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Abstract

The rising algebra is a subalgebra of the group algebra of the sym-
metric group Sy, gotten by lumping together permutations having the
same number of rising sequences. This well-known algebra arises nat-
urally when studying riffle shuffles. Here we introduce a number of
other subalgebras that arise naturally when stuffing ‘ruffles’, which are
like riffles except that after cutting the deck you turn over the bunch
of cards that were on the bottom.

This orphaned draft offers no context or motivation, and uses id-
iosyncratic notation and terminology that ‘seemed like a good idea at
the time’. We're making it available because it has been cited in this
form.

1 To and fro

1.1 Natural order

The theory of shuffling grows out of Jim Reeds’s fundamental observation
that to understand the riffle shuffle, you have to look at it backwards. Now,
keeping straight the difference between o and o~! is a chore whenever you
deal with permutations; having to try to keep everything backwards is pretty
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near impossible (for us, at least). To give ourselves a fighting chance, we
have to write composition of functions in the natural, left-to-right order.
WARNING. Throughout this paper we will compose functions in nat-
ural order:
(o7)[z] = 7ox]].

To try to minimize confusion, we will use superscripts whenever possible,
so that
:,UUT — (.:CO-)T.

We will also have occasion to use Wolfram’s postfix notation, so that
(z//o)/ /T =x//(oT).

1.2 The permutation group

Let S,, denote the group of bijections from {1, ..., n} to itself, with functions
composed in natural order:

As with any function defined on {1,...,n}, we can represent a permuta-
tion o as an n-tuple.
(19,...,n7%).

We will adopt a variant of the cycle notation for permutations, using
<1 j > to denote the transposition switching 7 and j, and letting

KU e Uy =<1l >< U] .. byt > .

(Don’t forget: natural order!)
For example, if n = 3, and a, b are the standard ‘braid’ generators

a=<12>=(21,3),

b=<23>=(1,3,2),

then
ab=<12><23>=<132>=(3,1,2).

This example demonstrates what appears to be a serious drawback of
the n-tuple representation, for while this representation ‘tells us where they



went’, it doesn’t show us.

To be more specific, it seems very natural to

represent the effects of a, b, and ab by drawing before-and-after diagrams:

Here the numerator (1,2, 3) isn’t conveying much information, but if we omit
it, the n-tuple that remains is the representation, not of the permutation
we're looking at, but of its inverse. So it seems like the n-tuple representation
of a permutation is just backwards from what we want. Where did we go

wrong?

Where we went wrong, of course, was in discarding the ‘numerator’ of our
before-and-after diagram, which we should properly think of as a fraction. If
we interpret the fraction £ to mean o771, then everything is groovy:

(2? ]‘7 3)7

=(1,3,2),

=(3,1,2).

(2,1,3)

(1,2,3)
a=
(2,1,3)
,_ (1.23)
- (1,3,2)
~(1,2,3)
RNCERY
Moreover, if we rewrite b as
(1,2,3)
b = =
(1,3,2)

(2,3,1)’

then we get the very natural ‘braidlike’ equations

(

(1,2,3)
2,1, 3)’

ab =




Of course we will have to be careful to remember that in the formula

7= 07_1,
-
the 771 comes after (i.e., to the right of) the o. This is actually very natural,
if you consider that Z is pronounced ‘sigma divided by tau’.
This whole question of ‘Which came first, the sigma or the tau?’ dis-
appears if we represent our n-tuples as column vectors, and transpose the
fractions € to o|r. Doing this yields the very congenial equation

T

1 2 2 2 1 2
ab=1 2 1 1 3 |l=12 31,
3 3 3 1 3 1
which we abbreviate to
112 212 112
ab=1 2|1 113 |=1| 213
313 311 311

This vertical representation of permutations is particularly appropriate in
discussing shuffling, since it makes it easy to visualize the cards as they
appear in the deck.

The conventions and notations that we have adopted fit in well with the
representation of permutations as matrices. Here we take our cue from the
theory of Markov chains, where a probability distribution is most conve-
niently represented as a row vector (pi, ..., p,) of positive numbers summing
to 1. A permutation ¢ corresponds naturally to the Markov transition matrix
permmatrix|o], where

permmatrix|ol;; = o[l j

Multiplying our row vector (pi,...,p,) by permmatrix[o] (on the right!)
yields

(P1s - - - Pp) permmatrix([o] = (Po-1(1); - - -+ Po-1[n])
which fortunately turns out to be the effect of taking the quantities p; and

moving them from their initial position i to position ¢[i]. Holding our breath,
we check, and to our delight we find that, with @ and b as above,

permmatrix|a| permmatrix[b]
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010 1 00
= 100 0 01
0 01 010
0 01
= 1100
010

= permmatrix|ab

All’'s well with the world!

