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Abstract. Let p be a prime, and let F be a finite extension of Qp. The local Langlands correspondence associates
certain packets of representations of (the F -points of) a reductive group G with certain conjugacy classes of homo-
morphisms Gal(Qp/F ) → LG. When G = GL2(Qp), such a correspondence was built between representations on
p-adic Banach spaces and 2-dimensional Galois representations. For other groups (e.g. GL2(F ) where F 6= Qp, or
GLn(F ) for n > 2) such a correspondence has not been found. One of the main tools in establishing the correspon-
dence for GL2(Qp) was the existence of integral structures in certain locally algebraic representations of GL2(Qp).
We prove criteria for the existence of such norms in certain locally algebraic representations of groups of semisimple
rank one, defined over F . This both gives simpler proofs of the author’s previous results (for U3(F ) and GL2(F )) and
generalizes them. This builds on Hu’s work for GL2(F ) and generalizes it. We will also present some computational
aspects involved in this research and future research.

1. The Problem

1.1. Self introduction. Self introduction and thank the organizers. work in progress.

1.2. The setup and the problem. Let p be a prime number and F a finite extension of Qp . Let OF be the ring
of integers.
Let G be a reductive group over F , G = G(F ) its group of F -points. Let E/F be a finite extension such that G
splits over E.
Let C be a finite extension of Qp such that |Hom(E,C)| = [E : Qp], and Π a locally algebraic representation of G
with coefficients in C. (Note: C is p-adic!!!)

Definition 1.1. Let Π be a representation of G over C. An integral structure in Π is an OC -submodule of Π,
stable under G, which spans Π over C, and contains no C-line.

Example 1.2. Let G = GL2(F ), and let Π = {f : P1(F )→ C} with action by right translation, induced from the
action of G on P1 - (gf)(x) = f(xg) . Then Λ = {f : P1(F )→ OC} is an integral structure.

This is equivalent to asking whether Π admits a nonzero p-adic unitary completion, by the following argument.

Lemma 1.3. Π admits an integral structure if and only if Π admits a nonzero p-adic G-equivariant unitary com-
pletion.

Proof. If Π admits a nonzero p-adic unitary completion, let Π0 be the unit ball - Λ = {x ∈ Π | |x| ≤ 1}, where | · |
is the G-equivariant norm on the completion. It is an integral structure.

Conversely, if Π admits an integral structure Λ, consider its gauge, λ : Π→ R≥0 , defined by λ(x) = q
−vΛ(x)
C , where

vλ(x) = sup{v | x ∈ $v
CΛ}. This is a seminorm, and since Λ contains no C-line, a norm.

Since Λ is G-equivariant, it is also G-equivariant, and completing Π with respect to this G-equivariant norm, we
obtain a nonzero p-adic G-equivariant unitary completion. �

There is also a natural notion of equivalence between integral structures.

Definition 1.4. Two integral structures Λ1,Λ2 ⊆ Π are commensurable if there exists constants α, β ∈ C× such
that αΛ1 ⊆ Λ2 ⊆ βΛ1.
It is also not difficult to see that:

Lemma 1.5. The integral structures Λ1,Λ2 in Π are commensurable if and only if they induce the same unitary
completion of Π.

An interesting question is then:
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Problem 1.6. What are the commensurability classes of integral structures in Π?

One may even restrict to the easier question:

Problem 1.7. Is there an integral structure in Π?

In general, it is a central and difficult open problem to decide whether there exist integral structures in Π.
The first non-trivial examples were found by Breuil [2] in the case of GL2(Qp).
An obvious necessary condition for the existence of integral structures is that the central character of Π is unitary.
(Else you have a C-line in any submodule by the action of the center).
Emerton’s theory of Jacquet functors on locally analytic representations provides other necessary conditions, and
conjecturally, these conditions with the unitarity of the central character are also sufficient.
This is related to the Breuil-Schneider conjecture, which turns out to be very difficult to prove in general.

2. Motivation

2.1. The Langlands Programme. Let me try to give a (very) brief overview of the Langlands programme. Our
focus will remain local in the rest of the talk.

2.1.1. The modularity theorem. Recall that the modularity theorem states that every elliptic curve E, defined over
Q, is modular. Namely, if E is of conductor N , then there exists a modular form f of weight 2 and level N , such
that L(E, s) = L(f, s).
This has many far reaching consequences, since L(f, s) has analytic continuation, establishing Artin’s conjecture
for L(E, s) and other well known conjectures (now theorems).
This equality of L functions is not merely numerical, but comes from a deeper phenomenon -
Let l be a prime, and consider H1

et(E,Ql) (can think also on the Tate module Tl(E) = limn→∞E[ln]⊗Zl Ql). It is
a vector space over Ql which admits a natural action of the Galois group GQ = Gal(Q/Q).
When l is a prime of good reduction, this is a 2-dimensional vector space, and we obtain a Galois representation
ρE : GQ → GL2(Ql), and L(ρE , s) = L(E, s), and even

Lp(ρE , s) = L(ρE |GQp
, s) = Lp(E, s)

explaining the local Euler factors of L(E, s) as coming from representations of the decomposition groups.
On the other side, a modular form f : H → Ql of weight k and levelN gives rise to a map ϕf : GL2(Q)\GL2(A)→ Ql
via the strong approximation theorem:

ϕf (γh∞k) = det(h∞)k/2(ci+ d)−kf(h∞ · i)

Here γ ∈ GL2(Q), h∞ =

(
a b
c d

)
∈ GL2(R)+ and k ∈ K0(N) =

{(
A B
C D

)
∈ GL2(Ẑ) | C ≡ 0 mod N

}
.

This function ϕf is in fact, automorphic, and when f is cuspidal, ϕf is bounded, hence belongs to the Hilbert space
L2(Z(A) ·GL2(Q)\GL2(A),Ql). Denote the closed subspace generated by ϕf by πf .
Then πf is an automorphic representation of GL2(A), and by the tensor product theorem can be written as
πf =

⊗̂
pπf,p where πf,p is a smooth irreducible admissible representation of GL2(Qp).

