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Background Framework Stability Forecasting Conclusion

What is learning

Given a set of inputs x1, x2, . . . ∈ U ⊆ RD , and outputs
y1, y2, . . . ∈ V ⊆ Rd , a learning task is to find a function

f ∶ U → V , f (xn) = yn, n = 1,2,3, . . . .

f is usually searched for from a hypothesis / search space H.
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General dynamics

Ω, μ

Ω

f:Ω--->Ω

Observation 
map φ

Rd

φ(Ω)

A dynamical system f ∶ Ω̃→ Ω̃ on a manifold Ω̃.

An invariant ergodic measure µ, with compact support Ω.

A C r function φ ∶ Ω→ Rd .

An orbit ω0, ω1, ω2, . . . ,, where ωn = f n(ω0).

A timeseries yn = φ(ωn), n = 1,2,3, . . ..
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Learning dynamics

Find a dynamical system f̂ ∶ RD → RD on some Euclidean space
RD with the dynamics,

x̂n+1 = f̂ (x̂n) , n = 1,2,3, . . . ,

and an observation map φ̂ ∶ RD → Rd such that

φ(ωn) = yn = φ̂ (x̂n) , n = 1,2,3, . . . .
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The Koopman operator U t

Dynamics / trajectories on phase space ↔ Dynamics in spaces of
observables.

Given a function ψ ∶ Ω→ R, (Unψ) is a new function defined as

(Unψ)(x) = ψ (f nx) .

ω f nω

ψ(ω) ψ(f nω)

f n

ψ ψ

Un

Space of observables :
.
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Embedding

There is an injective map Φ ∶ Ω→ RL, and a map g ∶ Rd ×RL → RL

such that
Φ ○ f = g ○ (φ ×Φ)

The map φ is the measurement through which the dynamical
system is observed. So the codomain of φ is often low dimensional
and may be only partially observe the system. Since Φ is an
embedding, it effectively serves as a representation of the
dynamics-space Ω in RL space. The function g connects the
dynamics, with the embedding and the measurement.
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Paradigm I - Delay embeddings [Φ ○ f = g ○ (φ ×Φ)]

{y1, y2, , . . . , yn, . . .}↦

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎢⎢⎣

y1

y2

⋮
y1+Q−1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

,

⎡⎢⎢⎢⎢⎢⎢⎢⎣

y2

y3

⋮
y2+Q−1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

, . . .

⎡⎢⎢⎢⎢⎢⎢⎢⎣

yn
yn+1

⋮
yn+Q−1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

, . . .

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭

,

Set L = Qd .

Φ ∶ Ω→ RL, Φ ∶ ω ↦
⎡⎢⎢⎢⎢⎢⎣

φ (ω)
⋮

φ (f Q−1ω)

⎤⎥⎥⎥⎥⎥⎦
, y

(Q)
n =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

yn
yn+1

⋮
yn+Q−1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

= Φ(f nω).

g ∶ Rd ×RL → RL, g ∶ u ×

⎡⎢⎢⎢⎢⎢⎢⎢⎣

z1

z2

⋮
zQ

⎤⎥⎥⎥⎥⎥⎥⎥⎦

↦

⎡⎢⎢⎢⎢⎢⎢⎢⎣

u
z1

⋮
zQ−1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
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Paradigm II - Reservoir computing [Φ ○ f = g ○ (φ ×Φ)]

A particular instance of g is

g(u, y) = tanh (Winu +WY y + vbias) ,

where Win, WY are random matrices of dimensions L × d , L × L
respectively, vbias is a random vector of dimension L, and
∥WY ∥ ≤ λ < 1. Using this g one can build a reservoir system,
which is a skew product system on Ω ×RL defined as

( ωn+1

yn+1
) ∶= Treservoir (

ωn

yn
) ∶= ( f (ωn)

g (φ(ω), yn)
) . (1)

The paradigm of invariant graphs has been used in reservoir
computing. It is popular due to the simplicity of its construction,
and ease of use in learning problems. They are known for their
robust performance in prediction but also for recovering other
properties such as Lyapunov exponents.
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The feedback function

Since Φ is an embedding, it effectively serves as a representation of
the dynamics-space Ω in RL space. The function g is explicitly
known and computable. Note that Φ○ f is the evolution of Φ under
one iteration of the dynamics of f . Thus g contains and encodes
the evolution law, in terms of the current states of Φ and φ.