2 Actions and reactions

Let G be a group and M a monoid. (Actually, this whole discussion might go
through when G is only a monoid, but we prefer to assume G is a group—if
only for alphabetical reasons—until there is some good reason for generalizing
to a monoid.)

Let G act on M on the right by automorphisms, so that

(m)" = "
and
(mn)? = mIn?.

When we need to refer to this action by name, we will attach this name to
the associated homomorphism p : G — Aut[M]. Here Aut[M]| denotes the
group of automorphisms with natural-order composition, and p is our default
name for group actions.

Given an action p of G on M, the semidirect product G'x ,M is the monoid
consisting of the set G x M together with the composition law

(9,m)(h,n) = (gh, m"n).
To check the associative law, we note that
(g, m)(h,n))(i,0) = (g,m)((h,n)(i,0)) = (ghi, m"'n'0).

G is isomorphic to the submonoid Gx{1} of Gx,M. The map (g,m) — (g,1)
is a monoid-homomorphism onto this submonoid; its kernel is the ‘normal’
submonoid {1} x M, which is isomorphic to M.
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Given an action p of G on M, a map v : M — G is called a reaction to p
if
ymln(n] = ~[m"n],
ie., if
(v[m], m)(v[n), n) = (ym]y[n], m"n) = (y[m "], m0 ).
This means that the set
{(g;m) : g =~[m|}

is a submonoid of G x M. As a set, the elements of this submonoid correspond
naturally to the elements of M, only the product in M has been twisted
through the interaction with G. We denote this new product by *, (leaving
p to be inferred from context), so that

mokyn = mp,
and we denote the monoid M with product *, by
G x, M.

If we ever to have to call this something, we will call it the demisemidirect
product of G and M with respect to p and ~.

3 Riffles and ruffles

3.1 The radix monoid

Let n be a positive integer, e.g. 52. Denote by Radix, the monoid with
elements (a, (x1,...,2,)) 1 a > 1,0 < x; < n, and multiplication

(a7 (113'1, s ,Zlfn))(b, (yla s >yn)) = (a'bv (bxl + Y-, bxn + yn)>
or in simplified notation,

1 Y1 bry + 1

a



We think of the elements of Radix,, as lists of digits in the specified radix
a; we combine two lists entry-by-entry (in the natural order!), interpreting the
product of rad(z,a) and rad(y,b) as rad((z,y), (a,b)), a two-digit number
in the hybrid radix (a, b), where the first digit « is in radix a and the second
digit y in radix b.

Note that if we represent rad(x,a) as the linear polynomial aX + =z,
then the mixed-radix product of rad(z,a) and rad(y,b) corresponds to the
composition (in natural order) of the corresponding linear functions:

(X —=aX+2)(X —bX +y) = (X +— abX + bx + ).

3.2 The riffle monoid

Now let S,, act on Radix, by permuting the list entries, and let Radix,, react
via the function riffle by interpreting the entries in the list of digits base
a as portraying the effect of an a-handed riffle:

1 113
1 2|4
0 | //riffle=| 3|1 |,
1 415
0/, 5 2
2 1 1 1 3
2 1 0 1 1
1 *riffle 0 = 2 *rad 0 = 4 s
0 1 1 1 3
1/, 0/, \2), 0/, \4),
2 1
2 1
1| //riffle| 0 | //riffle
0 1
L 0/,
1114 113
215 214
= 312 31
411 415
51 3 5| 2




114 412
215 511
= 312 214
411 113
51 3 315
1] 2
211
= 314
413
5|5
3
1
= 4 | //riffle.
3
4

6

We call the monoid arising from this reaction the riffle monoud:

Riffle, = S5, Xyjffle Radix,.

3.3 The Gray monoid

As a variation on Radix,, we introduce Gray,, which is to Radix,, as the
Gray code is to binary. Specifically, Gray, has the same elements as Radix,,,
but the new multiplication

1 Y1 bry + (r1 even? y; :b—1—1

*oray | = :
Tp Yn /, bx, + (r, even? y, : b—1—y,

a ab

Here we combine the Gray digits gray(z, a) and gray(y, b) by treating (z,y)
as a two-digit number in the hybrid Gray base (a,b), where the lower order
Gray digit runs alternately up and down, so that for example counting in
Gray base (3,2) goes

(0,0),(0,1),(1,1),(1,0),(2,0),(2,1).



3.4 The ruffle monoid

To describe up-down riffles, or ruffies, we use the monoid Ruffle,, which
we get by letting S, act as usual on Gray,, and letting Gray,, react via the
function ruffle by interpreting the entries in the list of digits as portraying
the effect of an a-handed ruffle:

1 115
1 2|4
0 | //ruffle=| 3|1 |,
1 413
0/, 5 2
1 1 1 1 2
1 1 0 1 1
2| *ruffle | O | =| L [ *gray [ O | = 3 |,
0 1 2 1 D
L 0/, L 0/, 3 /6
1 1
1 1
2 | //ruffle| O | //ruffle
0 1
L 0/,
1114 115
213 2|4
= 3|5 31
411 413
5| 2 5| 2
1114 41 2
213 311
= 315 5| 4
411 115
512 213
1] 2
21
= 3|4
415
51 3




//ruffle.

