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Abstract

The 20,000 ephemeral ponds, the playas of the southern high plains of the United
States, were thought to have experienced a prolonged drought ending approximately
5,000 years ago, during which amphibians and other aquatic residents would have died
out. A few permanent ponds are conjectured to be the source of repopulation of the
entire region since then. We develop a series of mathematical models based on the
tiger salamander, Ambystoma tigrinum, on rainfall data, and on field data, to test this
hypothesis. We show that, under reasonable assumptions, the region could have been
repopulated through migration within this time frame.

1 Introduction and Background

The ecological literature offers many examples of habitats that are only viable for certain
species on a seasonal or irregular basis. We examine the effect of population growth due to
reproduction and emigration, as well as loss due to predation, migration and local extinction,
on populations in habitats where there is a strict limit on resources and high variation in
habitability. In this paper we consider the southern high plains, the playa wetlands of West
Texas, Oklahoma, Colorado, Kansas and New Mexico, described in [36].

In the playa wet lands of the Midwest there are about 20,000 isolated shallow lakes,
called “playas”, that fill with rain and then dry during periods without rain. In the playa
system the primary resource is water and typically these wetlands are truly wet for only a
small percentage of the time and the wet times occur in a seasonal but irregular manner
[36]. Average annual rainfall across this region varies from 45 cm to 33 cm per year, of
which over half occurs from May to September [6]. No permanent rivers or streams cross
the region. These playas are ecologically important for eleven species of amphibians and a
host of birdlife. Typically the amphibian populations of these habitats have communication
on an irregular basis through migration during periods of high rainfall.
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The model that we develop is applicable to wide variety of vertebrates and invertebrates
that live in these difficult habitats. As a test case we model the life cycle of the tiger
salamander that is one of the eleven species of amphibians that inhabit the playas system.
The particular subspecies is Ambystoma tigrinum mavortium, [Petranka, 1998], common to
the playa wetlands [26].

There are other examples of such habitats around the world, including isolated transient
wetlands in the great plains of Canada [15], parts of Spain [35], Africa [13], Australia [14]
and India [28]. There are also examples of isolated habitats such as the Madrean Sky Islands
of the Southwest United States and Mexico, [24], to which the models developed in this
paper may also apply. In the case of salamanders, it is generally conceded that dispersal
and recolonization of fragmented habitats is required for the persistence of these populations
[32], [33], [34].

1.1 Spacial Distribution of Playas

A study based on 10,000 depressions in 20,000 square miles [23] gives .5 playas per square
mile or about .2 playas per square km, or 1 playa per 5 square km for a distance between
playas of about 3.13 km. However the paper also describes “innumerable small lakes” which
are not part of that count.

A study on the ground of 40 quadrangles in Texas [29] counts 19,600 playas in 40 quad-
rants, each quadrant about 7 by 8 = 56 sq miles, gives about 8.75 per sq mile, which is 3.38
per square kilometer or one per .3 square kilometers, giving a distance between playas of
about .55 kilometers.

1.2 Playa Biology

Playas, when wet, host a variety of plants and invertebrates, thirteen species of amphibian,
one species of reptile, and no fish unless introduced by humans [36]. Additionally a large
variety of bird species, including both shorebirds and waterfowl, populate playas and the
shores around them, with the greatest abundance during migration periods [36]. Currently,
no aquatic mammals inhabit the playas.

Amphibians feed on invertebrates and other amphibians, including their own species,
have large clutch sizes, and are quick to mature [36]. All of these are useful adaptations
to seasonal ponds. However, of the thirteen species found in playas, Ambystoma has a
relatively low clutch size and slow maturation period. Yet this one species of salamander
has established itself throughout the Southern High Plains playas. We choose this organism
as a test case for the question of repopulation of playas through migration, as it represents
the less fecund end of the amphibian species. If Ambystoma can repopulate a playa system
in a given amount of time, it is very likely that the other amphibians found in playas can do
so as well.
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1.3 Antevs’ Altithermal

In 1948 Antevs hypothesized a dry warm period in the playa region during the middle
Holocene (7500-5000 B.P.) [2] [3]. Subsequent geomorphic data [11] and paleohydrologic
data [30] have supported this hypothesis, as well as archeological evidence of well digging
as an adaptation to drought [19]. There is also evidence that, prior to this period, aquatic
mammals inhabited the playas [36].

Severe drought causes the disappearance of playas for extended periods and large scale
extinction of amphibians in the region would have been the result of Antevs’ Altithermal.
However, groundwater held in the Ogallala aquifer was discharged along the eastern es-
carpment [42] and may have allowed permanent ponds for amphibian habitat, from which
salamanders (and other amphibians) may have repopulated the playas since the end of the
altithermal approximately 5000 years ago.

One goal of this study is to understand the time frame in which the salamanders could
have populated the region. In [18] an elementary model was proposed that suggested that
the time frame was best measured in a few thousand years. In this study we revisit this
question.

1.4 Brief Overview of Paper

In this paper we develop mathematical models to test the hypothesis that the playas of the
southern high plains could have been repopulated by Ambystoma through migration within
5000 years. Section 2 of this paper describes the basic biology of Ambystoma. Section 3
develops two continuous models for the its lifecycle during a single reproductive season. Sec-
tion 4 describes two probabilistic models of 22,500 plays with repeated migration/extinction
events. Section 5 reports the results of these models. Section 6 interprets the models in light
of rainfall and field data. Section 7 summarizes the conclusions of the paper.

