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1 CLASSES WITH COMPLEX ELEMENTS.
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Abstract. An infinite binary sequence is complex if the Kolmogorov complexity of its

initial segments is bounded below by a computable function. We prove that a Π0
1 class

P contains a complex element if and only if it contains a wtt-cover for the Cantor set.

That is, if and only if for every real Y there is an X in the P such that X >wtt Y . We

show that this is also equivalent to the Π0
1 class’s being large in some sense. We give an

example of how this result can be used in the study of scattered linear orders.

§1. Introduction. There has been interest in the literature over many years
in studying various notions of the size of subclasses of 2ω. In this paper we have
tried to generalise and consolidate some of these ideas. We investigate a notion
of size that has appeared independently in [1] and [5], namely the notion of a
computable perfect class (computably growing in [5] and non-uphi in [1]). It is
a relatively straightforward and natural computability theoretic notion and we
give the formal definition in Section 2, but the idea is that a closed subclass of
2ω is computably perfect if there is a computable witness to the fact that it has
no isolated points. Equivalently, there is a computable witness to the fact that
it has continuum many elements. We declare to be diminutive those classes that
fail to contain a computably perfect subclass.

We are particularly concerned with effectively closed sets of reals, or Π0
1 classes,

and we give a very neat characterisation of diminutive Π0
1 classes - viz. a Π0

1

class is diminutive if and only if it does not contain a complex element. A real is
complex if there is a computable lower bound for the Kolmogorov complexity of
its initial segments. That is, a real is complex if there is a computable function
f such that for all n

C(X↾n) > f(n),

where C(X↾n) is the plain Kolmogorov complexity of X↾n.
In Section 3 we show that some commonly studied subclasses of 2ω are diminu-

tive. Countable classes, thin classes and small classes, among others are all
diminutive. Classes of positive measure or Hausdorff dimension, among other
examples of interest, are not diminutive.

To the extent that this theorem connects the existence of a particular kind
of real (a complex one) in a Π0

1 class with a global property of the Π0
1 class
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(computable perfection), the result is reminiscent of Kučera’s theorem that a Π0
1

class of reals contains a Martin-Löf random if and only if the class has positive
measure.

These classes are also useful in that they furnish us with the strongest possible
generalisation of the Kučera-Gács Theorem. This theorem proved independently
by Kučera [7] and Gács [4] states that every real number is wtt-computable from
some random real. In fact, it is an easy consequence of other results of Kučera’s
that every Π0

1 class of positive measure contains a wtt-cover for the class of reals
(i.e. every real is wtt-computable from some element of any non-null Π0

1 class).
The Kučera-Gács theorem has been generalised in by Hertling in [5] where it is
shown that every computably perfect Π0

1 class contains such a wtt-cover for the
reals. In [9] Reimann proves that every Π0

1 class of positive Hausdorff dimension
contains a computably perfect Π0

1 subclass, and hence a wtt-cover.
Our result here establishes the converse of result of Hertling and provides the

Reimann result as an easy corollary. We prove in Section 2.1 that a Π0
1 class

contains a complex element if and only if it contains a wtt-cover for the reals. In
other words, the Π0

1 classes for which the Kučera-Gács theorem holds are exactly
the ones containing complex elements (which are exactly the ones that are not
diminutive in the above sense). As all Π0

1 classes of positive Hausdorff dimension
have complex elements, Reimann’s result follows.

In Section 4 we give an example of diminutive classes in the study of scattered
linear orders. A linear order is scattered if it does not contain a suborder isomor-
phic to Q. It is well known that if a countable linear order is computable, then
the class of (characteristic functions of) initial segments of the order forms a Π0

1

class of reals. In [8] it is shown that if a computable linear order has a complex
initial segment, then the linear order is not scattered. Our theorem extends and
sharpens this result, and we give a precise characterisation of computable linear
orders that do not have complex initial segments. These we call weakly scattered
linear orders. They are related to scattered linear orders in precisely the way
that diminutive Π0

1 classes are related to countable Π0
1 classes. It is an immediate

application of the main theorem of Section 2.13 that the wtt-degree spectrum of
initial segments of a computable linear order is maximal if and only if the linear
order is not weakly scattered.