One can then construct an L-series for these representations, and when f is an eigenform, we have

Lp(πf , s) = L(πf,p, s) = Lp(f, s)

explaining the Euler factors as coming from representation of GL2(Qp).
In this specific case, of elliptic curves over Q, we may even note that by looking at the cohomology of the modular
curve H1

et(X0(N),Ql), we have a Hecke action, commuting with the Galois and the GL2(A) action.
The Hecke algebra is further commutative, hence its irreducible representations are one dimensional, and one may
decompose the space H1

et(X0(N),Ql) according to these characters λ (systems of Hecke eigenvalues).
One then may decompose these isotypic subspaces H1

et(X0(N),Ql)[λ] as representations of GQ ×GL2(A).
We will obtain that the irreducible components are of the form ρE ⊗ πf , giving rise to a correspondence between
the representations ρE , i.e. 2-dimensional representations of the Galois group GQ over Ql , and the representations
πf ,
irreducible automorphic representations of GL2(A).
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2.1.2. The Langlands conjectures. The Langlands programme predicts that there exists such a correspondence in a
much more general setting.
That is, if G is a reductive group, defined over a global field K, then one expects to find a correspondence between
certain (equivalence classes of) homomorphisms ρ : GK → L

G(Ql) on the one side (“Galois representations”), and
certain irreducible automorphic representations π : G(AK) → H on the other side (“reductive representations”).
Moreover, this correspondence is expected to be functorial in a certain sense.
This conjecture is still open even for GL2/Q .
It is a theorem for G defined over a function field (Lafforgue).
For GLn over a field which is either totally real or CM, and automorphic representations which are regular at
infinity, we now know to associate Galois representations.
The next frontier seems to be able to deal with non-regular algebraic automorphic representations, the simplest
case of which being algebraic Maass forms for GL2 .
Where do we stand for GL2/Q?
We try to find a correspondence between
(1) the set of algebraic at infinity cuspidal automorphic representations for GL2(A).
(2) the set of 2-dimensional continuous irreducible Galois representations of GQ over Ql which are unramified at
almost all primes and de-Rham at l.
We will conme back to this last condition.
One can divide (1) to three classes by the type of π∞. (1a) - it is a discrete series, (1b) - it is the limit of discrete
series representations, (1c) it is a principal series.
For (a),(b) we have maps (1)→ (2) constructed by Deligne and Deligne-Serre. One would like to find a similar map
for (c) (the case of Maass forms) and prove surjectivity. (injectivity will follow from multiplicity one).
The maps (a),(b) should have as image all odd Galois representations. The image of (1a) surjects on the set (2a) of
representations with distinct Hodge-Tate weights (This is the part of Fontaine-Mazur conjecture proved by Kisin
and Emerton).
We don’t know yet the surjectivity of (1b) to (2b) but special cases have been doen by Buzzard, Gee, Taylor and
Calegari.

2.1.3. The Local Langlands correspondence. The conjectured correspondence between Galois representations and
reductive representations should have a good notion of local-global compatiblity. That is, the local factors should
correspond (not only the Lp, but in fact even the ε and Γ factors).
Namely, one expects that the representations πp of the reductive group at the place p, will correspond to the
representations of the Decomposition group at p, ρ |Gp .
For GLn over a local field, this is a theorem. The archimedean cases were done by Langlands and Tunnels in the
70’s, and the function field was done (even globally) by Lafforgue. The most difficult case was of a p-adic field, and
it remaind open until 2001.
Before we state it, we will replace the notion of Galois representations by this of a Weil-Deligne representation.

Definition 2.1. A Frobenius semi-simple Weil-Deligne Representation of the Weil group, WF of F , is a pair (r,N)
where r is a semi-simple representation of WF on a finite dimenional vector space V , which is trivial on an open
subgroup, and N ∈ End(V ) is such that r(σ)Nr(σ)−1 =

∣∣Art−1
F (σ)

∣∣
F
·N for all σ ∈WF , where ArtF : F× →W ab

F

is Artin’s reciprocity law from local class field theory, normalized so that geometric Frobenius elements map to
uniformizers.

Note that any Galois representation gives rise to such a representation by Grothendieck’s monodromy theorem.
(structure of Galois group + trivial action of wild inertia), and this data suffices to construct L-functions.
!!! Maybe don’t write everything down, just that it satisfies nice properties.

Theorem 2.2. (Harris, Taylor 2001, Henniart 2001) Let F be a finite extension of Qp. Let Irr(GLn(F )) denote the
set of isomorphism classes of irreducible smooth representations of GLn(K) over C (Ql, l 6= p) . Let WDRepn(WF )
denote the set of isomorphism classes of n-dimensional Frobenius semi-simple Weil-Deligne representations of the
Weil group WF , of F over C (Ql,l 6= p) . There exists a correspondence recF : Irr(GLn(F )) → WDRepn(WF )
such that:

(1) If π ∈ Irr(GL1(F )), then recF (π) = π ◦Art−1
F . (It extends local class field theory).
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(2) If [πi] ∈ Irr(GLni(F )), then L(π1 × π2, s) = L(recF (π1) ⊗ recF (π2), s). (and the same for ε-factors).
(compatible with products).

(3) If [π] ∈ Irr(GLn(F )) and χ ∈ Irr(GL1(F )), then recF (π ⊗ (χ ◦ det)) = recF (π) ⊗ recF (χ). (a particular
case of functoriality)

(4) If [π] ∈ Irr(GLn(F )) and π has central character χ, then det recF (π) = recF (χ).
(5) If [π] ∈ Irr(GLn(F )), then recF (π∨) = recF (π)∨ . (compatible with contragredient)

However, this was still not enough to do something for the global conjecture. Even for the modularity theorem, one
needs to understand the behaviour at all(!!!) primes. (e.g. the famous paper wild 3-adic exercises).
This leads to our next topic.

