
SERRE WEIGHT CONJECTURES

Abstract. Serre’s modularity conjecture, as originally formulated in 1973,
predicted that every odd irreducible two dimensional continuous Galois repre-
sentation over a finite field r : GQ → GL2(Fp) arises from a modular form. A
stronger version of this conjecture specifies the level and weight of the modu-
lar form. It is now known as the modularity theorem, after being proved by
Khare and Winterberger in 2009. Much of the early work concerning Serre’s
conjecture was focussed on proving that the weak form implies the strong form,
and the eventual proof of Serre’s conjecture relied on the work that had been
done to prove their equivalence. Therefore, if one wishes to generalize Serre’s
conjecture to the case of GLn over a number field, it is advisable to begin by
trying to describe a generalization of the strong form of the conjecture. In this
talk, we will briefly review the original conjecture, relate it to the Langlands
programme, and introduce several generalizations done by Toby Gee, Florian
Herzig and David Savitt. If time allows, we will discuss the difference between
generic and non-generic representations and talk about work in progress trying
to extend the picture to non-generic representations.

1. Background - Serre’s Conjecture

1.1. Modular Forms. Recall first the definition of a modular form.

Definition 1.1. Let 1 ≤ N ∈ Z. We consider the following subgroups of SL2(Z).

Γ(N) = ker (SL2(Z)→ SL2(Z/NZ))

Γ1(N) =

{(
a b
c d

)
∈ SL2(Z) | a ≡ d ≡ 1 mod N, c ≡ 0 mod N

}
Γ0(N) =

{(
a b
c d

)
∈ SL2(Z) | c ≡ 0 mod N

}
with Γ(N) ⊆ Γ1(N) ⊆ Γ0(N).

Definition 1.2. Let H = {z ∈ C | =(z) > 0}. Let f : H → C, k ∈ Z, and

γ =

(
a b
c d

)
∈ SL2(R). Denote (sometimes denoted f [γ]k)

(f |kγ)(z) = (cz + d)−kf(γz), γz =
az + b

cz + d

Definition 1.3. Let k ∈ Z, and let Γ ⊆ SL2(Z) be a subgroup containing Γ(N).
A modular form of weight k for Γ is a holomorphic function f : H → C satisfying:

(1) f |kγ = f for all γ ∈ Γ.
(2) f is “holomorphic at the cusps”, i.e. for every σ ∈ SL2(Z), there exist

an ∈ C such that, if one writes q = e2πiz/N , then

(f |kσ)(z) = a0 + a1q + . . .+ anq
n + . . .

where the series is absolutely convergent for z ∈ H, i.e. for |q| < 1.
1
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If one requires that a0 = 0 in every such expansion, i.e. f vanishes at all the cusps,
we say that f is cuspidal.

Remark 1.1. Note the following:

(1) Since
(

1 N
0 1

)
∈ Γ(N) ⊆ Γ, condition (1) implies that f(z +N) = f(z),

which in turn gives a meromorphic Fourier expansion as above. Holomor-
phicity shows then that it suffices to check condition (2) at σ such that
σ · ∞ ∈ ∂(Γ\H) ⊆ Q ∪ {∞} (the cusps).

(2) If Γ = Γ(1) = SL2(Z), Γ is generated by T =

(
1 1
0 1

)
and S =(

0 −1
1 0

)
, so condition 1 is equivalent to f(z) = f(z+1) and f(−1/z) =

zkf(z). Also, Γ has on ly one cusp at ∞, so that it suffices to check condi-
tion (2) for σ = id.

(3) If Γ = Γ(1) and f 6= 0, k is necessarily even, ≥ 0 (the action of S is of order
2).

(4) If f is a modular form of weight k for Γ(N), a necessary and sufficient
condition for it to be modular for Γ1(N) is that f(z + 1) = f(z) for all z,
hence f has a Fourier expansion with q = e2πiz.

(5) If f is a modular form of weight k for Γ1(N), and γ =

(
a b
c d

)
∈ Γ0(N),

then f |kγ depends only on the image of d in (Z/NZ)×. We set 〈d〉 f = f |kγ.
One has 〈−1〉 f = (−1)kf .

Definition 1.4. Let ε a Dirichlet character modulo N , i.e. a homomorphism

ε : (Z/NZ)× → C×

We say that ε is even (resp. odd) if ε(−1) = 1 (resp. if ε(−1) = −1). Let k be an
integer of the same parity as ε, i.e. ε(−1) = (−1)k. We say that f is a modular
form of level N , weight k and Nebentypus ε if f is a modular form of weight k for
Γ1(N) such that

〈d〉 f = ε(d) · f
for all d ∈ (Z/NZ)×, i.e.

f

(
az + b

cz + d

)
= ε(d) · (cz + d)kf(z), ∀γ =

(
a b
c d

)
∈ Γ0(N)

Note that if k and ε are not of the same parity, this formula implies f = 0, by
considering the action of −1.

Example 1.1. If k ≥ 4 is even, an example of such a function is the Eisenstein
series of weight k, which is

Gk =
1

2
ζ(1− k) +

∞∑
n=1

σk−1(n)qn

where ζ is the Riemann zeta function, and σk−1(n) =
∑
d|n d

k−1. Since ζ(1− k) =

−Bkk , where Bk is the k-th Bernoulli number
(

t
et−1 =

∑∞
k=0

Bk
k! t

k
)
, Gk has rational
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coefficients (in fact, integral save the constant term). It is sometimes convenient to
normalize it such that the constant term is 1, resulting in

Ek = − 2k

Bk
Gk = 1− 2k

Bk

∞∑
n=1

σk−1(n)qn

In particular, as B4 = − 1
30 and B6 = 1

42 , E4 and E6 have integral coefficients.

Theorem 1.1. The algebra of modular forms is generated over C by E4 and E6.

Example 1.2. Consider the function

∆ = q

∞∏
n=1

(1− qn)24 =

∞∑
n=1

τ(n)qn

Then calculation shows that ∆ is a modular form of weight 12 and indeed

∆ =
E3

4 − E2
6

1728

1.2. Geometric perspective. From a geometric point of view, a modular form of
weight k over Γ1(N) could be seen as a law, which associates to each elliptic curve
E, equipped with an embedding α : µN → E of the N -th roots of unity, a section
of ω⊗kE , where ωE = Lie(E)∨.
More precisely:

Definition 1.5. An elliptic curve over a scheme S is a proper smooth morphism
E → S, equipped with a section e : S → E, where the geometric fibers are elliptic
curves. When S = SpecA for some commutative ring A, we say that E is an elliptic
curve over A. One sets ωE = e∗Ω1

E/S . When S = SpecA, ωE is an invertible A-
module.

Definition 1.6. Let R be a commutative ring, in which N is invertible. A modular
form of weight k for Γ1(N), meromorphic at ∞, defined over R is a law which,
for each elliptic curve E over an R-algebra A, equipped with an embedding α :
µN → E, associates an element f(E,α) ∈ ω⊗kE . This law should be compatible
with isomorphisms and extension by scalars.

