The automatic solution of PDEs
using a global spectral method

2014 CBMS-NSF Conference, 29th June 2014

Alex Townsend
PhD student
University of Oxford

(with Sheehan Olver)

Supervised by Nick Trefethen, University of Oxford. Supported by EPSRC grant EP/P505666/1.



Introduction

Chebfun

|

) ) Endpoint Blow up
Plece\zvzlzée1 Os)mooth singularities functions
(2010%) (2011)

Reducing regularity

Linear ODEs N‘(’)”gréiar Chebgui
(2008) e (2011

Ordinary differential equations

Piecewise > Arbitrary
564 smooth domains
Chebfun2 -
(2013) _
Linear PDEs > NalieE?

PDEs

Two dimensions

Alex Townsend @ Oxford



Introduction

Chebop: Spectral collocation for ODEs

In 2008: Overload the MATLAB backslash command \ for operators [Driscoll,
Bornemann, & Trefethen 2008].

L = chebop(@(x,u) diff(u,2)-x.*u,[-30 30]); % Airy equation
L.1bc = 1; L.rbc = 0; % Set boundary conditions
u=L\ 0; plot(u) % Solve and plot
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Introduction

Spectral collocation basics

Given values on a grid, what are the values of the derivative on that same grid?:

u’1 u’2 u’5 u’9
u, u, ug Ug
*-0—=0 4 o \ g —0
X, X, X Xq
U+ U
Dol : |=]: | D, = diffmat(n).
Un up,

For example, u’(x) 4+ cos(x)u(x) is represented as

L, = D, + diag (cos(x1), ..., cos(xp)) € R™".
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Introduction
Why do spectral methods get a bad press?
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Introduction

Why do spectral methods get a bad press?

1. Dense matrices.
2. lll-conditioned matrices.
3. When has it converged? Tricky.

Condition number Error in solution
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See, for example: [Canuto et al. 07], , [Fornberg 98], [Trefethen 00].
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A fast and well-conditioned spectral method

Differentiation operator

Work with coefficients: Spectral methods do not have to result in dense, ill-
conditioned matrices. (Just don’t discretize the differentiation operator faithfully.)

The idea is to use simple relations between Chebyshev polynomials:

ﬂ{ku“, k21, %&{FUK_Z)' Zi

dx 0, k=0, ZO’ Kk—o
0 1 10 -1

D= S g g _0% _

. Nol—

Olver & T., A fast and well-conditioned spectral method, SIAM Review, 2013.
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A fast and well-conditioned spectral method

Multiplication operator

1 1
TiTk = 5 TjKi + 5 Ltk
2ap a4 a as 00 00
ai 2ap ay a . ay da as a4
1 . 1
M[a]:§ a a 2a a - t5la a a &
as a a 2a - as a4 as as
Toeplitz Hankel + rank-1

Multiplication is not a dense operator in finite precision. It is m-banded:

a(x) =Y aTk(x) =Y &Tk(x) + O(e),
k=0 k=0
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A fast and well-conditioned spectral method
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A fast and well-conditioned spectral method

What about this new spectral method?

1. Almost banded matrices.
2. Well-conditioned matrices.
3. When has it converged? Trivial.

) Condition number Error in solution
10 0
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Other approaches: [Clenshaw 57], [Greengard 91], [Shen 03].
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A fast and well-conditioned spectral method

First example

U (x) + x3u(x) = 1005sin(20,000x?), u(-1) =0.
The exact solution is

4 X 4
u(x)=e* ( f 100e7 sin(20,000t%)dt|.
-1

N = chebop(@(x,u) ---);
N.lbc = 0; u =N\ f;
Adaptively selects the
discretisation size.

fime = 15.58 Forms a chebfun object
[Chebfun V4.2].

|0 - ulle = 1.5x 1070,

8 degree(u) = 20391

u(x)

-1 -05 0 0.5 1
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A fast and well-conditioned spectral method

Another example

1
: _ ) =1,
U+ 150000t =0 u(=1)

The exact solution with a = 50,000 is

~1 -1
tan™'( Vax) +tan”'(va)
u(x) =exp|- :
va
1.005
1
degree(u) = 5093 5
@
Z 0.995} %
(72}
ES
0.99+
Old chebop
—— Preconditioned collocation
Y — mgthod ‘ ‘
0985, 205 0 05 1 0 05 0 05 1

X

X
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A fast and well-conditioned spectral method

A high-order example
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u(x) + cosh(x)u®(x) + cos(x)u®(x) + x2u(x) = 0
u(x1) =0, u'(£1) =1, uB(x1) =0, k =2,3,4.
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Chebop and Chebop?2

Convenience for the user

L = chebop(@(x,u) diff(u,2)-x.*u,[-30 30]); % Airy equation
L. lb = 1; L.rbc = 0; % Set boundary conditions
u % u = chebfun

Il
~

Convert Impose
handle into di(s:cg-g;:;t(i::)n bcs and Y&, | Construct
Qiscretis_altion A € RN _solve solution? a chebfun
instructions 7y Ax =b

no, increase n
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Chebop and Chebop?2

Convenience for the user

L = chebop(@(x,u) diff(u,2)-x.*u,[-30 30]); % Airy equation
L.1bc = 1; L.rbc = 0; % Set boundary conditions
u=L\O0; % u = chebfun
Convert I
han%rll;ei;to digcg-g;:;t[i::)n br:sp 2?13 yes Construct
c#scretls_atlon A € RN _solve solution? a chebfun
instructions 7y Ax =b

no, increase n

L = chebop2(@(x,y,u) laplacian(u)+(1000+y)*u) ;% Helmholtz with gravity
L.1bc = 1; L.rbc = 1; L.ubc = 1; L.dbc = 1;% Set boundary conditions
u="L)\ 0; % u = chebfun2

