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INTRINSIC DENSITY, ASYMPTOTIC COMPUTABILITY, AND STOCHASTICITY

Abstract

by

Justin Miller

There are many computational problems which are generally “easy” to solve but have certain

rare examples which are much more difficult to solve. One approach to studying these problems is

to ignore the difficult edge cases. Asymptotic computability is one of the formal tools that uses this

approach to study these problems. Asymptotically computable sets can be thought of as almost com-

putable sets, however every set is computationally equivalent to an almost computable set. Intrinsic

density was introduced as a way to get around this unsettling fact, and which will be our main focus.

Of particular interest for the first half of this dissertation are the intrinsically small sets, the sets

of intrinsic density 0. While the bulk of the existing work concerning intrinsic density is focused on

these sets, there are still many questions left unanswered. The first half of this dissertation shall

endeavor to answer some of these questions. We shall prove some useful closure properties for the

intrinsically small sets and apply them to prove separations for the intrinsic variants of asymptotic

computability. We shall also completely separate hyperimmunity and intrinsic smallness in the Tur-

ing degrees and resolve some open questions regarding the relativization of intrinsic density.

For the second half of this dissertation, we shall turn our attention to the study of intermediate

intrinsic density. We shall develop a calculus using noncomputable coding operations to construct

examples of sets with intermediate intrinsic density. For almost all r ∈ (0, 1), this construction will

yield the first known example of a set with intrinsic density r which cannot compute a set random

with respect to the r-Bernoulli measure. Motivated by the fact that intrinsic density coincides with

the notion of injection stochasticity, we shall apply these techniques to study the structure of the

more well-known notion of MWC-stochasticity.
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CHAPTER 1

INTRODUCTION

1.1 Background

We shall use relatively standard notation from computability theory. Appendix A contains a

review of all notation and conventions we rely upon.

1.1.1 Asymptotic Computability

A noteworthy phenomenon in the world of computing is that of problems which are generally

“easy” to compute but have very difficult worst case instances. This gave rise to the notion of

generic computability, studied by Kapovich, Myasnikov, Schupp, and Shpilrain [13] in the context

of computing the word problems of finitely generated groups. This notion asserts that a set is

computable outside of a “small” error set where the algorithm does not answer. The notion of

smallness here is that of having asymptotic density 0:

Definition 1.1. The partial density of A ⊆ ω at n is

ρn(A) =
|A � n|
n

.

That is, it is the ratio of the number of things less than n that are in A to what could be in
A. The upper (asymptotic) density of A is

ρ(A) = lim sup
n→∞

ρn(A)

and the lower (asymptotic) density of A is

ρ(A) = lim inf
n→∞

ρn(A).

If ρ(A) = ρ(A), we call this limit the (asymptotic) density of A and denote it by ρ(A).

It is important to note that ρ(A) = 1 implies ρ(A) = 1 and ρ(A) = 0 implies ρ(A) = 0.

Informally, a set is asymptotically computable if there is a Turing machine that converges and

agrees with the set’s characteristic function on a set of asymptotic density 1. The error set is the

set of asymptotic density 0 where the Turing machine does not do this. However, there are multiple

1
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ways that this could happen. Requiring the Turing machine to behave in certain ways yields a total

of four separate notions of asymptotic computability.

Definition 1.2. A set A is generically computable if there is a partial computable function
ϕe such that ρ(We) = 1 and if ϕe(n) ↓, then ϕe(n) = A(n). The function ϕe is called a generic
description of A.

We think of generically computable sets as being computable “almost everywhere,” i.e. there

is an algorithm that correctly answers questions on a set of density 1, but does not answer on the

error set. Here the error set is the set of n on which the description diverges.

Definition 1.3. A set A is coarsely computable if there is a total computable function ϕe
such that ρ({n : ϕe(n) = A(n)}) = 1. The function ϕe is called a coarse description of A.

For coarse computability, the description is forced to answer every question, but is allowed to

give the incorrect answer on the error set. That is, the error set is the set of numbers on which the

description and the set disagree.

Definition 1.4. A set A is densely computable if there is a partial computable function ϕe
such that ρ({n : ϕe(n) ↓= A(n)}) = 1. The function ϕe is called a dense description of A.

For dense computability, the description can both answer questions incorrectly and not answer

them on the error set. More specifically, the error set consists of both the places where the description

diverges and those where it converges but disagrees with the characteristic function.

Definition 1.5. A set A is effectively densely computable if there is a total computable
function ϕe : ω → {0, 1,�} such that ρ(ϕ−1e ({0, 1})) = 1 and ϕe(n) ∈ {0, 1} implies ϕe(n) =
A(n).

Effective dense computability, on the other hand, must answer correctly everywhere it answers

and must converge on all n. However, it may refuse to answer, which is represented by converging

to �. In particular, the error set, which is the inverse image of � under the description, must be

computable.

Note that there are some obvious implications between these notions. Effective dense com-

putability implies both coarse computability and generic computability, and both of these imply

dense computability. For an overview of the history of these notions, refer to the first section of [5].

One potentially unsettling feature of all four notions of asymptotic computability is that they

depend heavily on the way in which information is coded. In fact, Jockusch and Schupp [12] give

a simple argument that can show every Turing degree contains a set which is effectively densely

2
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computable by “hiding” an entire set of any degree on a small computable set such as the set of

factorials. (As the other three notions are implied by effective dense computability, the same is

automatically true for every notion of asymptotic computability.)

Proposition 1.6. Let X ⊆ ω. Then there is A ≡T X which is effectively densely computable.

Proof. Given X, let A = {n! : n ∈ X}. Then A is clearly Turing equivalent to X, and the function

f(n) =


� if n = k!

0 otherwise

witnesses that A is effectively densely computable.

This justifies the idea that these notions of being “almost” computable are heavily dependent

upon how the set is coded: computably re-arranging the elements of a set can break the prop-

erty of being “almost computable,” and any computational problem is equivalent to an “almost”

computable problem.

1.1.2 Intrinsic Density

To combat this instability, Astor [4] introduced the notion of intrinsic density, a strengthening

of asymptotic density.

Definition 1.7. The absolute upper density of A ⊆ ω is

P (A) = sup{ρ(π(A)) : π a computable permutation}

and the absolute lower density of A is

P (A) = inf{ρ(π(A)) : π a computable permutation}.

If P (A) = P (A), then we call this limit the intrinsic density of A and denote it by P (A).