Definition 1.7. One says that f is holomorphic at ∞ if it can be extended to a
law f̃ over pairs (E,α) where E is a generalized elliptic curve (i.e. a proper flat
morphism E → S with a group structure on Ereg), and α is such that its image
meets every irreducible component of every geometric fiber. If it exists, the law f̃
is unique.

Definition 1.8. Let R be a field. We say that f is cuspidal if is holomorphic
at infinity and f̃(E,α) = 0 whenever E is a degenerated elliptic curve (i.e. non-
smooth) over an algebraically closed extension of R.

Definition 1.9. Let ε : (Z/NZ)× → R× be a homomorphism. We say that f is
a modular form of level N , weight k and Nebentypus ε if f(E, dα) = ε(d) · f(E,α)
for all d ∈ (Z/NZ)×.

Example 1.3. Let R = C. Specifying an embedding α : µN → E amounts to
choosing the image α(ζN ), which should be a point of order N . With a modular
form f defined as above, we can assoicate a function on H via

f(z) = f (Ez, 1/N) /(2πi · du)⊗k
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where Ez = C/(Z⊕ zZ). If we exponentiate, we obtain, for q = e2πiz

f(z) =

∞∑
n=0

anq
n = f

(
C×/qZ, Id

)
/(dt/t)⊗k, 0 < |q| < 1

where Id : µN ↪→ C× is the natural embedding.

1.3. Reduction of modular forms.

Definition 1.10. Let p be a prime number, and let vp be the p-adic valuation on
Q. A formal series

f =
∑
n≥0

anq
n, an ∈ Q

is said to be p-integral if vp(an) ≥ 0 for all n. Its reduction modulo p is the formal
power series

f̃ =
∑
n≥0

ãnq
n ∈ FpJqK

where ãn is the image of an in Fp. If f is a modular form of weight k with a
p-integral power series expansion, f̃ is called a modular form mod p.
We denote the space of modular forms mod p which are images of a modular form
of weight k by M̃k, and the space of all modular forms mod p (which is a subalgebra
of FpJqK) by M̃ .

Theorem 1.2. (Swinnerton-Dyer, 1971) If p ∈ {2, 3}, then M̃ = Fp[∆̃]. If
p ≥ 5, then M̃ = Fp[Ẽ4, Ẽ6]/

(
Ã(Ẽ4, Ẽ6)− 1

)
where A ∈ Q[X,Y ] is the (4, 6)-

homogeneous polynomial of degree p− 1 such that A(E4, E6) = Ep−1.

Example 1.4. Let p = 5. Then Ep−1 = E4, hence A(X,Y ) = X, and the ideal
of relations is generated by Ẽ4 = 1. Then M̃ ∼= F5[Ẽ6]. Similarly, if p = 7,
M̃ ∼= F7[Ẽ4]. If p = 13, then

E12 =
441E3

4 + 250E2
6

691
≡ 6E3

4 − 5E2
6 mod 13

which gives us the fundamental relation 6Ẽ3
4 − 5Ẽ2

6 = 1.

Remark 1.2. We equip Fp[X,Y ] with a grading into Z/(p − 1)Z obtained by a
quotient of the grading where X is of weight 4 and Y is of weight 6. Then Ã − 1
is homogeneous of weight 0, and the ideal it generates is therefore graded, hence
the quotient M̃ is also graded, with a grading into Z/(p − 1)Z. Therefore M̃ =⊕

α∈Z/(p−1)Z M̃
α , with M̃α =

⋃
k≡α M̃k.

Therefore, a modular form mod p has a weight in Z/(p− 1)Z.

Definition 1.11. Let α ∈ Z/(p − 1)Z, let ε : (Z/NZ)× → F×p , and let f =∑
anq

n ∈ M̃α (if p < 5, just let f ∈ M̃ and α = k). We let

f | U =
∑

apnq
n

f | Tl =
∑

alnq
n + ε(l) · lα−1

∑
anq

ln (l 6= p)

Then if f ∈ M̃k, we have f | U, f | Tl ∈ M̃k. We call U and the Tl Hecke operators.
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The Hecke operators commute with each other and respect the filtration (note the
map f 7→ f · Ep−1)

M̃k ⊆ M̃k+p−1 ⊆ . . .

of each M̃α. In contrary to the classical case, these operators are not semisimple.
For p = 2, they are in fact nilpotent.

Remark 1.3. One may allow ε to attain values in a finite extension F× of Fp,
extending by scalars to M̃ ⊗ F .

1.4. Systems of Eigenvalues and Represntations of Gal(Q/Q). Let F be a
finite extension of Fp. The operators U and Tl above can be linearly extended to
the algebra M̃ ⊗ F of modular forms with coefficients in k.

Definition 1.12. Let 0 6= f ∈ M̃k ⊗ F be an eigenvector for the Tl for all l 6= p,
i.e. such that

f | Tl = alf, al ∈ F
Then f is called an eigenform.

Recall also the following.

Definition 1.13. Let ρ : Gal(Q/Q) → GL2(F ) be a continuous representation.
We say that ρ is unramified at a prime l if ρ(Il) = 1 where Il is the inertia group
at p.

We then have the following theorem.

Theorem 1.3. (Deligne, 6.7) If f is an eigenform of weight k ≥ 2, Nebentypus ε
and level N , prime to p, with eigenvalues al ∈ F , then there exists a semi-simple
continuous representation

ρ : Gal(Q/Q)→ GL2(F )

which is unramified away from pN , and such that

Tr(ρ(Frobl)) = al, det(ρ(Frobl)) = ε(l) · lk−1

for any prime l - pN .
Moreover, this representation is unique up to a unique isomorphism, and it is irre-
ducible iff f is cuspidal.

Remark 1.4. We note:

(1) If one writes χp : GQ → F×p for the fundamental character (given by the
action of GQ on the (p− 1)-th roots of unity), then det(ρ) = χk−1

p . This is
an odd character, i.e. it sends the complex conjugation c to −1 ∈ F×p . If
p = 2, this is the trivial character.

(2) If f is constant, then (as α = 0 and f | Tl = (1 + p−1) · l), we have
al ≡ 1 + l−1 mod p, and the corresponding representation is 1⊕ χ−1

p . All
other systems of eigenvalues can be obtained from a normalized eigenform,
i.e. with a1 = 1.

(3) For any integer m ≥ 0, there exists a nonzero eigenvector fm of the Tl with
eigenvalues lmal (if f =

∑
anq

n is normalized, one can take fm = θmf =∑
nmanq

n). The representation ρm associated to (lmal) is ρ⊗χmp . We say
that it is obtained from ρ by twisting by the character χmp .
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1.5. Serre’s conjecture for GL2 over Q. In 1973, Serre conjectured an inverse
to this Theorem of Deligne.

Conjecture 1.1. (Serre, 1973) Let ρ : GQ → GL2(F ) be a semi-simple continuous
representation, unramified away from p. Since det(ρ) is a character into F×p , it
is necessarily of the form χα−1

p for some α ∈ Z/(p − 1)Z. Assume α is even, or
equivalently that det(ρ) is odd. Then there exists a system of eigenvalues (al) of
the Hecke operators Tl on some space M̃k with k ∈ α for which ρ is the associated
representation as above.