This method of applying the main result of Section 2.13 should be easily
generalisable and give results about the wtt-degree spectra of other computable
structures and relations.

1.1. Notation and basic definitions. We first make explicit a few, mostly
standard, definitions and notations. Undefined notation follows [11].

Basic notation.

• We use ω to denote the set of natural numbers; 2<ω to denote the set of
finite binary strings; and 2ω is the set of infinite binary sequences. ωω is
the collection of all functions from ω to ω. σ and τ will usually denote
elements of 2<ω and X and Y elements of 2ω. λ denotes the empty string
and σi (i ∈ {0, 1}) denotes the concatenation of σ with 〈i〉. |σ| is the length
of σ. σ ⊇ τ implies that σ extends τ and similarly for X ⊃ σ with X ∈ 2ω.
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If σ ∈ 2<ω, then [σ] = {X ∈ 2ω : X ⊃ σ} and if S ⊆ 2<ω, then [S] denotes
the class

⋃
{[σ] : σ ∈ S}.

• The standard topology will be assumed on 2ω, the basic open sets of which
are of the form [σ] for σ ∈ 2<ω.

• If C ⊆ 2ω, then the set of extendible nodes of C is the set

Ext(C) = {σ ∈ 2<ω : ∃X ∈ CX ⊃ σ}.

The set of branching nodes of C is the set

Br(C) = {σ ∈ Ext(C) : σ0 ∈ Ext(C) ∧ σ1 ∈ Ext(C)}.

The set of branching levels of C is the set

Brl(C) = {|σ| : σ ∈ Br(C)}

If X ∈ C, then the branching level set along X is the set

BrX(C) = {n ∈ ω : X↾n ∈ Br(C)}.

If σ ∈ Ext(C) then Brσ(C) is defined similarly.
• If C, D ⊆ ωω, and if

∀X ∈ C∃Y ∈ DX >T Y,

then we say that D is Muchnik reducible to C and write C >w D. Surveys
of Muchnik reducibility can be found in [2] and [10].

Definition 1.1. If X ⊆ ω, the principal function of X pX is the function

pX(n) = (n + 1)th least element of X.

Definition 1.2. X ⊆ ω is said to be hyperimmune if pX is not dominated by
any computable function.

Definition 1.3. P ⊆ 2ω is a Π0
1 class if it is the collection of paths through

some computable tree of binary strings. Equivalently, P = {X ∈ 2ω : ∀nR(n, X)}
where R is a computable predicate on ω × 2ω. Equivalently, P is Π0

1 if it is of
the form 2ω r [S] where S is a c.e. subset of 2<ω. If Ss is the enumeration of S
at stage s, then Ps := 2ω r [Ss], and P =

⋂
s Ps.

Π0
1 classes can be defined other spaces including ωω and R, however for the

purposes of this paper, they will always be non-empty subsets of 2ω.

§2. Computably perfect classes.

Definition 2.1. C ⊆ 2ω is computably perfect if C is closed and there is a
computable and strictly increasing function f such that for every n ∈ ω and
every σ ∈ Ext(C) of length f(n), there exist at least two extensions of σ in
Ext(C) of length f(n + 1).

Observation 2.2. It is straightforward to show that C is computably perfect
if and only if it is closed and there is a computable function g such that for all
n and all σ ∈ Ext(C) of length n, there exists at least two extensions of σ of
length g(n).
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Computably perfect classes have been called computably growing classes in
[5] and non-uphi classes in [1].

Observation 2.3. It is straightforward to show that C is computably perfect
if and only if there is a computable function f such that for all X ∈ C and for
all n ∈ ω

||BrX↾f(n)(C)|| > n.

Lemma 2.4. If a Π0
1 class P contains a computably perfect subclass, then P

also contains a computably perfect Π0
1 subclass.

