
CBMS: Fast Direct Solvers

Fast Direct Solvers for Integral Equations in 3D
Recent developments and challenges

Eduardo Corona1

P.G. Martinsson2 Denis Zorin1 Abtin Rahimian 1

1Courant Institute of Mathematical Sciences, NYU
2University of Colorado at Boulder

June 28, 2014

CBMS: Fast Direct Solvers

Table of Contents

1 HSS-based fast direct solvers on the plane
Low Rank structure in Integral Equations and HSS matrices
Inverse Compression Algorithms
Numerical Results on the plane

2 Extension to boundary integral equations in 3D
Extension of HSS-C and related methods to 3D:
Tensor Train decomposition methods for integral equations

CBMS: Fast Direct Solvers

HSS-based fast direct solvers on the plane

Low Rank structure in Integral Equations and HSS matrices

Table of Contents

1 HSS-based fast direct solvers on the plane
Low Rank structure in Integral Equations and HSS matrices
Inverse Compression Algorithms
Numerical Results on the plane

2 Extension to boundary integral equations in 3D
Extension of HSS-C and related methods to 3D:
Tensor Train decomposition methods for integral equations

CBMS: Fast Direct Solvers

HSS-based fast direct solvers on the plane

Low Rank structure in Integral Equations and HSS matrices

Target problems

2D integral equations

a(x)q(x) +

∫
Γ
K (x , y)q(y)dSy = f (x)

Integral equations on surfaces in R3

Homogeneous PDE on a 3D domain Ω,e.g.,

∆u = 0 in Ω, u = f on ∂Ω.

leads to

1

2
q(x) +

1

4π

∫
∂Ω

∂

∂νy

1

|x − y |
q(y)dSy = −f (x)

Discretization: Aq = f

We begin with a simpler case, integral equations on a planar
domain

CBMS: Fast Direct Solvers

HSS-based fast direct solvers on the plane

Low Rank structure in Integral Equations and HSS matrices

The goal: Fast direct solvers

We want compact representation of A−1 that can be applied
fast.

Work and storage for these factorizations must scale optimally
(O(N) or O(N logN)).

Why a direct solver? robust solution to ill-conditioned
problems. Ideal for multiple right hand sides. Local
perturbations of A, time-dependent problems, optimization.

Time and memory overhead of inverse construction. However,
the solve is really fast, better constants than FMM matvec.

CBMS: Fast Direct Solvers

HSS-based fast direct solvers on the plane

Low Rank structure in Integral Equations and HSS matrices

Previous and related work

Direct solvers for sparse matrices

H-matrices and H2-matrices (Hackbusch, Börm, Grasedyck,
Bebenof...)

HSS matrices (Gu, Chandrasekaran, Xia, Li...)

Skeletonization-based methods (Martinsson, Rokhlin, Gillman,
Young, Greengard, Ho)

Hierarchical Interpolative Factorization (Ho,Ying)

Sivaram’s talk today (HODLR / Inverse FMM)

CBMS: Fast Direct Solvers

HSS-based fast direct solvers on the plane

Low Rank structure in Integral Equations and HSS matrices

FMM / H / HSS: Well-separated =⇒ Low Rank

Hierarchical division of our domain into boxes B (source /
target tree data structures)

Entries of block Aij - kernel evaluations K(ti , sj)ωj

If sources and targets are well-separated, K(ti , sj) is smooth.
A multipole expansion around center s0 of Bj converges
quickly:

K(ti , sj) =
k∑

p=0

gp(ti − s0)fp(sj − s0) =
k∑

p=0

GipFpj

And so Aij is approximately low rank.

CBMS: Fast Direct Solvers

HSS-based fast direct solvers on the plane

Low Rank structure in Integral Equations and HSS matrices

HSS: Not well-separated are still Low Rank

If Bi and Bj are adjacent, we can subdivide Bi into well-separated
sets, whose interaction with Bj is constant rank.

B i Bj

B i Bj1D 2D

In 1D, if Bi and Bj have n points, rank(Aij) is O(log(n)).

In 2D, if Bi and Bj have n points, rank(Aij) is O(n1/2).