2.1.4. The p-adic Local Langlands programme. The original aim of the p-adic local Langlands programme was to
look for a possible p-adic analogue of the classical (and l-adic local correspondence).
The p-adic local Langlands correspondence for GL2(Qp) was fully developed, essentially by Berger, Breuil and
Colmez, using the theory of (ϕ,Γ)-modules. It was only fully completed in 2014. after further work of Paskunas
and Dospinescu on small primes.
For some “nice” (“potentially semistable”) Galois representations ρ : GQp → GL2(Qp), it is possible to attach a
smooth representation πsm(ρ) of GL2(Qp) much like as in the classical setting. However, the map ρ  πsm(ρ) is
no longer reversible.
The reason is that there are many more Galois representations in characteristic p, since the wild inertia may act
non-trivially, e.g. the p-adic cyclotomic character.
This suggested that one should enlarge the category of representations on the reductive (“automorphic”) side.
One attempt is this - the Hodge-Tate weights (basically the powers of the cyclotomic character appearing in the
representation) correspond to dominant algebraic weights of GL2(Qp), and thus we may construct an irreducible
algebraic representaiton πalg(ρ) associated to ρ, defined over Qp.
Still, one cannot reconstruct ρ from πsm(ρ) and πalg(ρ).
The problem is that although the Galois representation ρ, can be classified purely in terms of some linear algebraic
data. That data includes also a filtration, called the Hodge filtration, which is lost when constructing πsm(ρ) and
πalg(ρ).
Note that as the coefficient field is p-adic, the two representations “live” in the same universe, and we may tensor
them to form πsm(ρ)⊗ πalg(ρ).
This representation is no longer smooth nor is it algebraic, but it is “locally algebraic” - every vector has an open
neighbourhood in which G acts on it polynomially.
The p-adic local Langlands correspondence for GL2(Qp) takes any continuous representation ρ : GQp → GL2(C),
and attaches to it a Banach C-space Π(ρ) with a unitary GL2(Qp)-action. The map ρ  Π(ρ) is reversible, and
compatible with classical local Langlands in the following sense. If ρ is potentially semistable, its subspace of locally
algberaic vectors is

Π(ρ)alg = πalg(ρ)⊗ πsm(ρ)

Furthermore, otherwise Π(ρ)alg = 0.
Moreover, when ρ is irreducible, Π(ρ)alg is dense in Π(ρ), so that Π(ρ) can be obtained from πsm(ρ) ⊗ πalg(ρ) by
completing with respect to the norm.
The different completions of πsm(ρ) ⊗ πalg(ρ) to such Banach spaces, are in bijection with the possible Hodge
filtrations on Galois representations with these Hodge-Tate weights and Weil-Deligne representation.

3. The Breuil Schneider conjecture

For groups other than GL2(Qp) very little is known. One of the main conjectures was stated in ([?]) by Breuil and
Schneider, and in some sense it is a “first approximation” - for certain ρ : Gal(Qp/F ) → GLn(C), one can define
the representation BS(ρ) := πalg(ρ)⊗C πsm(ρ), and if it is indeed a subrepresentation of some larger, conjectural,
Banach C-space Π(ρ) with a unitary GLn(F )-invariant norm, it should admit an invariant GLn(F )-invariant norm.
The resulting completions should be closely related to the yet undefined Π(ρ) - at least in the irreducible cases.
We say that a representation V is locally algebraic if V = V alg.

Conjecture 3.1. (Breuil, Schneider [?]) The representation V arises from a potentially semistable Galois repre-
sentation if and only if V admits a GLn(F )-invariant norm.
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The “if” part is completely known for GLn(F ) ([?]), and is due to Y. Hu. The “only if” part remains open.
Note that asking for a norm amounts to asking for a lattice: Given a norm || · ||, the unit ball is a lattice. Conversely,
given a lattice Λ, its gauge ||x|| = q

−vΛ(x)
C , where vΛ(x) = sup{v | x ∈ πvCΛ} is a n orm. Thus we are looking for

integral structures in locally algebraic representations of G.
Also, requiring the completion with respect to this norm to be nonzero amounts to the lattice not containing any
C-line.
Another remark - the condition that V arises from a potentially semistable Galois representation, translates (using
Fontaine’s weak admissiblity) to a very concrete criterion on V , which can be formulated for any reductive group
G (Emerton’s condition). Therefore it makes sense to consider arbitrary reductive groups.

3.1. Progress so far.

• For GL2(Qp), the work of Colmez [3] and Berger-Breuil [1]. (both use theory of (ϕ,Γ)-modules)
• Note that the central character of BS(ρ) always attains values in O×C . Sorensen ([?]) has proved for any

connected reductive group G defined over Qp, that if πalg is an irreducible algebraic representation of G(Qp),
and πsm is an essentially discrete series representation of G(Qp), both defined over C, then πalg ⊗C πsm
admits a G(Qp)-invariant norm if and only if its central character is unitary.
• The best results in the principal series case, which is the deepest, are by joint work of Caraiani, Emerton,

Gee, Geraghty, Paskunas ans Shin ([?]). Using global methods, they construct a candidate Π(ρ) for a p-adic
local Langlands correspondence for GLn(F ) and are able to say enough about it to prove new cases of the
conjecture. Their conclusion is even somewhat stronger than the existence of a norm on BS(ρ), in that it
asserts admissibility.

Both works employ the usage of global methods, and as this is a question of local nature, we believe that there
must be some local method to recover these results. There has also been some progress employing local methods,
which yields results also for finite extensions of Qp, namely:

• For GL2(F ), de Ieso ([?]), following the methods of Breuil for Qp, used compact induction together with the
action of the spherical Hecke algebra to produce a separated lattice in BS(ρ) where BS(ρ) is an unramified
locally algebraic principal series representation, under some technical p-smallness condition on the weight.
This was later extended (A. !!! add reference) to lift some of the restrictions on the weight.
• For GL2(F ), in a joint work with Kazhdan and de Shalit ([?]), we have used p-adic Fourier theory for the

Kirillov model to get integral structures if BS(ρ) is tamely ramified smooth principal series or unramified
locally algebraic principal series.
• For general split reductive groups, Grosse-Klonne ([?]) looked at the universal module for the spherical

Hecke algebra, and was able to show some cases of the conjecture for unramified principal series, again
under some p-smallness condition on the Coxeter number (when F = Qp) plus other technical assumptions.
• For GL2(F ), Vigneras (!!! add reference) introduced the method we will discuss today to obtain integral

structures when BS(ρ) is a tamely ramified smooth principal series.
• For U3(F ), in (A. !!! add reference) we have genralized both Vigneras’ and de Ieso’s methods to obtain

integral structures when BS(ρ) is either a tamely ramified smooth principal series or unramified locally
algebraic principal series.

