you would imagine, and it was made more painful by the ever-present suspicion that it should be possible just to write down the discrete analog of Holland’s result. I could likely have done this if I had paid more attention to the closely related work of Donsker and Varadhan [1, 2].

References