Im
Convert Construct a pose
A " 5 bes and yes
handle into matrix equation solve AN Construct
discretisation with an ny x nx matrix solution? a chebfun2
instructions solution matrix equation

no, increase nx or ny or both
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Interpreting user-defined input

Automatic differentiation

u_+u +50u+yu
XX Yy

Implemented by
forward-mode operator
overloading

Interpret anonymous
function as a sequence
of elementary
operations

Can also calculate
Fréchet derivatives

Key people:
Asgeir Birkisson and
Toby Driscoll
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Low rank approximation

Numerical rank
For A € C™" SVD gives best rank k wrt 2-norm [Eckart & Young 1936]

min(m,n)

k
A= Z ojujV; = Zojujvj, ok+1 < tol.
j=1 j=1
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Low rank approximation

Numerical rank
For A € C™" SVD gives best rank k wrt 2-norm [Eckart & Young 1936]

min(m,n)

k
A= Z ojujV; = Zoju,-vf, Ok+1 < tol.
=1

j=1

For Lipschitz smooth bivariate functions [Schmidt 1909, Smithies 1937]

For compact linear operators acting on functions of two variables,

00 k
LY o /e Li~) oLl ®L).
=1

=
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Low rank approximation

Do the low rank stuff before discretization

Low rank-then-discretize: Instead of low rank techniques after discretization,
do them before.

For example, Helmholtz is of rank 2

2 K2

K
VZU + K2U - (UXX + ?U) + (Uyy + ?U)
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2 2 2

K K K K?
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Low rank approximation

Do the low rank stuff before discretization

Low rank-then-discretize: Instead of low rank techniques after discretization,
do them before.

For example, Helmholtz is of rank 2
2 2 2

K K K K?
VAU + K2u = (U + ZU) + (Uyy + U) = (DQ+?I)®I+I®(D2+?I).

Let A be your favourite ODE discretization of D? + %ZI, then (typically)

AXI+ IXAT.

In general, if £ is of rank k we have

k
Y AXBl =F
j=1
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Low rank approximation
Computing the rank of a partial differential operator

Recast differential operators as polynomials: Once you have polynomials
computing the rank is easy.

The rank of

Ny Ny i
a' 0
L= Z:; ]Z 34X V)50 5%
equals a TT-rank [Oseledets 2011] (between {x, s} and {y, t}) of
N,V Nx

h(xl S, Y, t) = Z Z aij(s, t)ylxj

i=0 j=0
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Low rank approximation
Computing the rank of a partial differential operator

Recast differential operators as polynomials: Once you have polynomials
computing the rank is easy.

The rank of N
y Nx i
a' 0
L= ,Zajza’f EYEY
equals a TT-rank [Oseledets 2011] (between {x, s} and {y, t}) of
Ny Ny Kk
h(x,s,y,t):ZZa,,(styxf Z (t, y)ri(s, x).
i=0 j=0 =1
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Low rank approximation
Computing the rank of a partial differential operator

Recast differential operators as polynomials: Once you have polynomials
computing the rank is easy.

The rank of N
y Nx i
a' 0
L= ,Zajza’f EYEY
equals a TT-rank [Oseledets 2011] (between {x, s} and {y, t}) of
Ny Ny Kk
h(xsy,t)_ZZa,,(styxf Z (t, y)ri(s, x).

i=0 j=0

Rank 2:
Laplace, Helmholtz
Transport, Heat, Wave
Black-Scholes

Rank 1:
ODEs
Trivial PDEs

Rank 3:
Biharmonic
Lots here.
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Low rank approximation

Construct a ny by n, generalised Sylvester matrix equation

If the PDE is Lu = f, where L is of rank-k then we solve for X € C"v*"x in,

k
Y GAXBI =F,  AeC™™, BeC™™
=

X = solution’s coefficients Aj, B; = 1D spectral discretization of LJ.V, Lf

( \
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Low rank approximation

Matrix equation solvers

Rank 1: A;XB] = F. Solve A;Y = F, then Bi X" = Y.

Rank 2: A1XBT - A2XBT F. Generalised Sylvester solver (RECSY)
[Jonsson & Kagstrom 2002]

Rank k, k > 3: Solve N x N system using almost banded structure.

()

£

c blue = rank 1
'% green =rank 2
8 red = rank 3
0
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Examples

Helmholtz equation

V2Uu + 20%u =0, u(x1,y) = f(£1,y), u(x,+1) = f(x, 1),

where f(x, y) = cos(wx) cos(wy).
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Examples

Variable helmholtz equation

N = chebop2(@(x,y,u) laplacian(u) + 10000(1/2+sin(x)"2).*cos(y) " 2.*u);
N.lbc = 1; N.rbc = 1; N.ubc = 1; N.dbc = 1;
u = N \ chebfun2(@(x,y) cos(x.*y));

1‘.-

05

Absolute maximum error

-0.5

1 200 400 600 800 1000

VN
N = 1,050,625, error~1.47x107'3, time = 44.2s.
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Examples

Wave and Klein—Gordon equation

N = chebop2(@Cu) diff(u,2,1) - diff(u,2,2) + 5*u); % u_tt - u_xx + 5u
N.dbc = @(x,u) [u-exp(-10*x) diff(u)]; N.lbc = 0; N.rbc = 0;
u = ;

“

9]
-15 -10 -5 0 5 10 15
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Conclusion

Spectral methods do not have to be ill-conditioned. (Don’t discretize
differentiation faithfully.)

Spectral methods are extremely convenient and flexible.

As of 2014, global spectral methods are heavily restricted to a few
geometries.

Thank you for listening
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