Recently, Hu (!!! add reference) has used diagrams mod p to simplify the proofs of Vigneras. We shall generalize
these ideas today.

4. Statement of the main result

4.1. Notations. Assume that G has semisimple rank 1, so one could think of GL2 or U3, for example, as special
cases.
Let B be a minimal parabolic subgroup of G , with Levi decomposition B = TU, and let B = B(F ), U = U(F ).
let S be a maximal F -split torus in T . Let S = S(F ), T = T(F ). Let N = NG(S), N = N(F ), and let W = N/T
be the Weyl group.
Note that |W | = 2 by assumption, so we can write W = {1, w}. W acts on T by conjugation.
Let χ : T → C× be a smooth character, which we inflate to a character χ : B → C× via the quotient map B → T .
Let

IndGB(χ) = {f ∈ C∞(G,C) | f(bg) = χ(b)f(g) ∀b ∈ B, g ∈ G}
be the smooth parabolic induction with coefficients in C, such that G is acting by right translation: (gf)(x) = f(xg).
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We further denote by Z(T ) the center of T . We fix an open compact subgroup U0 of U .
Let Z(T )+ = {z ∈ Z(T )+ : zU0z

−1 ⊆ U0} be the contracting monoid, and δB(t) = [U0 : tU0t
−1] be the modulus.

The action of W on T induces an action on χ, which we denote by χw.

Theorem 4.1. (A.) Let Π = IndGBχ be a smooth principal series C-representation. Assume that χ : T → C× is
tamely ramified. Assume that Π is irreducible. Then Π admits an integral structure if and only if

∣∣χ |Z(G)

∣∣ = 1 and
for any z ∈ Z(T )+ we have

|χ(z)δB(z)| ≤ 1, |χw(z)| ≤ 1

(This is Emerton’s criterion)

Example 4.2. Let G = GL2(F ), S = T the torus of diagonal matrices, B the upper triangular Borel. Let

U0 =

{(
1 u
0 1

)
| u ∈ OF

}
Now Z(T ) = T , and

Z(T )+ =

{(
t1

t2

)
| vF (t1) ≥ vF (t2)

}
In particular, up to the center we may assume z ∈ Z(T )+ is of the form

(
t

1

)
with t ∈ OF . Then t = u ·$a,

and
χ(z) = χ1(u) · χ1($)a

hence |χ(z)| = |χ1($)|a. Also δB(z) = qa Thus the conditions are

|χ1($)q|a ≤ 1, |χ2($)|a ≤ 1

for all a. Which is equivalent simply to

|χ1($)q| ≤ 1, |χ2($)| ≤ 1

i.e. 1 ≤ |χ1($)| ≤
∣∣q−1

∣∣
!!!! Maybe add here the equivalence to being potentially semistable ??? !!! Look more closely at what should
actually be the statement. Recall to address the gaps in functoriality.

5. Coefficient Systems on The Tree

5.1. The Bruhat-Tits Tree of G. We will recall a few facts about the Bruhat-Tits building, specializing to the
case where G has semisimple rank 1.

Fact 5.1. (Tits) The Bruhat-Tits building of G is 1-dimensional, i.e. it is a forest, which we denoe by T . Moreover,
T is bihomogenic of degrees qd0 + 1, and qd1 + 1, for some positive integers d0, d1. (!!! Check if I need to state the
connection to K0,K1 !!!)

Fact 5.2. (BT) The group G acts on T via isometries, and its action on the vertices of T has at most two orbits.

Fact 5.3. (BT) The stabilizers of the vertices in T are maximal compact subgroups of G.

Corollary 5.4. There are at most two conjugacy classes of maximal compact subgroups in G.

Fact 5.5. (SS) For any simplex x ∈ T , its stabilizer Kx admits a filtration by pro-p-groups Kx(e) such that if x ⊆ y
we have Ky(e) ⊆ Kx(e) for all e ≥ 1 (!!! complete here the properties we will actually use !!!)

5.2. Coefficient systems. Coefficient systems were introduced over C by [4]. In this section, we follow [?] and
translate the language of coefficient systems to the group G. Let T be the Bruhat-Tits tree of G. Let R be a
commutative ring.

Definition 5.6. An R-coefficient system V = {Vσ}σ is a contravariant functor from the category of simplices in T
(with inclusions as morphisms) to the category of R-modules.
Let V = ({Vσ}σ⊂T , {rτσ}σ⊂τ ) be an R-coefficient system on T . We say that V is G-equivariant if for every g ∈ G
and every simplex σ ⊂ T , we have linear maps gσ : Vσ → Vgσ satisfying the following properties: (!!! maybe don’t
state them - just say the obvious properties !!!)

• For every g, h ∈ G and every simplex σ ⊂ T , we have (gh)σ = ghσ · hσ
• For every simplex σ ⊂ T , we have 1σ = idVσ .
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• For every g ∈ G and every inclusion σ ⊂ τ , the following diagram commutes:

Vτ
gτ //

rτσ

��

Vgτ

rgτgσ

��
Vσ

gσ // Vgσ

We say that a G-equivariant R-coefficient system is an RG-coefficient system on T .

Definition 5.7. Let V be an RG-coefficient system on T . We define the complex of (oriented) chains with finite
support C•(V)

Ci(V) =

{
f :

∐
σ∈Ti

σ →
⊕
σ∈Ti

Vσ | f(σ) = 0 a.e., f(sσ) = sgn(s)f(σ) ∀s ∈ Si

}

!!! Should say something about the difference between the two cases - in the first we can swap orientation, and in
the second there is only one orientation !!!

There are obvious boundary maps ∂ : Ci(V) → Ci−1(V) and a natural G-action on C•(V). The boundary maps
give rise to homology Hi(V) = Hi(C•(V)).

Before we ssay why we care about coefficient systems, we would like to present a more compact way to encode
them.