For every k ∈ N, there is a function :

wk ∶ RL → Rd , wk ○Φ = Ukφ = φ ○ f k . (2)

Learning dynamics is about learning wk .
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Maps and functions - IIa
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Maps and functions - IIg
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The reconstruction : T = (w ○ proj2) × g

RL

Rd ×RL Rd ×RL

RL Ω Ω

Rd

g

T

proj2

proj2

proj1

w

UΦ

f

φ×Φ

Φ

Uφ

Uφ×UΦ

Φ

φ

φ×Φ

T ∶ Rd ×RL → Rd ×RL, [ un+1

yn+1
] = T [ un

yn
] = [ w (yn)

g (un, yn)
] .
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Overview

Invariant-graph 
based techniques
Theorem 1

Delay-coordinate
based techniques
Proposition 2

Underlying
dynamics (Ω, μ, f)
Assumption 1

Data φ

Embedding Φ

Assumption 2

wg
Reconstructed system (3)
Τ : Rd+L -> Rd+L  

Comparison with orginal dynamics

Lyapunov exponents
and stability
Theorem 3Conjugacy (4)

Forecasting

Direct forecasts
Theorem 7

Iterative forecasts
Theorem 8

Figure: Outline of results and theory.
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Lyapunov exponents : F ∶Mm →Mm

Given a point (x , v) in TM, consider the limit

λ(x , v) ∶= lim sup
n→∞

1

n
ln ∥DF n(x)v∥

λ(x , v) measures the asymptotic exponential rate of growth of
perturbations at the point x , and in the direction v .

Oseledet, Raghunathan, Froyland et. al. proved that with
probability 1, the λ(x , v) takes values from a finite collection
of numbers, known as Lyapunov exponents

λ1 ≥ λ2 ≥ ⋯ ≥ λm.
Nonuniform hyperbolicity theory [LS. Young, Ya. Pesin, A.
Katok et. al.] : over a set of full measure, the asymptotic
behavior of the dynamics splits the tangent bundle into m line
bundles, each representing a degree of stability / instability.
Each of these sub-bundles contribute to stable and unstable
manifolds.
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Spurious Lyapunov exponents

The dynamics f ∶ Ω→ Ω has m Lyapunov exponents, where
m = dim (Ω̃).

Ω̃ Ω (φ ×Φ)(Ω) Rd+L

Ω̃ Ω (φ ×Φ)(Ω) Rd+L

f

⊆

f

φ×Φ

h

T

⊂

T

⊆ φ×Φ ⊂

These m Lyapunov exponents are a subset of the d + L
Lyapunov exponents of T on the isomorphic image h(Ω).

Since the original dynamics is being embedded in higher
dimensional Euclidean space, an extra d + L −m Lyapunov
exponents are created.

This could lead to additional instabilities.
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Non-uniqueness of the learning target

Lyapunov exponents λi(T ) depend not only on the invariant set
X = h(Ω) but also on its neighborhood. The function w ∶ RL → Rd

is defined uniquely only on X and can be arbitrarily extended.

S ∶= {ŵ ∈ C 1 (RL;Rd) ∶ ŵ ∣X = w ∣X} ,

Every ŵ ∈S is a C 1 function satisfying ŵ ○Φ(ω) = (Uφ)(ω) for
every ω ∈ Ω. Thus the target learning function is not precise, it is
any function from the collection S.

The top Lyapunov exponent λ1(T ) depends continuously on S :

λ1 ∶S→ R, λ1(w̄) ∶= λ1(T ).

This leads to the structural constant

stability gap ∶= inf
w̄∈S

λ1(w̄) − λ1(f , µ).

This is an outcome of the dynamics f and embedding mechanism
g ∶ Rd+L → RL.
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Theorem 1. Stability gap

Assumption 3 The embedding mechanism g satisfies

sup
ω∈Ω

∥∂1g∥∣(φ(ω),Φ(ω)) ≤ 1, sup
ω∈Ω

∥∂2g∥∣(φ(ω),Φ(ω)) ≤ 1.