Of special interest to the first half of this dissertation is the property of having intrinsic density

0, which has been studied extensively by Astor [4],[3] in relation with other notions of smallness

such as immunity. We will refer to sets that have intrinsic density 0 as intrinsically small to ease

notation slightly. Technically finite sets meet this definition, but from here on we shall use the term

to refer to infinite sets, as those are the interesting ones. We wish to study intrinsically small sets

in order to use them as our error sets in an intrinsic version of asymptotic computability, which we

shall discuss in Section 2.3.

3
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One easy observation about intrinsically small sets is that there are more computable functions

f such that ρ(f(A)) = 0 for all intrinsically small sets A than just the computable permutations.

For example, if π is a computable permutation, then 2 · π is not a computable permutation but the

image of any intrinsically small set under it still has density 0. The following definition captures

the idea of classes of functions preserving smallness.

Definition 1.8. For a class F of (partial) computable functions from ω to ω, we say that
A ⊂ ω is small for F if ρ(f(A)) = 0 for every f ∈ F .

Notice that A is intrinsically small if and only if it is small for computable permutations.

For the second half of this dissertation, we shall be primarily interested in sets of intermediate

intrinsic density, i.e. sets A with P (A) ∈ (0, 1). Using the representation for sets of the form

A = {a0 < a1 < a2 < · · · < an < . . . }, it is not hard to see the following characterization of upper

and lower asymptotic density which will prove helpful for studying densities other than 0:

Lemma 1.9. Let A ⊆ ω be {a0 < a1 < a2 < . . . }. Then

• ρ(A) = lim supn→∞
n+1
an+1

• ρ(A) = lim infn→∞
n
an

Proof. Note that if A � (n+ 1) has a 0 in the final bit, then

ρn(A) =
|A � n|
n

>
|A � n|
n+ 1

= ρn+1(A)

Therefore, to compute the upper density it suffices to check only those numbers n for which A � n has

a 1 as its last bit. Those numbers are exactly an+1 by the definition of an, and |A � (an+1)| = n+1.

Therefore { n+1
an+1}n∈ω is a subsequence of {ρn(A)}n∈ω which dominates the original sequence, so

ρ(A) = lim supn→∞ ρn(A) = lim supn→∞
n+1
an+1 .

Similarly, to compute the lower density it suffices to check only the numbers n such that the

final digit of A � n is a 0, but the final digit of A � (n+ 1) is a 1. (That is, if there is a consecutive

block of zeroes in the characteristic function of A, we only need to check the density at the end

of the block when computing lower density, as each intermediate point of the zero block has a

higher density than the end.) These numbers are exactly an by definition, and |A � an| = n.

Therefore { nan }n∈ω is a subsequence of {ρn(A)}n∈ω which is dominated by the original sequence, so

ρ(A) = lim infn→∞ ρn(A) = lim infn→∞
n
an

.

4
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Interestingly, intrinsic density turns out to be a robust measure of unpredictability. In fact, we

shall see below that it is equivalent to injection stochasticity. If a set X has intrinsic density, then

we cannot computably shrink or enlarge parts of it with a permutation to change the density. If we

knew where elements of X could be found, then we could build a permutation that sent them to a

set of density 1 or 0. This intuition has a formal counterpart: Astor [3] proved that any nontriv-

ial set with intrinsic density must be of high or DNC degree, i.e. must be sufficiently noncomputable.

A natural question to ask is what reals in the unit interval can be achieved as the intrinsic density

of some set. On one hand, this question has a straightforward answer: as seen in Proposition 1.19

below, appealing to randomness will yield intrinsic density r for any r ∈ (0, 1). However, as intrinsic

density is itself a poor notion of randomness (for example, we shall show that if P (A) = r, then

P (A⊕A) = r), we would like to have a better understanding of the sets with intermediate intrinsic

density that is not merely given by the existence of a much stronger set. Our goal shall be to develop

technology for building examples of sets with different defined intrinsic densities (and other notions

of density or stochasticity as well) that isn’t reliant on randomness. Unfortunately, computable

coding methods cannot do this, an observation that we will formalize in Section 3.1. This motivates

our development of new tools for noncomputable coding, the into and within operations on sets,

which we shall introduce in Section 1.1.4. These operations shall turn out to be highly effective at

coding sets in noncomputable fashion for multiple notions of density, starting with intrinsic density

in Section 3.2 and MWC density in Section 3.3.

A critical proof technique for intrinsic density will involve proving that two sets A and B cannot

have different intrinsic densities by creating a computable permutation which sends A to B modulo

a set of density zero. The following lemma shows that if we can do this, then the density of the

image of A is the same as the density of B, and therefore that they cannot have different intrinsic

densities.

Lemma 1.10. If ρ(H) = 0, then ρ(X \H) = ρ(X ∪H) = ρ(X) and ρ(X \H) = ρ(X ∪H) =
ρ(X).

Proof. Notice by definition that

ρn(X) = ρn(X \H) + ρn(X ∩H).

5
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Therefore,

ρ(X) = lim sup
n→∞

ρn(X) = lim sup
n→∞

ρn(X \H) + ρn(X ∩H).

By subadditivity of the limit superior,

ρ(X) ≤ lim sup
n→∞

ρn(X \H) + lim sup
n→∞

ρn(X ∩H).

As ρ(H) = 0 and X ∩H ⊆ H,

ρ(X) ≤ lim sup
n→∞

ρn(X \H) = ρ(X \H).

However, ρ(X \H) ≤ ρ(X) because X \H ⊆ X, so ρ(X) = ρ(X \H) as desired.

The argument for the union and the argument for lower density are functionally identical. (For

the union we use X ∪H, X, and H \X in place of X, X \H, and X ∩H respectively.)

1.1.3 Stochasticity and Randomness

As hinted above, intrinsic densities between 0 and 1 are linked to stochasticity and randomness.

Here we shall provide a brief review of these from the perspective of computability theory. Stochas-

ticity and randomness are closely related notions which also measure unpredictability (how much

information an observer lacks), and turn out to have strong ties to intrinsic density. Stochastic-

ity represents the idea that we cannot select bits from an infinite sequence of 0’s and 1’s in such

a way that the ratio of 1’s to the number of bits is not the same as the ratio for the original sequence.