(Why? First note that if K is a local field, and L is a Galois extension, we may
define inertia I and wild inertia P . We have

0→ I/P → G/P → G/I ∼= Gal(kL/k)→ 0

hence G/P acts on I/P by conjugation. Since I/P is abelian (in fact cyclic), this
factors through an action of Gal(kL/k). Recall we have an isomorphism

I/P ∼= µN (kL), σ 7→ [σ(π)/π]

which induces the natural action. Taking limits, one obtains

IK/PK ∼=
∏
l 6=p

Zl(1)

This should show that the restriction of ρ to Ip the inertia at p is a power of the
fundamental character. (Why?). What about the rest?)
Moreover, we have the following theorem.

Theorem 1.4. (Atkin) Any system of eigenvalues for the Tl can be obtained by a
twist from a system coming from a modular form of weight ≤ p+ 1.

Example 1.5. Consider the case p = 2. There is a single system of eigenvalues,
that is al = 0 for all l. It corresponds to the trivial representation (since 2 = 0 in
F2). This is because (it can be shown that) the Tl are nilpotent, and furthermore,
for all i ≥ 0, ∆i | Tl is a linear combination of ∆j with j < i. This last result can
be made precise:

∆i | Tl ≡ (l + 1)∆i + a1∆i−1 + . . .+ ai mod 8, a1, . . . , ai ∈ Z

Example 1.6. Let p ∈ {3, 5, 7}. The only systems of eigenvalues are

al ≡ lm + ln mod p m, n ∈ Z/(p− 1)Z, 2 - m+ n

These correspond to the reducible representations χmp ⊕ χnp of odd determinant.
Their number is (p− 1)2/4.

Example 1.7. p ∈ {11, 13, 17, 19}. Other than the systems al ≡ lm+ ln mod p as
above, one finds systems corresponding to irreducible representations ρ with values
in GL2(Fp). Up to twist, these are:

(1) For p = 11, 13 the system al = τ̃(l) associated to the cuspidal form ∆
of weight 12. The corresponding representation ρ : GQ → GL2(Fp) is
surjective.

(2) For p = 17 there are 3 systems al, associated to cuspidal forms of weights
12, 16, 18. The corresponding representations ρ : GQ → GL2(Fp) are sur-
jective.
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(3) For p = 19, there are 4 systems al, associated to cuspidal forms of weights
12, 16, 18, 20. The corresponding representations ρ : GQ → GL2(Fp) are
surjective, except the one corresponding to the weight 16 form, whose image
lies in the subgroup of matrices with determinant which is a cube in F×19.

Example 1.8. p = 23. Other than the systems al ≡ lm + ln mod p as above, One
finds:

(1) 5 systems with values in Fp, associated to cuspidal forms of weights 12, 16, 18, 20, 22;
The corresponding representations are surjective, save the first whose image
is isomorphic to the symmetric group S3.

(2) 2 systems with values in Fp2 , associated to two cuspidal forms of weight 24
conjugate over Q

(√
144169

)
(note that 144169 is not a square modulo 23).

The corresponding representations have as image the subgroup of GL2(Fp2)
of elements whose determinant is in F×p .

The examples above for p = 2, 3 imply that to verify the conjecture it suffices to
show that there are no such representations of GQmod 2, and no such irreducible
representations mod 3. This fact was established using bounds on the discriminant
by Tate and Serre.

1.6. Serre’s weight conjecture - the recipe. Recall that given a Galois repre-
sentation, we wish to describe the level N and the weight k of the corresponding
modular form. In order to understand Serre’s recipe, we should first recall some
definitions from Galois theory.
The recipe for N will be simply the conductor of ρ:

Definition 1.14. Let ρ : GQ → GL(V ) be a continuous homomorphism, where
V is a finite dimensional vector space over Fp. Then ker ρ = Gal(Q/K) for some
finite Galois extension K/Q. Let l 6= p be a prime. Choose an extension to Q of
the l-adic valuation on Q, and let

G0 ⊃ G1 ⊃ · · · ⊃ Gi ⊃ · · ·
be the ramification groups of G = Gal(K/Q) corresponding to that valuation.
(recall Gi = {σ ∈ G | vl(σ(x)− x) > i ∀x}). Let Vi = V Gi , and

n(l, ρ) =

∞∑
i=0

1

(G0 : Gi)
dim(V/Vi) =: dim(V/V0) + b(V )

We say that b(V ) is the wild invariant of the G0-module V . Then

N =
∏
l 6=p

ln(l,ρ)

is the Artin conductor of ρ. (sometimes, simply the conductor of ρ)

Remark 1.5. Note that:

(1) n(l, ρ) ≥ 0 is an integer.
(2) n(l, ρ) = 0 iff G0 = {1}, i.e. iff ρ is unramified at l.
(3) n(l, ρ) = dimV/V0 iff G1 = {1}, i.e. iff ρ is tamely ramified at l.

Therefore, N is an integer (there are only finitely many ramified primes, hence
nonzero powers), prime to p.
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Remark 1.6. Note that det ρ : GQ → F×p is a character with conductor dividing
pN , therefore it can be viewed as a homomorphism (Z/pNZ)× → F×p . We write
ρ = ϕε, where

ϕ : (Z/pZ)
× → F×p , ε : (Z/NZ)× → F×p

As (Z/pZ)× is cyclic of order p − 1, the homomorphism ϕ is of the form x 7→ xh

for some h ∈ Z/(p− 1)Z, so that ϕ = χhp . Also, if l - pN , then

det(ρ(Frobl)) = lhε(l)

For the weight, we will need some more.

Definition 1.15. Let Gp = Gal(Qp/Qp), and let ρp : Gp → GL2(Fp) be a continu-
ous two dimensional representation of Gp. Let I be the inertia group of Gp, and Ip
the largest pro-p-subgroup of I (the group of wild inertia). The quotient It := I/Ip
is the tame inertia group of Gp. It can be identified with lim←−F

×
pn . A character of

It is of level n if ot factorizes through F×pn , and does not factor through any F×pm
where m | n (m 6= n).
Let V ss be the semi-simplification of V with respect to the action of Gp. Then
Ip acts trivially on V ss (it is pro-p), so that it has an action of It. This action is
diagonalizable and given by two characters

ϕ,ϕ′ : It → F×p
It turns out that

Proposition 1.1. (Serre) The characters ϕ,ϕ′ describing the action of It on V ss
are both of level 1 or both of level 2. If they are of level 2, they are conjugate:
ϕ′ = ϕp, ϕ = ϕ′p.

We can now consider separately each of the two cases.