Proof. Let C be any computably perfect subclass of P witnessed by the
computable function f . Define the set S to be

{σ : ∃s∃n 6 sσ ∈ Ext(Ps)∧ |σ| = f(n)∧ ∃!τ ∈ Ext(Ps)[τ ⊇ σ ∧ |τ | = f(n + 1)]}.

Then P r [S] is Π0
1 , contains C and is computably perfect. ⊣

We will make use of the following well-known idea from algorithmic complexity
theory.

Definition 2.5. X ∈ 2ω is complex if there is a computable function f such
that for all n

C(X↾f(n)) > n.

Here C(X↾m) denotes the plain Kolmogorov complexity of the string X↾m.
Alternatively, we could have used the prefix-free complexity K(X↾m). We may
also equivalently define X to be complex if there exists a computable f such that
for all n C(X↾n) > f(n).

The following two definitions are standard.

Definition 2.6. If X, Y ∈ 2ω, then Y is weak truth-table reducible to X
(X >wtt Y ) if X >T Y and there is a total computable function f such that for
all n, the use of X in calculating Y (n) is bounded by f(n).

Definition 2.7. If f ∈ ωω, then f is DNR if ∀nf(n) 6= {n}(n), where {n} is
the nth partial computable function.

The major result we will be using with regards to complexity is Theorem 6 in
[12]:

Lemma 2.8. For A ∈ 2ω, A is complex if and only if A wtt-computes a DNR
function.

There are of course many Π0
1 classes that contain complex elements - 2ω obvi-

ously. The following two lemmas give two less trivial examples.

Definition 2.9. The effective Hausdorff dimension of X ∈ 2ω dim1
H

(X) can
be defined to be lim infn C(X↾n)/n. For a class C ⊆ 2ω,

dim1
H(C) = sup{dim1

H(X) : X ∈ C}.

For a Π0
1 class P the effective Hausdorff dimension of P is equal to its classical

Hausdorff dimension dimH(P ). A good survey of Hausdorff dimension, both
effective and classical, as it applies to the space 2ω is given in [9].
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Lemma 2.10. If P is a Π0
1 class and if dimH(P ) > 0, then P has a complex

element.

Proof. If X ∈ 2ω is not complex, then for all rational s > 0 ∃∞nC(X↾n) <
sn. Therefore, for all such s, lim infn C(X ↾ n)/n < s and thus dim1

H
(X) = 0.

So, if every element of P is noncomplex,

dimH(P ) = dim1
H(P ) = sup{dim1

H(X) : X ∈ P} = 0

⊣

Lemma 2.11. If P is Π0
1, and if P >w DNR, then P has a complex element.

Proof. Every Π0
1 class contains a hyperimmune-free element (see [6]), and

for any such element X and any Y 6T X , we also have that Y 6wtt X . Thus if
X computes an element of DNR, it must be complex by Lemma [12].

⊣

2.1. The Main theorem.

Definition 2.12. C ⊆ 2ω is a wtt-cover for 2ω if every element of 2ω is wtt-
reducible to an element of C.

Theorem 2.13. For any Π0
1 class P the following are equivalent:

1. P contains a wtt-cover for 2ω,
2. P contains a complex element X,
3. P contains a computably perfect Π0

1 subclass containing X.

Proof.

1 ⇒ 2.
P must contain an element that wtt-computes an element of a DNR set, and

thus by Lemma [12], must contain a complex element.

2 ⇒ 3.
Let f be computable and such that C(X ↾ f(n)) > n for all n. Define, for

parameter u ∈ ω a function g as follows.

1. g(0) = f(0)
2. g(n + 1) = f(2g(n) + u).