2 Ambystoma tigrinum mavortium

The general biology of the Ambystoma tigrinum mavortium has been well studied. The
habitat of the Tiger Salamander in central North America ranges from southern Canada
to the Chihuahua Desert, varying from forest to desert scrubland, although appearing to
require an aquatic habitat at least sporadically. It is known that environmental influences can
stimulate larvae to develop into sexually mature adults with aquatic rather than terrestrial
adaptations [8], [22]. Courtship behavior depends on the presence of water, eggs are laid in
water and larvae are aquatic [4], [8]. It is believed that salamanders and other amphibians
survive the dry periods between playa filling through hibernation or estivation, although
little is known about this because most studies are carried out on wet playas [36].

The western subspecies occurring in the playas region is genetically diverse in color pat-
terns, size, rates of metamorphosis. Local populations of the species may differ morpho-
logically more than completely separate species in other parts of the country [26] and are
attributed to the adaptation this organism must make to semi-arid conditions.
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Three morphs occur in the region: large, small, and cannibal. The large morphs mature
sexually as larvae before metamorphosing into adult form. This is adaptive in a situation
where the only viable habitat is aquatic. Most amphibians mature and reproduce on land.
The small morphs are more common in ephemeral ponds and may or may not mature before
metamorphosis. The ability to morph at a small size may prevent the immediate death of
the salamander if the pond dries up [26]. These differ in other ways also: their reproductive
cycles, metamorphosis rates and so on. Cannibal morphs are so called because the larva have
larger mouths and longer teeth associated with cannibalistic feeding, which is their observed
preference. Tiger salamanders are opportunistic feeders [26]. Thus, to a great extent, they
provide their own predation.

2.1 Reproduction and Life Cycle

It is difficult to get good data about tiger salamanders in playas over the course of an
exceptionally wet season because these do not occur every year or even frequently. For
growth, maturation, emigration and other important rates we must use data from regions
where ponds are permanent or at least predictable. The rates described below are gleaned
from studies of the same or closely related species in Colorado, California and elsewhere.

Tiger salamanders lay eggs that hatch into a juvenile (or larval) stage, grow and eventually
metamorphose into adults. A study in Colorado shows the rate of growth is higher in warmer
habitats and the size at metamorphosis is smaller [5]. The same study shows an example
of a cohort hatched in a warm pond growing an average .2 grams per day and achieving
metamorphosis at about 7.6 grams, for an estimated time to maturity of around 38 days. In
addition, metamorphosis may occur early if ponds begin to dry out [26]. One playa that had
dried out was observed to fill on May 31, contain larva on June 18 and produce adults on
July 16, 39 days later [26]. Thus a rainy season that lasts slightly over a month will bring
one generation to maturity. In permanent ponds some remain in an aquatic, “paedomorph”
state. Whether metamorphosed or paedomorph, females will be mature in about a year [26].

The observed rate of successful juveniles per female in a single breeding season of Cali-
fornia tiger salamanders is 5.94 in a pond that did not dry out [16]. Thus the total successful
juveniles per individual in that population was approximately 2.97, based on a population
where the ratio of males to females is approximately 1:1. Over the course of a rainy season
(one month) the increase in juveniles per day is approximately 0.099 new juveniles intro-
duced into a population per adult per day. Although the habitat, predation rates and so
forth would be different in a playa, the species is close enough that we might expect similar
results in a playa that does not dry out.

A study of related species Ambystoma maculatum in a Michigan pond [12] gives similar
results at about 207 eggs produced per female, egg mortality of 38% to 60%, larva survival
to 120 days at 40-108 per 1000. Thus from 2 adults we get 200 eggs at 50% mortality to
give 100 hatchlings of which 4 to 10 survive, giving 2-5 per adult. A third study [31] of
tiger salamanders near the Savannah River in South Carolina finds the annual production of
juveniles per adult to vary between zero and 23, depending on the year (and its particular
environmental factors).
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Ambystoma survive the dry season, including the potentially complete drying of the pond,
through estivation [9]. They burrow into the mud, remaining encased in hardening mud until
the next rainy season [9], or shelter in the cracks in the mud at the bottom of ponds [40].
This allows the pond to carry a viable population into the next season, although extremely
prolonged multi-year dry periods, such as the Altithermal, would be fatal.

Tiger salamanders will emigrate from their pond under some circumstances. Require-
ments for emigration are maturity, wetness, and crowdedness of the pond. A study of
Ambystoma in both permanent and temporary ponds in Colorado [41] finds that emigration
is indeed dependent on food supply depletion, in particular dwindling supply of fairy shrimp
in the ephemeral pond, whereas those in permanent ponds are more prevalent in the absence
of competition from their own species. In [16] emigration ranged from 15% per day on a wet
day down to less than 1% on an even wetter day that occurred at the start of metamorphosis.

Most of these studies are in relatively permanent ponds. In playa habitats, areas between
ponds typically have little cover for terrestrial Ambystoma, so migration will necessarily
depend more on favorable wet weather conditions. Thus, if rainfall is timed properly, high
rates of emigration could occur. These have been observed in the region around Lubbock,
TX, and reported, if not quantitatively, then at least anecdotally with gusto [38].

