Quantum correlations via Operator Systems

Travis Russell Based on joint work with Roy Araiza & Mark Tomforde

Dartmouth College

Functional Analysis Seminar October 27, 2022

Background

Nonsignalling Games

 $Q\sim$ finite set of questions $A\sim$ finite set of answers $R\subseteq Q^2 imes A^2\sim$ finite set of rules

Referee: Picks $x, y \in Q$. $x \mapsto$ Alice, $y \mapsto$ Bob.

Alice: $a \mapsto$ Referee; Bob: $b \mapsto$ Referee.

If $(x, y, a, b) \in R$, then Alice and Bob win. Otherwise, they lose.

Example: 2-coloring game

Consider the 5-cycle:

The two-coloring game: The referee assigns one vertex to Alice and one to Bob, choosing the pair from

$$\{(1,1), (2,2), \ldots, (5,5), (1,2), (2,3), \ldots, (5,1)\}$$

Receive same vertex: Alice and Bob win if they return same color. Receive adjacent vertices: Alice and Bob win if they return different colors.

What strategy maximizes their chances of winning?

A correlation is a tuple

$$p = \{p(a, b|x, y)\}_{a, b \in A, x, y \in Q}$$

satisfying

$$p(a, b|x, y) \ge 0$$
 and $\sum_{a,b\in A} p(a, b|x, y) = 1.$

A correlation p is **nonsignalling** if the **marginal densities** given by

$$p_A(a|x) := \sum_{c \in A} p(a,c|x,w)$$
 and $p_B(b|y) := \sum_{c \in A} p(c,b|z,y)$

are well-defined.

Deterministic strategy

A correlation is **deterministic** if $p_A(a|x), p_B(b|y) \in \{0, 1\}$. Alice has $f : Q \to A$; Bob has $g : Q \to A$. If $x \mapsto$ Alice and $y \mapsto$ Bob, Alice: $f(x) \mapsto$ Referee and Bob: $g(y) \mapsto$ Referee.

Example

In the two coloring game, an optimal deterministic strategy is: Alice and Bob agree on a coloring which is "almost" a two-coloring. Chance of winning: 90%

A correlation is **local** if it has the form

$$p=\sum_{i=1}^k t_i p_i$$

where $t_i \ge 0, \sum t_i = 1$, and p_1, \ldots, p_k are deterministic.

Example

In the two coloring game, an optimal local strategy is deterministic: Chance of winning: 90%

Quantum principles:

- physical systems $\cong H$,
- state of physical system $\cong \phi \in H$,
- measurements $\cong \{P_a\}_{a=1}^m$ with $P_a^2 = P_a$ and $\sum_a P_a = I$.
- Observe *a* with probability $\langle P_a \phi, \phi \rangle = \|P_a \phi\|^2$.

A correlation p is called a **quantum correlation** if there exist finite dimensional Hilbert spaces H_A, H_B , a unit vector $\phi \in H_A \otimes H_B$, and measurements $\{E_{x,a}\} \subseteq B(H_A)$ and $\{F_{y,b}\} \subseteq B(H_B)$ such that

$$p(a, b|x, y) = \langle E_{x,a} \otimes F_{y,b} \phi, \phi \rangle.$$

Example (Cleve-Hoyer-Toner-Watrous)

In the 5-cycle 2-coloring game, the optimal quantum strategy allows Alice and Bob win with probability

$$\frac{1}{2} + \frac{1}{2}\cos(\pi/10) \cong 97.6\%$$

Entanglement and quantum correlations

A state $\phi \in H_A \otimes H_B$ has the form $\sum \lambda_i \psi_i \otimes \rho_i$ where $\psi_i \in H_A$ and $\rho_i \in H_B$.

A state ϕ is called **separable** if it can be written as $\phi = \phi_A \otimes \phi_B$ with $\phi_A \in H_A$ and $\phi_B \in H_B$. If not, ϕ is called **entangled**.

Theorem (Bell)

If ϕ is separable, then the quantum correlation $p(a, b|x, y) = \langle E_{x,a} \otimes F_{y,b} \phi, \phi \rangle$ is a local correlation.

So if a quantum strategy outperforms a local strategy, it must require an entangled state...

Quantum commuting correlations

A correlation p is called a **quantum commuting correlation** if there exists a Hilbert space H, a unit vector $\phi \in H$, and measurements $\{E_{x,a}, F_{y,b}\} \subseteq B(H)$ satisfying

$$E_{x,a}F_{y,b}=F_{y,b}E_{x,a}$$

such that

$$p(a, b|x, y) = \langle E_{x,a}F_{y,b}\phi, \phi \rangle.$$

Example

In the 5-cycle 2-coloring game, the optimal quantum commuting strategy allows Alice and Bob win with probability 97.6%... same as quantum.

For |Q| = n, |A| = m, let $C_*(n, m)$ be all correlations of type *.

We have $C_{loc}(n,m) \subseteq C_q(n,m) \subseteq C_{qc}(n,m) \subseteq C_{ns}(n,m) \subseteq \mathbb{R}^{n^2m^2}$.

