
Quantum correlations via Operator Systems

Travis Russell
Based on joint work with Roy Araiza & Mark Tomforde

Dartmouth College

Functional Analysis Seminar
October 27, 2022



Background

2 / 27



Nonsignalling Games

Figure: Alice Figure: Bob

Q ∼ finite set of questions A ∼ finite set of answers

R ⊆ Q2 × A2 ∼ finite set of rules

Referee: Picks x , y ∈ Q. x 7→ Alice, y 7→ Bob.

Alice: a 7→ Referee; Bob: b 7→ Referee.

If (x , y , a, b) ∈ R, then Alice and Bob win. Otherwise, they lose.

3 / 27



Example: 2-coloring game

Consider the 5-cycle:

1

2

3 4

5

The two-coloring game: The referee assigns one vertex to Alice
and one to Bob, choosing the pair from

{(1, 1), (2, 2), . . . , (5, 5), (1, 2), (2, 3), . . . , (5, 1)}

Receive same vertex: Alice and Bob win if they return same color.
Receive adjacent vertices: Alice and Bob win if they return
different colors.
What strategy maximizes their chances of winning?
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Correlations

A correlation is a tuple

p = {p(a, b|x , y)}a,b∈A,x ,y∈Q

satisfying

p(a, b|x , y) ≥ 0 and
∑
a,b∈A

p(a, b|x , y) = 1.

A correlation p is nonsignalling if the marginal densities given by

pA(a|x) :=
∑
c∈A

p(a, c |x ,w) and pB(b|y) :=
∑
c∈A

p(c , b|z , y)

are well-defined.
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Deterministic strategy

A correlation is deterministic if pA(a|x), pB(b|y) ∈ {0, 1}.
Alice has f : Q → A; Bob has g : Q → A. If x 7→ Alice and y 7→
Bob, Alice: f (x) 7→ Referee and Bob: g(y) 7→ Referee.

Example

In the two coloring game, an optimal deterministic strategy is:
Alice and Bob agree on a coloring which is “almost” a
two-coloring. Chance of winning: 90%
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Local strategy

A correlation is local if it has the form

p =
k∑

i=1

tipi

where ti ≥ 0,
∑

ti = 1, and p1, . . . , pk are deterministic.

Example

In the two coloring game, an optimal local strategy is
deterministic: Chance of winning: 90%
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Quantum strategy

Quantum principles:

physical systems ∼= H,

state of physical system ∼= ϕ ∈ H,

measurements ∼= {Pa}ma=1 with P2
a = Pa and

∑
a Pa = I .

Observe a with probability ⟨Paϕ, ϕ⟩ = ∥Paϕ∥2.
A correlation p is called a quantum correlation if there exist finite
dimensional Hilbert spaces HA,HB , a unit vector ϕ ∈ HA ⊗ HB ,
and measurements {Ex ,a} ⊆ B(HA) and {Fy ,b} ⊆ B(HB) such that

p(a, b|x , y) = ⟨Ex ,a ⊗ Fy ,bϕ, ϕ⟩.

Example (Cleve-Hoyer-Toner-Watrous)

In the 5-cycle 2-coloring game, the optimal quantum strategy
allows Alice and Bob win with probability

1

2
+

1

2
cos(π/10) ∼= 97.6%
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Entanglement and quantum correlations

A state ϕ ∈ HA ⊗ HB has the form
∑
λiψi ⊗ ρi where ψi ∈ HA

and ρi ∈ HB .

A state ϕ is called separable if it can be written as ϕ = ϕA ⊗ ϕB
with ϕA ∈ HA and ϕB ∈ HB . If not, ϕ is called entangled.

Theorem (Bell)

If ϕ is separable, then the quantum correlation
p(a, b|x , y) = ⟨Ex ,a ⊗ Fy ,bϕ, ϕ⟩ is a local correlation.