2.2 Movement and Speed

Studies of salamander motion on land involve either catching, tagging, releasing and then
re-catching the animals or attaching a radio device to the animals that slows them down and
often is the cause of mortality. All estimates from these studies therefore report the minimum
amount of distance the animal has moved in some time frame. Thus all measurements of
how far a salamander moves in a day are underestimates.

One paper studying migratory movements of tiger salamander in Long Island [17] found
that although average motion was around 2 m per day, some salamanders moved 100 m in the
course of a few days. These were permanent ponds and, unlike the habitat between playas,
there was cover for amphibians on the land between ponds. Similarly, a study of related
salamanders in Missouri found maximum single movements of as much as 75 m, (reported
as 37.82 m +/- 41.71 m) [25].

If the average distance between playas is 600 m, as described in Section 1.1, then migration
between two playas should take approximately 5-20 days.

3 Ambystoma Reproduction: Two Continuous Models

3.1 Patch Models in General

The term patch dynamics refers to an ecosystem made of many subsystems. In this section
we look at two situations: a single patch and two patches connected through migration.
These models will inform a subsequent probabilistic model of 20,000 patches. Both of the
models in this section have an Allee effect directly attributable to predation.
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There is of course considerable work in the literature on Allee effect in populations, [20],
[1]. This effect is an observed phenomenon wherein a population that drops below a threshold
goes extinct. The models we develop all display this effect, as the possibility of extinction
is high in the habitat described above. Amphibians evade extinction during dry periods
and emerge to breed during wet ones, yet the possibility always exists that a habitat can
dry up too early or too quickly, leading to extinction due to shortage of adults, or that the
population is overly depleted during vulnerable periods of migration. The interplay between
migration and the Allee effect is an important feature of these habitats.

3.2 One playa

For this model we imagine a single species growing rapidly in a limited habitat with pre-
dation, corresponding to a breeding season in which the organism could easily outstrip its
resources and a predator whose population is independent of the prey population. The sec-
ond assumption fits the relationship of migratory bird populations to the prey density of a
single playa.

x′ = ax(1− x)− bx/(k + x) (3.1)

The growth term is a simple logistic equation with units of the organism in percent of
the capacity. Actual pond populations have been measured in a few instances, and found
to range from 10,000 to 50,000 adults, although these were larger playas, [27]. Within pond
dynamics of Ambystoma are quite complex, and all of that is ignored here. In the case of
rapid breeders the constant a could be quite large. As our point of reference we use the
observations from [26] and [5] to give time to adulthood at 38 days and number of juveniles
produced per adult at 3, as in [16] and [12]. This gives a birth rate of .08 new adults per
salamander per day.

The death term represents predation with predator satiation. This would represent pre-
dation from a source external to the pond itself, such as migratory birds in the case of playas.
These birds feed on amphibians and invertebrates in the playas, but the sheer magnitude of
biomass produced by amphibian breeding is thought to be the key to their survival through
predator satiation [36]. The predator response function used here is O(bx/k) near zero, ris-
ing monotonically to a maximum rate of b. Thus when prey is small, predation is assumed
to be roughly proportional to prey biomass, but as the prey population rises the capacity
of the predator to remove prey reaches a finite limiting rate. The constant k is the prey
population at which this capacity is half its maximum, also controlling the initial constant
of proportionality. To make biological sense with regard to the units of population chosen,
both b and k should be less than 1, with k fairly small to indicate an early rise to the limiting
value.

Solving (1) for equilibria values is equivalent to finding the roots of a cubic. For this
equation the cubic has 0 as one root that is stable if b/k > a and unstable if b/k < a. It
will have two other real roots if k + 1 >

√
4b/a and both of these will be larger than 0 if

6



b/k > a. In this case 0 will be a stable equilibrium and the system exhibits an Allee effect,
going to zero for starting values that are less than the smaller, unstable nonzero equilibrium.
This simple model predicts that reduction of the maximum predation rate, b, can eliminate
the Allee effect entirely. This result is consistent with various hypotheses in the biology
literature connecting the Allee effect to the role of predation.

As the predation rate b increases the initial population of x required to evade the Allee
effect rises. In the case of playas, a source of predation external to the pond is migratory
birds, which may arrive when the population of salamanders is already fairly high. Realistic
values of b and k are not known, nor are probabilities and timings of waterfowl arrival. Table
1 shows the timing of population growth in a few cases. Note that b/k = 1 represents a
massive rate of predation at low prey density, as when flocks of waterfowl are present. We
are checking a case of high predation, to compare with the case of zero predation.

Table 1: One playa, populations at 30,60,90 days

Runs at a = .08 x0 b, k 30 days 60 days 90 days

1, logistic .01 0,0 .09 .53 .92

2, logistic .02 0,0 .18 .72 .96

3 .02 .01,.01 Allee

4 .2 .01,.01 .37 .66 .81

5 .3 .02,.02 Allee

6 .4 .02,.02 .405 .415 .425

Although a simple model, Table 1 illustrates a few important points. If the starting
density of salamanders is low, it will take at least one and possibly two months of breeding
before population pressure would be likely to drive migration. If predators arrive early in
this process they could drive the population to extinction but if they arrive later, when the
population has grown to a substantial percent of capacity, they will do no harm although
they may prevent the population from rising to the point where population pressure becomes
a factor.

