Integer-Point Enumeration
in Porghedra
Based on "Computing the Continuous Discretely" by Martins Bean and Sinai Robing

What is a Polyhedron?
Polyhedron: A set, bounded or not, that can be described by the intersection of finitely many haf-spaces and hyperplanes
Convex Polytope: A convex hull of finitely nary points in \mathbb{R}^{\downarrow}.

- Equivalent to a bounded polyhedron

Ex. Polyhedron in \mathbb{R}^{2}

- Defines by hyperplanes:

$$
\begin{aligned}
& L_{1}:\left\{(x, y) \in \mathbb{R}^{2} \mid y=-x+1\right\} \\
& L_{2}:\left\{(x, 0) \in \mathbb{R}^{2}\right\} \\
& L_{3}:\left\{(0, y) \in \mathbb{R}^{2}\right\} \\
& P=\left\{(x, y) \in \mathbb{R}^{2} \mid y<-x+1, y>0, x>0\right\}
\end{aligned}
$$

If we include the lines L_{1}, L_{2}, h_{3}, then P becomes the convex poeytape defined by

$$
P=\operatorname{Conv}\{(0,0),(0,1),(1,0)\}
$$

What is the dimension of a Polytope?

$$
\operatorname{dim} P=\operatorname{din}\left(S_{\text {pan }} P=\{x+\lambda(y-x) \mid x, y \in P, \lambda \in \mathbb{R}\}\right.
$$

- The Smallest space our polytope cm comfortably reside in
Ex.

$$
\operatorname{dim}=?
$$

$$
\operatorname{dim}=?
$$

Fact: a d-dimensional polytope has at least dtvertices. Simplex: a d-dimensional polytope with exactly dtivertices.

Triangulating Over a Porytope:
Triangulation: "Spurting up" or polytope into simpices of the same dimension

- Beck, Robins, plo

Fact: Triangulations are not necessarily unique

Thu: Every Convex polytope can be triangulated Using no new vertices
Why do we Care about Triangulation?
It makes all of our proofs easier!

Integer-Point Enumeration
$\Pi^{d}=\left\{\left(a_{1}, \ldots, a_{d}\right) \mid a_{i} \in \mathbb{B}\right\}$ is the " d-integer lattice".

- A grid w/ a point whenever all coordinates ane integers

Lattice -Point Enumeration $\left(h_{p}\right)$:

$$
L_{p}:=\#\left(\nexists \cap \mathbb{R}^{2}\right)
$$

- The number of integer points in P. "discrete volume"

Dilation
We can scale our polytope P by t

- $t\rangle$ is caned the " $t^{\text {th }}$ dilate" of p

$$
L_{p}(t)=\#\left(t \not \cap^{2}\right)=\#\left(P \cap^{\left.\frac{1}{t} \mathbb{Q}^{d}\right)}\right.
$$

Examples

$$
\begin{aligned}
& \lambda=1: \quad P=[a, b], \quad a, b \in \mathbb{Z} \\
& p=[2,5] \\
& L_{[2,4]}(1)=4 \\
& \mathcal{L}_{(2,4)}(2)=7 \neq 2(4)
\end{aligned}
$$

$$
d=2:
$$

$$
\mathcal{L}_{p}(t)=(t+1)^{2}
$$

$\Rightarrow L_{\neq}(t)$ is not unique for a given polytope

Why study integer-point enumeration?
There is a deep Connection between discrete and continuous volume

Discrete \rightarrow Continuous
For a polytope $P \subset \mathbb{R}^{d}$:

- Draw d-dimensional boxes between the points of Your integer lattice.
- \#of Boxes in $P \approx L_{p}(1)$
- Volume of each box $=1^{d}=1$
- Very rough volume approximation of $\phi=1 \cdot 1 p(1)$ What if we dilate ϕ by secalrg our lattice down?
- \# of boxes in $p \approx h_{p}(t)$
- Vowne of each box $=\frac{1}{t^{d}}$

$$
\begin{aligned}
& V_{01}(p) \approx \frac{1}{t^{2}}\left(h_{p}(t)\right) \\
& V_{01}(p)=\lim _{t \rightarrow \infty} \frac{1}{t^{2}}\left(h_{p}(t)\right)
\end{aligned}
$$

- What does this tell us about $O\left(h_{p}(t)\right)$?

Frodocnius's Coin Problem
Given n coins of different values, what's the largest number we can't make using these coins?