Definition 1.16. Let ρ : GQ → GL2(Fp) be a continuous Galois representation
such that the associated characters ϕ,ϕ′ of ρp are of level 2. In this case, V is
irreducible (or else it would contain a stable one dimensional subspace, and the
action of Iton that subspace would be by a character that can be extended to Gp
hence of level 1). Let ψ,ψ′ = ψp be the two fundamental characters of level 2 of It,
i.e. the two characters It → F×p2 → F×p corresponding to the two embeddings of Fp2
into Fp. Then one can write ϕ = ψa+pb = ψa · ψ′b for some 0 ≤ a, b ≤ p− 1. Then
b 6= a, or else ϕ = (ψψ′)a = χa, where χ is the restriction to I of the cyclotomic
character, contradicting the assumption on the level. Moreover, as ϕ′ is conjugate
to ϕ, we have ϕ′ = ψbψ′a. Thus, w.l.o.g. we may assume 0 ≤ a < b ≤ p − 1. We
define the weight associated to ρ to be

k := 1 + pa+ b

Remark 1.7. a) The minimal possible value of k is k = 2, which is obtained with
a = 0, b = 1, i.e. in this case ϕ and ϕ′ are equal to the two fundamental characters
of level 2.
b) In the particular case of a = 0, one has (ϕ,ϕ′) = (ψb, ψ′b) with 1 ≤ b ≤ p − 1,
and by definition k = b + 1, hence 2 ≤ k ≤ p. The general can be obtained from
this one by twisting. In fact, we can write

ρp = χa ⊗ ρ
′

p
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where χ is the cyclotomic character (viewed as a character of Gp). The couple
associated to ρ

′

p is therefore (0, b − a), and k′ = b − a + 1. One can write k =
k′ + a(p+ 1).

Definition 1.17. Let ρ : GQ → GL2(Fp) be a continuous Galois representation
such that the associated characters ϕ,ϕ′ of ρp are of level 1, and Ip acts trivially.
We may assume that the action of I on V is semi-simple, and given by characters
ϕ,ϕ′ which are powers of the cyclotomic character χa, χb:

ρp |I=
(
χa 0
0 χb

)
The integers a, b are determined modulo p − 1. We normalize them so that 0 ≤
a, b ≤ p− 2, and up to permuting the order, we may assume 0 ≤ a ≤ b ≤ p− 2. We
then define the weight associated to ρ to be

k =

{
1 + pa+ b (a, b) 6= (0, 0)

p (a, b) = (0, 0)

Remark 1.8. a) Again, the minimal possible value of k is k = 2, obtained when
a = 0, b = 1, corresponding to the case ϕ = 1, ϕ′ = χ.
b) The case (a, b) = (0, 0), is the case where I acts trivially on V , that is to say
that ρp is unramified. The general formula then gives k = 1. Since modular forms
of weight 1 are somewhat exceptional, Serre is avoiding them explicitly.

Assume that Ip acts non-trivially, i.e. that the action of I is not tame. The elements
of V fixed by Ip form a line D, which is stable by Gp. The action of Gp on V/D
(resp. on D) is given by a character θ1 (resp. θ2) of Gp:

ρp =

(
θ2 ∗
0 θ1

)
One can write θ1, θ2 uniquely in the form

θ1 = χαε1, θ2 = χβε2 α, β ∈ Z/(p− 1)Z

where ε1, ε2 are unramified characters of Gp with values in F×p . Restricting to I,
we have

ρp |I=
(
χβ ∗
0 χα

)
We normalize the exponents so that 0 ≤ α ≤ p − 2 and 1 ≤ β ≤ p − 1 (note that
here they are not symmetric). Let a = inf(α, β), b = sup(α, β). Then
(i)If β 6= α+ 1, we let k = 1 + pa+ b, as before.
(ii) If β = α+ 1, the definition of the associated weight depends on the type of the
wild ramification, which we proceed to define.
Let K0 = Qnrp be the maximal unramified extension of Qp. It is the fixed field of I.
The group ρp(I) is isomorphic to a Galois group of a certain totally ramified exten-
sion K of K0, and the wild inertia is mapped to ρp(Ip), the Galois group of K/Kt,
where Kt is the maximal tamely ramified extension of K0 contained in K.
Since β = α + 1, one deduces that Gal(Kt/K0) = (Z/pZ)×, therefore Kt = K0(z)
where z is a primitive p-th root of unity. On the other hand, Gal(K/Kt) = ρp(Ip)
is an elementary abelian group of type (p, p, . . . , p), represented matricially by
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1 ∗
0 1

)
. Moreover, from β = α + 1 we see that the action via conjugation

of Gal(Kt/K0) = (Z/pZ)× on Gal(K/Kt) is the natural one. By Kummer theory,
we deduce that

K = Kt

(
x

1/p
1 , x

1/p
2 , . . . , x1/p

m

)
where pm = [K : Kt], and the xi are elements of K×0 /

(
K×0

)p. If vp is the valuation
on K0, normalized so that vp(p) = 1, we say that the extension K is peu ramifieé if

vp(xi) ≡ 0 mod p ∀i = 1, . . . ,m

i.e. if the xi could be chosen to be units of K0. If not, we say that K and ρp are
trés ramifieés.

Remark 1.9. a) The trés ramifié case is only possible if ε1 = ε2, and then either
m = 1 or m = 2. It can be seen by looking at the conjugation action of Gp on
ρp(Ip).
b) Let π be a uniformizer of Kt, for example π = 1− z, or π = p1/(p−1). If K/Kt is
peu ramifiée, the pm−1 characters of order p associated to that extension are all of
conductor (π2). In the trés ramifié case, pm−pm−1 are of conductor (πp+1) = (pπ2)
and the pm−1 − 1 others are of conductor (π2).

Definition 1.18. If β = α+ 1, and ρp is peu ramifié, the associated weight is

k = 1 + pa+ b = 2 + α(p+ 1)

If β = α+ 1, and ρp is trés ramifié, the associated weight is

k =

{
1 + pa+ b+ p− 1 = (α+ 1)(p+ 1) p 6= 2

4 p = 2

We now have finally a complete definition of the associated weight k.
This definition makes sense, due to the following:

Proposition 1.2. If k is the weight associated to ρp, we have

det ρp | I = χk−1

Therefore, we have det ρp = εp · χk−1, where εp is an unramified character of Gp
with values in F×p . When ρp is the p-part of a global representation ρ, then εp is
the p-component of the character ε defined above:

εp(Frobp) = ε(p)

For p 6= 2, k attains the values in [2, p2−1] which can be written as k = 1+a0 +pa1,
with 0 ≤ a0, a1 ≤ p− 1, with a1 ≤ a0 + 1. If p = 2, k = 2 if Ip acts trivially or peu
ramifié, and k = 4 if it is trés ramifié.

Example 1.9. Let p = 2. Let u : G2 → Z/2Z be a surjective homomorphism, and
let ρ2 : G2 → GL2(F2) be the representation defined by

s 7→
(

1 u(s)
0 1

)
Let K/Q2 be the quadratic extension corresponding to the kernel of u. The one
has:
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(1) k = 2 if K/Q2 is unramified, i.e. K = Q2(
√

5).
(2) k = 2 if disc(K/Q2) = (4), i.e. K = Q2(

√
−1) or Q2(

√
−5).