Table 1 suggests that about two months are required for a minimally populated pond to
become fairly crowded. In addition, 5-20 days are required for migration to a nearby pond,
as described in Section 2.2. These considerations are behind the assumption in Section 4
that it is unlikely that a population of salamanders would have time in a single rainy season
to rise to necessary numbers, migrate to an adjacent pond, breed and rise in numbers in
the second pond, and migrate a second time. Thus, in the probabilistic model in section
4, we assume that it is only possible to reach ponds that are nearby in a given iteration
(representing a rainy season).
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Figure 1: One example of nullclines for the two playa model. Boxes indicate stable equilibria.
The left image is the 0-1 quadrant, and the right is zoomed in on a stable equilibrium.

3.3 Two Playas and the Role of Cyclic Disturbances

It is worth briefly considering a system of two playas with migration between them, based
on the model in equation 3.1.

Two nearby habitats with migration are given by:

x′ = ax(1− x)− bx/(k + x)− ex + fy (3.2)

y′ = ay(1− y)by/(k + y)− ey + fx (3.3)

Here the quantity x represents the proportion of the carrying capacity occupied by indi-
viduals in habitat X, and similarly for y in habitat Y. The constant e will be the proportion
of the whole emigrating per day, therefore less than one. The constant f should be inter-
preted (in the first of the two equations for example) as the proportion of individuals leaving
habitat Y and successfully arriving at habitat X. Thus f should be much smaller than e,
because the chance of losing organisms during migration is great. Based on the information
given from [25], the survival rate during emigration is equal about 0.66 %, thus it would
make sense to set f = .66e.
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Figure 2: The two playa model where the first playa has had a chance to fill before migration,
and where total predation is therefore a smaller percentage of the whole. x0 = .5, y0 = 0, a =
.08, b = .001, k = .01, e = .01, f = .006

Because the equations are symmetric in x and y, it is possible to find the solutions where
x=y. This system then reduces to a cubic, so for suitable choices of constants we will find
three of these in the unit interval, one at zero and two distinct positive roots, as in the
case of a single playa. Because of symmetry the basin of attraction for the (0,0) equilibrium
(henceforth called the Allee basin) is also symmetric. It is also worth noting that the only
equilibrium with one of the populations zero requires both to be zero.

Solving for all equilibria values requires finding roots of a pair of cubic equations in two
variables. Such a pair may have up to 9 roots. The nullclines for one such system, chosen with
biologically reasonable constants, are shown in Figure 1. Besides one stable equilibrium with
equal populations, there are also two stable equilibria where one population is substantially
lower than the other, as shown in the closeup view. For some parameter choices, a migration
beginning with low quantities of x and zero y will stabilize at such a low equilibrium value
in y that, when migration is turned off, the Allee effect causes y to drop to zero. In this
model of a pair of playas, as with the model of a single one, removing the predation term
removes the Allee effect.

For some organisms, such as Ambystoma inhabiting the playas, migration is a periodic
activity occasioned by changes in weather or habitat. During one part of the cycle there
may be no migration and even loss of life due to reduction of habitat. Another part of
the cycle may allow the organism to grow in isolation. A third part may allow migration
between habitats and a fourth stage may cut that migration off. This simple model of
two patches with predation, emigration and immigration shows the efficiency of alternating
periods of isolation with periods of migration. During periods of isolation, the population
of an inhabited pond has the opportunity to grow to a substantial proportion of its carrying
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capacity. As pointed out in [36], the biomass of aquatic amphibians in playas can surpass
all other fauna, particularly in Summer. During massive short term emigration the local
predators of salamanders on land would reach satiation at a lower percentage take. The
combination of these two factors (reduced b and increased x0) result in a situation where
both ponds quickly fill, as in Figure 2.

The model given by equations 3.2 and 3.3 thus illustrates the following points. Neighbor-
ing populations engaged in constant migration can achieve asymmetric equilibrium values,
with one population maintained below its cutoff for viability in isolation. Alternating periods
of isolation and migration allow populations to circumvent this possibility and full restocking
of vacant habitats is more likely. In the case of the playas, alternate isolation and migration
is exactly what happens.

We remind the reader that growth rates and survival rate in migration are values taken
from the literature, whereas other parameters are not known. In the next section we will
pass to a probabilistic model which, although coarser in detail, allows us to estimate relevant
parameters. From continuous models we take two main points. One is that the probability
of a salamander migrating to playas beyond its nearest neighbors in a single rainy season is
negligible. The second it that alternating isolation and migration, far from being a detriment
to an organism, may be a benefit or even requirement for repopulation of isolated habitats.

4 Two Probabilistic models Incorporating Migration

and Extinction

In order to model the entire 20,000 playa region at once we represent it as a square 150 by 150
grid of vertices connected by edges. Two alternating probabilistic processes are constructed,
one to represent migration with probability p and the other to represent extinction with
probability q. Each vertex has a binary value of populated or extinct. An annual cycle is the
result of two sequential processes. During the migration process each vertex is independently
designated fit to migrate using a random variable with probability p. If a fit vertex is
populated then the adjacent vertices will become populated also (if empty), otherwise there
is no change. During the extinction process each vertex is independently designated unfit
for habitation using a random variable with probability q. If an unfit vertex is populated
then it becomes unpopulated, otherwise there is no change. The random variables assigned
to all vertices are independent and identical, except for one corner vertex in the 150 by 150
grid, which remains continuously populated.