One can think of this as having an infinite sequence X of 0-1-valued coins, where we also think

of X as a set under the identification X = {n : the n-th coin is 1-valued}. We try to use some selec-

tion process to pick coins from X to build a new sequence of coins Y with ρ(Y ) 6= ρ(X). If we are

successful, then X is not stochastic. Changing the ways we are allowed to select coins gives us dif-

ferent notions of stochasticity. We review the noteworthy notions of stochasticity from the literature.

A monotone selection function is a partial function f : 2<ω → {0, 1}. That is, f looks at a finite

binary string and decides if it wants to select (i.e. return 1) the following bit or not based on the

previous bits. A selection function may actively decline to select a bit (i.e. return 0), or simply never

make a decision (i.e. diverge). Given a selection function f , it induces a partial map f̂ : 2ω → 2ω

6
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that is defined via f̂(A) = {n : f(A � n) ↓= 1} for all A . (We shall abuse notation and allow f

to represent both a monotone selection function and the induced map f̂ on Cantor space.) We say

A is von Mises-Wald-Church (MWC) stochastic for r if either f(A) does not exist (i.e., f selects

only finitely many bits on A) or ρ({n : pf(A)(n) ∈ A}) = r for all computable monotone selection

functions. If we restrict this to only the total f , then the corresponding notion is called Church

stochasticity. In both cases, we may use the results of the first n bits to computably determine

whether or not we want to select the (n+ 1)-st bit, but all of the bits we select must be counted in

order. (It is straightforward to check that this is the same definition as one would find in Downey-

Hirschfeldt [8], however it is expressed in the notation of densities.)

Using our coin analogy, for Church stochasticity, all of the coins have been covered by cups. We

must choose whether or not to add the first coin to our new sequence before looking under any

cups. Then we look under the first cup and check the value, and we use this information moving

forward. Having revealed the first n coins, we must computably choose whether or not to select the

(n+ 1)-st coin (i.e., determine if we think it is 1-valued) prior to revealing it.

For MWC stochasticity, at each step we provide a program that will decide whether or not to

select the (n + 1)-st coin based on the results of the first n coins. We then run the program and

look under the cup. We do not need to wait for the program to halt (and it may never halt) before

continuing on to the next coin, but we can never go back and feed the program more informa-

tion or change it in any way. Even though our selection process for the n-th coin may halt after

the value of the n-th coin is known, it could not have had access to that information in its calculation.

Another historically important notion of stochasticity is Kolmogorov-Loveland stochasticity, or

KL-stochasticity. This notion is similar to MWC-stochasticity, however we are allowed to select

coins out of order and are not required to view all of them. Formally, a finite assignment is an

element σ of (ω × {0, 1})<ω satisfying that each n ∈ ω appears in the first element of at most one

pair of σ, that is a finite sequence of pairs (a, b) for distinct natural numbers a and not necessarily

distinct b ∈ {0, 1}. A finite assignment encodes finitely many bits of a set A much like a finite binary

string; however, finite assignments are not required to define initial segments of A. We define FA

to be the set of all finite assignments. A scan rule is a partial function s : FA→ ω which satisfies

that for all σ ∈ FA, neither (s(σ), 0) nor (s(σ), 1) is in σ. A scan rule determines how we select the

7
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next bit based on the information of finitely many bits, possibly out of order: having seen the a-th

bit is a b for each (a, b) ∈ σ, s(σ) is the index of the next bit we wish to check. Given a set A and

a scan rule s, we recursively define sA(n) to represent the result of the first n bits of A selected by

s: sA(0) = ∅ and

sA(n+ 1) = sA(n)_(s(sA(n)), A(s(sA(n)))).

We consider pairs (s, c) of a scan rule s and a partial choice function c : FA→ {0, 1}. The scan rule

determines how to look at the bits, and the choice function c determines which bits to select, i.e. if

c(σ) = 1 then we would like to count the s(|σ| + 1)-th bit. Revisiting the coin analogy, the coins

are once again hidden under cups. The scan rule s determines the order in which we look under the

cups, and the choice function c determines whether we want to select the next coin based on those

already revealed.

A pair (s, c) induces a pair of partial maps sKL, cKL : 2ω → 2ω via

cKL(A) = {n : c(sA(n)) = 1}

and

sKL(A) = {n : A(sA(n)) = 1}.

That is, cKL(A) represents the set of bits of A selected by c and sKL(A) represents those bits

rearranged into the order in which they were selected. Then A is Kolmogorov-Loveland stochas-

tic, or KL-stochastic, for r if for all computable choice functions c and computable scan rules s

either sKL(A) or cKL(A) does not exist (i.e., s and c combine to only select finitely many bits) or

ρ({n : psKL(A)(n) ∈ cKL(A)}) = r.

If the process of selection is uniform in regards to the input set, i.e. the order we select coins

in does not change in relation to the value of those coins, then we obtain the weaker notion of

injection stochasticity. Formally, a set A is injection stochastic for r if ρ(f−1(A)) = r for all total

computable injective f . Permutation stochasticity, as expected, is the subclass where f is required

to be a permutation. Using this definition, Astor first observed the following:

Proposition 1.11 (Astor [4] Lemma 4.2). A set A is r-injection stochastic if and only if it is
r-permutation stochastic.

Proof. If A is r-injection stochastic, it is trivially r-permutation stochastic.

8
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Suppose that A is r-permutation stochastic. Then ρ(π(A)) = r for every computable permuta-

tion π. Let f be a total computable injective function and let F = {n! : n ∈ ω}. Define πf via

πf (n) = f(n) if n 6∈ F and f(n) is not in πf ([0, n)), and the least element of the complement of

πf ([0, n)) otherwise. As πf is a computable permutation, so is π−1f and thus ρ(π−1f (A)) = r.

Now notice that π−1f (A) � n differs from f−1(A) � n by at most 2|F � n|, as there can only

be disagreement on F and f−1(πf (F )). In fact, there are two types of disagreement. In the first,

we specifically mapped πf (n!) to something other than f(n!), which can only happen within F .

In the second, k is not a factorial but f(k) ∈ πf ([0, k)) because of some n! < k. Thus the set of

disagreements has density zero because F does, so

ρ(f−1(A)) = ρ(π−1f (A)) = r.

It is immediate from the definition that r-permutation stochasticity is exactly intrinsic density

r. Therefore, this lemma shows that r-injection stochasticity also corresponds to intrinsic density

r. Unlike stochasticity, intrinsic density is defined without fixing r ahead of time. Motivated by

this, we shall use C-density r to mean C stochasticity for r, where C stands for some fixed notion of

stochsticity such as injection or MWC.