We will use u for bookkeeping purposes at the end of the argument.
We have immediately that for all n,

C(X↾g(n + 1)) = C(X↾f(2g(n) + u)) > 2g(n) + u

and from basic principles that

C(X↾g(n)) < 2g(n) + d

for some fixed constant d.
To get a contradiction, suppose now that X is not contained in any computably

perfect Π0
1 subclass of P . Consider the Π0

1 class Q ⊆ P constructed in the
following way. We let Q0 = P0 = 2ω, S0 = ∅, and for each s let

Ss+1 = {σ ∈ Ext(Qs) : ∃n < s|σ| = g(n)∧∃!τ ∈ Ext(Qs)[τ ⊇ σ∧|τ | = g(n+1)]},

and Qs+1 = (Ps+1 ∩ Qs) r [Ss+1].
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Q =
⋂

s Qs is either computably perfect (witnessed by g) or empty. In either
case X 6∈ Q and so X must extend some element of Ss+1 for some least s. Let
n < s be such that X↾g(n) ∈ Ss+1. There is thus a unique extension of X↾g(n)
in Ext(Qs) of length g(n + 1), namely X↾g(n + 1).

Now consider a machine M that acts as follows. Taking input τ ∈ 2<ω of
length g(m) for some m, M waits for a stage s such that τ ∈ Ss+1. If such
a stage exists, then M outputs the unique string on Ext(Qs) extending τ of
length g(m + 1). Thus, for n and X as above, M(X↾ g(n)) = X↾ g(n + 1) and
C(X↾g(n + 1)) 6 C(X↾g(n)) + O(1).

The constant term O(1) depends uniformly on a Π0
1 index for Q, so there is a

computable function k such that, for any Π0
1 index e for Q,

C(X↾g(n + 1)) 6 C(X↾g(n)) + k(e).

Furthermore, there is a computable function ϕ, that will give such an index
for Q uniformly in the parameter u. Using the recursion theorem we choose a
u such that the Π0

1 class with index u is equal to the Π0
1 class whose index is

ϕ(d + k(u)). Then the Q that is built using parameter d + k(u) is equal to the
Π0

1 class with index u. Thus, if g is defined using the parameter d + k(u),

C(X↾g(n + 1)) 6 C(X↾g(n)) + k(u).

Therefore, for such a u and n,

2g(n) + d + k(u) 6 C(X↾g(n + 1)) 6 C(X↾g(n)) + k(u) < 2g(n) + d + k(u),

giving the required contradiction.

3 ⇒ 1.
Let P be computably perfect, witnessed by a computable function f . If X ∈ 2ω

define a sequence of nodes σi, as follows: let σ0 = λ and let σi+1 be the leftmost
extendible node of P of length f(i+1) extending σi if X(i) = 0, and the rightmost
such node of length f(i+1) if X(i) = 1. Such nodes are always distinct as σi has
at least two extensions of length f(i + 1) by assumption. Let Y ∈ P be

⋃
i σi.

To recover X(n) from Y , wait for a stage s such that Y ↾f(n+1) is the leftmost
or rightmost node extending Y ↾f(n) in Ps. Such a stage will always occur as Q
is Π0

1 . The use of Y in the computation of X(n) is bounded by f(n + 1) and
hence Y >wtt X .

⊣

Corollary 2.14. The following classes all contain wtt-covers for 2ω:

1. (Kuc̆era-Gács) the class of Martin-Löf randoms,
2. any Π0

1 class of positive measure,
3. ([9], Thm 3.25) any Π0

1 class with positive Hausdorff dimension,
4. any Π0

1 class P >wDNR.

Proof. The randoms form a §02 class - a union of Π0
1 classes . Any one of these

component Π0
1 classes contains a wtt-cover for 2ω as every random is complex.

Any Π0
1 class of positive measure contains a random, and hence a complex.

Lemmas 2.10 and 2.11 complete the proof. ⊣
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§3. Diminutive classes.

Definition 3.1. C ⊆ 2ω is diminutive if it is closed and does not contain a
computably perfect subclass.

There are many examples of diminutive classes already existing in the litera-
ture. The simplest examples are countable Π0

1 classes which have been studied
in [13] and elsewhere. We give some more examples now.

Definition 3.2. A Π0
1 class P is small if Br(P ) is hyperimmune. It is observed

in [2] that it is equivalent that the branching level set

Brl(P ) = {n ∈ ω : ∃σ ∈ Br(P )|σ| = n}

is hyperimmune.

Definition 3.3. A Π0
1 class P is e.p.h.i (everywhere pathwise hyperimmune)

if for all X ∈ P the set BrX(P ) = {n : X↾n ∈ Br(P )} is hyperimmune.