Thus one run of both processes in sequence simulates a rainy season in which there
is probability p of migration, followed by a dry season in which there is probability q of
extinction. The continuously populated corner vertex models those few playas at the edge
of the eastern escarpment enjoying discharge from the Ogallala aquifer [42], thus remaining
viable in all years.

In order to obtain statistics on the behavior of this model, for each pair of p and q chosen
the simulation was carried out multiple times, and both the number of iterations required to
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move populations across the grid and the final proportion of populated vertices was recorded.

4.1 Percolation Models in General and This One in Particular

The migration process taken alone is an example of a finite percolation model. These were
originally invented to study fluid flow through porous media. In the case of porous media
the number of vertices involved is so large that most models simply consider an infinite grid.
There is body of literature about that situation, asking the basic question as to under what
circumstances the fluid will cross an infinite space, as in for example [7], [10], or [37]. In
this model we are considering a finite space, for which there is always some probability of
crossing. A further difference is the presence of a source, that special vertex which remains
forever populated. Finally, the alternating extinction process is not a percolation process
and further complicates the model. So we apologize to percolation theorists that we found
no theorems that clarified our question or answered it.

However, in the spirit of percolation theory a second model was also developed that,
rather than tracking a binary variable, tracks the probability of each vertex being populated
after N runs. We use this model to verify our experimental, numerical, binary results from
the first model.

4.2 Numerical Methods

The playas are modeled as a 150 by 150 grid. Each node represents a playa and carries
a binary value corresponding to populated or unpopulated (by Ambystoma) Based on the
distribution of playas analyzed in Section 1.1 we will consider each playa to have eight
neighbors as in Figure 3. The nearest are about 600 meters apart (adjacent grid cells) and
the not so near are about 846 (600*

√
2) meters apart. Section 2.2 describes salamander

movement speeds as ranging from a maximum of 30 to 70 meters per day. It could take as
little as 9 days to as much as 28 days to reach these ponds. We assume, based on these
estimates and the population model in Section 3.2, that in one season (represented by one
time update of our model) there is not time to migrate to one of these eight neighbors,
reproduce to the point of population pressure and migrate a second time.

4.2.1 Model 1

Using MatLab software, a program was developed to simulate migration and extinction on
a grid of 150 by 150 vertices. The program employed a random number generator that
determined updated states of each vertex based on probabilities chosen for migration (p and
pf ) and extinction (q).
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Figure 3: A playa in the grid (labeled V) and its nearby neighbors (squares) and not so near
neighbors (circles).

At every time update, each node in the grid is updated. If the node is not populated, the
program runs through the eight adjacent neighbors. If the neighbor is not populated, nothing
changes. If the neighbor is populated, then a binary random variable decides whether the
node will be populated with probability p for nearest neighbors, and pf = p/

√
2 for not so

near neighbors. The program runs through all neighbors of the given node and calculates
the new state of the node for each neighbor.

The migration phase of the life cycle alternates with an extinction process that resets
all nodes to unpopulated with probability q. Both migration and extinction processes are
incorporated into a single step in the program.

The output of the algorithm is summarized in the equation below. Let v be a vertex in
the grid. Let W be the set of nearest neighbors to v and let U be the set of not so near
neighbors. Let p be the probability of migration, let pf = p/

√
2, and let q be the probability

of extinction. Let S(v) be the state of vertex v.
If S(v) = 1 then S(v) is updated to 0 with probability q. If S(v) = 0 then S(v) is updated

to 0 with probability P given by:

P = (1− Πw∈W (1− pS(w))Πu∈U(1− pfS(u))(1− q) (4.1)

Each simulation was run for 10,000 runs or twice as many cycles as it takes for the farthest
lake to first have a population (if that time is less than 5000). The program reports the first
occurrence of this, and then the proportion of the field that is populated at the end. For
each pair of probabilities p, q, the program was run 100 times. These values were used to
find standard deviations and means of both the time required to populate the grid and the
final proportion of populated vertices.
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4.2.2 Model 2

A second program calculates the new probability of population at each site for each year. It
runs for twice as many years as it takes for the farthest corner to reach probability .1725,
or to be within a tolerance of the previous year data, approximating an equilibrium state.
It reports the time it takes for this to occur, and the average probability (over the entire
grid of lakes except the one which is populated permanently) that a lake is populated. This
average represents an expected percentage of populated lakes at the end of the run.

Both models were run for p and q ranging from .2 to 1 in increments of .1, and also a
finer cut at low probabilities of p less than .2. Summary data for Model 1 are in Tables 8&9.

5 Results of the probabilistic model

For each choice of extinction probability in Model 1 we see in Figure 4 a sharp cutoff in
migration probability, below which the program did not produce enough runs populating
the system in less than 10,000 years to produce an average time. For example, when q = .5,
p must be at least .2 in order to repopulate the system within 5000 years. On the other had,
for low extinction probabilities of .1 or .2, the system always repopulates reliably even for
p as low as .04, as we see in the expanded version in Figure 5. For extinction probabilities
greater than .7 the system does not repopulate reliably within 10,000 years.
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Figure 4: Model 1: Average time to repopulation as a function of migration and extinction
probabilities for p between .1 and 1.

It is likely that, in the 5000 years since the Altithermal, the southern high plains experi-
enced periods during which rainfall was fairly high. Suppose that there was a period where
the probability of migration was fairly high and probability of extinction fairly low (such as
p = .3 and q = .2). This period would only have to last a few hundred years in order to
populate the region, far less than the 5000 since the Altithermal ended, as estimated from
Figure 4.

