Quantum correlations via Operator Systems

Travis Russell
Based on joint work with Roy Araiza \& Mark Tomforde
Dartmouth College

Functional Analysis Seminar October 27, 2022

Background

Nonsignalling Games

Figure: Alice

Figure: Bob
$A \sim$ finite set of answers

$$
R \subseteq Q^{2} \times A^{2} \sim \text { finite set of rules }
$$

Referee: Picks $x, y \in Q . x \mapsto$ Alice, $y \mapsto$ Bob.
Alice: $a \mapsto$ Referee; Bob: $b \mapsto$ Referee.
If $(x, y, a, b) \in R$, then Alice and Bob win. Otherwise, they lose.

Example: 2-coloring game

Consider the 5-cycle:

The two-coloring game: The referee assigns one vertex to Alice and one to Bob, choosing the pair from

$$
\{(1,1),(2,2), \ldots,(5,5),(1,2),(2,3), \ldots,(5,1)\}
$$

Receive same vertex: Alice and Bob win if they return same color. Receive adjacent vertices: Alice and Bob win if they return different colors.
What strategy maximizes their chances of winning?

Correlations

A correlation is a tuple

$$
p=\{p(a, b \mid x, y)\}_{a, b \in A, x, y \in Q}
$$

satisfying

$$
p(a, b \mid x, y) \geq 0 \quad \text { and } \quad \sum_{a, b \in A} p(a, b \mid x, y)=1
$$

A correlation p is nonsignalling if the marginal densities given by

$$
p_{A}(a \mid x):=\sum_{c \in A} p(a, c \mid x, w) \quad \text { and } \quad p_{B}(b \mid y):=\sum_{c \in A} p(c, b \mid z, y)
$$

are well-defined.

Deterministic strategy

A correlation is deterministic if $p_{A}(a \mid x), p_{B}(b \mid y) \in\{0,1\}$.
Alice has $f: Q \rightarrow A$; Bob has $g: Q \rightarrow A$. If $x \mapsto$ Alice and $y \mapsto$ Bob, Alice: $f(x) \mapsto$ Referee and Bob: $g(y) \mapsto$ Referee.

Example

In the two coloring game, an optimal deterministic strategy is:
Alice and Bob agree on a coloring which is "almost" a two-coloring. Chance of winning: 90%

Local strategy

A correlation is local if it has the form

$$
p=\sum_{i=1}^{k} t_{i} p_{i}
$$

where $t_{i} \geq 0, \sum t_{i}=1$, and p_{1}, \ldots, p_{k} are deterministic.

Example

In the two coloring game, an optimal local strategy is deterministic: Chance of winning: 90\%

Quantum strategy

Quantum principles:

- physical systems $\cong H$,
- state of physical system $\cong \phi \in H$,
- measurements $\cong\left\{P_{a}\right\}_{a=1}^{m}$ with $P_{a}^{2}=P_{a}$ and $\sum_{a} P_{a}=l$.
- Observe a with probability $\left\langle P_{a} \phi, \phi\right\rangle=\left\|P_{a} \phi\right\|^{2}$.

A correlation p is called a quantum correlation if there exist finite dimensional Hilbert spaces H_{A}, H_{B}, a unit vector $\phi \in H_{A} \otimes H_{B}$, and measurements $\left\{E_{x, a}\right\} \subseteq B\left(H_{A}\right)$ and $\left\{F_{y, b}\right\} \subseteq B\left(H_{B}\right)$ such that

$$
p(a, b \mid x, y)=\left\langle E_{x, a} \otimes F_{y, b} \phi, \phi\right\rangle
$$

Example (Cleve-Hoyer-Toner-Watrous)

In the 5-cycle 2-coloring game, the optimal quantum strategy allows Alice and Bob win with probability

$$
\frac{1}{2}+\frac{1}{2} \cos (\pi / 10) \cong 97.6 \%
$$

Entanglement and quantum correlations

A state $\phi \in H_{A} \otimes H_{B}$ has the form $\sum \lambda_{i} \psi_{i} \otimes \rho_{i}$ where $\psi_{i} \in H_{A}$ and $\rho_{i} \in H_{B}$.

