A taste of Intuitionistic Logic

Directed Reading Program with Zachary Winkeler
Dylan Fridman and Julia Zanette
To \(\varphi \) or not to \(\varphi \)

Law of excluded middle

\[\varphi \lor \neg \varphi \]
Natural Deduction

Let \mathbf{PV} be an infinite set of *propositional variables*.

Definition

<table>
<thead>
<tr>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Let Δ be the least set such that:</td>
</tr>
<tr>
<td>- $\bot \in \Delta$</td>
</tr>
<tr>
<td>- $\mathbf{PV} \subseteq \Delta$</td>
</tr>
<tr>
<td>- $\phi, \psi \in \Delta$ then $\phi \land \psi, (\phi \lor \psi), (\phi \rightarrow \psi) \in \Delta$</td>
</tr>
</tbody>
</table>

Δ is our set of formulas.
A **judgment** is a pair consisting of a finite set of formulas Γ and a formula φ, and we denote it by $\Gamma \vdash \varphi$.

Definition
Natural Deduction

Classical Propositional Calculus

\[
\begin{align*}
\Gamma, \varphi &\vdash \varphi \quad \text{(Ax)} & \Gamma &\vdash \varphi \lor \neg \varphi \quad \text{(Ax)} \\
\frac{\Gamma, \varphi \vdash \psi}{\Gamma \vdash \varphi \to \psi} &\quad \text{(\toI)} & \frac{\Gamma \vdash \varphi \to \psi, \Gamma \vdash \varphi}{\Gamma \vdash \psi} &\quad \text{(\toE)} \\
\frac{\Gamma \vdash \varphi, \Gamma \vdash \psi}{\Gamma \vdash \varphi \land \psi} &\quad \text{(\landI)} & \frac{\Gamma \vdash \varphi \land \psi}{\Gamma \vdash \varphi} &\quad \text{(\landE)} \\
\frac{\Gamma \vdash \varphi \land \psi}{\Gamma \vdash \varphi} &\quad \text{(VI)} & \frac{\Gamma \vdash \psi}{\Gamma \vdash \varphi \lor \psi} &\quad \text{(VE)} \\
\frac{\Gamma \vdash \bot}{\Gamma \vdash \varphi} &\quad \text{(⊥E)}
\end{align*}
\]
Natural Deduction

Definition

We inductively define a **derivable judgment** as any judgment that is either an axiom or is derived from the rules of inference.

Definition

A **theorem** is a derivable judgment with $\Gamma = \emptyset$.
Natural Deduction
Natural Deduction

Classical Propositional Calculus

\[
\begin{align*}
\Gamma, \varphi & \vdash \varphi (Ax) & \Gamma & \vdash \varphi \lor \neg \varphi (Ax) \\
\frac{\Gamma, \varphi \vdash \psi}{\Gamma \vdash \varphi \rightarrow \psi} & (\rightarrow I) & \frac{\Gamma \vdash \varphi \rightarrow \psi \quad \Gamma \vdash \varphi}{\Gamma \vdash \psi} & (\rightarrow E) \\
\frac{\Gamma \vdash \varphi \quad \Gamma \vdash \psi}{\Gamma \vdash \varphi \land \psi} & (\land I) & \frac{\Gamma \vdash \varphi \land \psi}{\Gamma \vdash \varphi} (\land E) & \frac{\Gamma \vdash \varphi \land \psi}{\Gamma \vdash \psi} \\
\frac{\Gamma \vdash \varphi}{\Gamma \vdash \varphi \lor \psi} & (\lor I) & \frac{\Gamma, \varphi \vdash \theta \quad \Gamma, \psi \vdash \theta}{\Gamma \vdash \varphi \lor \psi} & (\lor E) \\
\frac{\Gamma \vdash \bot}{\Gamma \vdash \psi} & (\bot E) & \frac{\Gamma \vdash \varphi}{\Gamma \vdash \theta} & (\bot E)
\end{align*}
\]
Natural Deduction