Assumption 4 There is a continuous retraction ret ∶ U → ran Φ, for
some open neighborhood U of ran Φ in RL.

κret ∶= sup
y∈ran Φ

lim sup
y ′→y

d (ret(y), ret(y ′))
d (y , y ′) .

Cφ,Φ ∶ Ω→ R+, Cφ,Φ(ω) ∶= sup{ ∥Dφ(ω)v∥
∥DΦ(ω)v∥ ∶ v ∈ TωΩ ∖ {0}} .

Under Assumptions 3 and 4 :

inf
w̄∈S

λ1(w̄) − λ1(f , µ) ≤ ∫ ln [1 + (1 + Cφ,Φ(ω))κret]dµ(ω). (3)
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Two modes of learning

Prediction mode. Directly learn the dynamics at time k , i.e. find :

wk ∶ RL+d → Rd , wk (Φ(x)) = (Ukφ)(x) = φ (f kx) .

Reconstruction mode. Learn one step and iterate : Or one can
iterate the step 1 learning k times :

w = w1 ∶ RL+d → Rd , w (Φ(x)) = (Uφ)(x) = φ (fx) .

Rd Rd ×RL RL Rd

Ω Ω Ω

proj2
g

wk

Φ φ×Φ Φ

f k

UkφUΦ

f

φ
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w = w1 ∶ RL+d → Rd , w (Φ(x)) = (Uφ)(x) = φ (fx) .

Rd Rd ×RL RL Rd

Ω Ω Ω

proj2
g

wk

Φ φ×Φ Φ

f k

UkφUΦ

f

φ
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Direct vs iterative

The predictive / direct mode, and the reconstrucive / iterative
mode differ only in the choice of k in the following diagram.

Rd Rd ×RL RL Rd

Ω Ω Ω

proj2
g

wk

Φ φ×Φ Φ

f k

UkφUΦ

f

φ

However, as a learning problem, the growth of their errors are
drastically different, governed by properties of the Koopman
operator and the Lyapunov spectrum respectively.
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Hypothesis space

The hypothesis space H will be a finite dimensional space, spanned
by a basis h1, . . . ,hm. In that case

W ∶= span{hi ○Φl ∶ 1 ≤ i ≤ m, 1 ≤ l ≤ L} (4)

WLOG we also assume that W contains the constant function 1RL .
Define the projection error to be the quantity

δ = δ(H) ∶= ∥(Id−proj
W

)Uφ∥L2(µ) . (5)

If wn is to be approximated by some ŵn from W.

errordirect(n) ∶= ∥Unφ − ŵn ○Φ∥L2(µ) . (6)
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Theorem 2. Direct forecast

There is a subset N′ ⊆ N with density 1 such that :

(i) For every ε > 0, if W is large enough, then

lim
n∈N′,n→∞

errordirect(n) = ∥φ − proj
D
φ∥L2(µ) + ε.

(ii) If f is weakly mixing, then for every choice of W

lim
n∈N′,n→∞

errordirect(n) = varµ ∶= ∥φ − µ(φ)∥L2(µ) .

(iii) If f is strongly mixing, the set N′ can be taken to be the
entire set N.

(iv) If f has purely discrete spectrum, then for every ε > 0, if the
hypothesis space W is chosen large enough, then

errordirect(n) < ε, ∀n ∈ N.
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Theorem 3. Iterative forecast

erroriter(n, ω) ∶= ∥Unφ(ω) − proj1 ○T̂ n ○ (φ,Φ)(ω)∥Rd ,

erroriter(n) ∶= [∫
Ω

erroriter(n, ω)2dµ(ω)]
1/2

.
(7)

1 For every ε > 0, there is a a constant C
(1)
ω,ε such that

erroriter(n, ω) = ∥∆un(ω)∥RL = δC (1)ω,εO (en(λ1+ε)) , as n →∞,
(8)

2 If (Ω, µ, f ) has L2 Pesin sets , then for every ε > 0,

erroriter(n) = ∥∆un∥L2(µ) = δC (2)ε O (en(λ1+ε)) , as n →∞.
(9)

for a constant C
(2)
ε that depends only on ε.
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An associated linear system