5.3. Diagrams. Using the transitivity of the G-action on the tree, we can encode a coefficient system by a diagram.

There are two cases:

5.3.1. G acts transitively on the vertices. If this is the case, we let K0 be the stabilizer of a vertex, and K1 the
stabilizer of an edge containing it. Then K1 = 〈I, t〉 where I = K0 ∩K1 and t is an element which swaps v0 and
v1. (Does it always exist? Yes, we can always send v0 to v1, but then v1 can be sent to some other v2. May then
apply w. )

In this case, every RG-coefficient system is equivalent to the following data, which is called a “diagram” (Draw!!)

• A representation of K1 on an R-module L1 (= a representation of I, with an action of t)
• A representation of K0 on an R-module L0

• an R[I]-equivariant map r : L1 → L0

The equivalence is given simply by (r, L0, L1) 7→
{
g · indGKiLi

}
gσi

This is the case for example, when G = GL2, hence it is treated in Vigneras, Hu so we will focus on the other case.

Remark 5.8. The word “diagram” was introduced by Paskunas [?] in his construction of supersingular irreducible
representations of GL2(F ) on finite fields of characteristic p, and there is an equivalence of categories between
R[G]-diagrams and G-equivariant coefficient systems on T .

5.3.2. G has two orbits on the vertices. In this case, we let K0,K1 be the stabilizers of two adjacent vertices (which
must represent the two orbits, because the G-action preserves the distance), and I = K0 ∩K1 is the stabilizer of
the edge between them. (This time we have no element that swaps the vertices).

Then each G-equivariant coefficient system is, in fact, equivalent to a diagram (Draw!!)

Definition 5.9. Let R be a commutative ring. An R[G]-diagram consists of the following data:

• A representation of I on an R-module L01.
• A representation of K0 on an R-module L0.
• A representation of K1 on an R-module L1.
• R[I]-equivariant maps r0 : L01 → L0 , r1 : L01 → L1.

Again, the equivalence is given simply by induction - indGKiLi.
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We will refer to a diagram as a quintuple (L01, L0, L1, r0, r1) , and depict such a diagram as

L0

L01

r0

==

r1

!!
L1

Corollary 5.10. Let L be an RG-coefficient system on T , equivlaent to the diagram (L01, L0, L1, r0, r1). Then

C0(L) ∼= indGK0
L0 ⊕ indGK1

L1, C1(L) ∼= indGI L01

as RG-modules. The boundary map can be described as

∂([1, v]) = ([1, r0(v)], [1,−r1(v)])

where [g, v] ∈ indGHV is the function supported on Hg−1 and attaining the value v ∈ V at g−1. Thus, we have an
exact sequence of RG-modules

0→ H1(L)→ indGI L01 → indGK0
L0 ⊕ indGK1

L1 → H0(L)→ 0

6. Vigneras’ Zig-Zag Method

6.1. The method. What are coefficient systems good for? we have the following theorem.

Theorem 6.1. (SS) Let V be a smooth C-representation of G. Let x ∈ T0 be a vertex, and let e ≥ 1 be such that V
is generated by its Kx(e)-invariants. Let γe(V ) be the coefficient system on T defined by γe(V )(σ) = V Kσ(e), with
the obvious inclusion maps. Then H0(γe(V )) = V .

This theorem allows one (Vigneras) to work homologically on the tree for the purpose of constructing an integral
structure. Together with the equivalence coefficient systems = diagrams, we get a convenient local criterion. (This
also works for locally algebraic). Again, we assume to be in the case where G has two orbits on the vertices of T .

Corollary 6.2. (Vigneras, A.) The smooth C-representation V is OC-integral if and only if there exist integral
structures L0, L1 of the representations of K0,K1 on V K0(e), V K1(e) respectively, such that L01 := L0 ∩ V I(e) =
L1 ∩ V I(e). In this case, if L is the coefficient system corresponding to (L0, L1, L01) with inclusions, then H0(L) is
an integral structure in V .

Proof. (Sketch) By the thm, we have an exact sequence

0→ H1(V) = ker ∂ → indGI

(
V I(e)

)
→ indGK0

(
V K0(e)

)
⊕ indGK1

(
V K1(e)

)
→ V → 0

Since r0, r1 are injective, ker ∂ = 0. We may now consider the long exact sequence of homology for 0→ L → V →
V/L → 0. It yields

0→ H1(V/L)→ H0(L)→ V → H0(V/L)→ 0

Now, if L01 = L0 ∩ V I(e) = L1 ∩ V I(e), then the maps V I(e)/L01 → V Ki(e)/Li are injective, hence H1(V/L) = 0,
showing that H0(L) ↪→ V . It is clearly a lattice, and one has to show it is separated, which follows from the
discreteness of the valuation, working inductively on the support of chains. The converse is easy. �

This criterion suggests a practical algorithm (The zig-zag method)

Definition 6.3. Let M0 ⊆ V K0(e) be a finitely generated OC-submodule. We may let

M(0) = (M
(0)
0 ,M

(0)
1 ,M

(0)
01 ) = (M0,K1 ·M I(e)

0 ,M
I(e)
0 )

and then
M(1) = (M

(1)
0 ,M

(1)
1 ,M

(1)
01 ) =

(
K0 ·

(
M

(0)
1

)I(e)
,M

(0)
1 ,

(
M

(0)
1

)I(e))
In general

M(i) = (M
(i)
0 ,M

(i)
1 ,M

(i)
01 )

with
M

(i)
01 =

(
M

(i−1)
i mod 2

)I(e)
,M

(i)
i mod 2 = M

(i−1)
i mod 2,M

(i)
1−i mod 2 = K1−i mod 2 ·M (i)

01
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We say that (M(n))n≥0 is the sequence of zigzags of M0.
(Remark - the intersection is different each time - pulling back through a different inclusion. Also the choice of
starting with M0 is arbitrary. Could be M1.)
(!!! Maybe we would like to present every step differently - check the proof of classification of diagrams mod p !!!!)

Corollary 6.4. V has an integral structure iff the sequence of zigzags (M(n))n≥0 is finite.

This essentially follows from the fact that we are enlarging our finitely generated modules over the Noetherian ring
OC .

