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Abstract

The m�enage problem asks for the number of ways of seating n

couples at a circular table, with men and women alternating, so that

no one sits next to his or her partner. We present a straight-forward

solution to this problem. What distinguishes our approach is that we

do not seat the ladies �rst.

1 The m�enage problem

The m�enage problem (probl�eme des m�enages) asks for the number Mn of
ways of seating n man-woman couples at a circular table, with men and

women alternating, so that no one sits next to his or her partner. This
famous problem was initially posed by Lucas [8] in 1891, though an equivalent

problem had been raised earlier by Tait [12] in connection with his work

on knot theory (see Kaplansky and Riordan [6]). This problem has been
discussed by numerous authors (see the references listed in [6]), and many
solutions have been found. Most of these solutions tell how to compute

Mn using recurrence relations or generating functions, as opposed to giving

an explicit formula. The �rst explicit formula for Mn, was published by
Touchard [13] in 1934, though he did not give a proof. Finally, in 1943,

Kaplansky [5] gave a proof of Touchard's formula. Kaplansky's derivation
was simple but not quite straight-forward, and the problem is still generally

regarded to be tricky.
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We will present a completely straight-forward derivation of Touchard's

formula. Like Kaplansky's, our solution is based on the principle of inclu-

sion and exclusion (see Ryser [11] and Riordan [9]). What distinguishes our

approach is that we do not seat the ladies (or gentlemen) �rst.

2 Solution to the relaxed m�enage problem

We begin with an apparently simpler problem, called the relaxed m�enage

problem, which asks for the number mn of ways of seating n couples around

a circular table, so that no one sits next to his or her partner. This is nearly
the same as the m�enage problem, only now we have relaxed the requirement
that men and women alternate.

To determine mn, we begin with the set S of all (2n)! ways of seating

the 2n individuals around the table, and use inclusion-exclusion on the set of
couples who end up sitting together. Let us call the elements of S seatings,
and let us denote by wk the number of seatings under which some speci�ed
set of k couples (and possibly some other couples) end up sitting together.
Clearly, wk does not depend on the particular set of k couples we choose,

and so, by the principle of inclusion and exclusion, we have

mn =
nX

k=0

(�1)k �

 
n

k

!
� wk:

To �nish the enumeration, we must compute wk. Assume n > 1. Let dk
denote the number of ways of placing k non-overlapping unlabeled dominos

on 2n vertices arranged in a circle. (See Figure 1.) Then

wk = dk � k! � 2
k
� (2n � 2k)!:

(Decide where the k couples go, and which couple goes where, and which

partner takes which seat, and where the 2n� 2k individuals go.) So now we
have only to compute the dk's. This is a routine combinatorial problem. The
answer is

dk =
2n

2n� k
�

 
2n� k

k

!
:

(See Ryser [11], pp. 33-34, or Exercise 1 below). This yields

wk = 2n � (2n � k � 1)! � 2k:
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Figure 1: Non-overlapping dominos
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n mn mn=(2
nn!) mn=(2n)!

2 8 1 0.333333. . .

3 192 4 0.266666. . .

4 11904 31 0.295238. . .

5 1125120 293 0.310052. . .

6 153262080 3326 0.319961. . .

7 28507207680 44189 0.326998. . .

8 6951513784320 673471 0.332246. . .

9 2153151603671040 11588884 0.336305. . .
10 826060810479206400 222304897 0.339537. . .

Table 1: Relaxed m�enage numbers

Plugging this expression for wk into the formula for mn, above, we get

mn =
nX

k=0

(�1)k �

 
n

k

!
� 2n � (2n � k � 1)! � 2k:

By symmetry, we know that mn, must be divisible by 2n � n!. Pulling this
factor out in front, we can write

mn = 2n � n! �
nX

k=0

(�1)k �
2n

2n � k
�

 
2n � k

k

!
� (1 � 3 � 5 � : : : � (2n � 2k � 1)):

The �rst few values of mn are shown in Table 1.

3 Solution to the m�enage problem

For the m�enage problem, we proceed just as before, only now we restrict the
set S of seatings to those where men and women alternate. The number
of these seatings is 2(n!)2: two ways to choose which seats are for men and

which for women; n! ways to seat the men in the men's seats; n! ways to seat

the women in the women's seats. Just as before, we have

Mn =
nX

k=0

(�1)k �

 
n

k

!
�Wk;
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n Mn Mn=(2n!) Mn=(2n!
2)

2 0 0 0.0

3 12 1 0.166666. . .

4 96 2 0.083333. . .

5 3120 13 0.108333. . .

6 115200 80 0.111111. . .

7 5836320 579 0.114880. . .

8 382072320 4738 0.117509. . .