While computability theory most commonly studies stochasticity with regards to 1
2 , stochasticity

with regards to parameters other than 1
2 has been studied before. For example, see Kjos-Janssen,

Taveneaux, and Thapen [16]. However, our use of the term density as opposed to stochasticity is to

differentiate our intentions: stochasticity is generally studied by fixing some r ∈ [0, 1] and a notion

of stochasticity and then studying the class of sets which are stochastic for r. (In the context of

randomness, this corresponds to fixing a measure from the outset.) Density, on the other hand,

does not fix r and studies the class of sets which are stochastic for some r. This is a larger class

that often has its own interesting properties. While the same sets appear in both settings, we are

really studying the class containing these sets.

We shall study the class of sets with intrinsic (injection-) density in Section 3.2, and we shall

9
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study the class of MWC-density sets in Section 3.3 using the tools developed in Section 3.2. One

important trait of Church-density is that if A has Church-density α, then ρ(A) = α because the

selection function 1̂ which selects every bit is a total computable monotone selection function. It

follows immediately from the fact that MWC-density is defined for a larger class of selection func-

tions and therefore contains 1̂ that the same is true of MWC-density.

Closely related, randomness is well-studied and more well-known than stochasticity, so we shall

only provide a cursory overview. (For a more in-depth review of randomness as well as stochasticity,

see Downey-Hirschfeldt [8].) While there are many notions of randomness, we shall only need 1-

Randomness, also known as Martin-Löf Randomness, for our purposes. There are many equivalent

ways of defining randomness, and we shall recall two. In computability theory most randomness is

studied with respect to the Lebesgue measure, so we shall start with the more familiar form before

generalizing the definitions to arbitrary measures.

Definition 1.12. A martingale is a function m : 2<ω → R≥0 such that

m(σ) =
1

2
m(σ0) +

1

2
m(σ1)

for all σ. A supermartingale is a function s : 2<ω → R≥0 with

s(σ) ≥ 1

2
s(σ0) +

1

2
s(σ1)

for all σ. A (super)martingale m succeeds on a set X if lim supn→∞m(X � n) = ∞. X is
1-Random if no computably enumerable supermartingale succeeds on it.

Martingales capture the unpredictability of random sets: we could not win arbitrarily large

amounts of money betting on the bits of X in any c.e. or computable way. An alternative yet

equivalent formulation of randomness is the measure-theoretic approach, which is based upon the

intuition that if a set is random then it should avoid all small sets which can be described with

computable approximations.

Definition 1.13. A Martin-Löf (ML) test is a sequence {Ui}i∈ω of uniformly Σ0
1 classes with

µ(Ui) ≤ 2−i for all i. (Here µ is the usual Lebesgue measure on Cantor space.) A set X passes
{Ui}i∈ω if X 6∈

⋂
i∈ω Ui. X is 1-Random if it passes every Martin-Löf test.

While historically the study of algorithmic randomness began with respect to the Lebesgue or

“fair coin” measure, much work has focused on studying randomness with respect to other measures.

It is not difficult to see how Definition 1.13 generalizes to an arbitrary computable measure. By

convention, all of our measures will be probability measures, i.e. the measure of Cantor space itself

will always be 1.

10
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Definition 1.14. Let ν be a computable measure on Cantor space. A ν-Martin-Löf test is a
sequence {Ui}i∈ω of uniformly Σ0

1 classes with ν(Ui) ≤ 2−i for all i. A set X passes {Ui}i∈ω
if X 6∈

⋂
i∈ω Ui. X is 1-Random with respect to ν if it passes every ν-Martin-Löf test.

Note that effectivity concerns are all that keep one from generalizing this to arbitrary measures.

Investigating ways to address this problem has proven to be a rich area of study. Given an arbitrary

measure µ, Reimann and Slaman [21] defined randomness with respect to µ as being random with

respect to some representation of µ. Conversely, Levin [17], Gács [10], and Hoyrup and Rojas [19]

utilized the notion of uniform tests to give an alternate definition. Day and Miller [7] proved that

these approaches are in fact the same.

One can generalize the equivalence of Definition 1.12 and Definition 1.13 to obtain a definition

for randomness with respect to a measure for martingales to match 1.14.

Definition 1.15. Let µ be a computable measure. Given a finite binary string σ, [σ] ⊆ 2ω

represents the basic open set of extensions of σ, and µ(σ) = µ([σ]). A µ-martingale is a
function m : 2<ω → R≥0 such that

µ(σ)m(σ) = µ(σ0)m(σ0) + µ(σ1)m(σ1)

for all σ. A µ-supermartingale is a function s : 2<ω → R≥0 with

µ(σ)s(σ) ≥ µ(σ0)s(σ0) + µ(σ1)s(σ1)

for all σ. A µ-(super)martingale m succeeds on a set X if lim supn→∞m(X � n) =∞. A set
X is µ-1-Random if no computably enumerable µ-supermartingale succeeds on it.

As in the case of definition 1.14, there are some effectivity concerns in regards to non-computable

measures, but they will not affect our work.

We are primarily concerned with the following special class of measures.

Definition 1.16. Let 0 < r < 1 be a real number. The Bernoulli measure with parameter r,
µr, is the measure on Cantor space such that for any σ ∈ 2<ω,

µr(σ) = r|{n<|σ|:σ(n)=1}|(1− r)|{n<|σ|:σ(n)=0}|.

We say X is r-1-Random if it is µr-1-Random.

Note that µ 1
2

is the usual Lebesgue measure. More generally, µr is the r-biased “coin flip”

measure, or the measure induced by the Bernoulli probability with parameter r. As we are only

working with Bernoulli measures, we shall use the Reimann-Slaman definition of randomness for

noncomputable measures and rely only on the fact that every representation of µr can compute r,

11
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i.e. [21] Propositions 2.2 and 2.3.1

Stochasticity and randomness are closely related. Cholak asked the interesting question if they

can be viewed as the same, i.e. is there a natural notion C of stochasticity for which C-density

r corresponds to µr-Randomness? Bienvenu pointed out that this is essentially answered by a

result of Vovk [27] (With related work done by Bienvenu [6] proving the same for weaker notions

of randomness) in the negative for any reasonably natural notion: If {pi}i∈ω is a sequence of reals,

then the generalized Bernoulli measure ν for this sequence is given by

ν(σ) = Π
σ(i)=1

pi · Π
σ(i)=0

(1− pi)

If this sequence converges to r with Σ∞i=0(pi−r)2 =∞, then the ν-random sets and the r-1-Random

sets are disjoint. Thus under any natural notion of stochasticity C, the selected bits will be given

by independent random variables of probability arbitrarily close to probability r for all but finitely

many. Therefore both r-1-randoms and ν-randoms would have C-density r. This illustrates a fun-

damental difference between randomness and stochasticity: selecting subsequences and measuring

their density is a fundamentally coarser measure of unpredictability than randomness.