6.2. Application - Necessity of the criterion. The first application of this method was due to Vigneras (2008)
which was to prove a completely local criterion for the integrality of smooth tamely ramified principal series of
GL2(F ).
The second was (A. 2016) - proving a similar criterion for U3(F ). Both proofs have an easy part - the necessity,
and a difficult part - the sufficiency.
We describe here a sketch of the proof of the easy part.
Let V = IndGBχ be a smooth principal series, where χ : T → C× is a tamely ramified character. Then χ is trivial
on T ∩ I(1) and e = 1. Recall that B = T · U .
Then its restriction to T ∩ I is the inflation of a character of the reduction T = T/T ∩ I(1). (Note that T need not
be the special fiber of the same reductive group as T is - that will only be true in an unramified case).
We also write Gi = Ki/Ki(1), and let the image of B ∩Ki, T ∩Ki under these maps be Bi, Ti, respectively. (Note
that T0

∼= T1
∼= T ). Let χi be the reductions of χ. Let Ui be the unipotent radicals of Bi.

Denote by redi : Ki → Gi the natural quotient maps for i ∈ {0, 1}.

Lemma 6.5. The natural maps (IndGBχ)Ki(1) → IndGiBiχi are isomorphisms, inducing an isomorphism
(
IndGBχ

)I(1) ∼=(
IndGiBiχi

)Ui
, where χi = χ |B∩Ki , which, since χ is tamely ramified, factors through Ki(1).

Then the tamely ramified diagram (
indGBχ

)K0(1)

(
indGBχ

)I(1)

77

''(
indGBχ

)K1(1)

is inflated from the inclusions (
indGiBiχi

)Ui
↪→ indGiBiχi, i ∈ {0, 1}

These lattices infla`te to a tamely ramified diagram.

Let L0 be the OC-integral structure of the C-representation of K0 on V0 =
(
indK0

B∩K0
χ0

)K0(1)

, given by functions
with values in OC .
We will use it to start our zigzag algorithm.
It will be useful to have a basis for this OC-module.
For any g ∈ K0 we denote by fg ∈ L0 the function supported on (B ∩ K0)gK0(1) with value 1 at g. By K0(1)-
invariance, we have fg = fgk for all k ∈ K0(1).
We will identify between an element and its lift (a representative).
From the Bruhat decomposition for G0 we have the following.

Proposition 6.6. The OCK0-module L0 is cyclic, generated by f1, L0 = OCK0 · f1. A basis for L0 is given by
{f1, fwu}u∈U0

.

Similarly, we would want a basis for L(0)
01 = L

I(1)
01 .



DIAGRAMS MOD p AND INTEGRAL STRUCTURES IN REPRESENTATIONS OF REDUCTIVE GROUPS OF SEMISIMPLE RANK ONE10

Lemma 6.7. A basis of LI(1)
0 is given by φ1 = f1 and φw =

∑
u∈U0

fwu.

Before proceeding, there is another natural integral structure on V1, which wil be useful in the sequel, so we
investigate its properties.

Let L1 be the OC-integral structure of the C-representation of K1 on V1 =
(
indK1

B∩K1
χ1

)K1(1)

, given by functions
with values in OC .
For any g ∈ K1 we denote by hg ∈ L1 the function supported on (B ∩K1)gK1(1) with value 1 at g.

Here we have to choose some t ∈ G such that tv1 = v1, but tv0 6= v0. (note that t ∈ Z(T )+, and in fact is of
minimal valuation there).

Again, Bruhat decomposition gives us:

Proposition 6.8. The OCK1-module L1 is cyclic, generated by htw, i.e. L1 = OCK1 ·htw. A basis for L1 is given
by {h1, htwu}u∈U1

.

In order to identify our modules with elements in this standard module, we have to see how φ1, φw are expressed
in terms of this basis.

Lemma 6.9. We have
φ1 = h1 +

∑
16=u∈U1

χ(t · w ·m(u)) · htwu, φw = χ(t) · htw

where here m(u) ∈ Tw is a unique element associated to u in this coset. (comes from BT theory)

We begin by establishing necessity of one of the conditions.

Proposition 6.10. Let χ : T → C× be a tamely ramified character, such that V = IndGBχ admits an integral
structure. Let z ∈ Z(T ) such that zUα,0z−1 ⊆ Uα,0. Then |χw(z)| ≤ 1.

Proof. (Sketch) First, reduce to an element of minimal valuation. Thus, it suffices to prove that |χw(w(t))| =
|χ(t)| ≤ 1 .

Proceeding with the zig-zag, we get

L
′

1 = K1 · LI(1)
0 = K1 · (OC · φ1 ⊕OC · φw) = OCK1φ1 + χ(t) · OCK1htw

By Proposition 6.8 we know that L1 = OCK1 · htw. Recall that by Lemma 6.9, we have

φ1 = h1 +
∑

16=u∈U1

χ(t · w ·m(u)) · htwu ∈ L1 = OCK1 · htw

It follows that

χ(t) · f1 = χ(t) · φ1 ∈
(
L
′

1

)I(1)

⊆ K0 ·
(
L
′

1

)I(1)

= z(L0)

But by Proposition 6.6 we know that L0 = OCK0 · f1, hence χ(t) · L0 ⊆ z(L0). By (!!!add cross-ref) the sequence
of zigzags (zn(L0))n≥0 is finite, hence χ(t) ∈ OC and we are done. �

This also yields the easiest case for sufficiency, namely:

Proposition 6.11. Let χ : T → C× be a tamely ramified character, such that for every z ∈ Z(T ) with zU0z
−1 ⊆ U0,

we have|χw(z)| = 1. Then Π = IndGBχ admits an integral structure.