9 31488549120 43387 0.119562. . .
10 3191834419200 439792 0.121194

Table 2: M�enage numbers

whereWk denotes the number of alternating seatings under which a speci�ed
set of k couples all end up sitting together. This time we have

Wk = 2 � dk � k! � (n� k)!2:

(Decide which are men's seats and which women's, where the k couples go,

which couple goes where, and where the n � k men and n � k women go.)
Plugging in for dk yields

Wk = 2 � 2n � (2n � k � 1)! �
(n� k)!2

(2n� 2k)!
:

Plugging this expression for Wk into the formula for Mn above, we get

Mn =
nX

k=0

(�1)k �

 
n

k

!
� 2 � 2n � (2n� k � 1)! �

(n � k)!2

(2n� 2k)!
:

By symmetry, we know that Mn must be divisible by 2 � n!. Pulling this

factor out in front, we can write

Mn = 2 � n! �
nX

k=0

(�1)k �
2n

2n � k
�

 
2n � k

k

!
� (n� k)!:

The �rst few values of Mn are shown in Table 2.
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4 Comparison with Kaplansky's solution

The solution that we have just given is completely straight-forward and ele-

mentary, yet we have said that the m�enage problem is still generally regarded

to be tricky. How can this be? The answer can be given in two words: \Ladies

�rst." It apparently never occurred to anyone who looked at the problem not

to seat the ladies �rst (or in a few cases, the gentlemen). Thus Kaplansky

and Riordan 16] : \We may begin by �xing the position of husbands or wives,

say wives for courtesy's sake."

Seating the ladies �rst \reduces" the m�enage problem to a problem of

permutations with restricted position. Unfortunately, this new problem is
more di�cult than the problem we began with, as we may judge from the
cleverness of Kaplansky's solution [5]:

We now restate the probl�eme des m�enages in the usual fashion
by observing that the answer is 2n!un, where un is the number of
permutations of 1; : : : ; n which do not satisfy any of the following

2n conditions: 1 is 1st or 2nd, 2 is 2nd or 3rd,. . . , n is nth or 1st.
Now let us select a subset of k conditions from the above 2n and
inquire how many permutations of 1; : : : ; n there are which satisfy
all k; the answer is (nk)! or 0 according as the k conditions are
compatible or not. If we further denote by vk the number of ways

of selecting k compatible conditions from the 2n, we have, by the
familiar argument of inclusion and exclusion, un =

P
(�1)kvk(n�

k)!. It remains to evaluate vk, for which purpose we note that the
2n conditions, when arrayed in a circle, have the property that
only consecutive ones are not compatible. . . .

Of course vk = dk, so we see how, by choosing to view the constraints as

arrayed in a circle, Kaplansky has gotten back on the track of the straight-
forward solution. We can only admire Kaplansky's cleverness in rediscovering

the circle, and regret the tradition of seating the ladies �rst that made such
cleverness necessary.

5 Conclusion

It appears that it was only the tradition of seating the ladies �rst that made
the m�enage problem seem in any way di�cult. We may speculate that, were
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Figure 2: Real-world m�enage problem.

it not for this tradition, it would not have taken half a century to discover
Touchard's formula for Mn. Of all the ways in which sexism has held back

the advance of mathematics, this may well be the most peculiar. (But see
Exercise 2.)

6 Exercises

We list here, in the guise of exercises, some questions that you may want to
explore with the help of the references listed.

1. Show how to \derive" the formula for dk simply by writing down the

answer, without using recurrence relations or generating functions or
what have you. (Hint: Try this �rst for the formula for wk.)

2. Was it really sexism that made the m�enage problem appear di�cult?

(See Kaplansky and Riordan [6], and the references listed there.)

3. Solve the analog of the m�enage problem for the situation depicted in

Figure 2. (No one is allowed to sit next to or across from his or her
partner.)

4. Formulate the analog of the m�enage problem for an arbitrary graph G,
and show that it leads to a domino problem on G. Show that by seating
the ladies or gentlemen �rst, and following Kaplansky's lead, we arrive

at a problem of how to place rooks on a chessboard. (See Riordan

[9], Ch. 7.) Show that the domino problem and the rook problem are
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equivalent. Look into the relationship of the domino problem to the

Ising model of statistical mechanics. (See Fisher [3], Kasteleyn [7].)

5. What problem was Tait [12] really interested in? Did Gilbert [4] solve

it? Show that Gilbert could have used a simple M�obius inversion argu-

ment instead of P�olya's theorem. What kinds of problems require the

full force of P�olya's theorem?

6. What does it mean to \solve" a combinatorial problem like the m�enage

problem? Is a closed-form solution better than a recurrence? What

if what we really want is to generate con�gurations, rather than just

count them? (See Wilf [14].)

7. Why did Tait not pursue the m�enage problem? What do knots have
to do with atomic spectra? What was it like to live in Nebraska in the
1880's? (See Conway [2].)

8. The relaxed m�enage problem can be further generalized as follows:
Given two graphs G1 and G2 with the same number of vertices, �nd the
number of one-to-one mappings of the vertices of G1 onto the vertices
of G2 such that no pair of vertices that are adjacent in G1 get sent to
vertices that are adjacent in G2. Show that the dinner table problem

(see Aspvall and Liang [1], Robbins [10]) can be phrased in these terms,
and give a solution using inclusion-exclusion. Formulate and solve an
\unrelaxed" version of this problem. Show that the m�enage problem
can be phrased in these terms, and discuss how useful this reformulation
is. Do the same for the problem of enumerating Latin rectangles (see

Ryser [11] ).
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