A slight modification of the standard proof that randomness for (super)martingales is the same

as randomness for Martin-Löf tests (as found in Downey-Hirschfeldt [8] Section 6.3.1, referencing

work of Ville [26] and Schnorr [23]) shows that 1-Randomness with respect to µ is equivalent to

µ-1-Randomness.

Theorem 1.17 (Essentially Ville [26]). Let µ be a computable measure. Let m be a µ-
(super)martingale.

• If σ ∈ 2<ω and S is a prefix-free set of extensions of σ, then

Σ
τ∈S

µ(τ)m(τ) ≤ µ(σ)m(σ).

• Let Rn = {X : ∃k m(X � k) ≥ n}. Then µ(Rn) ≤ m(∅)
n .

Proof. • Note that it suffices to only consider finite sets S, as if S is infinite and Στ∈S µ(τ)m(τ) >
µ(σ)m(σ), there is some finite subset of S also exhibiting this property.

1As pointed out by Bienvenu, one could avoid representations altogether: It is possible to avoid martingales
completely and solely argue via tests. By a result of Kjos-Hanssen [14], the so-called Hippocratic r-Random sets,
defined via Hippocratic ML-tests (essentially ML-tests which can be accessed without seeing information about r and
µr), are exactly the r-1-Random sets. However, we use martingales for their similarity to selection functions. While
there is a notion of Hippocratic martingale, it is unknown if it defines the same notion of randomness.

12
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We argue by induction on |S|. For |S| = 1, let τ � σ, τ = σγ for some γ ∈ 2<ω. Note by
induction and the definition of a µ-(super)martingale that µ(γ)m(τ) ≤ m(σ). Therefore,

µ(τ)m(τ) = µ(σ)µ(γ)m(τ) ≤ µ(σ)m(σ).

Now suppose |S| = k + 1 and the induction hypothesis holds for all i ≤ k. Let γ � σ be
maximal such that τ � γ for all τ ∈ S. Then let S0 ⊆ S be the set of all τ ∈ S with τ � γ0
and let S1 = S \ S0. (Note that for all τ ∈ S1, τ � γ1.) Therefore, as γ is maximal such that
all τ ∈ S are extensions of γ, both |S0| ≤ k and |S1| ≤ k. Therefore, the induction hypothesis
implies that

Σ
τ∈S0

µ(τ)m(τ) ≤ µ(γ0)m(γ0)

and

Σ
τ∈S1

µ(τ)m(τ) ≤ µ(γ1)m(γ1).

Therefore,

Σ
τ∈S

µ(τ)m(τ) = Σ
τ∈S0

µ(τ)m(τ) + Σ
τ∈S1

µ(τ)m(τ) ≤ µ(γ0)m(γ0) + µ(γ1)m(γ1).

By the properties of a µ-(super)martingale, we have

µ(γ0)m(γ0) + µ(γ1)m(γ1) ≤ µ(γ)m(γ)

and therefore

Σ
τ∈S

µ(τ)m(τ) ≤ µ(γ)m(γ).

The base case proved that µ(γ)m(γ) ≤ µ(σ)m(σ), so this concludes the induction.

• Let S be a prefix-free set that induces the Σ0
1-class Rn with all τ ∈ S satisfying m(τ) ≥ n. By

definition,
µ(Rn) = Σ

τ∈S
µ(τ).

As each τ ∈ S satisfies m(τ) ≥ n,

Σ
τ∈S

µ(τ) ≤ Σ
τ∈S

m(τ)

n
µ(τ).

Finally, we may apply the first part with σ = ∅ to obtain

Σ
τ∈S

m(τ)

n
µ(τ) ≤ µ(∅)m(∅)

n
.

As µ(∅) = µ([∅]) = µ(2ω) = 1, we conclude

Σ
τ∈S

m(τ)

n
µ(τ) ≤ m(∅)

n
.

Theorem 1.18 (Essentially Schnorr [23]). A setX is µ-1-Random if and only if it is 1-Random
with respect to µ.

Proof. Let m be a c.e. µ-(super)martingale. Without loss of generality, assume m(∅) = 1. Let

13
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Un = {X : ∃k m(X � k) ≥ 2n}. This is a µ-Martin-Löf test by Theorem 1.17, and it is immediate

that X ∈
⋂
n∈ω Un if and only if m succeeds on X.

Let {Un}n∈ω be a µ-Martin-Löf test with {Sn}n∈ω the uniform sequence of c.e. prefix-free sets of

finite binary strings which induces {Un}n∈ω. We shall define c.e. µ-martingales mn via the following

procedure: If we see σ enter Sn at some stage, then add 1 to mn(τ) for all τ � σ. For γ ≺ σ, add

µ(σ)
µ(γ) to mn(γ) if µ(γ) is nonzero, and 0 otherwise. Then it is immediate from this definition that

me : 2<ω → R≥0 is a c.e. function. Furthermore, note that it is a µ-martingale: let σ ∈ 2<ω. We

must show that µ(σ)mn(σ) = µ(σ1)mn(σ1) + µ(σ0)mn(σ1).

As Sn is prefix-free, if σ � τ ∈ Sn, then

µ(σ1)mn(σ1) + µ(σ0)mn(σ0) = µ(σ1) + µ(σ0) = µ(σ) = µ(σ)mn(σ)

by construction. Otherwise, if µ(τ) = 0 for some τ � σ, then µ(σ) = µ(σ0) = µ(σ1) = 0 and we are

done. Therefore, we may assume µ(τ) > 0 for all τ � σ. Then

mn(σ) = Σ
τ∈Sn,τ�σ

µ(τ)

µ(σ)
=

1

µ(σ)
Σ

τ∈Sn,τ�σ
µ(τ)

by definition. Note that for i = 0, 1,

mn(σi) = Σ
τ∈Sn,τ�σi

µ(τ)

µ(σi)

as if σi ∈ Sn then mn(σi) = 1 = µ(σi)
µ(σi) . Therefore,

µ(σ1)mn(σ1) + µ(σ0)mn(σ0) = µ(σ1)( Σ
τ∈Sn,τ�σ1

µ(τ)

µ(σ1)
) + µ(σ0)( Σ

τ∈Sn,τ�σ0

µ(τ)

µ(σ0)
).