(3) k = 4 if disc(K/Q2) = (8), i.e. K = Q2(
√

2),Q2(
√
−2),Q2(

√
10),Q2(

√
−10).

Conjecture 1.2. (Serre’s weight conjecture)
Let ρ : GQ → GL2(Fp) be an odd irreducible continuous Galois representation.
Then there exists a cuspidal eigenform f mod p, and such that the associated
representationρf is isomorphic to ρ. Moreover, f can be chosen to be of level N ,
weight k and Nebentypus ε, where N is the (prime to p) conductor of ρ, k is the
associated weight of ρp, and ε is such that det ρ = ε · χk−1.

2. p-adic Hodge Theory

The construction of the associated weight might seem quite arbitrary, as it comes
from known results (at the time) about the reduction mod p of the associated
representation ρf . Using modern terminology, it is simplified.
Fontaine came up with the idea of classifying the p-adic Galois representations
(restriction to decomposition groups of global Galois representations) using only
linear algebraic data, and the rings of periods which supply us with a Hodge filtra-
tion, monodromy and Frobenius. I will not go into detail about the construction of
these period rings, but using them one can classify p-adic Galois representations,
so that the analogue of l-adic representations with good reduction are crystalline
representations.
More precisely, there exists a certain ring of periods, a Qp-algebra, Bcris, equipped
with a filtration and a Frobenius, such that

Definition 2.1. A continuous representation ρ : GQp → GL(V ) on a finite dimen-
sional vector space V over Qp is crystalline if

dimQp
(
Bcris ⊗Qp V

)GQp = dimQp V

we set Dcris(V ) = (Bcris ⊗Qp V )GQp .
We then have the following result.

Theorem 2.1. (Scholl, Faltings) Letk ≥ 2, and let f be a normalised cuspidal
eigenform of level N prime to p. Then ρf |GQp

is crystalline. Moreover, if v(ap) > 0

and a2
p 6= 4pk−1, then Dcris

(
ρf |GQp

)
∼= Dk,ap is equipped with a Frobenius having

characteristic polynomial X2 − apx + pk−1 and a weakly admissible filtration with
jumps at 0 and k − 1. (Maybe say a few words and draw the Newton and Hodge
polygons).

Therefore, any results on the reduction mod p of crystalline representations of GQp
with Hodge-Tate weights (jumps in the above filtration) k−1 and 0, give information
about the possible associated weights.
In particular, for the case at hand, a result coming from the local-global compati-
blity of the p-adic Langlands correspondence for GL2(Qp) is coming to our aid:

Theorem 2.2. (Berger) If V is an irreducible crystalline two-dimensional repre-
sentation of GQp , whose reduction mod p is reducible, then

V ∼= µ1χ
r ⊕ µ2
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where µ1, µ2 are unramified characters, and χ is the cyclotomic character. More-
over, V has Hodge-Tate weights {0, r + 1}.

Example 2.1. Suppose that ρ : GQ → GL2(Fp) satisfies

ρ |IQp∼=
(
χk−1 ∗

0 1

)
where IQp is the inertia group at p, and 2 < k < p+ 1. Then Serre’s recipe predicts
the minimal associated weight to be k. But by the above theorem, we know that
any crystalline representation with Hodge-Tate weights {0, k−1} which is reducible
mod p , must be of this form.
In general, the general theory of “change of weight” of Galois representations shows
that it is reasonable to expect that the only obstructions to producing automorphic
lifts of particular weights will be the local ones presecribed by p-adic Hodge theory.

Remark 2.1. Assume that in this example, k < p− 1 and ∗ vanishes. Then

ρ⊗ χ1−k |IQp∼=
(
χp−k 0

0 1

)
Note that for that representation, Serre’s recipe gives conjectural weight p+ 1− k.
Thus, although the conjecture predicts that any ρ has a twist which is modular
with weight at most p+ 1, in the split case there are actually two such twists. This
phenomenon is known as “companion forms”.

3. Representation Theory

Problem 3.1. How does one generalize Serre’s conjecture to n-dimensional Galois
representations?
The idea is to pass to a representation-theoretic formulation, which appears first
in the work of Ash. First, we would like to point out that the Hecke algebra (the
algebra generated by the Tl, U and 〈d〉) has a natural action on some cohomology
groups.

Definition 3.1. Let V be an Fp-representation of GL2(Fp), and let N be prime
to p. Then V is also a Γ1(N)-module naturally. Let β ∈ H1(Γ1(N), V ).
For g ∈ GL2(Q), we write Γg = g−1Γ1(N)g ∩ Γ1(N). Then we have morphisms
i(g), j(g) : (Γg, V )→ (Γ1(N), V ) given by i(γ, v) = (γ, v) and j(γ, v) = (gγg−1, g−1v).
For l ∈ Z, we let σl = diag(l−1, 1), and Tl = i(σl)∗j(σl)

∗ is an operator on
H1(Γ1(N), V ), and for r ∈ (Z/NZ)×, fix γr ∈ Γ0(N) ∩ Γ1(p) with d ≡ r mod N .
Then

〈r〉 = i(γr)∗j(γr)
∗ : H1(Γ1(N), V )→ H1(Γ1(N), V )

Now, given an eigenclass in H1(Γ1(N), V ), giving rise to a system of eigenvalues,
we may wish to associate with it a continuous representation ρ : GQ → GL2(Fp).
We also recall

Theorem 3.1. (Eichler-Shimura - Fontatine, Messing, Faltings, Edixhoven) Let
2 ≤ k < p be an integer. Let p be a prime, N an integer prime to N . Then there
is an exact sequence of H (Γ1(N), GL2(Q))-modules

0→ Sk(Γ1(N),Fp)→ H1
(

Γ1(N),Symk−2F2

p

)
→ Sk(Γ1(N),Fp)∨ → 0
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Therefore, if ρ is odd and irreducible, we know that it is modular of weight k and
prime to p level N iff it is associated to an eigenclass in H1

(
Γ1(N), Symk−2F2

p

)
.

By devissage this is iff it is associated to an eigenclass in H1(Γ1(N), V ) for some
JH factor V of Symk−2F2

p. In fact, we may write W (ρ) as the set of irreducible
representations over Fp of GL2(Fp) such that ρ is associated to an eigenclass in
H1(Γ1(N), V ) for some prime-to-p level N . This is a finite set, and it determines
all weights in which ρ occurs in prime-to-p level. (not just the minimal such weight).

Definition 3.2. Let ρ : GQ → GLn(Fp) be continuous odd irreducible Galois rep-
resentation. We call W (ρ) the Serre weights of ρ. A Serre weight is an irreducible
representation over Fp of GLn(Fp).

Example 3.1. Return to our example from before, with 2 < k < p − 1. If ∗ 6= 0,
i.e. this is a non-split extension, we have W (ρ) = {Symk−2F2

p}. However, when
∗ = 0, we have

W (ρ) =
{
Symk−2F2

p,det k−1 ⊗ Symp−1−kF2

p

}
One could see the second weight from observing that p− 1− k should lie in W (ρ⊗
χ1−k) and undoing the twist. This in fact follows from the mod p Langlands
correspondence for GL2(Qp).
Quite more generally, we let

Definition 3.3. Let q be a power of a prime p. A Serre weight is an isomorphism
class of irreducible representations over Fp of GLn(Fq). Let W (Fq, n) be the set of
all Serre weights.