Bell (1960s): $C_{loc}(n,m) \neq C_q(n,m)$; $n,m \ge 2$.

Fritz, Junge et. al. (2011): A positive solution to *Connes' embedding problem* (ca. 1970) implies the equality $\overline{C_q(n,m)} = C_{qc}(n,m)$ for all n, m.

Slofstra (2019): $C_q(n,m) \neq C_{qc}(n,m)$; n = 235, m = 8.

Ji-Natarajan-Vidick-Wright-Yuen (Preprint, 2020): $\overline{C_q(n,m)} \neq C_{qc}(n,m); n, m \cong 10^{20}.$

Generating correlations from abstract data

Given a Hilbert space H,

- a **C*-algebra** is a self-adjoint closed unital subalgebra of *B*(*H*).
- an **operator system** is a self-adjoint unital subspace of B(H).

C*-algebras and operator systems also have "abstract" definitions.

- An abstract C*-algebra is a normed *-algebra satisfying $||x||^2 = ||x^*x||.$
- An abstract operator system is a *-vector space V together with a sequence of positive cones C_n ⊆ M_n(V)_h and unit e.

Given an abstract C*-algebra (abstract operator system) there exists a Hilbert space H and an isomorphic C*-subalgebra (operator subsystem) of B(H).

A state on a C*-algebra (or operator system) is a linear functional $\phi : \mathcal{A} \to \mathbb{C}$ such that $\phi(I) = 1$ and $\phi(x) \ge 0$ whenever $x \ge 0$.

Theorem (Folklore)

A correlation *p* is quantum commuting if and only if there exists a C*-algebra \mathcal{A} , projection-valued measures $\{E_{x,a}\}, \{F_{y,b}\} \subseteq \mathcal{A}$ with $E_{x,a}F_{y,b} = F_{y,b}E_{x,a}$ and a state ϕ such that $p(a, b|x, y) = \phi(E_{x,a}F_{y,b})$. Moreover,

- *p* ∈ C_q(*n*, *m*) if and only if the statement holds for a finite-dimensional A.
- *p* ∈ C_{loc}(*n*, *m*) if and only if the statement holds for a commutative A.

Correlations from operator systems?

Assume
$$p \in C_{qc}(n, m)$$
 with $p(a, b|x, y) = \langle E_{x,a}F_{y,b}\phi, \phi \rangle$. Then:
 $\mathcal{V} = \text{span}\{E_{x,a}F_{y,b}\}$

is an operator system and $E_{x,a}F_{y,b} \mapsto \langle E_{x,a}F_{y,b}\phi,\phi\rangle$ is a state on \mathcal{V} .

So correlations only require a finite dimensional operator system and a state.

We can abstractly characterize operator systems, but what about operator systems of the form

$$\mathcal{V} = \operatorname{span}\{E_{x,a}F_{y,b}\}?$$

Proposition (Araiza-R.)

Let $p \in \mathcal{V} \subseteq B(H)$, $x \in \mathcal{V}$ with $x = x^*$. Then $pxp \ge 0$ if and only if for every $\epsilon > 0$ there exists a t > 0 such that

$$x + \epsilon p + t(I - p) \in \mathcal{V}_+$$

Thus if $p \in \mathcal{V}$ is a projection, we can detect when $pxp \ge 0$ using only the data of the operator system $(\mathcal{V}, \{C_n\}, e)$.

Assume $p \in \mathcal{V} \subseteq B(H)$ and p is a projection. Let q = I - p. Then we may decompose each $x \in \mathcal{V} \subseteq B(H) = B(pH \oplus qH)$ as

$$x = \begin{pmatrix} pxp & pxq \\ qxp & qxq \end{pmatrix}$$

Consider the compression of

by

$$\begin{pmatrix} x & x \\ x & x \end{pmatrix} \text{ by } p \oplus q, \text{ i.e. } \begin{pmatrix} \begin{pmatrix} pxp & 0 \\ 0 & 0 \end{pmatrix} & \begin{pmatrix} 0 & pxq \\ 0 & 0 \end{pmatrix} \\ \begin{pmatrix} 0 & 0 \\ qxp & 0 \end{pmatrix} & \begin{pmatrix} 0 & 0 \\ 0 & qxq \end{pmatrix} \end{pmatrix}.$$
Observe that $x \ge 0$ if and only if $\begin{pmatrix} x & x \\ x & x \end{pmatrix}$ has positive compression by $p \oplus q$.

Definition

We call a positive contraction p in an abstract operator system \mathcal{V} an **abstract projection** if the set of $x = x^* \in M_n(\mathcal{V})$ satisfying for every $\epsilon > 0$ there exists t > 0 such that

$$egin{pmatrix} x \ x \ x \ x \end{pmatrix} + \epsilon I_n \otimes (p \oplus q) + t I_n \otimes (q \oplus p) \geq 0$$

coincides with the positive cone of $M_n(\mathcal{V})$.

Theorem (Araiza, R.)

A positive contraction p in an operator system $(\mathcal{V}, \{C_n\}, e)$ is an abstract projection if and only if there exists a unital complete order embedding $\pi : \mathcal{V} \to B(H)$ such that $\pi(p)$ is a projection.

