Reproducing kernel Hilbert C^*-module for data analysis *1 *2

Yuka Hashimoto

NTT Network Service Systems Laboratories / RIKEN AIP

September 22nd, 2022

*2 Joint work with Isao Ishikawa, Masahiro Ikeda, Fuyuta Komura, Takeshi Katsura, and Yoshinobu Kawahara
Introduction

Yuka Hashimoto
NTT Network Service Systems Laboratories / RIKEN AIP

- 2018 Received Master’s degree from Keio University
- 2018- NTT Network Service Systems Laboratories
- 2022 Received Ph.D. from Keio University

Backgrounds / Interests

- Operator theoretic data analysis
- Kernel methods
- Numerical linear algebra
Contents

1. Background
 1.1 Motivation
 1.2 Reproducing kernel Hilbert space (RKHS)

2. Reproducing kernel Hilbert C^*-module (RKHM)
 2.1 Hilbert C^*-module and RKHM
 2.2 Theories on RKHM for data analysis

3. Conclusion

4. Ongoing work
Kernel methods

\begin{itemize}
 \item Nonlinearity in the original space is transformed into a linear one.
 \item We can compute inner products in RKHS exactly by computers.
\end{itemize}

\begin{itemize}
 \item \textbf{RKHS}1 (Infinite dimensional Hilbert sp.)
 \item \textbf{RKHS}1 for data analysis
\end{itemize}

\begin{itemize}
 \item \textbf{Feature map} ϕ
 \item $\phi(x)$ complex-valued function
\end{itemize}

\begin{itemize}
 \item \mathcal{X} (Finite dimensional sp.)
 \item Nonlinear
 \item Linear
 \item Kernel PCA, Kernel SVM
 \item Learning complex-valued functions
\end{itemize}

\begin{itemize}
 \item Advantages of RKHS
\end{itemize}

1Schölkopf and Smola, MIT Press, Cambridge, 2001
Goal: Generalization of data analysis in RKHS to RKHM

\[x \] sample

Feature map \(\phi \)

\[\phi(x) \] \(C^* \)-algebra-valued function

\(\mathcal{X} \)
(Structured data sp.)

Nonlinear

\(\mathcal{RKHM} \)
(Infinite dimensional Hilbert \(C^* \)-module)

Linear + \(C^* \)-algebra-valued inner product

Data analysis in RKHM

Advantages of RKHM:

- \(C^* \)-algebra-valued inner products extract information of structures.

We constructed a framework of data analysis with RKHM.

- We can reconstruct existing RKHSs by using RKHMs.
- We have shown fundamental properties for data analysis in RKHMs, similar to RKHSs (e.g. orthogonal projection, representer theorem).
Advantages of RKHM

Algorithms in RKHS

\[x_1, x_2 : \text{Functional data} \]
\[x_1, x_2 \in \mathcal{H} \]

\[\langle x_1, x_2 \rangle_{\mathcal{H}} \in \mathbb{C} \]

\[c_i = \langle x_1(t_i), x_2(t_i) \rangle_{\mathcal{X}} \in \mathbb{C} \]

\[\text{Degenerates information along } t \]

Fails to capture continuous behavior (derivatives, total variation, frequency components,...)

Algorithms in RKHM

\[x_1(t), x_2(t) \in \mathcal{X} \]

\[\langle x_1(t), x_2(t) \rangle \in \mathbb{C} \]

\[\langle x_1, x_2 \rangle_{\mathcal{M}} \in \mathcal{A} \]

\[\text{Capture and control continuous behavior} \]
Review: Reproducing kernel Hilbert space (RKHS)

Let \mathcal{X} be a set. A map $k : \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{C}$ is called a positive definite kernel if it satisfies:

1. $k(x, y) = \overline{k(y, x)}$ for $x, y \in \mathcal{X}$ and
2. $\sum_{t,s=1}^{n} c_t k(x_t, x_s) c_s \geq 0$ for $n \in \mathbb{N}$, $c_1, \ldots, c_n \in \mathbb{C}$, $x_1, \ldots, x_n \in \mathcal{X}$.

$\phi(x) := k(\cdot, x)$ ($\phi : \mathcal{X} \rightarrow \mathbb{C}^{\mathcal{X}}$: feature map associated with k),

$$\mathcal{H}_{k,0} := \{ \sum_{t=1}^{n} \phi(x_t) c_t \mid n \in \mathbb{N}, \ c_t \in \mathbb{C}, \ x_t \in \mathcal{X} \}. \quad (1)$$

We can define an inner product $\langle \cdot, \cdot \rangle_k : \mathcal{H}_{k,0} \times \mathcal{H}_{k,0} \rightarrow \mathbb{C}$ as

$$\langle \sum_{s=1}^{n} \phi(x_s) c_s, \sum_{t=1}^{l} \phi(y_t) d_t \rangle_k := \sum_{s=1}^{n} \sum_{t=1}^{l} c_s^* k(x_s, y_t) d_t. \quad (2)$$

RKHS \mathcal{H}_k: completion of $\mathcal{H}_{k,0}$
Review: Hilbert C^*-module

\mathcal{A}: C^*-algebra, e.g., $\mathcal{A} = B(\mathcal{W}), L^\infty([0, 1])$
(Banach space equipped with a product structure and an involution $* + \alpha$)
\mathcal{M}: right \mathcal{A}-module ($u \in \mathcal{M}, c \in \mathcal{A} \rightarrow uc \in \mathcal{M}$)

Definition 1 \mathcal{A}-valued inner product

A map $\langle \cdot, \cdot \rangle : \mathcal{M} \times \mathcal{M} \rightarrow \mathcal{A}$ is called an \mathcal{A}-valued inner product if it satisfies the following properties for $u, v, w \in \mathcal{M}$ and $c, d \in \mathcal{A}$:

1. $\langle u, vc + wd \rangle = \langle u, v \rangle c + \langle u, w \rangle d$,
2. $\langle v, u \rangle = \langle u, v \rangle^*$,
3. $\langle u, u \rangle \geq 0$ and if $\langle u, u \rangle = 0$ then $u = 0$.