We can compare the performance of Model 1 in Figures 4 and 5 with that of Model 2
in Figures 6 and 7. In Model 2 we are strictly computing probabilities and looking for the
farthest pond to be populated with probability greater than .1725. We see that for q = .5, p
must be at least .3 in order to achieve this, and it does so within 5000 years. In fact, it takes
less than 500 years, which is consistent with results for Model 1 when q = .5 and p = .3.
Similarly, at the low migration probability of .1 and low extinction probability of .8, both
models give a time to repopulation of between 500 to 1500 years. Both models predict that
for low p and high q repopulation within the 5000 year time frame is not likely.

Tables 2 and 3 show the cutoff values of q for a given p for both models. We can see that
both models give similar although not identical results.
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Figure 5: Model 1: Average time to repopulation as a function of migration and extinction
probabilities for p between .02 and 2.

Table 2: Time to Repopulation for high p: q cutoffs

Migration p Model 1: q cutoff Model 2: q cutoff

.1 .3 .2

.2 .5 .4

.3 .6 .5

.4 .6 .5

.5 .7 .6
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Figure 6: Model 2: Time until probability that the farthest pond is populated is .1725, for
p between .1 and 1.

Table 3: Time to Repopulation for low p: q cutoffs

Migration p Model 1: q cutoff Model 2: q cutoff

.02 0 0

.04 .1 .1

.06 .2 .1

.08 .2 .2

.1 .3 .2

.12 .3 .2

.14 .3 .3

.16 .4 .3

.18 .4 .3

.2 .5 .4
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Figure 7: Model 2: Time until probability that the farthest pond is populated is .1725, for
p between .02 and 2.

We now turn to the question of what percent of ponds would be expected to be populated
for given pairs of probabilities. Figures 8 and 9 show the percent of ponds populated at equi-
librium (or at 5,000 years if equilibrium is not reached) in Model 1 for various migration and
extinction probabilities. Note that at p = 1 the behavior of this percentage fits our intuition,
coming close to 1− q. Note that for low p, the minimal percent populated ranges from 1 to
35 percent, depending on q. Similarly, Figures 10 and 11 show the average probability that
a pond is repopulated, as computed from Model 2 (leaving out the continuously populated
pond in the corner of the 150 by 150 grid). Note that each choice of q has a cutoff below
which p fails to populate the grid at all. This is consistent with other results in percolation
theory where the behavior of the system exhibits what is generally referred to as a “phase
change” as a parameter is moved. Tables 2 and 3 summarize the values of p and q that give
minimal repopulation in both models.
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Figure 8: Model 1: Average percent of ponds repopulated at equilibrium for p between .1
and 1.

Table 4: Minimal criteria for repopulation for high p: q cutoffs

Migration p Model 1: q cutoff Model 2: q cutoff

.1 .3 .4

.2 .5 .5

.3 .6 .5

.4 .6 .7
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Figure 9: Model 1: Average percent of ponds repopulated at end of run for p between .02
and 2.

Table 5: Minimal criteria for repopulation for low p: q cutoffs

Migration p Model 1: q cutoff Model 2: q cutoff

.02 0 .1

.04 .1 .2

.06 .2 .3

.08 .2 .3

.1 .3 .4

.12 .3 .4

.14 .3 .4

.16 .4 .5

.18 .4 .5

.2 .5 .5

Note that the q cutoff values for Model 1 in Tables 4 & 5 match those of Tables 2 & 3,
respectively. However the q cutoffs for Model 2 are slightly higher in Tables 4 & 5. This is
because, for Tables 2 & 3, Model 2, only runs where the farthest node reaches probability
.175 are included, whereas in Tables 4 & 5 all runs are included.
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Figure 10: Model 2: Average probability a pond is populated at end of run, for p between
.1 and 1.

The results from the two models are reasonably consistent with each other. Finer detail
for Model 1 could have been obtained by running each simulation longer. Those choices of
p and q for which Model 1 does not return an answer included many where some runs were
not populated after 10,000 iterations even though other runs were, and thus a true average
of times and population distributions could not be computed. Model 2 also had criteria
for termination that could have been adjusted. But generally both models show similar
behavior.

6 Discussion of the Probabilistic Models

In this section we compare the results of our probabilistic models to data from the area
around Lubbock, Texas. We look at likely ranges for migration frequency and also at a
study of twenty ponds over a two year period.
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Figure 11: Model 2: Average probability a pond is populated at end of run, for p between
.02 and 2.

6.1 Migration Frequency

Our estimates for migration probabilities are based on 100 years of monthly rain records for
Lubbock, Texas [43]. Dry months are characterized not only by little rainfall but also by
little variation in rainfall over the 100 year period for which we have data. On the other
hand rainy months are far more variable. Summary data for March, a dry month, and July,
a wet month, are shown in the histograms in Figure 12 as an illustration.

Table 6 shows summary data from one hundred years of monthly records. Frequently
(58% of the time) we see a year in which one month exceeds normal rainfall by one standard
deviation. Migrations are certainly not observed this frequently. Similarly, a single month
will exceed normal rainfall by two standard deviations around 25% of the time, still too
frequent to be believable. On the other hand, measures of one month exceeding 3 std, 2
consecutive months exceeding 1 std, and so forth all run a bit higher than 10%. So it seems
reasonable to assume a migration probability of 5-25% based on this data.

