Reproducing kernel Hilbert C^* -module for data analysis^{*1} *²

Yuka Hashimoto

NTT Network Service Systems Laboratories / RIKEN AIP

September 22nd, 2022

*1 JMLR, 22(267):1–56 (updated version : arXiv:2101.11410v2)

 $\ast 2$ Joint work with Isao Ishikawa, Masahiro Ikeda, Fuyuta Komura, Takeshi Katsura, and Yoshinobu Kawahara

Yuka Hashimoto

NTT Network Service Systems Laboratories / RIKEN AIP

- 2018 Received Master's degree from Keio University
- 2018- NTT Network Service Systems Laboratories
- 2022 Received Ph.D. from Keio University

Backgrounds / Interests

- Operator theoretic data analysis
- Kernel methods
- Numerical linear algebra

1. Background

- 1.1 Motivation
- 1.2 Reproducing kernel Hilbert space (RKHS)

2. Reproducing kernel Hilbert C^* -module (RKHM)

- 2.1 Hilbert C^* -module and RKHM
- 2.2 Theories on RKHM for data analysis

3. Conclusion

4. Ongoing work

Kernel methods

- Nonlinearity in the original space is transformed into a linear one.
- We can compute inner products in RKHS exactly by computers.

¹Schölkopf and Smola, MIT Press, Cambridge, 2001

Goal: Generalization of data analysis in RKHS to RKHM

Advantages of RKHM:

• C*-algebra-valued inner products extract information of structures.

We constructed a framework of data analysis with RKHM.

- We can reconstruct existing RKHSs by using RKHMs.
- We have shown fundamental properties for data analysis in RKHMs, similar to RKHSs (e.g. orthogonal projection, representer theorem).

Advantages of RKHM

Algorithms in RKHS

Algorithms in RKHM

Review: Reproducing kernel Hilbert space (RKHS)

Let \mathcal{X} be a set. A map $k : \mathcal{X} \times \mathcal{X} \to \mathbb{C}$ is called a positive definite kernel if it satisfies:

1.
$$k(x,y) = \overline{k(y,x)}$$
 for $x, y \in \mathcal{X}$ and
2. $\sum_{t,s=1}^{n} \overline{c_t} k(x_t, x_s) c_s \ge 0$ for $n \in \mathbb{N}$, $c_1, \ldots, c_n \in \mathbb{C}$, $x_1, \ldots, x_n \in \mathcal{X}$.

 $\phi(x):=k(\cdot,x) \ (\phi:\mathcal{X}\to\mathbb{C}^{\mathcal{X}}: \text{ feature map associated with } k),$

$$\mathcal{H}_{k,0} := \left\{ \sum_{t=1}^{n} \phi(x_t) c_t \middle| n \in \mathbb{N}, \ c_t \in \mathbb{C}, \ x_t \in \mathcal{X} \right\}.$$
(1)

We can define an inner product $\langle \cdot, \cdot \rangle_k : \mathcal{H}_{k,0} \times \mathcal{H}_{k,0} \to \mathbb{C}$ as

$$\left\langle \sum_{s=1}^{n} \phi(x_s) c_s, \sum_{t=1}^{l} \phi(y_t) d_t \right\rangle_k := \sum_{s=1}^{n} \sum_{t=1}^{l} c_s^* k(x_s, y_t) d_t.$$
 (2)

RKHS \mathcal{H}_k : completion of $\mathcal{H}_{k,0}$

 \mathcal{A} : C^* -algebra, e.g., $\mathcal{A} = \mathcal{B}(\mathcal{W})$, $L^{\infty}([0,1])$

(Banach space equipped with a product structure and an involution $* + \alpha$) \mathcal{M} : right \mathcal{A} -module ($u \in \mathcal{M}, c \in \mathcal{A} \rightarrow uc \in \mathcal{M}$)

Definition 1 \mathcal{A} -valued inner product

A map $\langle \cdot, \cdot \rangle : \mathcal{M} \times \mathcal{M} \to \mathcal{A}$ is called an \mathcal{A} -valued inner product if it satisfies the following properties for $u, v, w \in \mathcal{M}$ and $c, d \in \mathcal{A}$:

1.
$$\langle u, vc + wd \rangle = \langle u, v \rangle c + \langle u, w \rangle d$$
,
2. $\langle v, u \rangle = \langle u, v \rangle^*$,
3. $\langle u, u \rangle \ge 0$ and if $\langle u, u \rangle = 0$ then $u = 0$.