Consider matrix valued functions

W ∶ Ω→ Rd×L, W (ω) ∶= Dw ○Φ(ω),
Ŵ ∶ Ω→ Rd×L, Ŵ (ω) ∶= Dŵ ∣Φ(ω) = Dŵ ○Φ(ω),

G (1) ∶ Ω→ RL×d , G (1)(ω) ∶= ∇1g ∣h(ω) = ∇1g ○ h(ω),
G (2) ∶ Ω→ RL×L, G (2)(ω) ∶= ∇2g ∣h(ω)∇2g ○ h(ω),

(10)

and their combination

M ∶ Ω→ R(L+d)×(L+d), M(ω) ∶= [ 0d×d W (ω)
G (1)(ω) G (2)(ω) ] . (11)

vector-valued functions

c ∶ Ω→ RL, c(ω) ∶= G (1)(ω) (U−1∆φ) (ω).
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Perturbed matrix cocycle

Thus associated to the dynamics are two functions :

M ∶ Ω→ R(L+d)×(L+d), c ∶ Ω→ RL.

Fix an ω ∈ Ω and define

[ an+1

bn+1
] =M (f nω) [ an

bn
] + [ 0

c (f nω) ] , [ a0

b0
] = 0⃗ (12)

If one interprets the initial state ω as a random variable, then
M (f nω), c (f nω) are random sequences of matrices and vectors,
leading to the driven / random affine system (12).
This dynamics involves products

M (f nω)M (f n−1ω)⋯M (ω) ,

which brings in multiplicative ergodic theory.
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Theorem 3 - revisited

The reconstruction gives the dynamics :

[ un+1

yn+1
] = T̂ [ un

yn
] = [ ŵ (yn)

g (un, yn)
] . (13)

We are interested in the deviations :

[ ∆un
∆yn

] = [ Un−1πUφ
UnΦ

] − [ un
yn

] , ∀n ∈ N0. (14)

Random affine dynamics from (12) :

[ an+1

bn+1
] =M (f nω) [ an

bn
] + [ 0

c (f nω) ] , [ a0

b0
] = 0⃗

The affine system (12) approximates the error growth of (13) :

∆un = an +O (an−1)2 , lim
δ→0

∥∆un∥
∥an∥

= 1. (15)
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] = [ ŵ (yn)

g (un, yn)
] . (13)

We are interested in the deviations :

[ ∆un
∆yn

] = [ Un−1πUφ
UnΦ

] − [ un
yn

] , ∀n ∈ N0. (14)

Random affine dynamics from (12) :

[ an+1

bn+1
] =M (f nω) [ an

bn
] + [ 0

c (f nω) ] , [ a0

b0
] = 0⃗

The affine system (12) approximates the error growth of (13) :

∆un = an +O (an−1)2 , lim
δ→0

∥∆un∥
∥an∥

= 1. (15)



Background Framework Stability Forecasting Conclusion

Conclusions

1 Error from direct forecasts decay at the rate of decay of
correlations of the dynamical system, an ergodic property.

2 Error from direct forecasts decay at a rate determined by the
Lyapunov exponents of the system.

3 The stability of the reconstructed system depends on how the
map w was learned in the ambient neighborhood of the image
Φ(X ) of the attractor.



Background Framework Stability Forecasting Conclusion

Conclusions

1 Error from direct forecasts decay at the rate of decay of
correlations of the dynamical system, an ergodic property.

2 Error from direct forecasts decay at a rate determined by the
Lyapunov exponents of the system.

3 The stability of the reconstructed system depends on how the
map w was learned in the ambient neighborhood of the image
Φ(X ) of the attractor.



Background Framework Stability Forecasting Conclusion

Conclusions

1 Error from direct forecasts decay at the rate of decay of
correlations of the dynamical system, an ergodic property.

2 Error from direct forecasts decay at a rate determined by the
Lyapunov exponents of the system.

3 The stability of the reconstructed system depends on how the
map w was learned in the ambient neighborhood of the image
Φ(X ) of the attractor.



Background Framework Stability Forecasting Conclusion

Open problems

Devise learning techniques for w with either of these goals :

1 adapt the learning algorithm to inspect the unstable directions
more closely than the stable directions.

2 preserve the stability of the attractor.

3 Preserve the statistical property of the attractor.

4 preserve the topology of the attractor.
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