CBMS: Fast Direct Solvers

HSS-based fast direct solvers on the plane

Low Rank structure in Integral Equations and HSS matrices

Semi-Separable structure

Interaction between points in a box Bi (black) and points
outside (red) is ≈ low rank:

B i

CBMS: Fast Direct Solvers

HSS-based fast direct solvers on the plane

Low Rank structure in Integral Equations and HSS matrices

Semi-Separable structure

We define block rows Arow
i and block columns Acol

i :

Ai
row

Li Xi
~~

Block rows

Ai
col

Yi Ri
~~

Block columns

Ai
row

Ai
col

CBMS: Fast Direct Solvers

HSS-based fast direct solvers on the plane

Low Rank structure in Integral Equations and HSS matrices

Hierarchical factorization of A

Hierarchical / Telescopic factorization: (Block-diagonal matrices)

Ad = Dd + Ld(Dd−1 + Ld−1(Dd−1 + . . . (D1 + L1D0R1) . . .)Rd−1)Rd

=

A L M R

+

D

= +

Note: FMM structure can be similarly laid out. D` are not block
diagonal (neighbor or interaction list blocks)

CBMS: Fast Direct Solvers

HSS-based fast direct solvers on the plane

Inverse Compression Algorithms

Our strategy to obtain linear complexity:

In 2D, this leads to an O(N3/2) algorithm for inversion.

1 We start with the inversion algorithm based on the 1D case.

2 Skeleton sets have structure

3 Per-box operators defined on them are compressible:
The essential blocks of the inverse can be identified as local
solution operators (scattering matrices).

4 We build operators in compressed form (low rank or 1D HSS),
and replace dense matrix algebra appropriately.

CBMS: Fast Direct Solvers

HSS-based fast direct solvers on the plane

Inverse Compression Algorithms

Inverting a block-separable matrix

Let Z = F + LMR. At the first step, Z = A, F = D.

We solve the system Zq = f , with auxiliary variables φ = Rq,
u = Mφ F L 0

−R 0 I
0 −I M

qu
φ

 =

f0
0

Let R̃ = ERF−1, F̃ = F−1(I − LR̃) and L̃ = F−1LE

Then Z−1 = F̃ + L̃(E + M)−1R̃, same form as Z !

Apply recursively

CBMS: Fast Direct Solvers

HSS-based fast direct solvers on the plane

Inverse Compression Algorithms

Inverting block-separable matrix

Recursion formula for inverse, with Ã` = A` + E `+1(
Ã`
)−1

= D̃` + L̃`(Ã`−1)−1R̃`

If D, L and R are block diagonal, then so are E , R̃, L̃ and D̃.
This means that these matrices can be computed
inexpensively via independent computations that are local to
each box.

The factors in the inverse can be interpreted as follows:

E−1 = RF−1L: local solution operator restricted to I sk , maps
potentials to charges.
E + M maps charges on the union of skeleton points to
potentials, adding diagonal Eq and off-diagonal Mq.

CBMS: Fast Direct Solvers

HSS-based fast direct solvers on the plane

Inverse Compression Algorithms

Operators E and F

Why do we hope E and F compress well?

−1
−0.8

−0.6
−0.4

−0.2
0

0

0.5

1
−4

−3

−2

−1

0

1

X1
X2

va
lu

es
 o

f E

−1
−0.8

−0.6
−0.4

−0.2
0

0

0.5

1
−4

−3

−2

−1

0

1

X1X2

−1

−0.5

0

0
0.5

1
−0.5

0

0.5

1

X1X2

va
lu

es
 o

f K
(x

−y
0)

−1

−0.5

0

0
0.5

1
−0.5

0

0.5

1

X1X2

va
lu

es
 o

f F

va
lu

es
 o

f K
(x

−y
0)

CBMS: Fast Direct Solvers

HSS-based fast direct solvers on the plane

Inverse Compression Algorithms

HSS Inversion Algorithm

1: for each box Bi in fine-to-coarse order do
2: if Bi is a leaf then
3: Fi = Di

4: else

5: Fi = Di +

[
Ec1(i)

Ec2(i)

]
6: end if
7: D̃top = F−1

top {Direct inversion at the top level}
8: if Bi below top-level then
9: Ei = (RiF

−1
i Li)

−1

10: R̃i = EiRiF
−1
i

11: D̃i = F−1
i (I − Li R̃i)

12: L̃i = F−1
i LiEi

13: end if
14: end for

CBMS: Fast Direct Solvers

HSS-based fast direct solvers on the plane

Inverse Compression Algorithms

How do we obtain a linear complexity algorithm?