I
WUt W N
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This reaction yields the ruffle monoid:

Ruffle, = S, Xyyffle Gray,.

4 New algebras from old

4.1 Lumped monoids

A function g : M — S from the monoid M to an arbitrary set S determines
the equivalence relation =,,, where a =, b if and only if pfa] = p[b]. We say
that the function p is a lumping if (the characteristic functions of) the pu-
equivalence classes constitute a basis for a subalgebra of the monoid algebra
Q[M] (or C[M], if you prefer). (See Pitman [?].) Combinatorially, this
amounts to requiring that the p-equivalence classes [a] all be finite, and that
there exist structure constants Ciq) (g such that for any a,b,c € M there
are exactly Clq) ), Ways of writing zy = ¢ with x € [a], y € [b].

4.2 Do the right thing

Let M and N be monoids, u a lumping of M, and v a function on N that we
hope to show is a lumping. We say that a homomorphism f : M — N does
the right thing if in the monoid algebra Q[N] the elements 3¢, f(z) belong
to and span the subspace spanned by (the characteristic functions of) the v-
equivalence classes. Conbinatorially, this amounts to requiring that there
exist a matrix D = {Dy,, 5, } of what we might call restructure constants,
such that for any a € M, b € N there are exactly Dy, ), Ways of writing
f(x) = b with € [a],; in addition, the row-space of the matrix D must
contain the standard basis vectors, a requirement that in our examples will
follow from the fact that we can order the rows and columns of the matrix D
so that it becomes lower-triangular, with non-zero entries on the diagonal.

Theorem. If f: M — N does the right thing with respect to a lumping
i of M and a function v on N then v is a lumping of N. &
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5 Shuffling and its algebras

5.1 Hand-equivalence and cut-equivalence

In the monoids Riffle,, and Ruffle, we can lump elements together accord-
ing to the value of the radix a. Let’s call the resulting equivalence relation
hand-equivalence, since we are lumping together shuffles involving the same
number of hands. Note that the subalgebra yielded by the lumping hand is
commutative: Indeed, it is isomorphic to the monoid algebra of the natural
numbers, because every ab riffle arises in one and only one way as an a-riffle
followed by a b-riffle (or vice versa).

Alternatively, we can refuse to identify two lists unless in addition to
sharing the same radix a, each base a digit occurs the same number of times
in the second list as it does in the first. This more discerning equivalence
relation we call cut-equivalence, since now we are lumping together shuffles
only if the cards are cut and distributed among the a hands in the same way.

5.2 Rising sequences

Given a permutation o € S,,, we cut the sequence 1,...,n into subsequences
called the rising sequences of o by dividing it between ¢ and i + 1whenever
o[i + 1] < oli]. The number of rising sequences in o tells the minimum
number of hands you need in order to produce o as the result of a single
rifle, and the specific division into rising sequences tells where you have to
make the cuts in order to accomplish this.

The notion of rising sequences suggests two equivalence relations on S,,.
We say that two permutations are rising-equivalent if they have the same
number of rising sequences, and risingsequence-equivalent if in addition
the rising sequences of the two permutations are exactly the same.

The map riffle does the right thing with respect to hand on Riffle,
and rising on S,. To verify this, we must check that the number of ways of
realizing a given permutation ¢ as the result of an a-handed shuffle depends
only on the rising number of ¢. This fundamental observation about riffles
is due to Bayer and Diaconis [?]; the proof is a standard ‘stars-and-bars’
argument.

Since riffle does the right thing, rising is a lumping, and yields a
commutative subalgebra of the group algebra of S,,, which we call the rising
algebra. (See Bayer and Diaconis [?], Pitman [?].)
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The map riffle also does the right thing with respect to cut and
risingsequence, thus yielding the larger rising sequence algebra. This sec-
ond algebra is commonly called the ‘descent algebra’ (see Bayer and Diaconis
[7], Hanlon [?]; we prefer to call it the ‘rising sequence algebra’ because we
feel this is more in line with the general policy:

As you go through life make this your goal,
Watch the doughnut, not the hole!

5.3 Turning points and oriented rising sequences

We say that a permutation has a turning point at 7,1 < 1 < n, if the graph
of the permutation, extended to map 0 to 0 and interpolated linearly to
give a piecewise linear mapping from [0, n] to itself, has a local maximum or
minimum at ¢. Note that 1 and n are treated differently in this definition,
in that we call 1 a turning point if 2 ends up coming before 1, but we never
call n a turning point. The more symmetrical notion of ‘reduced’ turning
number will be discussed later.