Proof. Since w(t) ∈ Z(T ) is such that w(t)Uα,0w(t)−1 = Uα,2 ⊆ Uα,0, our assumptions imply that |χ(t)| =

|χw(w(t))| = 1. It follows that χ(t)OCK1 · htw = OCK1 · htw = L1. Since φ1 ∈ L1, it follows that L
′

1 = L1, so that
by (!!! add cross-ref !!!) Π = IndGBχ admits an integral structure. �

Lemma 6.12. Let w1 = tw. For any 1 6= u ∈ U1, denote Hu = w1u · φ1 ∈ L
′

1. Then L
′

1 is spanned over OC by

{Hu}u∈U1
, φ1, {χ(t) · hw1u}u∈U1

, χ(t) · h1
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Proof. Since K1/I ∼= (K1/K1(1))/(I/K1(1)) = G1/B1, by Lemma ?? we see that

K1 = I
∐ ∐

u∈U−1

w1u · I


Therefore

L
′

1 = OCK1 · φ1 + χ(t) · L1 =

= OCI · φ1 +
∑

u∈U−1

OCw1u · I · φ1 + χ(t) · L1 =

= OC · φ1 +
∑

u∈U−1

OC ·Hu + χ(t) · L1

which, combined with Proposition 6.8 gives the desired result. �

Lemma 6.13. Denoting z(L0) = K0 · LI(1)
1 , we have

qd1 · χw(t) · φw = |U1| · χw(t) · φw ∈ z(L0)

Proof. (Sketch)

The idea is to directly compute

∑
u∈U1

Hu = qd1 · χ(w2
1) · hw1

+

 ∑
16=u∈U1

χ(w1 ·m(u))

 · h1+

+χ(w2
1) ·

∑
16=v

 ∑
u:ψu(1) 6=v

χ(m(ψ−1
u (v)) ·m(u · ψ−1

u (v)−1))

hw1v

and the next Lemma shows that this gives us what we wanted. �

Lemma 6.14. Let m ∈ Tw . Then {m · m(u)}16=u∈U is a subgroup of T ∩ K1. Thus, if χ |T∩K1
6= 1. Then∑

16=u∈U1
χ(m ·m(u)) = 0. Else,

∑
16=u∈U1

χ(m ·m(u)) = |U1| − 1 = qd1 − 1.

Proof. Currently the proof is a very hideous case by case computation! If you have any idea how to prove it in this
generality, it would be much appreciated. �

Next we compute the OCK0-module M0 generated by φw =
∑
u∈U0

fwu.

By a similar computation (maybe can unify them to a single Lemma) we have Fu := uw·φw = f1+
∑
v χ(β(u, v))·fwv,

and M0 is spanned by the {Fu} and φw, and
∑
Fu = qd0f1 + (q? − 1)

This shows the necessity of
∣∣qd1+d2χw(t)

∣∣ ≤ 1. Since qd1+d2 = δB(t), this is what we wanted.

This difficult part was originally established using a Fourier transform on the unipotent radical of the Borel. But
now we have a new gadget - diagrams mod p. Let’s use it.

7. Diagrams Mod p

Hu (add reference) has identified the potential of the diagrams mod p to simplify the original proof of Vigneras.
We will generalize his ideas.
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7.1. Classification of diagrams mod p.

Lemma 7.1. Let D be a diagram of k-modules such that Di is an admissible Ki-representation and r0, r1 are
injective. Then H0(D) 6= 0 and H1(D) = 0.

Proof. The first assertion follows from considering a chain supported on a single vertex. For the second one, note
that injectivity of the ri assures that ∂ is injective. �

Proposition 7.2. Let D = (D01, D0, D1, r0, r1) be a diagram of k-modules, not necessarily finite dimensional, such
that H0(D) = 0. Then D has a filtration by sub-diagrams such that each graded piece has one of the following forms
(Q01, Q0, Q1, q0, q1):
(I0) Q01 = k · v, Q0 = 0, q0 = 0, Q1

∼= indK1

I (k · v), q1 is the natural map, where I acts on v via some character ψ.
(I1) Q01 = k · v, Q1 = 0, q1 = 0, Q0

∼= indK0

I (k · v), q0 is the natural map, where I acts on v via some character
ψ. .
(II0) Q01 = k · v, Q0 = 0, q0 = 0, where I acts on v via some character ψ, Q1 is a quotient of indK1

I (k · v) such
that dimkQ1 ≤ qd1 , possibly 0, q1 is the natural map.
(II1) Q01 = k · v, Q1 = 0, q1 = 0, where I acts on v via some character ψ, Q0 is a quotient of indK0

I (k · v) such
that dimkQ0 ≤ qd0 possibly 0, q0 is the natural map.
In particular, if D01 is of finite dimension, then

(qd0 + 1) · dimkD1 + (qd1 + 1) · dimkD0 ≤ (qd0 + 1)(qd1 + 1) · dimkD01

and equality holds if and only if only diagrams of type (I0) or type (I1) appear as graded pieces of the filtration.

Definition 7.3. Let D = (D01, D0, D1, r0, r1) be a diagram of k-modules such that D01, D0 and D1 are all finite
dimensional. We say that D satisfies the dimension relation if there exist m0,m1 ∈ Z≥0 such that:

dimkD01 = m0 +m1, dimkD0 = m0 · (qd0 + 1), dimkD1 = m1 · (qd1 + 1)

We give some examples of diagrams which satisfy the dimension relation. For an absolutely irreducible k-representation
σ of K0, λ ∈ k× and χ : U1(F )→ k× a smooth character, we may denote:

π(σ, λ, χ) :=

(
indGK0

σ

T0 − λ

)
⊗ χ ◦ det

where T0 ∈ EndG(indGK0
σ) is the Hecke operator defined in [].

Example 7.4. Let π = π(σ, λ, χ) for some σ, λ, χ as above. Then the canonical diagramD(π) := (D01(π), D0(π), D1(π), can0, can1)
defined by

D01(π) := πI(1), D0(π) := K0 ·D01(π) ⊂ π, D1(π) := K1 ·D01(π) ⊂ π
can0 : D01(π) ↪→ D0(π), can1 : D01(π) ↪→ D1(π)

satisfies the dimension relation. In fact, one checks easily that dimkD01(π) = 2, dimkD0(π) = qd0 + 1 and
dimkD1(π) = qd1 + 1.
Note that the canonical diagram of D(Sp) (resp. D(1)) of the Steinberg representation Sp (resp. the trivial
representation 1) does not satisfy the dimension relation (but D(Sp)⊕D(1) does).
Other examples of diagrams satifying the dimension relation are diagrams of type (I0) or (I1) in the above proposition
???. We give it a name for convenience.

Definition 7.5. A diagram D = (D01, D0, D1, r0, r1) of k-modules is said to be naive if it is of type (I0) or (I1) as
in proposition ???.