Factoring out the denominators, we get

µ(σ1)

µ(σ1)
( Σ
τ∈Sn,τ�σ1

µ(τ)) +
µ(σ0)

µ(σ0)
( Σ
τ∈Sn,τ�σ0

µ(τ)) =

( Σ
τ∈Sn,τ�σ1

µ(τ)) + ( Σ
τ∈Sn,τ�σ0

µ(τ)) = Σ
τ∈Sn,τ�σ

µ(τ).

14
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Thus,

µ(σ)

µ(σ)
Σ

τ∈Sn,τ�σ1
µ(τ) = µ(σ) Σ

τ∈Sn,τ�σ

µ(τ)

µ(σ)
= µ(σ)mn(σ).

Thus, mn is a µ-martingale, and {mn}n∈ω is a uniformly c.e. collection of µ-martingales. Fur-

thermore, mn(∅) = Στ∈Sn µ(τ) ≤ 2−n. Therefore, by a slight modification of Proposition 6.3.2 of

Downey-Hirschfeldt [8], m = Σn∈ωmn is a c.e. µ-martingale. Finally, it follows that m succeeds on

X if and only if X ∈
⋂
n∈ω Un.

Astor [4] proved that 1-Random sets have density 1
2 by referring to Propositions 3.2.13 and

3.2.16 of Nies [20], which state that 1-Randoms must have density 1
2 and that they are closed under

permutations. In fact, the more general result that r-1-Randoms have intrinsic density r is true,

and we provide a simple proof here. The techniques are simple modifications to those found in Nies

[20] and Downey-Hirschfeldt [8].

Proposition 1.19. Let r ∈ (0, 1). If X is r-1-Random, then X has intrinsic density r.2

Proof. We shall first show that r-random sets must have density r. This is natural when one consid-

ers the martingale approach to randomness: If we expect the ratio of ones to be larger than r, then

we shall bet more of our capital on ones. If we do so carefully, then our betting strategy will succeed

on sets with sufficiently large upper density. Prior work has been done studying the relationship

between (martin)gales and the density of a set, especially relating to dimension. For example, see

Lutz [18]. We shall give a straightforward calculus proof that is sufficient for our purposes. If r

is not computable, then we will implicitly work relative to a given representation of µr, which can

compute r.

Formally, we define a family of martingales such that at least one will succeed on any set

with upper density greater than r. Let 0 < α < 1 − r be rational and consider the martingale

Mα : 2<ω → Q defined via:

• Mα(∅) = 1

• Mα(σ0) = (1− α
1−r )Mα(σ)

• Mα(σ1) = (1 + α
r )Mα(σ)

It is immediate that Mα is a computable r-martingale from definition. If we let nσ denote |{k <

2This also holds for computable and Schnorr randomness, however the proofs are more complex and outside our
purview for this paper. For example, see Nies [20] 7.6.24 and 3.5.21.
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|σ| : σ(k) = 1}|, then we see that

Mα(σ) = (1 +
α

r
)nσ (1− α

1− r
)|σ|−nσ .

Let r < ε ≤ 1. If ρ|σ|(σ) ≥ ε, then nσ ≥ ε|σ| and

Mα(σ) ≥ (1 +
α

r
)ε|σ|(1− α

1− r
)(1−ε)|σ| = ((1 +

α

r
)ε(1− α

1− r
)1−ε)|σ|.

Notice that for a fixed ε, an exercise in calculus shows that α can be chosen such that (1 + α
r )ε(1−

α
1−r )1−ε > 1: As α < 1− r, 1− α

1−r > 0, so we can take the logarithm. (1 + α
r )ε(1− α

1−r )1−ε > 1 if

and only if

ε log(1 +
α

r
) + (1− ε) log(1− α

1− r
) > 0.

Rearranging, this occurs if and only if

log(1− α

1− r
) > ε(log(1− α

1− r
)− log(1 +

α

r
)).

As 1− α
1−r < 1 and 1 + α

r > 1,

log(1− α

1− r
)− log(1 +

α

r
) < 0

and the previous expression can be rearranged to obtain

log(1− α
1−r )

log(1− α
1−r )− log(1 + α

r )
< ε.

By L’Hôpital’s Rule, the limit of the left hand side as α approaches 0 is r. As ε > r, there is α close

enough to 0 such that this is true, and thus such that (1 + α
r )ε(1− α

1−r )1−ε > 1 is true.

For such an α, Mα succeeds on any set X whose upper density is greater than ε, as this implies

that there are infinitely many n such that Mα(X � n) ≥ ((1 + α)ε(1 − α)1−ε)n. Therefore, for

any X with ρ(X) > r, there is an ε > r with ρ(X) ≥ ε. The corresponding Mα thus succeeds on

X. Additionally, for any set X with lower density less than r, the same analysis can be applied

to the complement. By switching the roles of (1 + α
r ) and (1 − α

1−r ) in the construction of Mα,

we obtain an r-martingale which succeeds on X. Therefore any r-1-Random set must have density r.
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Now we shall show that r-1-Random sets are also closed under permutation, completing the

proof. Here the classical notion of martingales does not work as well, as permutations do not select

bits monotonically in general as martingales do. However, it is not difficult to see that permutations

preserve µr, so we shall prove this result using the measure notion of randomness. Theorem 1.18

ensures that this is sufficient.

Given σ ∈ 2<ω, consider [σ] = {X ∈ 2ω : σ � X}. For π a computable permutation, let

[π(σ)] = {X ∈ 2ω : X(π(n)) = σ(n) for all n < |σ|}.

Notice that [π(σ)] is open. Furthermore, let k = maxn<|σ|{π(n)}. Then

Pσ = {τ ∈ 2k+1 : τ(π(n)) = σ(n) for all n < |σ|}

is a prefix-free set which defines [π(σ)]. Then for all σ, it follows from the definition of [π(σ)] that

µr([π(σ)]) = Σ
τ∈Pσ

µr(τ) = µr(σ) Σ
γ∈2k+1−|σ|

µr(γ) = µr([σ]).

If {Ui}i∈ω is a µr-Martin-Löf test, then let Vi be defined via

Vi =
⋃
σ∈Ui

[π(σ)].