Definition 3.4. A Π0
1 class P is a Jockusch-Soare class (js-class) if for all

distinct X, Y ∈ PX 6>T Y .

Definition 3.5. A Π0
1 class P is thin if every Π0

1 subclass of P is the intersec-
tion of a clopen subclass of 2ω with P . That is, every Π0

1 subclass of P is clopen
in the relative topology.

Small classes are special instances of e.p.h.i. classes, as if the branching level set
is hyperimmune, then certainly the set along any path will also be hyperimmune.
We prove next that every thin class is e.p.h.i. and that every e.p.h.i. class is
diminutive. We then show that every js-class is diminutive.

Lemma 3.6. No thin Π0
1 class is computably perfect.

Proof. The proof is very similar to Simpson’s proof that all thin Π0
1 classes

have zero measure. We prove the contrapositive. Suppose a Π0
1 class P is com-

putably perfect, witnessed by the computable function f . Without losing gener-
ality we can assume that for all s Ps is computably perfect witnessed by f .

Define a computable double sequence of elements of 2<ω as follows:

σ1,s = the rightmost string in Ext(Ps) of length f(1)
σi+1,s = the rightmost string in Ext(Ps) of length f(i + 1)

strictly to the left of σn

To prove that σi,s exists for all i and s we use a simple induction to prove
that for all i > 0 and s > 0 there is a τ ∈ Ext(Ps) of length f(i) such that τ is
strictly to the left of σi,s. If τ is the rightmost such string, then σi+1 will be the
rightmost element in Ext(P ) of length f(i + 1) extending τ .

Base case: There are at least two elements of Ext(P ) of length f(1), so there
must be a τ ∈ Ext(P ) of length f(1) strictly to the left of σ1.

Induction: Suppose that τ is the rightmost element in Ext(Ps) of length f(i)
strictly to the left of σi,s. There must be at least two extensions of τ in Ext(Ps)
of length f(i + 1). Therefore there must be a τ ′ ∈ Ext(Ps) of length f(i + 1)
strictly to the left of σi+1.
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If we let σi = lims σi,s for each i, then the strings σi are pairwise incomparable
and form a leftwards monotone sequence. Therefore the class

S = {X ∈ 2ω : ∃i∃sX↾f(i) is to the right of σi,s}

is not closed (it does not contain its leftmost limit point). However S is Σ0
1 by

inspection, and so P r S is a non-clopen Π0
1 subclass of P and P is not thin.

⊣

Corollary 3.7. No thin Π0
1 class contains a computably perfect subclass.

Proof. By Lemma 2.4, if a thin Π0
1 class T contained a computably perfect

subclass, it would contain a computably perfect Π0
1 subclass T ′. Any Π0

1 sub-
class of a thin class is also thin so T ′ would be a thin and computably perfect,
contradicting the theorem. ⊣

This is enough to show that all thin classes are diminutive, but we can go
further:

Theorem 3.8. Every thin Π0
1 class is e.p.h.i.

Proof. Suppose a Π0
1 class P is thin and not e.p.h.i. and let f be a computable

function such that for some element X of P f dominates BrX(P ). Consider the
set of all such elements:

P ′ = {Y ∈ P : ∀n||BrY ↾n(P )|| > f(n)}.

P ′ is a then non-empty Π0
1 subclass of P . As P is thin, P ′ is a clopen subclass

of P and there is a fixed constant c such that for all X ∈ P ′ the sets BrX(P )
and BrX(P ′) differ by at most c elements. Thus for some finite adjustment f ′

of f , and all X ∈ P ′

∀n||BrX↾n(P ′)|| > f ′(n),

and thus f ′ witnesses the fact that P ′ is computably perfect. Thus by Lemma
3.6 P ′ is not thin and hence neither is P . ⊣

Theorem 3.9. E.p.h.i. classes contain no computably perfect subclass.