 $\rightarrow \mathcal{A}$ -valued absolute value $|u| := \langle u, u \rangle^{1/2} \rightarrow \text{Norm } ||u|| := ||\langle u, u \rangle ||_{\mathcal{A}}^{1/2}$

Hilbert C^* -module \mathcal{M}^2 : complete \mathcal{A} -module equipped with an \mathcal{A} -valued inner-product

²Lance, Cambridge University Press, 1995.

RKHM for data analysis

Yuka Hashimoto

 \mathcal{A} : C^* -algebra

We can generalize complex-valued notions to operator $(\mathcal{B}(\mathcal{W}))$ and function $(L^{\infty}([0,1]))$ -valued ones. (e.g. eigenvalues, principal components)

RKHS (\mathcal{H}_k) :

- \mathbb{C} -valued positive definite kernel k
- C-valued functions
- C-valued inner product

RKHM over $\mathcal{A}(\mathcal{M}_k)$:

- \mathcal{A} -valued positive definite kernel k
- A-valued functions
- *A*-valued inner product

To project a vector onto a finitely generated submodule, we introduce orthonormality $^{3} \ \ \,$

Definition 2 Orthonormal

Let \mathcal{M} be a Hilbert C^* -module.

- 1. A vector $q \in \mathcal{M}$ is said to be normalized if $0 \neq \langle q, q \rangle = \langle q, q \rangle^2$.
- 2. Two vectors $p, q \in \mathcal{M}$ are said to be orthogonal if $\langle p, q \rangle = 0$.

Theorem 1 Minimization property

Let \mathcal{A} be a unital C^* -algebra and let \mathcal{T} be a finite index set. Let \mathcal{V} be the module spanned by an orthonormal system $\{q_t\}_{t\in\mathcal{T}}$ and let $P: \mathcal{M} \to \mathcal{V}$ be the projection operator. For $w \in \mathcal{M}$,

$$Pw = \underset{v \in \mathcal{V}}{\arg\min} | w - v$$

(3)

To generalize complex-valued supervised problems to $\mathcal{A}\text{-valued}$ ones, we show a representer theorem.

 \mathcal{M}_k : RKHM over \mathcal{A}

Theorem 2 Representer theorem in RKHMs

Let \mathcal{A} be a unital C^* -algebra, $x_1, \ldots, x_n \in \mathcal{X}$ and $a_1, \ldots, a_n \in \mathcal{A}$. Let $h: \mathcal{X} \times \mathcal{A}^2 \to \mathcal{A}_+$ be an error function and $g: \mathcal{A}_+ \to \mathcal{A}_+$ satisfy g(c) < g(d) for c < d. If $\operatorname{Span}_{\mathcal{A}} \{\phi(x_i)\}_{i=1}^n$ is closed, any $u \in \mathcal{M}_k$ minimizing $\sum_{i=1}^n h(x_i, a_i, u(x_i)) + g(|u|_k)$ admits a representation of the form $\sum_{i=1}^n \phi(x_i)c_i$ for some $c_1, \ldots, c_n \in \mathcal{A}$.

Key point of the proofs:

For a Hilbert C^* -module \mathcal{M} over a unital C^* -algebra \mathcal{A} and any finitely generated closed submodule \mathcal{V} of \mathcal{M} , $u \in \mathcal{M}$ is decomposed into $u = u_1 + u_2$ where $u_1 \in \mathcal{V}$ and $u_2 \in \mathcal{V}^{\perp}$.

- RKHM is a natural generalization of RKHS.
- RKHM enables us to extract continuous behaviors of functional data.
- We showed fundamental properties of RKHM for data analysis.

Ongoing work related to Hilbert C^* -modules and dynamical systems*

* Joint work with Isao Ishikawa, Masahiro Ikeda, Suddhasattwa Das, Joanna Slawinska, and Dimitrios Giannakis

- Koopman operators (composition operators with respect to dynamical systems) are defined on infinite-dimensional Hilbert spaces.
- Koopman operators have continuous spectra.
- Continuous spectrum is not described by operators in finite dimensional spaces.

Finite dimensional space (discrete)

Infinite dimensional space (continuous)

Goal:

Generalize the discrete decomposition in finite-dimensional spaces to that in infinite-dimensional space.

Approach:

- 1. Extend the Koopman operator on a Hilbert space to a Hilbert C^* -module.
- 2. Construct vectors in a Hilbert C^* -module using cocycles.
- 3. Decompose the operator on the Hilbert $C^{\ast}\mbox{-module}$ using the above vectors.