$\rightarrow \mathcal{A}$-valued absolute value $|u| := \langle u, u \rangle^{1/2}$ \rightarrow Norm $\|u\| := \| \langle u, u \rangle \|_A^{1/2}$

Hilbert C^*-module \mathcal{M}^2: complete \mathcal{A}-module equipped with an \mathcal{A}-valued inner-product

Short review of reproducing kernel Hilbert C^*-module

\mathcal{A}: C^*-algebra

We can generalize complex-valued notions to operator ($\mathcal{B}(\mathcal{H})$) and function ($L^\infty([0, 1])$)-valued ones. (e.g. eigenvalues, principal components)

RKHS (\mathcal{H}_k):
- \mathbb{C}-valued positive definite kernel k
- \mathbb{C}-valued functions
- \mathbb{C}-valued inner product

RKHM over \mathcal{A} (\mathcal{M}_k):
- \mathcal{A}-valued positive definite kernel k
- \mathcal{A}-valued functions
- \mathcal{A}-valued inner product

RKHM for data analysis

Yuka Hashimoto

9 / 15
To project a vector onto a finitely generated submodule, we introduce orthonormality\(^3\)

Definition 2 Orthonormal

Let \(M \) be a Hilbert \(C^* \)-module.

1. A vector \(q \in M \) is said to be normalized if \(0 \neq \langle q, q \rangle = \langle q, q \rangle^2 \).
2. Two vectors \(p, q \in M \) are said to be orthogonal if \(\langle p, q \rangle = 0 \).

Theorem 1 Minimization property

Let \(A \) be a unital \(C^* \)-algebra and let \(T \) be a finite index set. Let \(V \) be the module spanned by an orthonormal system \(\{q_t\}_{t \in T} \) and let \(P : M \to V \) be the projection operator. For \(w \in M \),

\[
Pw = \arg \min_{v \in V} |w - v|^2
given \text{by (3)}.
\]

Representer theorem in RKHMs

To generalize complex-valued supervised problems to \(\mathcal{A} \)-valued ones, we show a representer theorem.

\[\mathcal{M}_k: \text{RKHM over } \mathcal{A} \]

Theorem 2 Representer theorem in RKHMs

Let \(\mathcal{A} \) be a unital \(C^* \)-algebra, \(x_1, \ldots, x_n \in \mathcal{X} \) and \(a_1, \ldots, a_n \in \mathcal{A} \). Let \(h : \mathcal{X} \times \mathcal{A}^2 \to \mathcal{A}_+ \) be an error function and \(g : \mathcal{A}_+ \to \mathcal{A}_+ \) satisfy \(g(c) < g(d) \) for \(c < d \). If \(\text{Span}_{\mathcal{A}} \{ \phi(x_i) \}_{i=1}^n \) is closed, any \(u \in \mathcal{M}_k \) minimizing \(\sum_{i=1}^n h(x_i, a_i, u(x_i)) + g(|u|_k) \) admits a representation of the form \(\sum_{i=1}^n \phi(x_i)c_i \) for some \(c_1, \ldots, c_n \in \mathcal{A} \).

Key point of the proofs:
For a Hilbert \(C^* \)-module \(\mathcal{M} \) over a unital \(C^* \)-algebra \(\mathcal{A} \) and any finitely generated closed submodule \(\mathcal{V} \) of \(\mathcal{M} \), \(u \in \mathcal{M} \) is decomposed into \(u = u_1 + u_2 \) where \(u_1 \in \mathcal{V} \) and \(u_2 \in \mathcal{V}^\perp \).
Conclusion

- RKHM is a natural generalization of RKHS.

- RKHM enables us to extract continuous behaviors of functional data.

- We showed fundamental properties of RKHM for data analysis.
Ongoing work related to Hilbert C^*-modules and dynamical systems*

* Joint work with Isao Ishikawa, Masahiro Ikeda, Suddhasattwa Das, Joanna Slawinska, and Dimitrios Giannakis
Challenges in operator theoretic approaches to analyzing dynamical systems

- Koopman operators (composition operators with respect to dynamical systems) are defined on **infinite-dimensional Hilbert spaces**.
- Koopman operators have **continuous spectra**.
- Continuous spectrum is not described by operators in finite dimensional spaces.
Goal and approach

Goal:
Generalize the discrete decomposition in finite-dimensional spaces to that in infinite-dimensional space.

Approach:
1. Extend the Koopman operator on a Hilbert space to a Hilbert C^*-module.
2. Construct vectors in a Hilbert C^*-module using cocycles.
3. Decompose the operator on the Hilbert C^*-module using the above vectors.