Proof. Suppose P is e.p.h.i. and P ′ ⊆ P is computably perfect witnessed by
f . Then for all X ∈ P and all n ∈ ω, there is a branching node on P ′ between
X↾ f(n) and X↾ f(n + 1). As the branching nodes of P ′ form a subset of the
branching nodes of P , f also witnesses the fact that P is not e.p.h.i.. ⊣

Finally we show that no js-class contains a complex element.

Theorem 3.10. Js-classes contain no complex element.

Proof. Let P be a js-class and suppose it contains a complex element. Let
σ be the shortest branching node on P and consider P 0 = {X ∈ P : X ⊃ σ0}
and P 1 = {X ∈ P : X ⊃ σ1}. Without losing generality, suppose P 0 contains
a complex element. Then P 0 contains a wtt-cover for 2ω, and hence contains
elements that compute elements of P 1, contradicting the fact that P is a js-
class. ⊣
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§4. Weakly scattered linear orderings. If L = 〈ω, <L〉 is a countable
linear order, we will denote the set of (characteristic functions of) initial segments
of L by

Seg(L) = {f : ∀n, m[(f(n) = 1 ∧ m <L n) ⇒ f(m) = 1]}.

Definition 4.1. A countable linear order is scattered if it does not contain a
suborder isomorphic to Q.

The following is well-known.

Theorem 4.2. A linear order L is scattered if and only if it Seg(L) does not
contain a perfect subclass. In fact if Seg(L) contains a perfect subclass C, then
the branching level set S := Brl(C) = {|σ| : σ ∈ Br(C)} is isomorphic to Q.

Proof. First assume that Seg(L) contains a perfect subclass C. We show
that S is a dense linear order with no endpoints.

Let σ be an arbitrary element of Br(C). Let σ0, σ1 ∈ Br(C) such that σ0 ) σ0
and σ1 ) σ1. Both exist as C is perfect. Thus there is an X ∈ Seg(L) such
that X(|σ|) = 0 and X(|σ0|) = 1, so |σ0| <L |σ|. Similarly, there is an initial
segment Y such that Y (|σ|) = 1 and Y (|σ1|) = 0 and so |σ| <L |σ1|. So S has
no endpoints.

To show that S is dense, let σ and τ be arbitrary elements of Br(C) with
|σ| <L |τ |. We divide into two cases:

Case 1. σ and τ are incomparable. Let γ be any branching node extended by
both σ and τ . By an argument similar to above we must have σ <L γ <L τ .

Case 2. As |σ| <L |τ |, we must have either σ ⊇ τ0 or τ ⊇ σ1. Assume first
that σ ⊇ τ0. Let γ ∈ Br(C) such that γ ⊇ σ1. Then γ(|σ|) = 1 and γ(|τ |) = 0
and there is an X ∈ Seg(C) such that X(|σ|) = 1, X(|γ|) = 1 and X(|τ |) = 0.
Therefore, |σ| <L |γ| <L |τ |. We argue similarly if τ ⊇ σ1.

Conversely, suppose L contains a suborder M isomorphic to Q. Then M has
uncountably many initial segments, and hence so does L. As Seg(L) is closed, it
contains a perfect subclass.

⊣

We now weaken the notion of scatteredness in a way that allows us to replace
perfection in the previous theorem with computable perfection.

Definition 4.3. A countable linear order L = 〈ω, <L〉 is weakly scattered if
there does not exist an S ⊆ ω and a computable function f such that for all
n ∈ ω,

∀a, b ∈ S ∩ [0, n]∃x, y, z ∈ S ∩ [0, f(n)]x <L a <L y <L b <L z.

Notice that such an S is isomorphic to Q, and so any scattered linear order is
necessarily weakly scattered. Furthermore, if we are given a, b ∈ S, the problem
of finding x, y, z such that x <L a <L y <L b <L z is the problem of finding
certain branching nodes on Seg(L). This suggests a connection with diminutive
Π0

1 classes and we make this explicit now.