A state ϕ is called separable if it can be written as $\phi=\phi_{A} \otimes \phi_{B}$ with $\phi_{A} \in H_{A}$ and $\phi_{B} \in H_{B}$. If not, ϕ is called entangled.

Theorem (Bell)

If ϕ is separable, then the quantum correlation $p(a, b \mid x, y)=\left\langle E_{x, a} \otimes F_{y, b} \phi, \phi\right\rangle$ is a local correlation.

So if a quantum strategy outperforms a local strategy, it must require an entangled state...

Quantum commuting correlations

A correlation p is called a quantum commuting correlation if there exists a Hilbert space H, a unit vector $\phi \in H$, and measurements $\left\{E_{x, a}, F_{y, b}\right\} \subseteq B(H)$ satisfying

$$
E_{x, a} F_{y, b}=F_{y, b} E_{x, a}
$$

such that

$$
p(a, b \mid x, y)=\left\langle E_{x, a} F_{y, b} \phi, \phi\right\rangle .
$$

Example

In the 5-cycle 2-coloring game, the optimal quantum commuting strategy allows Alice and Bob win with probability 97.6%... same as quantum.

Quantum correlations in theory

For $|Q|=n,|A|=m$, let $C_{*}(n, m)$ be all correlations of type $*$.
We have $C_{l o c}(n, m) \subseteq C_{q}(n, m) \subseteq C_{q c}(n, m) \subseteq C_{n s}(n, m) \subseteq \mathbb{R}^{n^{2} m^{2}}$.
Bell (1960s): $C_{l o c}(n, m) \neq C_{q}(n, m) ; n, m \geq 2$.
Fritz, Junge et. al. (2011): A positive solution to Connes' embedding problem (ca. 1970) implies the equality $\overline{C_{q}(n, m)}=C_{q c}(n, m)$ for all n, m.

Slofstra (2019): $C_{q}(n, m) \neq C_{q c}(n, m) ; n=235, m=8$.
Ji-Natarajan-Vidick-Wright-Yuen (Preprint, 2020):
$\overline{C_{q}(n, m)} \neq C_{q c}(n, m) ; n, m \cong 10^{20}$.

Generating correlations from abstract data

C*-algebras and Operator Systems

Given a Hilbert space H,

- a C*-algebra is a self-adjoint closed unital subalgebra of $B(H)$.
- an operator system is a self-adjoint unital subspace of $B(H)$.

C*-algebras and operator systems also have "abstract" definitions.

- An abstract \mathbf{C}^{*}-algebra is a normed $*$-algebra satisfying $\|x\|^{2}=\left\|x^{*} x\right\|$.
- An abstract operator system is a $*$-vector space V together with a sequence of positive cones $C_{n} \subseteq M_{n}(V)_{h}$ and unit e.

Given an abstract C^{*}-algebra (abstract operator system) there exists a Hilbert space H and an isomorphic C^{*}-subalgebra (operator subsystem) of $B(H)$.

Correlations from C*-algebras

A state on a C^{*}-algebra (or operator system) is a linear functional $\phi: \mathcal{A} \rightarrow \mathbb{C}$ such that $\phi(I)=1$ and $\phi(x) \geq 0$ whenever $x \geq 0$.

Theorem (Folklore)

A correlation p is quantum commuting if and only if there exists a C^{*}-algebra \mathcal{A}, projection-valued measures $\left\{E_{x, a}\right\},\left\{F_{y, b}\right\} \subseteq \mathcal{A}$ with $E_{x, a} F_{y, b}=F_{y, b} E_{x, a}$ and a state ϕ such that
$p(a, b \mid x, y)=\phi\left(E_{x, a} F_{y, b}\right)$. Moreover,

- $p \in C_{q}(n, m)$ if and only if the statement holds for a finite-dimensional \mathcal{A}.
- $p \in C_{\text {loc }}(n, m)$ if and only if the statement holds for a commutative \mathcal{A}.

Correlations from operator systems?

Assume $p \in C_{q c}(n, m)$ with $p(a, b \mid x, y)=\left\langle E_{x, a} F_{y, b} \phi, \phi\right\rangle$. Then:

$$
\mathcal{V}=\operatorname{span}\left\{E_{x, a} F_{y, b}\right\}
$$

is an operator system and $E_{x, a} F_{y, b} \mapsto\left\langle E_{x, a} F_{y, b} \phi, \phi\right\rangle$ is a state on \mathcal{V}.