Inverse Compression

It does not suffice to compress the dense matrices above. We
need to build the operators in compressed form as we go up
the tree.

Goal: compress and invert these operators in strictly better
than O(N/2`) work.

Inverse matvec:

Once compressed, all of these operators can be applied in
O((N/2`)1/2) work, yielding a linear solve as well.

CBMS: Fast Direct Solvers

HSS-based fast direct solvers on the plane

Inverse Compression Algorithms

Compressed-block HSS strategy

Build essential blocks of the 2D HSS inverse in compressed form:

1 First, while building the binary tree, we compress the
interpolation operators T : I rsi → I ski . This determines
matrices Li and Ri .

2 Go up the tree building inverse blocks Fi and Ei .

3 Ei depends on Fi , and for non-leaf boxes Fi depends on the Ei

matrices for children. (formula shown by Gunnar for scattering
matrices)

4 Build densely for small blocks, switch to compressed form at
threshhold.

CBMS: Fast Direct Solvers

HSS-based fast direct solvers on the plane

Inverse Compression Algorithms

Matrix algebra we need

One-dimensional HSS and low-rank matrix algebra

Dense-block HSS1D compression, inversion and matvec

Fast addition and manipulation of HSS1D matrices:

Additional HSS compression routines: LowRank to HSS1D,
HSS1D Recompress (Xia)

Randomized methods

NOT used: HSS1D matrix-matrix product.

CBMS: Fast Direct Solvers

HSS-based fast direct solvers on the plane

Inverse Compression Algorithms

What have we achieved?

We have implemented this algorithm for the plane, and confirmed
that work and storage scale linearly.

1 Non Translation Invariant Kernels: We compute and store
one set of matrices (in compressed format) per box Bi . Work
and storage scale linearly. → O(N)

2 Translation Invariant Kernels: One set of matrices per level
is computed. As a result, most of the work and storage scales
sublinearly → O(N1/2 log2 N)

Numerical experiments show outstanding performance for
non-oscillatory and for low frequency oscillatory kernels, even at
high target accuracies (ε = 10−10).

CBMS: Fast Direct Solvers

HSS-based fast direct solvers on the plane

Numerical Results on the plane

Example: Lippman-Schwinger / Laplace kernel

Let A be an N × N matrix with entries:

Ai ,j = δi ,j + h2b(xi)G(||xi − xj ||)c(xj) (1)

Where {xi} ∈ [−1, 1]2 are points on a regular grid with spacing h,
b,c are given functions, and G(x) is the 2D Laplace kernel
1

2π log(x).
Then, it is a Nystrom discretization of:

A[u](x) = u(x) +

∫
Ω
b(x)G(||x − y ||)c(y)u(y)dy (2)

CBMS: Fast Direct Solvers

HSS-based fast direct solvers on the plane

Numerical Results on the plane

Numerical Experiments: Setup

Solving this equation then corresponds to the 0 frequency
Lippman-Schwinger equation, which arises in scattering
problems.

If we pick b(x) and c(x) to be non-constant functions, the
resulting matrix is Non Translation Invariant.

Otherwise, b(x) = c(y) = 1 yields a Translation Invariant
matrix.

Given precision ε = 10−10, we run scaling tests for inverse
compression and Inverse matvec.

Each test is run on one node of the NYU HPC Bowery cluster.

CBMS: Fast Direct Solvers

HSS-based fast direct solvers on the plane

Numerical Results on the plane

Translation-invariant inverse compression results

Compression time and memory usage for TI Laplace kernel.

N HSS-D Time HSS-C Time HSS-D Mem HSS-C Mem

O(N3/2) O(N) O(N) O(N)

784 0.05 s 0.13 s 1.94 MB 1.75 MB
3136 0.21 s 0.98 s 9.04 MB 6.19 MB

12544 1.40 s 3.41 s 39.16 MB 19.03 MB
50176 9.68 s 10.76 s 163.19 MB 52.09 MB

200704 1.21 m 30.89 s 666.39 MB 151.41 MB
802816 9.20 m 1.59 m 2.61 GB 474.74 MB

3211264 1.19 hr 6.68 m 9.9359 GB 1.56 GB
12845056 9.28 hr 29.22 m 39.74 GB 5.29 GB

CBMS: Fast Direct Solvers

HSS-based fast direct solvers on the plane

Numerical Results on the plane

Non-translation-invariant inverse compression

Compression time and memory usage for NTI Laplace kernel.

