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Kernel methods

RKHS1

(Infinite dimensional Hilbert sp.)

Linear

• Kernel PCA, Kernel SVM

• Learning complex-valued functions

X
(Finite dimensional sp.)

Nonlinear

Feature map ϕ
x

sample
ϕ(x)

complex-valued function

Advantages of RKHS
• Nonlinearity in the original space is transformed into a linear one.
• We can compute inner products in RKHS exactly by computers.

1Schölkopf and Smola, MIT Press, Cambridge, 2001
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Goal: Generalization of data analysis in RKHS to RKHM

RKHM
(Infinite dimensional Hilbert C∗-module)

Linear + C∗-algebra-valued inner product

Data analysis in RKHM

X
(Structured data sp.)

Nonlinear

Feature map ϕ
x

sample
ϕ(x)

C∗-algebra-valued function

Advantages of RKHM:
• C∗-algebra-valued inner products extract information of structures.

We constructed a framework of data analysis with RKHM.
• We can reconstruct existing RKHSs by using RKHMs.
• We have shown fundamental properties for data analysis in RKHMs,

similar to RKHSs (e.g. orthogonal projection, representer theorem).
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Advantages of RKHM
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Review: Reproducing kernel Hilbert space (RKHS)

Let X be a set. A map k : X ×X → C is called a positive definite kernel if
it satisfies:

1. k(x, y) = k(y, x) for x, y ∈ X and
2.

∑n
t,s=1 ctk(xt, xs)cs ≥ 0 for n ∈ N, c1, . . . , cn ∈ C, x1, . . . , xn ∈ X .

ϕ(x) := k(·, x) (ϕ : X → CX : feature map associated with k),

Hk,0 :=
{∑n

t=1 ϕ(xt)ct
∣∣ n ∈ N, ct ∈ C, xt ∈ X

}
. (1)

We can define an inner product ⟨·, ·⟩k : Hk,0 ×Hk,0 → C as⟨∑n
s=1 ϕ(xs)cs,

∑l
t=1 ϕ(yt)dt

⟩
k
:=

∑n
s=1

∑l
t=1 c

∗
sk(xs, yt)dt. (2)

RKHS Hk: completion of Hk,0
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Review: Hilbert C∗-module

A: C∗-algebra, e.g., A = B(W), L∞([0, 1])
(Banach space equipped with a product structure and an involution ∗ + α)
M: right A-module (u ∈ M, c ∈ A → uc ∈ M)

Definition 1 A-valued inner product
A map ⟨·, ·⟩ : M×M → A is called an A-valued inner product if it
satisfies the following properties for u, v, w ∈ M and c, d ∈ A:

1. ⟨u, vc+ wd⟩ = ⟨u, v⟩ c+ ⟨u,w⟩ d,
2. ⟨v, u⟩ = ⟨u, v⟩∗,
3. ⟨u, u⟩ ≥ 0 and if ⟨u, u⟩ = 0 then u = 0.

→ A-valued absolute value |u| := ⟨u, u⟩1/2 → Norm ∥u∥ := ∥ ⟨u, u⟩ ∥1/2A

Hilbert C∗-module M2: complete A-module equipped with an A-valued
inner-product

2Lance, Cambridge University Press, 1995.
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Short review of reproducing kernel Hilbert C∗-module

A: C∗-algebra

We can generalize complex-valued notions to operator (B(W)) and
function (L∞([0, 1]))-valued ones. (e.g. eigenvalues, principal components)

RKHS (Hk):
• C-valued positive definite kernel k
• C-valued functions
• C-valued inner product

RKHM over A (Mk):
• A-valued positive definite kernel k
• A-valued functions
• A-valued inner product
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Orthonormality in Hilbert C∗-modules

To project a vector onto a finitely generated submodule, we introduce
orthonormality3

Definition 2 Orthonormal
Let M be a Hilbert C∗-module.

1. A vector q ∈ M is said to be normalized if 0 ̸= ⟨q, q⟩ = ⟨q, q⟩2.
2. Two vectors p, q ∈ M are said to be orthogonal if ⟨p, q⟩ = 0.

Theorem 1 Minimization property
Let A be a unital C∗-algebra and let T be a finite index set. Let V be the
module spanned by an orthonormal system {qt}t∈T and let P : M → V be
the projection operator. For w ∈ M,

Pw = argmin
v∈V

|w − v|2 (3)

3Bakić and Guljǎs, Journal of Operator Theory, 2001.
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Representer theorem in RKHMs

To generalize complex-valued supervised problems to A-valued ones, we
show a representer theorem.

Mk: RKHM over A

Theorem 2 Representer theorem in RKHMs

Let A be a unital C∗-algebra, x1, . . . , xn ∈ X and a1, . . . , an ∈ A. Let
h : X ×A2 → A+ be an error function and g : A+ → A+ satisfy
g(c) < g(d) for c < d. If SpanA{ϕ(xi)}ni=1 is closed, any u ∈ Mk

minimizing
∑n

i=1 h(xi, ai, u(xi)) + g(|u|k) admits a representation of the
form

∑n
i=1 ϕ(xi)ci for some c1, . . . , cn ∈ A.

Key point of the proofs:
For a Hilbert C∗-module M over a unital C∗-algebra A and any finitely
generated closed submodule V of M, u ∈ M is decomposed into
u = u1 + u2 where u1 ∈ V and u2 ∈ V⊥.
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Conclusion

• RKHM is a natural generalization of RKHS.

• RKHM enables us to extract continuous behaviors of functional data.

• We showed fundamental properties of RKHM for data analysis.
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Ongoing work related to Hilbert C∗-modules and
dynamical systems∗

∗ Joint work with Isao Ishikawa, Masahiro Ikeda, Suddhasattwa Das, Joanna Slawinska,
and Dimitrios Giannakis



Challenges in operator theoretic approaches to analyzing dynamical systems

• Koopman operators (composition operators with respect to dynamical
systems) are defined on infinite-dimensional Hilbert spaces.

• Koopman operators have continuous spectra.
• Continuous spectrum is not described by operators in finite

dimensional spaces.

RKHM for data analysis Yuka Hashimoto 14 / 15



Goal and approach

Goal:
Generalize the discrete decomposition in finite-dimensional spaces to that
in infinite-dimensional space.

Approach:
1. Extend the Koopman operator on a Hilbert space to a Hilbert

C∗-module.
2. Construct vectors in a Hilbert C∗-module using cocycles.
3. Decompose the operator on the Hilbert C∗-module using the above

vectors.
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