We say that two permutations are turning-equivalent if they have the
same number of turning points. (The stronger notion requiring that in ad-
dition they have exactly the same set of turning points coincides with the
risingsequence relation, so we can ignore it.)

While the rising number of the identity permutation is 1, the turning num-
ber of the identity is 0, and in general the turning number of a permutation is
1 less that we would hope and expect. This anomaly stems from the fact that
while rising sequences begin and end at the interstices between consecutive
integers in the domain of the permutation, turning points occur at the inte-
gers themselves. To get a more felicitous analog of rising sequences, we must
look not at permutations, but at oriented permutations (also called ‘signed
permutations’). In card-shuffling terms, an oriented permutation keeps track
of the way the cards are facing as well as their order. We divide the sequence
1,...,n into subsequences, called oriented rising sequences, according to the
cuts we would need to make in order to achieve the specified arrangement in
a single ruffle with the minimum number of hands. Note that some of these
subsequences may have length 0, though no two of them in a row will have
length 0. The maximum oriented rising number is 2n: To turn over each
card in place with a since ruffle, you need 2n hands.

The turning number of a permutation can then be viewed as one less than
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the minimum oriented rising number of an oriented permutation that reduces
to the given permutation when the orientations of the cards are ignored.

5.4 The turning algebra and the oriented rising alge-
bra

The map ruffle : Ruffle,, — S, does the right thing with respect to hand
and turning. As you would expect, the best way to see that ruffle does
indeed do the right thing is to factor it through the group S, of oriented
permutations. Writing

ruffle[m| = orientedruffle[m|//7s, s,

we observe first that orientedruffle does the right thing with respect to
hand on Ruffle, and orientedrising on S,. Thus orientedrising is
a lumping. Then we observe that m does the right thing with respect to
orientedrising and turning, so turning is a lumping. Verifying that these
two maps do indeed do the right thing involves showing that the number of
ways of obtaining a given oriented permutation as the result of an a-ruffle
depends only on the oriented rising number, and the number of ways of
obtaining a given permutation as the result of an oriented permutation with
specified oriented rising number depends only on the turning number. As in
the case of riffles, these verifications involve elementary counting arguments.

Thus we obtain a commutative subalgebra of the group algebra of S,,, the
turning algebra, by way of a commutative subalgebra of the group algebra of
S,, the oriented rising algebra.

5.5 The reduced turning number

The reduced turning number of a permutation differs from the turning num-
ber in that it refuses to recognize a turning point at 1. Thus the identity
permutation and the permutation A that reverses 1,...,n (turning over the
deck) both have reduced turning number 0.

To treat the reduced turning number with the machinery we have de-
veloped, we need a version of ruffling where instead of always turning over
the odd-numbered piles, we turn over the odds or the evens depending on
a specified direction. Thus we replace Gray, with {up,down} x Gray,. We
extend the action of S,, by having it leave the direction alone, and we let
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{up,down} x Gray,. react by interpreting the list of digits as the effect of
a regular (‘up-down’) ruffle or a reverse (‘down-up’) ruffle according to the
value of the direction:

1,2,3,4
(up, (2,(1,1,0,1,0)))//directedruffle = %>
1,2,3,4,5
(down, (2,(1,1,0,1,0)))//directedruffle = w

This reaction yields the directed ruffile monoid:

Sn Xdirectedruffle ({up,down} x Gray,)

The map directedruffle does the right thing (here again by way of
S,), and we get the a commutative subalgebra of the group algebra of S,,, the
reduced turning algebra, by way of the corresponding commutative subalgebra
of the group algebra of S,,.

6 Bijective correspondences

The existence of the rising algebra is equivalent to the fact that any two
permutations with k rising sequences arise in the same number of ways as
products of permutations with ¢ and j rising sequences. Moreover, in this
case there is a natural bijection between the sets of factorings of the two
permutation (and also between these factorings and the factorings where
the roles of i and j are reversed). The existence of these bijections follows
on general principles from the fact that the matrix of restructure constants
associated with the map riffle, which induces the rising algebra from the
combinatorially trivial hand-equivalence subalgebra of the riffle algebra, can
be written in lower-triangular form with 1’s on the diagonal. The same
goes for the oriented rising algebra. However, in the case of the turning
algebra, the diagonal restructure constants are powers of two. Of course,
since the sets of factorings in question are the same size, there will of still
exist bijections. However, there will no longer be any reason to expect that
there will exist any natural bijections (whatever that might mean). Thus
it appears that from a combinatorial point of view, the turning algebra is
essentially more complicated than the oriented rising algebra (from which it
arises by lumping) and the rising algebra.
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