So correlations only require a finite dimensional operator system and a state.

We can abstractly characterize operator systems, but what about operator systems of the form

$$
\mathcal{V}=\operatorname{span}\left\{E_{x, a} F_{y, b}\right\} ?
$$

Compressions of operator systems

Proposition (Araiza-R.)

Let $p \in \mathcal{V} \subseteq B(H), x \in \mathcal{V}$ with $x=x^{*}$. Then $p x p \geq 0$ if and only if for every $\epsilon>0$ there exists a $t>0$ such that

$$
x+\epsilon p+t(I-p) \in \mathcal{V}_{+} .
$$

Thus if $p \in \mathcal{V}$ is a projection, we can detect when $p x p \geq 0$ using only the data of the operator system $\left(\mathcal{V},\left\{C_{n}\right\}, e\right)$.

Characterization of projections

Assume $p \in \mathcal{V} \subseteq B(H)$ and p is a projection. Let $q=I-p$. Then we may decompose each $x \in \mathcal{V} \subseteq B(H)=B(p H \oplus q H)$ as

$$
x=\left(\begin{array}{cc}
p \times p & p \times q \\
q \times p & q \times q
\end{array}\right) .
$$

Consider the compression of

$$
\left(\begin{array}{ll}
x & x \\
x & x
\end{array}\right) \text { by } p \oplus q \text {, i.e. }\left(\begin{array}{cc}
\left(\begin{array}{cc}
p \times p & 0 \\
0 & 0
\end{array}\right) & \left(\begin{array}{cc}
0 & p \times q \\
0 & 0 \\
0 & 0 \\
q \times p & 0
\end{array}\right) \\
\left(\begin{array}{cc}
0 & 0 \\
0 & q \times q
\end{array}\right)
\end{array}\right) .
$$

Observe that $x \geq 0$ if and only if $\left(\begin{array}{ll}x & x \\ x & x\end{array}\right)$ has positive compression by $p \oplus q$.

Characterization of projections

Definition

We call a positive contraction p in an abstract operator system \mathcal{V} an abstract projection if the set of $x=x^{*} \in M_{n}(\mathcal{V})$ satisfying for every $\epsilon>0$ there exists $t>0$ such that

$$
\left(\begin{array}{ll}
x & x \\
x & x
\end{array}\right)+\epsilon I_{n} \otimes(p \oplus q)+t I_{n} \otimes(q \oplus p) \geq 0
$$

coincides with the positive cone of $M_{n}(\mathcal{V})$.

Theorem (Araiza, R.)

A positive contraction p in an operator system $\left(\mathcal{V},\left\{C_{n}\right\}, e\right)$ is an abstract projection if and only if there exists a unital complete order embedding $\pi: \mathcal{V} \rightarrow B(H)$ such that $\pi(p)$ is a projection.

The set of abstract projections

The theorem allows us to build $\pi: \mathcal{V} \rightarrow B(H)$ mapping a single abstract projection p to an honest projection $\pi(p)$. What if there are many abstract projections?

Theorem (Araiza-R.)

Let p be an abstract projection in an operator system \mathcal{V}. Then p is a projection in $C_{e}^{*}(\mathcal{V})$.

Thus, if $p_{1}, p_{2}, \ldots, p_{N} \in \mathcal{V}$ are all abstract projections, then $p_{1}, p_{2}, \ldots, p_{N}$ are projections in $C_{e}^{*}(\mathcal{V})$.

Quantum commuting operator systems

Definition

A quantum commuting operator system is a finite dimensional operator system with unit e spanned by positive contractions $\{Q(a, b \mid x, y): a, b \in[m], x, y \in[n]\}$ such that

- For each $x, y \in[n], \sum_{a, b \in[m]} Q(a, b \mid x, y)=e$
- For each $x, y \in[n]$ and $a, b \in[m]$, the vectors

$$
E(a \mid x):=\sum_{c \in[m]} Q(a, c \mid x, w) \quad \text { and } \quad F(b \mid y):=\sum_{c \in[m]} Q(c, b \mid z, y)
$$

are well-defined

- Each generator $Q(a, b \mid x, y)$ is an abstract projection.