The theorem allows us to build $\pi : \mathcal{V} \to B(H)$ mapping a single abstract projection p to an honest projection $\pi(p)$. What if there are many abstract projections?

Theorem (Araiza-R.)

Let p be an abstract projection in an operator system \mathcal{V} . Then p is a projection in $C_e^*(\mathcal{V})$.

Thus, if $p_1, p_2, \ldots, p_N \in \mathcal{V}$ are all abstract projections, then p_1, p_2, \ldots, p_N are projections in $C_e^*(\mathcal{V})$.

Definition

A quantum commuting operator system is a finite dimensional operator system with unit *e* spanned by positive contractions $\{Q(a, b|x, y) : a, b \in [m], x, y \in [n]\}$ such that

- For each $x, y \in [n], \sum_{a,b \in [m]} Q(a, b | x, y) = e$
- For each $x, y \in [n]$ and $a, b \in [m]$, the vectors

$$\mathsf{E}(\mathsf{a}|x) := \sum_{c \in [m]} Q(\mathsf{a}, c|x, w) \quad ext{and} \quad \mathsf{F}(b|y) := \sum_{c \in [m]} Q(c, b|z, y)$$

are well-defined

• Each generator Q(a, b|x, y) is an abstract projection.

Theorem (Araiza, R.)

A correlation p is quantum commuting if and only if there exists a quantum commuting operator system $\mathcal{V} = span\{Q(a, b|x, y)\}$ and a state $\phi : \mathcal{V} \to \mathbb{C}$ such that

$$p(a,b|x,y) = \phi(Q(a,b|x,y)).$$

Proof elements:

- The linear relations between {Q(a, b|x, y)} ensure p is nonsignalling correlation.
- Each Q(a, b|x, y) is a projection in $C_e^*(\mathcal{V})$.
- The relations Q(a, b|x, y) = E(a|x)F(y|b) = F(y|b)E(a|x)are forced.

An operator system \mathcal{V} is *k*-minimal if it is isomorphic to a subsystem of $\bigoplus_{i \in I} M_k$.

Proposition (Araiza-R.-Tomforde)

 \mathcal{V} is k-minimal if and only if

$$C_n = \{x \in M_n(\mathcal{V})_h : \alpha^* x \alpha \in C_k \text{ for all } \alpha \in M_{n,k}\}$$

for each n > k.

An operator system is **matricial** if it is k-minimal for some $k \in \mathbb{N}$.

Theorem (Araiza-R.-Tomforde)

A correlation p is quantum if and only if there exists a matricial quantum commuting operator system $\mathcal{V} = span\{Q(a, b|x, y)\}$ and a state $\phi : \mathcal{V} \to \mathbb{C}$ such that

$$p(a,b|x,y) = \phi(Q(a,b|x,y)).$$

Proof elements:

- The previous theorem tells us p is quantum commuting.
- Each Q(a, b|x, y) is a projection in $C_e^*(\mathcal{V})$, and $C_e^*(\mathcal{V})$ is a C*-subalgebra of $\oplus M_k$.
- Using Caratheodory's theorem, *p* can be written as a finite convex combination of quantum correlations.

Corollary

Suppose $\mathcal{V} = span\{Q(a, b|x, y)\}$ is an operator system and

- $\phi: \mathcal{V} \to \mathbb{C}$ is a state. Let $p(a, b|x, y) = \phi(Q(a, b|x, y))$.
 - If \mathcal{V} quantum commuting, then $p \in C_{qc}(n, k)$.
 - ② If V is quantum commuting and d-minimal for some d, then $p \in C_q(n, k)$.
 - If \mathcal{V} is quantum commtuing and 1-minimal, then $p \in C_{loc}(n, k)$.

Problem: Construct a quantum commuting operator system $\mathcal{V} = \text{span}\{Q(a, b|x, y)\}$ which cannot be approximated by a *d*-minimal quantum commuting operator system for any *d*.

Thanks!

References (on arXiv):

- "An abstract characterization for projections in operator systems", Roy Araiza and Travis Russell *To appear, Journal of Operator Theory*.
- "A universal representation for quantum commuting correlations", Roy Araiza, Travis Russell and Mark Tomforde *Annales Henri Poincare, 2022.*
- "Matricial Archimedean order unit spaces and quantum correlations" Roy Araiza, Travis Russell and Mark Tomforde *To appear, Indiana University Journal of Mathematics*.

More references:

- "MIP*=RE", Zhengfeng Ji, Anand Natarajan, Thomas Vidick, John Wright, and Henry Yuen. *Preprint, 2020*.
- "Connes' embedding problem and Tsirelson's problem", Marius Junge, Miguel Navascues, Carlos Palazuelos, David Perez-Garcia, Volkher B Scholz, and Reinhard F Werner. Journal of Mathematical Physics, 2011.
- "Operator system structures on ordered vector spaces" Vern I. Paulsen, Ivan G. Todorov, and Mark Tomforde. *Proceedings* of the London Math Society, 2011.
- "The set of quantum correlations is not closed" William Slofstra. *Math Forum Pi, 2019.*