Remark 3.1. The set W (Fq, n) admits a simple description, by some results from

modular representation theory. It is indexed by the set
(
X

(n)
1

)S
/ ∼, where S is

the set of embedding Fq ↪→ Fp and

X
(n)
1 =

{
(ai)

n
i=1 ∈ Zn+ | ai − ai+1 ≤ p− 1

}
4. Generalization of Serre’s conjecture

4.1. Global Setting. Although we are mainly interested today in the generaliza-
tion of the weight part, which is expected to be purely local, I’ll briefly sketch the
global setting.
Let F be a number field, and let

ρ : GF → GLn(Fp)
be an irreducible representation. Recall that we wanted to understand the weights
appearing in such representations coming from modular forms. Also, we have seen
that modular forms are equivalent to systems of Hecke eigenvalues, which, in turn,
are equivalent, by Eichler-Shimura, to cohomology classes of the level group (same
as cohomology of corresponding modular curve) with coefficients in an irreducible
representation.
Therefore, in order to generalize this notion, we should look at cohmology of higher-
dimensional local symmetric spaces with some fixed level, and coefficients in an
irreducbile representation.
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Instead of the modular curve, we may consider

Y (U) := GLn(F )\GLn(AF )/UA◦∞U
◦
∞

where AF are the adeles of F , U = UpUp is a compact open subgroup of GLn(A∞F )
(finite adeles), where Up is sufficiently small, and Up = GLn(OF ⊗ Zp) (this cor-
responds to p - N in the modular curve case). Also A◦∞ = R×>0, embedded diago-
nally in

∏
v|∞GLn(Fv), and U◦∞ =

∏
v|∞ U◦v where U◦v = SOn(R) if v is real and

U◦v = Un(R) if v is complex.
Let W be an irreducible smooth Fp-representation of Up. The action of Up factors
through

∏
v|pGLn(kv) (the kernel of the reduction is a normal pro-p subgroup).

Write W =
⊗

v|pWv with Wv an irreducible Fp-representation of GLn(kv). Let

W := ((GLn(F )\GLn(AF )/UpA◦∞U
◦
∞)×W ) /Up

be a local system on Y (U).
Let Σ0 be a finite set of places of F (depending on U) which contains all places
v | p, and such that if v /∈ Σ0 is finite, then Uv = GLn(OFv ) (Y (U) is unramified
outside Σ0).
Then, for each v /∈ Σ0, the spherical Hecke algebra

Hv := C
(
GLn(OFv )\GLn(Fv)/GLn(OFv ),Zp

)
acts naturally on the cohomolgy groups Hi(Y (U),W).
Let Σ be a finite set of places of F containing Σ0 and the places where ρ is ramified.
(non-trivial on the inertia group).
We may now define a maximal ideal m = m(ρ, U,Σ) of the Hecke algebra TΣ :=

⊗′

v/∈ΣHv with residue field Fp by demanding that for all v /∈ Σ, the semisimple part
of ρ(Frob−1

v ) be conjugate to the class defined by the Hv-eigenvalues determined
by m. (equivalently, for GLn, specify the characteristic polynomial of ρ(Frobv) or
its eigenvalues).

Definition 4.1. We say that ρ is automorphic if there are some W,U,Σ as above
such that Hi(Y (U),W)m 6= 0 for some i ≥ 0.

Example 4.1. For F = Q, n = 2, with U = Γ1(N), p - N , Y (U) = X1(N)

is the modular curve of level N . Take W = Symk−2F2

p for some k ≥ 2, and an
eigenform determines a system of Hecke eigenvalues, giving rise to a morphism
a : TΣ → Fp, and a maximal idealm = ker a with residue field Fp. Moreover, such
an eigenform corresponds to an eigenclass in H1(Y (U),W) by Eichler-Shimura,
therefore a nonzero element in H1(Y (U),W)m. Conversely, for i = 0, 2 these vanish
for all m, and for i = 1, such an element is an eigenclass, hence corresponds to an
eigenform.

Definition 4.2. Let ρ : GF → GLn(Fp) be automorphic. Let W (ρ) denote the set
of isomorphism classes of irreducible representations W of

∏
v|pGLn(kv) for which

Hi(Y (U),W)m 6= 0. We say that W (ρ) is the set of Serre weights of ρ.
We may now formulate a generalization of the “weak” Serre conjecture.

Conjecture 4.1. Suppose that ρ is automorphic. Then we may write W (ρ) =⊗
v|pWv(ρ), where Wv(ρ) is a set of isomorphism classes of irreducible represen-

tations of GLn(kv) which depends only on ρ |GFv .
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In fact, as in the GL2(Qp) case, one expects that this set will only depend on ρ |IFv .

5. The Breuil-Mezard Conjecture

We now move to a local setting. Let K be a finite extension of Qp (corresponding
to Fv for some v | p), with ring of integers OK and residue field k. Let IK be the
inertia subgroup of the absolute Galois group GK = Gal(K/K). Let FrobK be a
geometric Frobenius element of GK . Let E be a finite extension of Qp, with ring
of integers O = OE , and residue field F. It is now natural the ask

Problem 5.1. Given ρ : GK → GLn(k), what is Wv(ρ), the set of corresponding
Serre weights?
In order to describe the possible sets, we would need to recall some more definitions.

Definition 5.1. Let Zn+ denote the set of tuples λ = (λ1, . . . , λn) with λ1 ≥ λ2 ≥
. . . ≥ λn. A Hodge type is an element of

(
Zn+
)SK , where SK = {K ↪→ E}.

Definition 5.2. An inertial type is a representation τ : IK → GLn (E) with open
kernel, which can be extended to a representation of the Weil group WK .

We have the following result (recall−i ∈ HTκ(ρ) with multiplicity dimE

(
ρ⊗κ,K K̂(i)

)GK
)

Theorem 5.1. (Kisin) Let λ be a Hodge type and τ be an inertial type. There
is a unique reduced and p-torsion free quotient Rλ,τρ,O of the the universal lifting O-
algebra Rρ,O whose points parametrise lifts of ρ that are potentially crystalline with
inertial type τ and Hodge-Tate weights

HTκ(ρ) = {λκ,1 + n− 1, . . . , λκ,n−1 + 1, λκ,n}

The ring Rλ,τρ,O[1/p] is regular.

Given an inertial type, we may associate with it a finite-dimensional smooth irre-
ducible Qp-representation σ(τ) of GLn(OK) by “inertial local Langlands correspon-
dence”, namely

Theorem 5.2. (Caraiani, Emerton, Gee)
Let τ be an inertial type. Then there is a finite dimensional smooth irreducible
Qp-representation σ(τ) of GLn(OK) such that if π is any irreducible smooth Qp-
representation of G, then π |GLn(OK) contains an isomorphic copy of σ(τ) as a
subrepresentation iff recp(π) |IK∼ τ and N = 0 on recp(π). Furthermore, in this
case the restriction of π to GLn(OK) contains a unique copy of σ(τ).