N HSS-D Time HSS-C Time HSS-D Mem HSS-C Mem

O(N3/2) O(N) O(N logN) O(N)

784 0.11 s 0.17 s 4.68 MB 4.48 MB
3136 0.67 s 1.70 s 29.09 MB 25.24 MB

12544 4.50 s 8.32 s 159.59 MB 123.07 MB
50176 31.45 s 40.43 s 819.58 MB 538.51 MB

200704 3.79 m 3.23 m 3.72 GB 2.23 GB
802816 28.35 m 13.66 m 17.27 GB 9.23 GB

3211264 3.58 hr 54.795 m 70.99 GB 34.09 GB

CBMS: Fast Direct Solvers

HSS-based fast direct solvers on the plane

Numerical Results on the plane

Inverse Compression: HSS-C vs HSS-D

NTI case

Crossover point: N = 100, 000.

Inversion time: By N = 106 our method is 4× faster (55
min vs 4 hr).

Memory usage It always uses less memory. By N = 106, it’s
about half (34 vs 71 GB)

TI case

Crossover point: N = 50, 000.

It scales sublinearly for intermediate N

Inversion time By N = 107, it is 19× faster (29 min vs 9 hr)

Memory usage By N = 107, 8× less memory (5 vs 40 GB).

CBMS: Fast Direct Solvers

HSS-based fast direct solvers on the plane

Numerical Results on the plane

Inverse Apply (Solve) Timings

Average Time per Solve (seconds) for NTI and TI Laplace kernels.

N NTI HSS-D NTI HSS-C TI HSS-D TI HSS-C
O(N logN) O(N) O(N logN) O(N)

784 0.0014 0.0018 0.0007 0.0011
3136 0.0064 0.0090 0.0031 0.0046

12544 0.0292 0.0362 0.0137 0.0162
50176 0.1320 0.1546 0.0590 0.0600

200704 0.5993 0.6772 0.2819 0.2512
802816 2.6611 2.8193 1.2709 1.0763

3211264 11.816 11.737 5.77296 4.5650
12845056 (52.468) (48.8641) 25.8312 19.3619

CBMS: Fast Direct Solvers

HSS-based fast direct solvers on the plane

Numerical Results on the plane

Inverse Apply Observations

For all cases, the Inverse Apply is really fast.

There is little difference between HSS-C and HSS-D solve
times. However, HSS-C provides a faster and more memory
efficient inverse compression.

For example: For N = 3 million, our method compresses the
inverse in 7 minutes using just 1.5 GB of memory. Each
solve then takes 5 seconds.

For the same example, the NTI case compresses the inverse in
55 minutes using 34 GB of memory. Each solve then takes
12 seconds.

CBMS: Fast Direct Solvers

Extension to boundary integral equations in 3D

Table of Contents

1 HSS-based fast direct solvers on the plane
Low Rank structure in Integral Equations and HSS matrices
Inverse Compression Algorithms
Numerical Results on the plane

2 Extension to boundary integral equations in 3D
Extension of HSS-C and related methods to 3D:
Tensor Train decomposition methods for integral equations

CBMS: Fast Direct Solvers

Extension to boundary integral equations in 3D

Extension of HSS-C and related methods to 3D:

Extension of HSS-C and related methods to 3D:

On the plane, great performance and scaling, at high target
accuracies (ε = 10−10).

Extending the 2D algorithms to parametric surfaces:

Skeleton sets and equivalent surfaces are thicker.
Boundary layers are not enough, have to find the rest of the
skeleton sets adaptively.
Ranks in compressed blocks are also higher.

Existing methods use a lot of memory, and experimental
scaling is less satisfying

So far, only feasible for low-mid accuracies (ε = 10−4 − 10−6)

CBMS: Fast Direct Solvers

Extension to boundary integral equations in 3D

Extension of HSS-C and related methods to 3D:

Why is inverse storage so expensive?

As opposed to matrix compression / apply, the entries of A−1

are not kernel evaluations, and so they can’t be computed on
the fly.