So if a quantum strategy outperforms a local strategy, it must
require an entangled state...
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Quantum commuting correlations

A correlation p is called a quantum commuting correlation if
there exists a Hilbert space H, a unit vector ϕ ∈ H, and
measurements {Ex ,a,Fy ,b} ⊆ B(H) satisfying

Ex ,aFy ,b = Fy ,bEx ,a

such that
p(a, b|x , y) = ⟨Ex ,aFy ,bϕ, ϕ⟩.

Example

In the 5-cycle 2-coloring game, the optimal quantum commuting
strategy allows Alice and Bob win with probability 97.6%... same
as quantum.
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Quantum correlations in theory

For |Q| = n, |A| = m, let C∗(n,m) be all correlations of type ∗.

We have Cloc(n,m) ⊆ Cq(n,m) ⊆ Cqc(n,m) ⊆ Cns(n,m) ⊆ Rn2m2
.

Bell (1960s): Cloc(n,m) ̸= Cq(n,m); n,m ≥ 2.

Fritz, Junge et. al. (2011): A positive solution to Connes’
embedding problem (ca. 1970) implies the equality
Cq(n,m) = Cqc(n,m) for all n,m.

Slofstra (2019): Cq(n,m) ̸= Cqc(n,m); n = 235,m = 8.

Ji-Natarajan-Vidick-Wright-Yuen (Preprint, 2020):
Cq(n,m) ̸= Cqc(n,m); n,m ∼= 1020.
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Generating correlations from abstract data
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C*-algebras and Operator Systems

Given a Hilbert space H,

a C*-algebra is a self-adjoint closed unital subalgebra of
B(H).

an operator system is a self-adjoint unital subspace of B(H).

C*-algebras and operator systems also have “abstract” definitions.

An abstract C*-algebra is a normed ∗-algebra satisfying
∥x∥2 = ∥x∗x∥.

An abstract operator system is a ∗-vector space V together
with a sequence of positive cones Cn ⊆ Mn(V )h and unit e.

Given an abstract C*-algebra (abstract operator system) there
exists a Hilbert space H and an isomorphic C*-subalgebra
(operator subsystem) of B(H).
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Correlations from C*-algebras

A state on a C*-algebra (or operator system) is a linear functional
ϕ : A → C such that ϕ(I ) = 1 and ϕ(x) ≥ 0 whenever x ≥ 0.

Theorem (Folklore)

A correlation p is quantum commuting if and only if there exists a
C*-algebra A, projection-valued measures {Ex ,a}, {Fy ,b} ⊆ A with
Ex ,aFy ,b = Fy ,bEx ,a and a state ϕ such that
p(a, b|x , y) = ϕ(Ex ,aFy ,b). Moreover,

p ∈ Cq(n,m) if and only if the statement holds for a
finite-dimensional A.

p ∈ Cloc(n,m) if and only if the statement holds for a
commutative A.
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Correlations from operator systems?

Assume p ∈ Cqc(n,m) with p(a, b|x , y) = ⟨Ex ,aFy ,bϕ, ϕ⟩. Then:

V = span{Ex ,aFy ,b}

is an operator system and Ex ,aFy ,b 7→ ⟨Ex ,aFy ,bϕ, ϕ⟩ is a state on
V.

So correlations only require a finite dimensional operator system
and a state.

We can abstractly characterize operator systems, but what about
operator systems of the form

V = span{Ex ,aFy ,b}?
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Compressions of operator systems

Proposition (Araiza-R.)

Let p ∈ V ⊆ B(H), x ∈ V with x = x∗. Then pxp ≥ 0 if and only
if for every ϵ > 0 there exists a t > 0 such that

x + ϵp + t(I − p) ∈ V+.

Thus if p ∈ V is a projection, we can detect when pxp ≥ 0 using
only the data of the operator system (V, {Cn}, e).
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Characterization of projections

Assume p ∈ V ⊆ B(H) and p is a projection. Let q = I − p. Then
we may decompose each x ∈ V ⊆ B(H) = B(pH ⊕ qH) as

x =

(
pxp pxq
qxp qxq

)
.

Consider the compression of

(
x x
x x

)
by p ⊕ q, i.e.


(
pxp 0
0 0

) (
0 pxq
0 0

)
(

0 0
qxp 0

) (
0 0
0 qxq

)
 .

