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Introduction
Chebop: Spectral collocation for ODEs

In 2008: Overload the MATLAB backslash command \ for operators [Driscoll,
Bornemann, & Trefethen 2008].

L = chebop(@(x,u) diff(u,2)-x.*u,[-30 30]); % Airy equation

L.lbc = 1; L.rbc = 0; % Set boundary conditions

u = L \ 0; plot(u) % Solve and plot
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Introduction
Spectral collocation basics

Given values on a grid, what are the values of the derivative on that same grid?:
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 =

u′1
...

u′n

 , Dn = diffmat(n).

For example, u′(x) + cos(x)u(x) is represented as

Ln = Dn + diag (cos(x1), . . . , cos(xn)) ∈ R
n×n.
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Introduction
Why do spectral methods get a bad press?

1. Dense matrices.
2. Ill-conditioned matrices.
3. When has it converged? Tricky.

See, for example: [Canuto et al. 07], , [Fornberg 98], [Trefethen 00].
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A fast and well-conditioned spectral method
Differentiation operator

Work with coefficients: Spectral methods do not have to result in dense, ill-
conditioned matrices. (Just don’t discretize the differentiation operator faithfully.)

The idea is to use simple relations between Chebyshev polynomials:

dTk

dx
=

kUk−1, k ≥ 1,
0, k = 0,

Tk =


1
2 (Uk − Uk−2) , k ≥ 2,
1
2U1, k = 1,
U0, k = 0.

D =


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2
3

. . .

 , S =


1 0 −

1
2

1
2 0 −

1
2

1
2 0 −

1
2

. . . . . . . . .

 .
Olver & T., A fast and well-conditioned spectral method, SIAM Review, 2013.
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A fast and well-conditioned spectral method
Multiplication operator

TjTk =
1
2

T|j−k | +
1
2

Tj+k

M[a] =
1
2



2a0 a1 a2 a3 . . .

a1 2a0 a1 a2
. . .

a2 a1 2a0 a1
. . .

a3 a2 a1 2a0
. . .

...
. . . . . . . . . . . .

︸                            ︷︷                            ︸
Toeplitz

+
1
2



0 0 0 0 . . .

a1 a2 a3 a4 . .
.

a2 a3 a4 a5 . .
.

a3 a4 a5 a6 . .
.

... . .
.
. .
.
. .
. . . .

︸                     ︷︷                     ︸
Hankel + rank-1

Multiplication is not a dense operator in finite precision. It is m-banded:

a(x) =
∞∑

k=0

ak Tk (x) =
m∑

k=0

ãk Tk (x) + O(ε),

where ãk are aliased Chebyshev coefficients.Alex Townsend @ Oxford 6/21



A fast and well-conditioned spectral method
What about this new spectral method?

1. Almost banded matrices.
2. Well-conditioned matrices.
3. When has it converged? Trivial.

Other approaches: [Clenshaw 57], [Greengard 91], [Shen 03].
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A fast and well-conditioned spectral method
First example

u′(x) + x3u(x) = 100 sin(20,000x2), u(−1) = 0.
The exact solution is

u(x) = e−
x4
4

(∫ x

−1
100e

t4
4 sin(20,000t2)dt

)
.
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degree(u) = 20391

time = 15.5s

N = chebop(@(x,u) · · · );

N.lbc = 0; u = N \ f;

Adaptively selects the
discretisation size.
Forms a chebfun object
[Chebfun V4.2].
‖ũ − u‖∞ = 1.5 × 10−15.
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A fast and well-conditioned spectral method
Another example

u′(x) +
1

1 + 50,000x2 u(x) = 0, u(−1) = 1.

The exact solution with a = 50,000 is

u(x) = exp
(
−

tan−1(
√

ax) + tan−1(
√

a)
√

a

)
.
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A fast and well-conditioned spectral method
A high-order example

u(10)(x) + cosh(x)u(8)(x) + cos(x)u(2)(x) + x2u(x) = 0

u(±1) = 0, u′(±1) = 1, u(k)(±1) = 0, k = 2,3,4.
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Chebop and Chebop2
Convenience for the user

L = chebop(@(x,u) diff(u,2)-x.*u,[-30 30]); % Airy equation

L.lbc = 1; L.rbc = 0; % Set boundary conditions

u = L \ 0; % u = chebfun

Convert
handle into

discretisation
instructions

Construct
discretisation
A ∈ Rn×n

Impose
bcs and

solve
Ãx = b

Converged
to the

solution?