Theorem 4.4. A countable linear order L = 〈ω, <L〉 is not weakly scattered
if and only if Seg(L) contains a computably perfect subclass.
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Proof. Suppose L is not weakly scattered, witnessed by the suborder S =
〈S, 6L〉 isomorphic to Q, and computable function f . Let P = Seg(S), n ∈ ω,
and σ ∈ Ext(P ) of length n. Let a = maxL{c < n : σ(c) = 1} (−∞ if empty)
and b = minL{c < n : σ(c) = 0} (∞ if empty). Thus a <L b. As f witnesses
the fact that L is not weakly scattered, there is an y ∈ S ∩ [0, f(n)] such that
a <L y <L b. So there are two initial segments X , Y of S, both extending σ,
such that X(y) = 0 and Y (y) = 1. Thus σ has at least two extensions of length
f(n) in Ext(P ) and by Observation 2.2, P is computably perfect.

Conversely, suppose Seg(L) contains a computably perfect subclass P . As
before, S = {|σ| : σ ∈ Br(P )} will be the domain of the suborder isomorphic
to Q. Let n ∈ ω and σ, τ ∈ Br(P ) be arbitrary and without losing generality
suppose |σ| <L |τ |. Arguing as in Theorem 4.2, f allows us to find upper bounds
for the minimum lengths of branching nodes extending σ and τ and thus allows
us to find an upper bound for some x, y, z such that x <L |σ| <L y <L |τ | <L z.
So from f we can easily compute a witness to the fact that Seg(L) is not weakly
scattered.

⊣

Theorem 4.5. There is a weakly scattered linear ordering that is not scattered.

Proof. We create such an order L using a priority argument. Let η be the
order type of Q. L will be an η-order of finite linear orders or blocks Bi. Any
element of a block may act as an index for the block. We write Bi <L Bj if
every element of Bi is <L every element of Bj (equivalently if some element of
Bi is <L some element of Bj) .

We enumerate elements of ω in numerical order into L in stages. As usual
Ls = 〈Ls, <L〉 is the order at stage s. At each stage, one element of ω is
enumerated between each pair of adjacent blocks and at each end of the sequence
of blocks. New elements will never be enumerated into blocks. These newly
enumerated elements will be singleton blocks.

Notice that if S = 〈S, <L〉 is a suborder of L isomorphic to Q, then S can
contain at most one element from each block. We leverage this fact to create L
with the required properties. We build L to ensure that

1. L has a suborder S = 〈S, <L〉 isomorphic to Q,
2. for every such S, S is hyperimmune.

1 ensures that L is not scattered and 2 is sufficient to ensure that L is weakly
scattered. To see this, let S be a suborder of L isomorphic to Q and consider
P = Seg(S). Then Brl(P ) = {|σ| : σ ∈ Br(P )} = S is hyperimmune and so P
is small by the observation in Definition 3.2. Therefore P does not contain a
computably perfect subclass, and so L is weakly scattered.

During the construction to satisfy a requirement we may merge adjacent blocks
into one block. This will change the order relation on the blocks but not on
L. Each block will thus be a finite c.e. set. Bi,s denotes the set of elements
enumerated into Bi by stage s. Each block Bi,s has associated with it a restraint
number r(i, s). No requirement may force the merging of a block unless the index
of the requirement is lower than the restraint number of the block. All newly
enumerated singleton blocks Bi,s have r(i, s) = ∞. We will satisfy the following
requirements.
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Q: L contains a suborder isomorphic to Q.

Re: for any suborder S of L isomorphic to Q, then {e} does not
dominate pS the principal function of S.

Requirement Q will be satisfied by the enumeration at each stage of singleton
blocks between and at each end of existing blocks, and we need to take no other
action to ensure its satisfaction.

In order to satisfy requirement Re, we wait for a stage s at which {e}s(n) ↓
for some 1 6 n 6 s. We then attempt to merge a sufficient number of adjacent
blocks to ensure that ||{Bi,s+1 : i 6 {e}s(n)}|| 6 n. If we succeed in this,
then S will contain at most n elements less that or equal to {e}(n) and so
pS(n) > {e}(n). Thus {e} will not dominate pS . Merging other blocks to
satisfy other requirements later on in the construction will never injure Re (as
the merging of blocks can never decrease the principal function of S) and so the
requirement is satisfied forever. We thus need to show only that each requirement
has an opportunity to act.