Remark 5.1. In particular, if τ is the trivial inertial type, then σ(τ) ∼= Qp is the
trivial one-dimensional representation of GLn(OK).
Moreover, forGL2(Qp), we know that this deformation ring has an intimiate connec-
tion with the Serre weights. This is a result following from p-adic local Langlands.

Definition 5.3. Let (A,m) be a local ring of dimension d. Let P (n) be the Hilbert
polynomial of A, i.e. P (n) = length(A/mn+1A). Let P (X) =

∑
i aiX

i. Then
e(A) = d! · ad is the Hilbert-Samuel multiplicity of A.

Theorem 5.3. (Kisin) For ρ sufficiently generic (*), the Hilbert-Samuel multiplic-
ity of the local ring Rk,τρ,O/($E) is equal to the number of Serre weights of ρ (com-
putes with multiplicity) that appear in σ(k, t), where σ(k, t) = σ(τ)⊗E Symk−2E2.
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In fact, this is more than mere numerology

Theorem 5.4. (Breuil, Mezard) If E is large enough, there exists a bijection,
which respects multiplicities, between the irreducible components of Rk,τρ,O/($E) and
the collection of distinct Serre weights of ρ in σ(k, t)

Therefore, if we would like to know the expected weights of a certain modular Galois
representation, we should understand the irreducible components of the reduction
of the deformation ring.
In order to generalize the representations σ(k, t), we have to consider the reductions
of irreducible algebraic representations.
In general, given an element λ ∈ Zn+, it can be viewed as a dominant weight for
GLn, hence we can construct the corresponding algebraic OK-representation of
GLn

H0
OK (λ) := IndGLnBn

(w0λ)/OK

where Bn is the Borel subgroup of upper triangular matrices of GLn and w0 is the
longest element of the Weyl group. We write Mλ for its OK-points. Then for a
Hodge type λ, we may write

Lλ =
⊗
κ∈SK

(
Mλκ ⊗OK,κ O

)
Now, σ(τ) is a finite-dimensional of the compact group, hence contains a GLn(OK)-
stable O-lattice Lτ . Set Lλ.τ := Lλ ⊗O Lτ . Then the collection of distinct Serre
weights in its reduction can be given by multiplicities by

(Lλ,τ ⊗O F)
ss ∼=

⊕
a∈W (k,n)

F
nλ,τ (a)
a

where nλ,τ (a) are nonnegative integers.
We may then generalize the result of Breuil-Mezard and obtain

Conjecture 5.1. (Breuil-Mezard, generalized by Gee, Herzig, Savitt) There exist
non-negative integers µa(ρ) depending only on a and ρ such that for all Hodge types
λ and all inertial types τ we have

e
(
Rλ,τρ /$

)
=
∑
a

nλ,τ (a)µa(ρ)

Remark 5.2. One may wonder why do we not conjecture the integers to be all in
{0, 1}. In fact, if we restrict the range of a to be Fontaine-Laffaille regular, and
K/Qp is unramified, this is true. But we have

Example 5.1. In the case of K = Qp, n = 2, ifk = p and ρ is split, then µk(ρ) = 2.
This multiplicity is coming from the fact that χp−1 and 1 have both the same
reduction modulo p.
Therefore, if we wish to extend the conjecture to all representations, such a state-
ment is better.
This conjecture, in fact, is now known to hold (Gee, Kisin) for a certain type of
representations (potentially Barsotti-Tate).
We may now define
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Definition 5.4. We define WBM (ρ), the set of Breuil-Mezard predicted weights
for ρ to be the set of Serre weights a such that µa (ρ) > 0.
This leads us to our first possible generalization of the weight part of Serre’s con-
jecture

Conjecture 5.2. One has Wv (ρ) = WBM (ρ).

In fact, we can generalize this statement. Since we are allowing for linear combina-
tions of the multiplicities, all we need for them is to be uniquely defined by these
equations, so a natural definition is: (we don’t need all types)

Definition 5.5. We say that a set S = {(λ, τ)} where λ is a Hodge type and τ is
an inertial type is a Breuil-Mezard system if the map ZW (k,n) → ZS given by

(xa)a∈W (k,n) 7→

(∑
a

nλ,τ (a)xa

)
(λ,τ)∈S

is injective.
In particular, the above equations can have at most one solution.

Example 5.2. Let n = 2 and let BT = {(0, τ)} so that BT is the set of potentially
Barsotti-Tate types. Then Gee and Kisin show that BT is a Breuil-Mezard system,
even if one restrict to τ such that det τ is tame.

Definition 5.6. We say that a Hodge type λ is a lift of an element a ∈
(
Zn+
)Sk if

for all σ ∈ Sk there exists a κσ ∈ SK lifting σ such that λκσ = aσ, and λκ′ = 0 for
all other κ′ 6= κσ in SK lifting σ. In that case we say that the lift λ is taken with

respect to the choice of embeddings (κσ). When a ∈
(
X

(n)
1

)Sk
, we will also say

that λ is a lift of the Serre weight represented by a.

Example 5.3. For each Serre weight b, fix a lift λb, and let c̃r be the set of pairs
(λb, triv), where triv denotes the trivial type. Then c̃r is a Breuil-Mezard system.
Thus, we may replace our hopeful conjecture by one, which is more modest, call
this set of weights WS(ρ).
In this case, a weak version of the Breuil-Mezard conjecture for representations of
type c̃r is known to hold - there are uniquely determined integers µa(ρ) satisfying the
equations. (For the existence of rational solutions, a counting argument suffices).
For n = 2, it follows trivially that these are nonnegative integers, and that a ∈
Wc̃r(ρ) iff ρ has a crystalline lift of Hodge type λa.

6. Crystalline Lifts and Serre Weights

The Breuil-Mezard version of the weight part of Serre’s conjecture has the obvious
drawback that even the definition of the conjectural set of weightsWBM (ρ) depends
on the Breuil-Mezard conjecture. (Of course, in theory it is possible to determine
the conjectural values of µa(ρ) without proving the conjecture by computing the
HS multiplicity e(R/ω) for enough choices of λ, τ but in practive that seems very
difficult. In the case where ρ |IK is semisimple, it is possible to define the set of
weights in a different fashion.

Definition 6.1. Suppose that λ ∈ (Zn+)SK . A crystalline lift of ρ of Hodge type λ
is a representation ρ : GK → GLn

(
Zp
)
such that
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• ρ⊗Zp Fp
∼= ρ

• ρ⊗Zp Qp is crystalline and regular of weight λ.

Lemma 6.1. Assume that the generalized Breuil-Mezard conjecture holds. Then ρ
has a crystalline lift of Hodge type λ iff WBM (ρ) ∩ JHGLn(k)

(
Lλ ⊗Zp Fp

)
6= ∅.