Observe that x ≥ 0 if and only if

(
x x
x x

)
has positive compression

by p ⊕ q.
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Characterization of projections

Definition

We call a positive contraction p in an abstract operator system V
an abstract projection if the set of x = x∗ ∈ Mn(V) satisfying for
every ϵ > 0 there exists t > 0 such that(

x x
x x

)
+ ϵIn ⊗ (p ⊕ q) + tIn ⊗ (q ⊕ p) ≥ 0

coincides with the positive cone of Mn(V).

Theorem (Araiza, R.)

A positive contraction p in an operator system (V, {Cn}, e) is an
abstract projection if and only if there exists a unital complete
order embedding π : V → B(H) such that π(p) is a projection.
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The set of abstract projections

The theorem allows us to build π : V → B(H) mapping a single
abstract projection p to an honest projection π(p). What if there
are many abstract projections?

Theorem (Araiza-R.)

Let p be an abstract projection in an operator system V. Then p is
a projection in C ∗

e (V).

Thus, if p1, p2, . . . , pN ∈ V are all abstract projections, then
p1, p2, . . . , pN are projections in C ∗

e (V).
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Quantum commuting operator systems

Definition

A quantum commuting operator system is a finite dimensional
operator system with unit e spanned by positive contractions
{Q(a, b|x , y) : a, b ∈ [m], x , y ∈ [n]} such that

For each x , y ∈ [n],
∑

a,b∈[m]Q(a, b|x , y) = e

For each x , y ∈ [n] and a, b ∈ [m], the vectors

E (a|x) :=
∑
c∈[m]

Q(a, c |x ,w) and F (b|y) :=
∑
c∈[m]

Q(c , b|z , y)

are well-defined

Each generator Q(a, b|x , y) is an abstract projection.
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Quantum correlations and operator systems

Theorem (Araiza, R.)

A correlation p is quantum commuting if and only if there exists a
quantum commuting operator system V = span{Q(a, b|x , y)} and
a state ϕ : V → C such that

p(a, b|x , y) = ϕ(Q(a, b|x , y)).

Proof elements:

The linear relations between {Q(a, b|x , y)} ensure p is
nonsignalling correlation.

Each Q(a, b|x , y) is a projection in C ∗
e (V).

The relations Q(a, b|x , y) = E (a|x)F (y |b) = F (y |b)E (a|x)
are forced.
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Matricial operator systems

An operator system V is k-minimal if it is isomorphic to a
subsystem of ⊕i∈IMk .

Proposition (Araiza-R.-Tomforde)

V is k-minimal if and only if

Cn = {x ∈ Mn(V)h : α∗xα ∈ Ck for all α ∈ Mn,k}

for each n > k .

An operator system is matricial if it is k-minimal for some k ∈ N.
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Quantum correlations and operator systems

Theorem (Araiza-R.-Tomforde)

A correlation p is quantum if and only if there exists a matricial
quantum commuting operator system V = span{Q(a, b|x , y)} and
a state ϕ : V → C such that

p(a, b|x , y) = ϕ(Q(a, b|x , y)).

Proof elements:

The previous theorem tells us p is quantum commuting.

Each Q(a, b|x , y) is a projection in C ∗
e (V), and C ∗

e (V) is a
C*-subalgebra of ⊕Mk .

Using Caratheodory’s theorem, p can be written as a finite
convex combination of quantum correlations.
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Correlations from operator systems

Corollary

Suppose V = span{Q(a, b|x , y)} is an operator system and
ϕ : V → C is a state. Let p(a, b|x , y) = ϕ(Q(a, b|x , y)).

1 If V quantum commuting, then p ∈ Cqc(n, k).

2 If V is quantum commuting and d-minimal for some d , then
p ∈ Cq(n, k).

3 If V is quantum commtuing and 1-minimal, then
p ∈ Cloc(n, k).

Problem: Construct a quantum commuting operator system
V = span{Q(a, b|x , y)} which cannot be approximated by a
d-minimal quantum commuting operator system for any d .
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Thanks!
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