We say requirement Re requires attention at stage s if it is not satisfied (see
below) and if there is an n 6 s such that {e}s(n) ↓ and it is possible to

1. enumerate all unused numbers up to and including {e}(n) onto the right-
hand end of Ls, as singleton blocks,

2. and then merge some number of blocks (respecting the restraint numbers)
so that ||{Bi,s+1 : i 6 {e}(n)}|| 6 n.

If e is the lowest number such that Re requires attention, we take the following
action: we carry out 1 and 2 above, and change the restraint numbers of any
newly merged blocks to e. The requirement is then declared to be satisfied.

Lemma 4.6. L contains a copy of Q.

Proof. Each requirement Re can act at most once, as once it acts it is de-
clared satisfied and never again requires attention. No block can be merged by
a requirement Re if its restraint number is less than e. Thus each block can be
merged only a finite number of times, and is thus finite. Let S be a subset of
L containing exactly one element from each block. The claim is that 〈S, <L〉 is
isomorphic to Q.

Let a, b ∈ S such that a <L b. Let s be a stage after which neither Ba nor Bb

are merged with any other block. At stage s + 1 elements x, y, z are enumerated
so that Bx <L Ba <L By <L Bb <L Bz. Thus 〈S, <L〉 is a countable dense
linear order without endpoints and hence isomorphic to Q. ⊣

Lemma 4.7. If S ⊆ L such that 〈S, <L〉 is isomorphic to Q, then S is hyper-
immune.

Proof. We show that if S contains exactly one element from every block,
then S is hyperimmune. This is sufficient as any subset of L that is isomorphic
to Q contains at most one element from each block, and is thus a subset of such
an S and therefore also hyperimmune.

Let {e} be any total computable function and let s be a stage at which no
requirement Ri requires attention after stage s for any i < e. Let m = ||{Bi,s :
r(i, s) < e}||. No such Bi,s will merge at any later stage, and thus Bi,s = Bi
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for all i < e. We wait for a stage t > s such that {e}t(2m + 1) ↓. We can
then enumerate all unused numbers less than and equal to {e}t(2m + 1) at the
righthand end of the order and proceed to merge blocks as follows.

Let
Bi1,t <L Bi2,t <L · · · <L Bim,t

be the set of blocks with r(i, t) < e. We then merge all blocks Bj,t <L Bi1,t

into one block, and similarly with all blocks Bj,t >L Bim,t. We also, for each
k < m, merge into one block all blocks Bj,t with Bik,t <L Bj,t <L Bik+1,t. We
are thus left with 2m+1 blocks in the ordering. All numbers less than or equal to
{e}(2m + 1) are contained within these blocks so pS(2m + 1) > {e}(2m + 1) and
{e} does not dominate pS . As {e} was an arbitrary total computable function,
S is hyperimmune. ⊣

⊣

We are primarily concerned here with computable linear orders. If L is a
computable linear ordering, then Seg(L) forms a Π0

1 class by inspection of the
above definition . Furthermore,

Theorem 4.8. If a computable linear order L is not weakly scattered, it con-
tains a co-c.e. copy of Q.

Proof. If Seg(L) contains a computably perfect subclass, it contains a com-
putably perfect Π0

1 subclass P by Lemma 2.4. As above, the set Brl(P ) = {|σ| :
σ ∈ Br(P )} is isomorphic to Q. The branching level set of any Π0

1 class is
co-c.e. ⊣

Theorem 4.9. The following are equivalent for a computable linear order L

1. L is not weakly scattered,
2. Seg(L) contains a complex element,
3. Seg(L) contains a wtt-cover for 2ω.

Corollary 4.9 in [8] states that if 0′ is wtt-reducible to an element of Seg(L),
then there is a ∆0

2 suborder isomormphic to Q. The following improvement is to
some degree inherent in their work:

Corollary 4.10. If Seg(L) contains a complex element, then L has a co-
c.e. suborder isomorphic to Q. Furthermore, the converse holds if L is not weakly
scattered.
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