Intuitionistic Propositional Calculus

\[
\frac{\Gamma, \varphi \vdash \psi}{\Gamma \vdash \varphi \rightarrow \psi} \quad (\rightarrow I)
\]

\[
\frac{\Gamma \vdash \varphi \quad \Gamma \vdash \psi}{\Gamma \vdash \varphi \land \psi} \quad (\land I)
\]

\[
\frac{\Gamma \vdash \varphi}{\Gamma \vdash \varphi \lor \psi} \quad (\lor I)
\]

\[
\frac{\Gamma \vdash \psi}{\Gamma \vdash \varphi \lor \psi} \quad (\lor E)
\]

\[
\frac{\Gamma \vdash \psi}{\Gamma \vdash \psi} \quad (\land E)
\]

\[
\frac{\Gamma \vdash \varphi \land \psi}{\Gamma \vdash \varphi} \quad (\land E)
\]

\[
\frac{\Gamma \vdash \psi}{\Gamma \vdash \varphi \lor \psi} \quad (\lor E)
\]

\[
\frac{\Gamma \vdash \bot}{\Gamma \vdash \varphi} \quad (\bot E)
\]
Natural deduction

Intuitionistic Propositional Calculus
From Classical to Intuitionistic

What is the difference?
Semantics of Classical Propositional Calculus

\(\neg(p \land q) \rightarrow \neg \neg p \lor \neg q \)
Semantics of Classical Propositional Calculus

Definition

A classical valuation is a function from PV to \(\{0, 1\} \).

Definition

Given a valuation \(v \), we define the value function \(V : \Delta \rightarrow \{0, 1\} \) as:

- \(V(\bot) = 0 \)
- \(V(\phi) = v(\phi) \) if \(\phi \in PV \)
- \(V(\phi \land \psi) = \min\{V(\phi), V(\psi)\} \)
- \(V(\phi \lor \psi) = \max\{V(\phi), V(\psi)\} \)
- \(V(\phi \rightarrow \psi) = \mathbb{1}_{V(\phi) \leq V(\psi)} \)
Semantics of Classical Propositional Calculus

Definition

We say a formula ϕ is classically valid and write it as $\vdash \phi$ whenever for every valuation v we have $V(\phi) = 1$.
A partial order \(\{ H, \leq \} \) is a **Heyting algebra** if:

- Every two elements \(a, b \in H \) have a supremum \((a \cup b) \) and an infimum \((a \cap b) \) in \(H \).
- Every two elements \(a, b \in H \) have a relative pseudo complement \((a \rightarrow b) \), which is the greatest \(c \in H \) such that \(a \cap c \leq b \).
- \(H \) has both top (1) and bottom (0) elements.
Semantics
Semantics

Definition

Given a Heyting algebra $\mathcal{H} = \{ H, \leq, \cup, \cap, 0, 1, \Rightarrow \}$, an intuitionistic valuation is a function from \mathbf{PV} to H.

Definition

Given a Heyting algebra $\mathcal{H} = \{ H, \leq, \cup, \cap, 0, 1, \Rightarrow \}$ and a valuation v, we define the value function $V : \Delta \rightarrow H$ as:

- $V(\bot) = 0$
- $V(\varphi) = v(\varphi)$ if $\varphi \in \mathbf{PV}$
- $V(\varphi \land \psi) = V(\varphi) \cap V(\psi)$
- $V(\varphi \lor \psi) = V(\varphi) \cup V(\psi)$
- $V(\varphi \rightarrow \psi) = V(\varphi) \Rightarrow V(\psi)$
Semantics

Definition

We write $\models \varphi$ whenever we have that $V(\varphi) = 1$, for every Heyting algebra \mathcal{H} and every valuation v.
Semantics

Theorem

$\vdash \varphi$ if and only if $\models \varphi$.
Semantics

Non-redundancy of the Law of Excluded Middle

Theorem

\(\neg p \lor \neg \neg p \)

Proof.
Semantics

Theorem

\[\forall \neg
\neg p \rightarrow p \]

Proof.
Glivenko’s Theorem

Theorem

A formula φ is classically valid if and only if $\neg\neg\varphi$ is intuitionistically valid.
That’s all

Questions?