By definition, ifD is a naive diagram, then dimkD01 = 1, and eitherD0 = 0,dimkD1 = qd1 +1, or dimkD0 = qd0 +1
and D1 = 0. In both cases, D satisfies the dimension relation in Definition ???. (either with d0 = 0, d1 = 1 or with
d0 = 1, d1 = 0 in the second case).

Lemma 7.6. (i) If D is a naive diagram, then H0(D) = H1(D) = 0.
(ii) Conversely, if D = (D01, D0, D1, r0, r1) is a diagram of k-modules such that H0(D) = H1(D) = 0, then D can
be written as a successive extension of naive diagrams. In particular, if D01 is finite dimensional, then D satisfies
the dimension relation.

7.2. Application I (If there is time). Applying it to a Steinberg representation.
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7.3. Application II - a criterion for the existence of integral structures. Recall we have proven the necessity,
and are left with sufficiency.
How do we do that?
Assume we have an infinite sequence of zigzags in V01, V0, V1 = V I(1), V K0(1), V K1(1).
(!!! Not true !!!!)
Since V0 is irreducible as as aK0-representation (indeed, any subrepresentation would give rise to a subrepresentation
of the reduction G0, but by assumption this is irreducible), and since the coefficient field is discretely valued, there
are only finitely many homothety classes of K0-invariant O-lattices in V0. Therefore, there exist integers n < n′

such that L(n)
01 and L(n′)

01 lie in the same homothety class, that is, there exists λ ∈ C× such that

L
(n′)
01 = λL

(n)
01

Since L(n)
0 , L

(n)
1 are generated from L

(n)
01 , we get the same, and since L(n) ( L(n′), it follows that valL(λ) < 0.

Let L = L(n). Since H0(L) → H0(λL) is surjective, we have H0(λL/L) = 0. By devissage, one deduces that
H0($−1L/L) = 0. Equivalently, H0(L ⊗O k) = 0. By Proposition ???, since D satisfies the dimension relation, it
must be a successive extension of naive diagrams.
Moreover, as dimkD01 = 2, it is the successive extension of exactly two such diagrams, one of each type.
Write L01 = O · v0⊕O · v1, where v0, v1 are C-linearly independent, and eigenvectors for the action of I, which acts
as χ |I on v0 and as χw |I on v1.
Therefore, we may assume that D01 = k · v0 ⊕ k · v1, with D0 = indK0

I (k · v0),D1 = indK1

I (k · v1), and r0(v1) = 0,
r1(v0) = 0, with the action on v0 given either by χ or by χw.
Assume first it is given by χ.
We then obtain that r0(v1) ∈ $L0, r1(v0) ∈ $L1.
Using Nakayama, we get Li = indKiI (O·vi) (using the fact that χ, χ1 are tamely ramified - “inflation”). In particular,
L0 has an O-basis given by

v0, {κ · v0}κ∈K0(1)/I(1)

However,
∑
κ∈K0(1)/I(1) κ · v0 is I(1)-invariant, and I acts on it via χw |I . It follows that that there exists some

α ∈ O such that
r0(v1) = α ·

∑
κ∈K0(1)/I(1)

κ · v0

Since r0(v1) ∈ $L0, it follows that α ∈ $O.
Similarly L1 has an O-basis given by v1, {κ · v1}κ∈K1(1)/I(1), with

∑
κ∈K1(1)/I(1) κ · v1 being I(1)-invariant, and I

acts on it via χ |I . It follows that
r1(v0) = β ·

∑
κ∈K1(1)/I(1)

κ · v1

for some β ∈ $O. However (by the above decription - make explicit), one obtains

α · β = χ(t)

Therefore |χ(t)| < 1, contradiction.
Explicitly, we start with v0 = a0 · φ1 and v1 = a1 · φw, thus r0(v1) = a1 · r0(φw) = a1 ·

∑
u fsu and r1(v0) =

a0r1(φ1) = a0(h1 +
∑
u χ(f(u)) · htwu)

How are these connected? The first means |a1| < |a0|, and the second the converse so it can’t be.
It follows we must have it the other way around, i.e. r0(φ1) = f1 and r1(φw) = χ−1(t).
!!!! Wait !!!! Something is not right here. Think it over again in the morning with a clear head !!!
We have {f1, fsu} representing πK0 and {ht, h1, htu} representing πK1 . This is with φ1 = f1 and φs =

∑
u fsu,

while φs = t · ht and φ1 = h1 +
∑
χ(m(u)) · htu.

We also let Fu :=
∑
v sv · fsu (? check this is the right summation) Then

∑
Fu gives us some nice multiple χ(z) · f1

- shows necessity. Same with the h’s.
By Hu’s method we obtain a mod p diagram which is naive. It means that

7.4. Further applications? This approach might prove fruitful also for tamely ramified locally algebraic repre-
sentations of low weight.
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8. Computational Aspects

The nice thing about the zig-zag method is that it is very practical and down to earth. Since we are only studying
existence of the integral structure, we may work with the universal completion, corresponding to the minimal
commensurability class of integral structures - those of finite type. In particular, this means we are always working
with finitely generated O-modules, and after encoding the group action, all we need to worry about is basically
linear algebra.˙

8.1. Wild Ramification. Theoretically, the zig-zag method could be applied also to higher ramification. The
crux of it relies on Schneider-Stuhler, which is just as valid with higher ramification groups. Now, the coset
representatives of interest are no longer cosets of the pro-p kernels I(1),K0(1),K1(1), but the higher ramification
groups I(e),K0(e),K1(e).
The zig-zag no longer stabilizes after so few iterations, and calculations become more complicated.
Computations can indicate what we should expect (does it stabilize eventually? If so, after how many zig-zags?
What is the resulting integral structure?
!!! Give example for GL2(F ) with e = 2 !!!
!!! See if I can get some code running an example !!!

8.2. Non-smooth locally algberaic representations. The zig-zag method is capable of proving the criterion
for the existence of integral structure and finding it, when the representation is a smooth parabolic induction, or a
locallly algebraic Steinberg representation. Diagrams mod p seem to offer a method for proving some of the cases
(of low enough weight) of locally algebraic parabolic induction.
!!! See if I can get some results/code over here as well !!!!
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