Corollary 6.1. Assume that the generalized Breuil-Mezard conjecture holds, and
let λ be a lift of the Serre weight a. If a ∈WBM (ρ), then ρ has a crystalline lift of
Hodge type λ.

This motivates the following definition

Definition 6.2. Let W ∃cris(ρ) be the set of crystalline weights for ρ, the set of
Serre weights a such that ρ has a crystalline lift of Hodge type λ for some lift λ of
a. Let W ∀cris (ρ) be the set of Serre weights a such that ρ has a crystalline lift of
Hodge type λ for every lift λ of a.

Assuming the generalized Breuil-Mezard conjecture, we haveWBM (ρ) ⊆W ∀cris(ρ) =
W ∃cris (ρ). If ρ |IK is semisimple, we may conjecture:

Conjecture 6.1. One has W ∃cris(ρ) = W ∀cris(ρ). Moreover:
(i) If ρ |IK is semisimple, then WBM (ρ) = W ∃cris(ρ) = W ∀cris(ρ).
(ii) If ρ |IFv is semisimple for all v | p, then Wv(ρ) = W ∃cris(ρ |GFv ).

In general, we dare not hope that this happens when dropping the semisimplicity
assumption. If time allows we will see an example later on (it will require some
work to identify these sets).
There is much evidence for this conjecture in the case of GL3(Qp) which is quite
striking.

Remark 6.1. When n = 1, this is a consequence of CFT and analysis of the reduc-
tion of crystalline characters. e.g. the following Lemma.

Lemma 6.2. Let Λ = {λκ}κ∈SK be a collection of integers.

(i) There is a crystalline character ψKΛ : GK → Z×p such that for each κ ∈ SK we
have HTκ(ψKΛ ) = λκ. It is uniquely determined up to unramified twists.

(ii) We have ψ
K

Λ |IK=
∏
σ∈Sk χ

bσ
σ ,where bσ =

∑
κ∈SK :κ=σ λκ.

Remark 6.2. When n = 2, p > 2, part (i) is known, some analogue of part (iii) is
known (for quaternion algebras). If furthermore K = Qp, then part (ii) is known
whenever the Breuil-Mezard conjecture is known. All these results hold without
the assumption on semisimplicity.
We also note that the weights in WBM (ρ) and W ∃cris(ρ) which are in the closure
of the lowest alcove (i.e. aσ,1 − aσ,n + (n− 1) ≤ p for all σ) must always coincide.
Indeed, if λ is a lift of such a weight, then Lλ ⊗ Fp is irreducible. In particular,
when n ≤ 2 this is true for all Serre weights, hence the progress for n ≤ 2 provides
very weak evidence.
Combining everything we get the following conjecture:

Conjecture 6.2. Suppose that ρ |IK is semisimple. If W ∃cris(ρ)∩JHGLn(k)(Lλ⊗Zp
Fp) 6= ∅ for some lift λ of the Serre weight a, then a ∈W ∃cris(ρ).
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7. The Geometric Picture

In a series of papers, Gee and Emerton construct a finite type equidimensional Artin
stack X over Fp whose Fp-points correspond to isomorphism classes of representa-
tions ρ : GK → GLn(Fp) that admit a de-Rham lift to GLn(Zp). Furthermore, for
each Hodge type λ and inertial type τ , there is a finite type formal Artin stack Xλ,τ
over SpfZp , whose Zp-points are in natural bijection with the isomorphism classes
of the de-Rham representations of type (λ, τ). There is a specialization morphism π
which on points is just the reduction. The underlying reduced substack of π (Xλ,τ )

is a union of irreducible components of X . Each irreducible component of X has
a dense open subset of closed points that lie only on that component, and which
correspond to certain maximally non-split upper-triangular representations with
characters χ1, . . . , χn on the diagonal such that the characters are fixed. These are
the generic Fp-points of this component.

Example 7.1. Let n = 2. Fix characters ψi : IK → F×p for i = 1, 2 that extend
to GK . Then whenever ψ1ψ

−1
2 6= ε, there is a unique component whose generic

Fp-points correspond to extensions of χ2 by χ1 with χi |IK∼= ψi, and these repre-
sentations have a unique Serre weight. This Serre weight can be read off directly
from the tame inertial weights.

When ψ1ψ
−1
2 = ε, suppose that K = Qp. Then there is one component of X whose

generic Fp-points are tres ramifiee extensions of χ by χε, where χ is any unramified
character, and another component whose generic points are extensions of χ2 by χ1ε
where χ1 6= χ2 are any unramified characters. The peu ramifiee extensions of χ
by χε lie on both components (and so are not generic of neither). We label the
first component by the Serre weight Symp−1F2

p (note that this corresponds to the
weight k + 1, which is Serre’s prediction), and the second component by both 1

and Symp−1F2

p (the first coming from peu ramifiee extensions, where the expected
weight is 2, and the second its companion) - the two Serre weights of a generic point
on this component. In particular, every component of X labeled by 1 is also labeled
by Symp−1F2

p. All other components of X are labeled by a single Serre weight, and
in fact, each other Serre weight is the label for a unique irreducible component.

In general, we expect that to each component there will be set of weights, and
the Serre weights of ρ will be the union of the sets of weights associated to the
components it lies on. In particular, the labels of a component must therefore be
the Serre weights of its generic points. This structure should be a consequence of
the Breuil-Mezard conjecture (and in fact it is for n = 2).

Accordingly, to understand the weight part of Serre’s conjecture, should reduce
to understanding the components of X on which a given representation lies, and
understanding what the Serre weights are for maximally non-split upper-triangular
representations (that are generic enough to lie on a single component).

We expect that most components are labeled by a single weight, and that in the
cases where there are multiple weights labeling a component, they are frequetly
related in a simple way. For example, ifK = Qp, and a component has F (a1, . . . , an)
as a label, then the generic representations on the component are of the form upper
triangular with χi on the diagonal, where χi |IQp= ωai+n−i.
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Furthermore, if non of the ai − ai+1 are 0 or p− 1, we expect there to be a unique
component labeled by this weight, and this component should be labeled only by
F (a1, . . . , an).

Remark 7.1. For n = 3 and K = Qp, work of Bao, Levin, Le and Morra shows
that if a is in the upper alcove and is suitably generic, then the two JH factors
Fa, Fb of Lλ ⊗ Fp correspond to two components of X , labeled by a single weight
Fa (resp. Fb) which meet in a codimension one substack. Thus the generic ρ on the
component labeled by Fb (with b in the lower alcove) do not satisfy the crystalline
lift conjecture, as it is not labeled by Fa(should be a label of each of the ones having
some JH factor of Lλ ⊗ Fp among their labels).

8. Current Work

By considering the Langlands correspondence, given our inertial type, one could
argue that there should be a connection between W (ρ) and the set of the Jordan-
Holder factor of the corresponding representation V (ρ |Ip), where ρ is any lift,
where V is the association of Deligne-Lusztig. In particular, if ρ |Ip is trivial,
V (ρ |Ip) = IndGB1. Then we would be interested in decomposing it.