Construct
a chebfun

no, increase n

yes

L = chebop2(@(x,y,u) laplacian(u)+(1000+y)*u);% Helmholtz with gravity

L.lbc = 1; L.rbc = 1; L.ubc = 1; L.dbc = 1;% Set boundary conditions

u = L \ 0; % u = chebfun2

Convert
handle into

discretisation
instructions

Construct a
matrix equation
with an ny × nx
solution matrix

Impose
bcs and

solve
matrix

equation

Converged
to the

solution?

Construct
a chebfun2

no, increase nx or ny or both

yes
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Interpreting user-defined input
Automatic differentiation

Implemented by
forward-mode operator
overloading
Interpret anonymous
function as a sequence
of elementary
operations
Can also calculate
Fréchet derivatives

Key people:
Ásgeir Birkisson and
Toby Driscoll
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Low rank approximation
Numerical rank

For A ∈ Cm×n, SVD gives best rank k wrt 2-norm [Eckart & Young 1936]

A =

min(m,n)∑
j=1

σjujv∗j ≈
k∑

j=1

σjujv∗j , σk+1 < tol.

For Lipschitz smooth bivariate functions [Schmidt 1909, Smithies 1937]

f(x , y) =
∞∑

j=1

σjuj(y)vj(x) ≈
k∑

j=1

σjuj(y)vj(x).

For compact linear operators acting on functions of two variables,

L
!
=

∞∑
j=1

σjL
y
j ⊗ L

x
j ≈

k∑
j=1

σjL
y
j ⊗ L

x
j .
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Low rank approximation
Do the low rank stuff before discretization

Low rank-then-discretize: Instead of low rank techniques after discretization,
do them before.

For example, Helmholtz is of rank 2

∇
2u + K2u = (uxx +

K2

2
u) + (uyy +

K2

2
u) = (D2 +

K2

2
I) ⊗ I+ I ⊗ (D2 +

K2

2
I).

Let A be your favourite ODE discretization of D2 + K2

2 I, then (typically)

AXI + IXAT .

In general, if L is of rank k we have

k∑
j=1

AjXBT
j = F
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Low rank approximation
Computing the rank of a partial differential operator

Recast differential operators as polynomials: Once you have polynomials
computing the rank is easy.

The rank of

L =

Ny∑
i=0

Nx∑
j=0

aij(x , y)
∂i

∂y i

∂j

∂x j

equals a TT-rank [Oseledets 2011] (between {x , s} and {y , t}) of

h(x , s, y , t) =
Ny∑
i=0

Nx∑
j=0

aij(s, t)y ix j =

k∑
j=1

cj(t , y)rj(s, x).

Rank 1:
ODEs

Trivial PDEs

Rank 2:
Laplace, Helmholtz

Transport, Heat, Wave
Black-Scholes

Rank 3:
Biharmonic
Lots here.
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Low rank approximation
Construct a nx by ny generalised Sylvester matrix equation

If the PDE is Lu = f , where L is of rank-k then we solve for X ∈ Cny×nx in,

k∑
j=1

σjAjXBT
j = F , Aj ∈ C

ny×ny , Bj ∈ C
nx×nx .

X = solution’s coefficients Aj, Bj = 1D spectral discretization of Ly
j , Lx

j

Aj =



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Low rank approximation
Matrix equation solvers

Rank 1: A1XBT
1 = F . Solve A1Y = F , then B1XT = YT .

Rank 2: A1XBT
1 + A2XBT

2 = F . Generalised Sylvester solver (RECSY)
[Jonsson & Kågström, 2002].
Rank k, k ≥ 3: Solve N × N system using almost banded structure.
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Examples
Helmholtz equation

∇
2u + 2ω2u = 0, u(±1, y) = f(±1, y), u(x ,±1) = f(x ,±1),

where f(x , y) = cos(ωx) cos(ωy).
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Examples
Variable helmholtz equation

N = chebop2(@(x,y,u) laplacian(u) + 10000(1/2+sin(x)ˆ2).*cos(y)ˆ2.*u);

N.lbc = 1; N.rbc = 1; N.ubc = 1; N.dbc = 1;

u = N \ chebfun2(@(x,y) cos(x.*y));
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N = 1,050,625, error ≈ 1.47 × 10−13, time = 44.2s.
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Examples
Wave and Klein–Gordon equation

N = chebop2(@(u) diff(u,2,1) - diff(u,2,2) + 5*u); % u_tt - u_xx + 5u

N.dbc = @(x,u) [u-exp(-10*x) diff(u)]; N.lbc = 0; N.rbc = 0;

u = N \ 0;
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Conclusion

Spectral methods do not have to be ill-conditioned. (Don’t discretize
differentiation faithfully.)

Spectral methods are extremely convenient and flexible.

As of 2014, global spectral methods are heavily restricted to a few
geometries.

Thank you for listening
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