By the above, µr(Vi) = µr(Ui), so {Vi}i∈ω is also a µr-Martin-Löf test because π is computable.

A set X passes {Ui}i∈ω if and only if π(X) passes {Vi}i∈ω by definition. Therefore if Y is not

r-1-Random, then π−1(Y ) is not r-1-Random either. Thus, the r-1-Randoms are closed under

computable permutation as desired.

1.1.4 Noncomputable Coding

The standard techniques of combining sets in computability theory will not prove sufficient for

our purposes, as we shall briefly discuss in Section 3.1. This failure arises from the fact that op-

erations like the join and the Cartesian product are computable. To that end, we shall turn to

noncomputable coding methods to combine sets. By this we mean methods of combining two sets

A and B such that the input sets cannot necessarily be recovered computably from the output set,

but can be recovered using some oracle weaker than A⊕B.
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The symmetric difference, defined via A4B = {n : A(n) 6= B(n)}, is one such noncomputable

coding method. Given A4B, we cannot computably determine A or B in general. However, A and

A4B together can compute B, and B with A4B can compute A.

The following coding methods are natural and computable in A and B, but do not allow us to

recover A or B easily, and so do not fall prey to the problems that computable methods do. The

idea is quite straightforward, and has been used informally by others such as Jockusch and Astor.

Definition 1.20. Let A and B be sets of natural numbers.

• B . A, or B into A, is
{ab0 < ab1 < ab2 < . . . }

That is, B . A is the subset of A obtained by taking the “B-th elements of A.”

• B / A, or B within A, is
{n : an ∈ B}

That is, B / A is the set X such that X . A = A ∩B.

With B . A, we are simply thinking of A as a copy of ω as a well-order and B . A is the subset

corresponding to B under the order preserving isomorphism between A and ω. Notice that A and

B . A together can compute B. The intuition for why this might work for our purposes is that if

a computable permutation on ω could change the size of a copy of B living inside A, then it must

have been able to change the size of B or A to begin with. We shall see below that this intuition is

correct and B .A will work elegantly with intrinsic density, multiplying the intrinsic densities of A

and B so long as some conditions are met.

We first make a few elementary observations:

• For all A, A = A . ω = ω . A = A / ω.

• For all A and B and any i, ai is either in B or B. Therefore i is either in B / A or B / A
respectively, so (B / A) t (B / A) = ω.

• If A is intrinsically small, then so is X . A for any X, as intrinsic smallness is closed under
subsets. The same is not true for X /A, as in general it is not necessarily a subset of A or X.

• If B ∩ C = ∅, then (B . A) ∩ (C . A) = ∅. Furthermore, A = (X . A) t (X . A).

• A set A has MWC-density r if ρ(A / f(A)) = r for all partial computable monotone selection
functions f .

• . is associative, i.e. B. (A.C) = (B.A).C: By definition, (A.C) = {ca0 < ca1 < ca2 < . . . }
and thus

B . (A . C) = {cab0 < cab1 < cab2 < . . . }
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Similarly, (B . A) = {ab0 < ab1 < ab2 < . . . }, and therefore by definition

(B . A) . C = {cab0 < cab1 < cab2 < . . . }

• / is not associative: Consider the set of evens E, the set of odds O, and the set N of evens
that are not multiples of 4. Then

(O / N) / E = ∅ / N = ∅

However,
O / (N / E) = O / O = ω

• . and / do not associate with each other in general:

B . (A / (B . A)) = B . ω = B

but
(B . A) / (B . A) = ω

Similarly, B / (A . B) = ω, but (B / A) . B is a subset of B.

1.2 Roadmap

In this dissertation we shall embark on an exploration of intrinsic density and its relationships

with asymptotic computability and unpredictability. The first half of this dissertation will be de-

voted to intrinsic smallness. We shall explore both the properties of these sets as a class and study

some applications to the realm of asymptotic computability. In Section 2.1, we shall explore which

classes of functions F have the property that every intrinsically small set is small for F . We will

then briefly consider intrinsic smallness as an immunity notion in Section 2.2 and show that it is

separate from hyperimmunity everywhere in the Turing degrees. That is, for every hyperimmune

set there is a Turing equivalent set that is hyperimmune and not only not intrinsically small, but

as “big” as it can possibly be. In Section 2.3, we then turn our attention to the intrinsic variant

of asymptotic computability. The four different notions of error sets in classical asymptotic com-

putability combine with four competing notions of uniformity to yield sixteen separate categories of

intrinsic computability. We prove some separations and equivalences between them. We shall con-

clude the first half of this dissertation by studying the relativization of intrinsic density in Section 2.4.

We obtain every real in the unit interval as the intrinsic density of some set through random-

ness. However, as mentioned, there is a large gap between intrinsic density and randomness. We

would like to construct or find sets with arbitrary intrinsic density without needing to appeal to

full randomness to better understand them: the properties of random sets have been well studied,

whereas much less is known about stochastic sets. Our main goal in the second half is to construct
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new technology for generating sets of different densities for both intrinsic density and MWC-density

to develop a base for further work exploring the stochastic sets. Not only do we want to better

understand each notion, but we’d also like to study separations between them. This is analagous

to the study of differences between various notions of randomness, for example, computable ran-

domness and Martin-Löf randomness. We shall briefly show the limitations of computable methods

in Section 3.1. In Section 3.2, we shall apply noncomputable coding operations, into and within,

to develop new sets with prescribed intrinsic density from old ones. Using the into operation, we

will then be able to construct a set of intrinsic density r computable from r and any 1
2 -Martin-Löf

random. Notably, for almost all r this constructed set will not be able to compute a µr-random,

something that previously had no known example. Finally, Section 3.3 will attempt to apply the

technology from Section 3.2 to the class of sets with MWC density, achieving the same result for r

a finite sum of powers of two.

Our strategy is to find some process that takes a set A of intrinsic density α and a set B of

intrinsic density β and codes A and B in such a way that we are left with a set that has new intrinsic

density obtained as some function of α and β. However, we shall show in Section 3.1 that we cannot

hope for this process to be computable in a way that allows us to recover the original sets, as intrinsic

density was defined with the intention of blocking computable coding in the setting of asymptotic

computability. We shall prove that the into and within operations are able to achieve this in

Section 3.2 and combine them with other set operations to create more sophisticated constructions.
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CHAPTER 2

INTRINSIC SMALLNESS

2.1 Functions and Intrinsic Density

Our work here was motivated by the desire to answer basic structural questions about intrinsic

smallness. For example is the join of two intrinsically small sets intrinsically small? While this may

seem obvious on its surface, the technical details need to be handled with care. Our techniques in

this section will enable us to prove this. We shall see a much more difficult proof of the stronger

fact that P (A⊕B) = r if and only if P (A) = P (B) = r in Section 3.1.