Blocks are stored for each box in the hierarchy, even in the
presence of symmetries in the volume.

Ranks of interactions grow considerably, and so contants grow.

Even if a lot of memory is available, slow access to memory,
and flop / memory might not be good.

CBMS: Fast Direct Solvers

Extension to boundary integral equations in 3D

Extension of HSS-C and related methods to 3D:

Example: Skeleton sets on a torus (Laplace 3D Single
Layer)

Skeleton sets for 4 boxes on a torus, for accuracy 10−6. The
number of layers required is higher than on the plane, and
additional points appear inside the boxes.

CBMS: Fast Direct Solvers

Extension to boundary integral equations in 3D

Extension of HSS-C and related methods to 3D:

Numerical results on the torus (Laplace 3D Single Layer)

Inverse compression time, memory usage and solve time for HSS-C
(ε = 10−6)

N HSS-C Time HSS-C Mem HSS-C solve

16384 38 s 219 MB 0.03 s
65536 2.86 m 1.11 GB 0.17 s

262144 12.67 m 5.17 GB 0.79 s
1048576 1.31 h 22.28 GB 3.57 s
4194304 (8.13 h) (95.99 GB) (16 s)

If we can build the matrix, the apply remains quite fast. However,
we quickly run out of memory, and this is more dramatic for high
accuracy.

CBMS: Fast Direct Solvers

Extension to boundary integral equations in 3D

Extension of HSS-C and related methods to 3D:

What can be done? Current and future work

We are currently working on representations of the inverse matrix
that provide further compression, while maintaining high
performance.

At each level, we store a set of operators per box (e.g. a
scattering or interpolation matrices). It might be possible to
represent all such operators in terms of a reduced basis.

Well-separated interactions can be mapped to proxy surfaces
(as in the kernel independent FMM). Further compression
may be more accesible for these interactions (especially if the
kernel is translation invariant in 3D).

CBMS: Fast Direct Solvers

Extension to boundary integral equations in 3D

Tensor Train decomposition methods for integral equations

Tensor Train decomposition for integral equations

The Tensor Train (TT) decomposition (Oseledets et al) is an
extremely efficient numerical method to compress tensors.

It overcomes curse of dimensionality: for many d dimensional
tensors from applications, work and storage are O(d).

This decomposition can also be applied to an 2L × 2L matrix,
by reshaping it as a 2L dimensional tensor.

Integral equations: it compresses all interactions (near and
far) at a given tree level simultaneously. For volume integral
equations, compression, inversion and storage are O(logN)!

CBMS: Fast Direct Solvers

Extension to boundary integral equations in 3D

Tensor Train decomposition methods for integral equations

TT for volume integrals

We applied the TT decomposition to the Laplace and low
frequency Helmholtz single layer kernels in 2D and 3D volume
(Lippmann Schwinger)

Work and storage to compress the matrix A and its inverse
theoretically scale like O(logN). Solve stage is O(N logN)

Experimental scaling looks even better.

Inverse storage is tiny, often requiring only a few MBs.

For example, for N=4194304, it takes only 12 seconds and 1
MB to compute the inverse for 2D Laplace (ε = 10−6). The
same example takes 71 seconds and 350 MB for HSS-C.

Similar results for 3D Laplace.

We can perform compression and inversion up to
N ∼ 107 − 108 for mid to high accuracies.

CBMS: Fast Direct Solvers

Extension to boundary integral equations in 3D

Tensor Train decomposition methods for integral equations

Challenge: Use TT to build boundary integral solvers in 3D

It is possible to apply TT as is to boundary integral equations.

For simple surfaces (e.g. torus, sphere), we get similar results
as in the volume.

For more complicated surfaces, compressing all interactions at
a given level is too ambitious. Local interactions do not
compress well if the geometry is complex.

We are currently working on incorporating the TT as a tool in
a hybrid method.

We believe it can be used to compress far / well-separated
interactions very successfully.

	HSS-based fast direct solvers on the plane
	Low Rank structure in Integral Equations and HSS matrices
	Inverse Compression Algorithms
	Numerical Results on the plane

	Extension to boundary integral equations in 3D
	Extension of HSS-C and related methods to 3D:
	Tensor Train decomposition methods for integral equations