Corns: $a_{1}, \cdots, a_{1} \in \mathbb{Z}_{>0}$

$$
P_{A}(n)=\#\left\{\left(m_{1}, \cdots, m_{2}\right) \in \mathbb{Z}^{2} \mid m_{1}, \cdots, m_{d} \geq 0, a_{1} m_{1}+a_{2} m_{2}+\cdots+c_{2} m_{d}=n\right\}
$$

- Counts how many ways we can make n w our coins

The Ehrhart Series

$$
E h_{r p}(z):=1+\sum_{t=1} L_{p}(t) z^{t}
$$

*

Ehrhart's Thu:
If P is an integral Convex d-polytope, then $h_{p}(t)$ is a polynomial of degree. Proof Outline:

Lemma:

$$
\text { If } \sum_{t=0} f(t) z^{t}=\frac{g(z)}{(1-z)^{2+1}}
$$

then f is a polynomial of degree d

$$
\Longleftrightarrow
$$

g is a polynomial of degree $\leq d, g(1) \neq 0$
Coning over a polytope

- Integer-point transform: $\sigma_{s}(z)=\sigma_{s}\left(z_{1}, z_{2}, \cdots, z_{d}\right)=\sum_{m \in S \cap D^{\prime}} z^{m}$

Calculating Ehrp(z)
If $E h_{p}(z)=1+\sum_{t=1} f(t) z^{t}=\frac{g(z)}{(1-z)^{s+1}}$
then our Ehrhart series is uniquely determined by $g(z)$, a polynomial of degrees .d.

For Integral Convex d-Polytopes:
Let $g(z)=h_{d}^{*} z^{d}+h_{d-1}^{*} z^{d-1}+\cdots+h_{1}^{*} z+h_{0}^{*}$

$$
\begin{aligned}
& \Rightarrow h_{0}^{*}=1 \\
& \Rightarrow h_{1}^{*}=L_{p}(1)-d-1
\end{aligned}
$$

Similarly, there are formulas for $h_{2}^{*}, h_{2}^{*}, \ldots$ based on $h_{p}(2), L_{p}(3), \ldots$

So we can calculate $g(z)$, and therefore $E h r_{p}(z)$ by looking at the first d dilates of P.

We can actually do better!
Theorem:
If P is an integral convex d-polytore with

$$
E h_{r_{p}}(z)=\frac{h_{1}^{*} z^{d}+h_{d-1}^{*} z^{d-1}+\cdots+h_{1}^{*} z+1}{(1-z)^{d+1}}
$$

Then $h_{d}^{*}=h_{d-1}^{*}=\cdots=h_{h+1}^{*}=0$

$$
\Longleftrightarrow
$$

$(d-k+1) P$ is the smallest integer dilate of P that contains an interior lattice point. Proof Outeive

Ehrhert-Macdovald reciprocity:
Suppose P is a convex rational polytope

$$
\Rightarrow L_{p}(-t)=(-1)^{\sin (p)} L_{p o}(t)
$$

Where P° is the interior of P.

Big Takeaway:
To calculate the Ehrhart Series for a paytope P, we only reed to look at the dilates of ϕ until we find an integer lattice point in the interior (or at wast d of then)
Remember:
Since $E h_{r_{p}}(z)$ is encoded by $L_{p}(t)$, We can find $h_{\phi}(t)$ for any dilate t by looking at the coefficient of z^{t} in the Ehrhart Series

Ex:

$$
\begin{gathered}
E h_{p}(z)=\frac{g(z)}{(1-z)^{3}}=\frac{h_{2}^{*} z^{2}+h_{1} z+1}{(1-z)^{3}} \\
h_{1}=h_{p}(1)-d-1=4-2-1=1 \\
d-k+1=2 \\
2-k+1=2 \\
k=1
\end{gathered}
$$

$$
\begin{aligned}
h_{p}(2) & =\binom{d+2}{d}+h_{1}^{*}\binom{d+1}{d}+h_{2}^{*}\binom{d}{d} \\
q & =\binom{4}{2}+1\binom{3}{2}+h_{2}^{*}(1) \\
q & =6+3+h_{2}^{*} \\
\Rightarrow h_{2}^{*} & =0
\end{aligned}
$$

What a bout Rationed Pouytopes?
Quasipannomials: Periodic functions that alternate between polynomials (constituents)

Degree of a quasi polynomial $Q(t)$ is the highest degree among its Constituents

Ehrhart's Theorem for Rational Preytopes If P is a Rational cavex d-Paypore Then $\mathcal{L}_{p}(t)$ is a quasipalyomice in t of degree d.

The period of Q divides the $l \mathrm{~lm}$ of the denominates of the coordinates of the Vertices of P

EX:

t	$h_{p}(t)$
1	2
2	6
3	8
4	12
5	15

