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The Laplace spectrum via elementary geometry

The Selberg trace formula for a manifold M can be used to reduce questions
about the Laplace spectrum to questions of elementary geometry. Thus, for
example, showing that two manifolds are isospectral (have the same Laplace
spectrum) can be as simple as computing the volume of a bunch of cylinders.

While this reduction of spectral theory to geometry is widely known, at
least in principle, it seems to be widely ignored in practice. Here we will try
to set the situation to rights, by developing the trace formula from scratch
using only elementary geometry.

Well—elementary geometry and standard stuff about covering spaces and
the like. But this extra stuff is only needed in developing the theory. In apply-
ing the theory, we will likely understand the universal coverings of the man-
ifolds we’re dealing with. This will allow us to dispense with any tools more
sophisticated than the Pythagorean theorem and the volume of a cylinder.
(Of course for hyperbolic manifolds, we’ll need the hyperbolic Pythagorean
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theorem and the volume of a hyperbolic cylinder; but this is only to be
expected.)

We remark that our whole discussion works just fine for orbifolds as well
as for manifolds. But to keep the terminology palatable to readers who may
not know or care much about orbifolds, we’ll stick with manifolds.

One last thing: You will note that nowhere in this discussion of the trace
formula do we actually write it down. That’s because in practice, you can use
the trace formula without knowing precisely what it is. In fact, it may be a
distinct advantage not to know the formula. Perhaps the reason the formula
has not been used more effectively is that potential beneficiaries have been
mesmerized by the details of the formula, and missed the essential simplicity
of the idea behind it.

The heat trace and the spectrum

Let M be a compact Riemannian manifold with Laplace spectrum λ0, λ1, . . .
and corresponding orthonormal eigenfunctions φ0, φ1, . . ..

The functions
un(x, t) = φn(x)e−λnt

satisfy the heat equation

∆u =
∂u

∂t
.

From these solutions we form the heat kernel

K(x, y; t) =
∑
n

φn(x)φn(y)e−λnt.

This kernel produces a solution to the heat equation from initial values given
by an arbitrary function f on M :

u(x, t) =
∫

M
K(x, y; t)f(y)dy =

∑
n

< φn, f > un(x, t),

with
u(x, 0) =

∑
n

< φn, f > φn(x) = f(x).

The heat trace

trK(t) =
∫

M
K(x, x; t)dx
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is determined by the Laplace spectrum:

trK(t) =
∫

M
K(x, x; t)dx =

∑
n

∫
M

φ(x)2dxe−λnt =
∑
n

e−λnt.

In fact, the heat trace is the Laplace transform of the spectral measure dσ,
which places a unit mass on the real line at the location of each eigenvalue
λn:

trK(t) =
∑
n

e−λnt =
∫

M
e−stdσ(s),

where
σ(s) = |{n : λn ≤ s}| .

By inverting the Laplace transform, we can recover the spectrum from
the heat trace (at least in principle). Thus the heat trace and the spectrum
determine one another.

The heat trace and the counting trace

Now assume that the universal cover M̄ of M is homogeneous and isotropic,
so that the heat kernel K̄(x̄, ȳ; t) of M̄ depends only on the distance dist(x̄, ȳ)
between x̄ and ȳ:

K̄(x̄, ȳ; t) = kt(dist(x̄, ȳ)).

For example, if M is a platycosm (compact flat 3-manifold) then M̄ = R3

and

kt(r) =
1

(2πt)
3

2

e
−r

2

2t .

Using the time-honored method of images, we can push the heat kernel
K̄ on M̄ down to M . Let Γ be the covering group, and let x̄, ȳ ∈ M̄ be
arbitrary lifts of x, y ∈ M .

K(x, y; t) =
∑
γ∈Γ

K̄(x̄, γȳ; t) =
∑
γ∈Γ

kt(dist(x̄, γȳ)) =
∫

∞

0
kt(s)dNx,y(s),

where
Nx,y(s) = |{γ ∈ Γ : dist(x̄, γȳ) ≤ s}| .

We call N(x, y; s) = Nx,y(s) the counting kernel. It counts the number of
homotopically distinct paths from x to y of length ≤ s. The corresponding
measure dNx,y(s) places a unit mass on the real line for each homotopy class
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of paths from x to y, located at the minimal length of curves in the given
homotopy class.

Taking traces we have

trK(x, y) =
∫

M
K(x, x; t)dx =

∫
∞

0
kt(s)dtrN(s),

where

trN(s) =
∫

M
N(x, x; s)dx =

∫
M
|{γ ∈ Γ : dist(x̄, γx̄) ≤ s}|dx.

We call trN the counting trace. It counts how many points x ∈ M which
are ‘within s of themselves’; this counting is done ‘with multiplicity’, so
that homotopically distinct ways of getting from x back to x contribute
independently to the count.

Evidently the counting trace determines the heat trace: Specifically, the
heat trace is an integral transform of the associated counting measure dN(s).
Previously, we saw that the heat trace was a transform of the spectral mea-
sure, and argued that we could recover the spectral measure from the heat
trace by inverting the transform. Here again, we can invert the transform,
so we can recover the counting trace from the heat trace. We won’t worry
here about the details of this inversion, because in practice, the important
fact is that it can be done in principle.

We sum up this discussion as follows:
Theorem. On a manifold M whose universal cover M̄ is homogeneous

and isotropic, the Laplace spectrum, the heat trace, and the counting trace
all determine one another: They capture exactly the same information about
the manifold.

Corollary. Two compact manifolds with the same local geometry (as-
sumed homogeneous and isotropic) and the same counting trace are isospec-
tral.

Now we just need to figure out how to compute the counting trace.

Computing the counting trace

The counting trace measures how many points x ∈ M are ‘within s of them-
selves’. To compute it, we lump together ways of getting from x back to x
according to the free homotopy class of the path involved.
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trN(s) =
∫

M
|{γ ∈ Γ : dist(x̄, γx̄) ≤ s}|dx =

∑
[γ]∈[Γ]

Measure({x̂ ∈ M̄/Z(γ) : dist(x̂, γx̂) ≤ s}).

Here [γ] is the conjugacy class of γ; [Γ] is the set of all conjugacy classes
of Γ; and Measure is volume measure on the covering space M̄/Z(γ) of M
corresponding to the subgroup Z(γ) of all elements that commute with γ.

Because this last formula has a rather austere, group-theoretical cast to
it, we hasten to explain how it works in particular cases. The situation is
simplest when M is a space of negative curvature, for example the hyperbolic
plane H2 or hyperbolic space H3. Then each free homotopy class on M
contains a unique shortest representative, which is a closed geodesic, and the
classes can be written
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