Quantum correlations and operator systems

Theorem (Araiza, R.)

A correlation p is quantum commuting if and only if there exists a quantum commuting operator system $\mathcal{V}=\operatorname{span}\{Q(a, b \mid x, y)\}$ and a state $\phi: \mathcal{V} \rightarrow \mathbb{C}$ such that

$$
p(a, b \mid x, y)=\phi(Q(a, b \mid x, y))
$$

Proof elements:

- The linear relations between $\{Q(a, b \mid x, y)\}$ ensure p is nonsignalling correlation.
- Each $Q(a, b \mid x, y)$ is a projection in $C_{e}^{*}(\mathcal{V})$.
- The relations $Q(a, b \mid x, y)=E(a \mid x) F(y \mid b)=F(y \mid b) E(a \mid x)$ are forced.

Matricial operator systems

An operator system \mathcal{V} is k-minimal if it is isomorphic to a subsystem of $\oplus_{i \in I} M_{k}$.

Proposition (Araiza-R.-Tomforde)

\mathcal{V} is k-minimal if and only if

$$
C_{n}=\left\{x \in M_{n}(\mathcal{V})_{h}: \alpha^{*} x \alpha \in C_{k} \text { for all } \alpha \in M_{n, k}\right\}
$$

for each $n>k$.

An operator system is matricial if it is k-minimal for some $k \in \mathbb{N}$.

Quantum correlations and operator systems

Theorem (Araiza-R.-Tomforde)

A correlation p is quantum if and only if there exists a matricial quantum commuting operator system $\mathcal{V}=\operatorname{span}\{Q(a, b \mid x, y)\}$ and a state $\phi: \mathcal{V} \rightarrow \mathbb{C}$ such that

$$
p(a, b \mid x, y)=\phi(Q(a, b \mid x, y))
$$

Proof elements:

- The previous theorem tells us p is quantum commuting.
- Each $Q(a, b \mid x, y)$ is a projection in $C_{e}^{*}(\mathcal{V})$, and $C_{e}^{*}(\mathcal{V})$ is a C^{*}-subalgebra of $\oplus M_{k}$.
- Using Caratheodory's theorem, p can be written as a finite convex combination of quantum correlations.

Correlations from operator systems

Corollary

Suppose $\mathcal{V}=\operatorname{span}\{Q(a, b \mid x, y)\}$ is an operator system and $\phi: \mathcal{V} \rightarrow \mathbb{C}$ is a state. Let $p(a, b \mid x, y)=\phi(Q(a, b \mid x, y))$.
(1) If \mathcal{V} quantum commuting, then $p \in C_{q c}(n, k)$.
(2) If \mathcal{V} is quantum commuting and d-minimal for some d, then $p \in C_{q}(n, k)$.
(3) If \mathcal{V} is quantum commtuing and 1-minimal, then $p \in C_{\text {loc }}(n, k)$.

Problem: Construct a quantum commuting operator system $\mathcal{V}=\operatorname{span}\{Q(a, b \mid x, y)\}$ which cannot be approximated by a d-minimal quantum commuting operator system for any d.

Thanks!

References (on arXiv):

- "An abstract characterization for projections in operator systems", Roy Araiza and Travis Russell To appear, Journal of Operator Theory.
- "A universal representation for quantum commuting correlations", Roy Araiza, Travis Russell and Mark Tomforde Annales Henri Poincare, 2022.
- "Matricial Archimedean order unit spaces and quantum correlations" Roy Araiza, Travis Russell and Mark Tomforde To appear, Indiana University Journal of Mathematics.

More references:

- "MIP*=RE", Zhengfeng Ji, Anand Natarajan, Thomas Vidick, John Wright, and Henry Yuen. Preprint, 2020.
- "Connes' embedding problem and Tsirelson's problem", Marius Junge, Miguel Navascues, Carlos Palazuelos, David Perez-Garcia, Volkher B Scholz, and Reinhard F Werner. Journal of Mathematical Physics, 2011.
- "Operator system structures on ordered vector spaces" Vern I. Paulsen, Ivan G. Todorov, and Mark Tomforde. Proceedings of the London Math Society, 2011.
- "The set of quantum correlations is not closed" William Slofstra. Math Forum Pi, 2019.