Based on the estimated time required for a pond to become crowded (60 days, Section
3.2) and the estimated time required for migration from one pond to the next (5-20 days,
Section 2.2), one or two months of normal rain followed by a particularly rainy month would
suffice for migration. Two particularly rainy months with some normal months before or
after, or other combinations such as these, would also suffice. Table 6 suggests a probability
of around 12-14% for this kind of weather. A migration probability of around 12% is slightly
more frequent than once every ten years, which corresponds to the anecdotally reported ten
year “cycle” of playa-swelling rains [38].
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Figure 12: Rainfall is both higher and has greater variation in the summer months. On the
left is summary data for 100 years of rainfall in March. On the right is July. Both are for
Lubbock, TX.

There is also the suspicion that climate change in the last hundred years has resulted
in drier habitats [36], and studies of habitats somewhat like playas that show drier habitats
under conditions of higher temperature and even higher rainfall [21]. So the probability
of migration over the last 5,000 years may actually be higher than Lubbock rainfall data
suggests.

Years that stand out in local memory such as 1941 [38] may do so because not only was
there migration locally, but the phenomenon was widespread and thus more noticeable than
migrations affecting smaller or more remote regions. Our model does not take into account
how weather correlates across a region but treats the state of the migratory region between
any two playas as an independent random variable.

Table 6: Lubbock Rainfall Summary for Wet Years

rainfall criterion fraction of years percent of “wet” years

1 mo. exceeding 1std above normal 0.577 57

1 mo. exceeding 2std above normal .278 27

1 mo. exceeding 3std above normal .124 12

2 cons. mos. exceeding 1std above normal .134 13

2 cons. mos. exceeding 2std above normal .0103 1

3 cons. mos. exceeding 1std above normal .0103 1

Annual exceeding 1std above normal .144 14

Annual exceeding 2std above normal .0515 5
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6.2 Extinction Probabilities

Implicit extinction probabilities may be taken from a census of 20 ponds over one year, [39],
in which 11 of 20 grassland ponds had tiger salamander in 2003 and only 8 had them in
2004. This gives an extinction probability of 3 in 11, which is quite high. If anything it is
an overestimate because a pond with few salamanders may be categorized as empty. For
example the same researcher found more ponds with Bufo in 2004 than 2003, indicating that
habitat in general had not disappeared.

The statistics of particularly dry years from the Lubbock rainfall data gives a slightly
different picture. As Table 7 shows, extremely dry years where rainfall is low for multiple
months are relatively rare. About 10% of the years are one standard deviation drier than
usual, about 7% of the years have two very dry months in a row, and about 45% of the time
there is at least one unusually dry month.

One dry month is probably not enough to force extinction, since it happens about half
the time. Such a high extinction probability is not consistent with [39], whose data is likely
to represent an overestimate of extinction probability at approximately 30%.

Taken together, the rainfall data suggest an extinction probability of 7-10%, for a q value
between 0 and .1 in our models.

Table 7: Lubbock Rainfall Summary for Dry Years

rainfall criterion fraction of years percent of “dry” years

1 mo. exceeding 1std below normal 0.453 45

1 mo. exceeding 2std below normal 0 0

2 cons. mos. exceeding 1std below normal .072 7

2 cons. mos. exceeding 2std below normal 0 0

3 cons. mos. exceeding 1std below normal 0 0

Annual exceeding 1std below normal .103 10

Annual exceeding 2std below normal 0 0

6.3 Current Ambystoma Prevalence

If [39] is representative of the playa system as a whole, then general prevalence of tiger
salamander is around 50%. Of course it is possible the author chose to ignore completely
dry playas for this study, which would lower the estimate considerably. This is the only data
we have for prevalence of the tiger salamander in playas in general throughout the region.

6.4 Summary of Discussion

In Tables 8 and 9 we summarize the predictions of Model 1 for parameters in a range relevant
to the particular situation of Ambystoma in playas of the southern high plains. Table 8 gives
time to repopulation for all pairs of parameters for which repopulation was possible within
5000 years. Table 9 gives the percent of ponds repopulated for those same parameters.
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Table 8: Time to Repopulation (years) estimated by Model 1, with observed standard devi-
ation in 100 runs

