
THE PROBABILISTIC METHOD

THE METHOD:

GOAL: PROVE THAT A STRUCTURE WITH GERTAIN DESIRED PROPERTIES EXISTS

How :

- ODEFWE AN APPROPRIATE PROBABILITY SPACE OF STRUCTURES
- (2) SHOW THAT THE DESIRED PROPERTIES HOLD IN THESE STRUCTURES WITH POSITIVE PROBABILITY

PROOF OF EARLIER PROPOSITION: (PROB. METHOD)

- CONSIDER A RANDOM TWO-GLORING OF THE EDGES OF KN OBTAINED BY COLORING EACH EDGE INDEPENDENTLY RED OR BLUE, WHERE EACH COLOR IS EQUALLY LIKELY.
- · FOR ANY FIXED SET IR OF 4 VERTICES, LET AR BE THE EVENT THAT THE INDUCED SUBGRAPH OF KN ON R IS MUNIOCHRUMATIC.
- FOR FIXED K, P. [AR] = 2⁻⁵ AND THERE ARE (4)
 ROSSIBLE CHOICES FOR 2... THE EXPECTED NUMBER
 SF MONOCHROMATIC GATES OF Ky 15 (4)2⁻⁵,
 IF THE "AVERAGE" NUMBER OF GATES IS (4)2⁻⁵, THEN
 CEPTAINLY THERE EXIST SOME GLORINGS WITH AT MOST
 THAT MANY GATES!

COMMENTS

() WHICH COLURING(S) OF KN HAVE THIS PROPERTY ?!?

DERANDOMIZATION (TACKLING (2))

() CAN WE ACTUALLY FIND DEPERMINISTRALLY SUCH A COLORING IN TIME WHICH IS POLYNOMIAL IN N?

YES... GREEDY APPROACH: METHOD JE CONDITIONAL PROBABILITIES

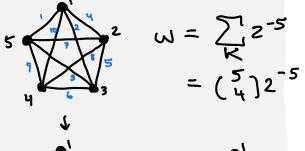
$$E \times :$$
5
4
 K_5

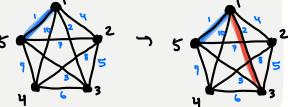
WEIGHT FUNKTION W ASSIGNS NUMBER TO PARTALLY COLORED Ky AS FOLLOWS.

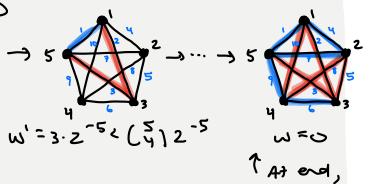
- FOR EACH OPY K OF Ky IN KN DEFINE W(K) AJ FOLLOWS'. 5
 - AND AT LEAST ONE EDGE OF K IS COLORED BLUE, THEN W(K)= 0.
 - THEN $\omega(K) = \frac{2^{-5}}{2}$.
 - · IF r ? I EDGES OF K ARE COLORED, ALL WITH THE SAME COLOR, THEN W(K) = 2⁻⁶.

•
$$W = \sum_{\substack{K=K_{Y}\\K_{Y} \in K_{N}}} w(K)$$

$$\omega(k) = 2^{-5} \qquad \omega(k)$$


W(K)=2-5 5-0


 $(\lambda) = 3 \cdot 2^{-5} = \frac{3}{37}$


ANALOG: W(K) = Pr[K WILL BE MONOCHROMATIC]

W= EXPECTED NUMBER OF MODEHRONATIC GPIES OF Ky WHEN CLORING IS COMPLETE WE NOW DESCRIBE A DETERMINISTIC ALGORITHM, WHICH, FOR ANY N, FINDS A 2-COLORING OF K_n SUCH THAT THE NUMBER OF MONDCHROMATIC CORES OF K_{ij} in K_n is AT MOST $\binom{n}{i} \cdot 2^{-5}$.

- ORDER THE (2) EDGES OF K, ARBITRARILY.
- · WHILE e (2) HAS NOT BEEN COLOPED
 - · SUPPOSE CI, ..., Ci, ARE ALREADY COLORED AND C: KAS YET TO BE GLORED
 - LET W BE THE WEIGHT OF KN W.r.L. GLORING 4 50 FAR W'=3.2⁻⁵ (⁵/₄)2⁻⁵
 - · COMPOTE WREE, WBLVE

W= # MONO. LUNES

NOTE: W = 2 Wred + 2 would

- · COLOR C: MM (WREN, WBINE) OBS: W NEVER INCREASES SINCE W = WRENT 4081-9 2
- * TRIVIAL RUNNING TIME: $\binom{n}{2} \cdot \binom{n}{4} = O(n^{6})$

The Probabilistic Method (Alon, Spencer)

mentor: Kathy Lin (Thank you!)

REFERENCES

ACKNOWLEDGEMENTS