Values of p q = 0 q = .1 q = .2 q = .3 q = .4 q = .5

p = .01 4231 +/- 112 -

p = .02 2195 +/- 74 -

p = .03 1476 +/- 55 4289 +/- 511 -

p = .04 1145 +/- 25 2017 +/- 91 -

p = .05 942 +/- 25 1394 +/- 82 -

p = .06 804 +/- 12 1090 +/- 59 3290 +/- 273 -

p = .07 707 +/- 21 917 +/- 35 1879 +/- 194 -

p = .08 635 +/- 14 804 +/- 24 1275 +/- 63 -

p = .09 575 +/- 20 708 +/- 22 1034 +/- 48 -

p = .1 528 +/- 15 644 +/- 20 886 +/- 41 2764 +/- 561 -

p = .11 497 +/- 11 580 +/- 18 774 +/- 26 1601 +/- 158 -

p = .12 461 +/- 14 530 +/- 13 715 +/- 30 1227 +/- 127 -

p = .13 436 +/- 11 502 +/- 13 632 +/- 17 985 +/- 54 -

p = .14 414 +/- 9 472 +/- 11 575 +/- 16 853 +/- 42 -

p = .15 389 +/- 10 449 +/- 11 547 +/- 22 755 +/- 27 2588 +/- 333 -

p = .16 373 +/- 11 425 +/- 15 509 +/- 16 676 +/- 38 1549 +/- 168 -

p = .17 355 +/- 3 397 +/- 4 487 +/- 16 618 +/- 14 1292 +/- 175 -

p = .18 343 +/- 7 393 +/- 9 455 +/- 15 583 +/- 18 1021 +/- 108 -

p = .19 329 +/- 6 375 +/- 9 428 +/- 15 547 +/- 17 884 +/- 58

p = .2 324 +/- 7 352 +/- 7 415 +/- 13 502 +/- 17 777 +/- 41

If we take 12% as our probability of migration, as discussed in Section 6.1, and 30% as
our probability of extinction at the high end, as discussed in Section 6.2, Model 1 predicts
the time to repopulation as 1500 years with about 30% of the ponds repopulated at the end
of the process. For a range of parameters near these likely values, we see similar results.

Taken together, the models in this paper support the hypothesis that the entire network of
playas were repopulated within the 5000 years since Antevs’ Altithermal through migration
alone.

7 Conclusions

The population model in Section 3.2 indicates that it is unlikely that the population of a
single playa would grow to a crowded state and migrate successfully to a nearby playa two
times in a single rainy season.

The two-playa model in Section 3.3 illustrates the value of isolation followed by migration
as a mechanism for avoiding the Allee effect and undesirable local extinctions. Ponds that
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Table 9: Percent of playas repopulated at end of run, estimated by Model 1, with observed
standard deviation in 100 runs

Values of p q = 0 q = .1 q = .2 q = .3 q = .4 q = .5

p = .01 100 +/- 0 -

p = .02 100 +/- 0 -

p = .03 100 +/- 0 34 +/- .3 -

p = .04 100 +/- 0 53 +/- .5 -

p = .05 100 +/- 0 62+/- .4 -

p = .06 100 +/- 0 69 +/- .3 23 +/- .5 -

p = .07 100 +/- 0 72 +/- .2 36 +/- .5 -

p = .08 100 +/- 0 75 +/- .3 44 +/- .3 -

p = .09 1100 +/- 0 77 +/- .3 50 +/- .5 -

p = .1 100 +/- 0 79 +/- .2 54 +/- .3 20 +/- .8 -

p = .11 100 +/- 0 80 +/- .3 58 +/- .3 28 +/- .6 -

p = .12 100 +/- 0 82 +/- .3 60 +/- .5 34 +/- .3 -

p = .13 100 +/- 0 83 +/- .2 63 +/- .4 39 +/- .6 -

p = .14 100 +/- 0 84 +/- .2 65 +/- .3 42 +/- .6 -

p = .15 100 +/- 0 84 +/- .3 66 +/- .3 45 +/- .6 15 +/- .4 -

p = .16 100 +/- 0 85 +/- .3 68 +/- .5 49 +/- .4 21 +/- .5 -

p = .17 100 +/- 0 85 +/- .2 69 +/- .4 50 +/- .5 25 +/- .4 -

p = .18 100 +/- 0 86 +/-.3 70 +/- .3 52 +/- .3 29 +/- .4 -

p = .19 100 +/- 0 86 +/- .3 71 +/- .4 54 +/- .5 32 +/- .6

p = .2 100 +/- 0 87 +/- .2 72 +/- .4 55 +/- .3 35 +/- .4

have low populations at the start of migration can arrive at asymmetric equilibria values
that force on population to extinction when migration is cut off. By contrast, a pond that
is fairly full at the start of migration will successfully populate its neighbor, as illustrated in
Table 1.

The process of population growth of Ambystoma, followed by migration, requires several
successive months of good to above average rainfall, which appears to happen approximately
12% of the time according to rainfall data in Section 6.1. Likelihood of extinction is below
30% annually, as estimated from field data and rainfall data in Section 6.2.. Given these
parameters, the results of the probabilistic models described in Section 5 predict that a 150
by 150 grid of playas would be repopulated in around 1500 years, with 30% of the ponds
populated at the end of our simulation (equilibrium or 10,000 years).

Note, however, that this phenomenon is marginal. If extinction probabilities are raised
to 40%, the network cannot repopulate in even 10,000 years. However some authors have
suggested that the last 100 years have been somewhat drier than average, [36], so perhaps
probabilities were in fact more favorable for parts of the last 5000 years. It is likely that
favorable conditions would simultaneously raise the probability of migration and lower the
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probability of extinction. With only slightly higher probability of migration (14%) and
slightly lower probability of extinction (20%) the time to repopulation would be close to 600
years. So a relatively favorably period would only have to be sustained for 600 of the 5000
years since the Altithermal.

Although the percent of populated ponds (for migration probability 12% and extinction
probability 30%) is less than reported in [39], that study did not appear to include playas that
were actually dry for a summer season. Therefore the field data is reporting an artificially
high percentage. If we use extinction probability of 10% as suggested by rainfall data in Table
7, the model predicts 82% percent of ponds repopulated. Our model is at least consistent
with the data. Also, the slight improvement in climate discussed above would result in
slightly over 50% of playas populated, completely consistent with the observations of [39].

In summary, our models support the idea that the playas could have been repopulated
with Ambystoma since the Altithermal through the process of migration alone.
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