We first note that not all intrinsically small sets are small for all computable functions, nor even

all total computable functions. To do so, we use the following lemma:

Lemma 2.1. Let X be a set of natural numbers. Suppose that {Re}e∈ω is a collection of
uniformly X-computable infinite sets. Then there is an intrinsically small set A ≤ ∅′⊕X such
that A ∩Re 6= ∅ for all e.

Proof. Note that the index set of injective partial computable functions is ∅′ computable, as the

index set of noninjective partial computable functions is Σ0
1. Therefore, there is a ∅′-computable

function f such that ϕf(e) is an enumeration of exactly the injective partial computable functions.

Let A0 = ∅ and r0 = 0. Given As, Rs, define As+1, rs+1 as follows: Using X as an oracle, find k

the least element of Rs with k > rs+1, which exists because Rs is infinite. Let As+1 = As∪{k}. We

say e is suitable at stage s if [0, k] ⊆ dom(ϕf(e)) and [0, 2max(ϕf(e)(As+1)] ⊆ range(ϕf(e)). Notice

that ∅′ can compute whether or not e is suitable at stage s uniformly in e and s because it can ask

finitely many questions about convergence. Let

rs+1 = max{ϕ−1f(e)(i) : e < s suitable at stage s, i ≤ 2max(ϕf(e)(As+1)}+ 1.

Let A =
⋃
s∈ω As. By construction, A ∩ Rs 6= ∅ because an element of Rs was added at stage

s + 1. Let π = ϕf(e) be a computable permutation. Then π is suitable at every stage because its
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domain and range are ω. Let k be the element added at stage s+ 2 for some s > e. Then for every

i ≤ 2max(π(As+1)),

k > rs+1 > π−1(i).

Therefore, π(k) > 2max(π(As+1)). Thus, after finitely many elements, each element of π(A) is more

than double the previous element. It follows immediately that ρ(π(A)) = 0. As π was an arbitrary

computable permutation, A is intrinsically small.

We can now show that there is an intrinsically small set that is not small for total computable

functions.

Theorem 2.2. There is a set of intrinsic density 0 that is not small for total computable
functions. That is, there is an intrinsically small set A and a total computable function f such
that ρ(f(A)) > 0.

Proof. As defined by Jockusch and Schupp [12], let Re = {n : 2e|n but 2e+1 6 |n}. Define f : ω → ω

via f(0) = 0 and f(n) = e, where n ∈ Re. (Note that this is well-defined, as the Re’s form a

partition of ω \ {0}.) Then f is a total computable function.

By Lemma 2.1, there is an intrinsically small set A such that Re ∩ A 6= ∅ for all e. Then

f(A) is cofinite (in fact it is either ω or ω \ {0}). Therefore, f(A) has intrinsic density 1. (So A

catastrophically fails to have density 0 under f .)

We see from this example that the failure of injectivity allowed us to cast a wide net in search

of elements of A and then group them together to create a set of large density. Below, we shall see

that we cannot even limit this to finite inverse images and preserve the property of being intrinsi-

cally small. In fact, we cannot even limit this to finite inverse images with uniformly computable size.

We shall need the notion of a hyperimmune set to do this. Recall that a disjoint strong array

is a collection {Df(n)}n∈ω of finite sets coded by a total computable function f and the canonical

indexing of finite sets, where the Df(n)’s are pairwise disjoint. A set X is hyperimmune if for every

disjoint strong array f , there exists some n with Df(n) ∩X = ∅.

Theorem 2.3. There is an intrinsically small set that is not small for the collection of all
total computable functions f such that f−1({n}) is finite (and uniformly computable) for all
n. That is, there exist an intrinsically small set A and a total computable function f such
that ρ(f(A)) > 0 and a total computable function g such that g(n) = |f−1({n})| for all n.

Proof. Astor [3] proved that the Turing degrees which contain an infinite intrinsically small set are
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those which are not weakly computably traceable. Kjos-Hanssen, Merkle, and Stephan [15] charac-

terized these degrees as those which are High or DNC.

It is well-known that there is a binary tree for which all paths are of PA degree. Recall that

the PA degrees are exactly the DNC2 degrees. Therefore, by the hyperimmune-free basis theorem,

there is a DNC2 degree that is hyperimmune-free. (For a review of this information, see Soare

[24].) This degree contains a set A which is intrinsically small by the result of Astor. Since A is

hyperimmune free, there exists a disjoint strong array g such that Dg(n) ∩A 6= ∅ for all n. Without

loss of generality, we can assume that max(Dg(n)) < min(Dg(n+1)) for all n. (Given a disjoint strong

array g, we can construct a new one h as follows: Dh(0) = Dg(0), and Dh(n+1) is the first cell of the

old array whose smallest element is larger than the largest element of Dh(n).)

Define f : ω → ω as follows: If n ∈ Dg(k) for some k, let f(n) = 2k. As f is a disjoint strong

array such that max(Dg(n)) < min(Dg(n+1)), this is computable and well-defined. If n 6∈
⋃
k∈ωDg(k),

then let f(n) be the least odd number not realised as f(m) for some m < n. Therefore, f is a total

computable function with |f−1({n})| finite and uniformally computable. (If n = 2k + 1 is odd,

then the inverse image is a singleton. If n = 2k is even, then f−1({2k}) = Dg(k).) Furthermore, as

Dg(n) ∩A 6= ∅ for all n, f(A) contains all even numbers. Therefore, ρ(f(A)) ≥ 1
2 .

We see that it is much more difficult for a set to be small for classes of non-injective functions.

However, both examples relied heavily upon the fact that the functions were not injective. By

switching our focus to (mostly) injective classes of functions, we can prove some positive results.

First, we provide an easy technical lemma.

Lemma 2.4. Suppose C is an infinite c.e. set. Then there exists an infinite, computable
H ⊆ C with ρ(H) = 0.

Proof. Let {ci}i∈ω be an enumeration of C. Then let {hi}i∈ω be such that h0 = c0 and given hn,

hn+1 = cj , where j is the least index with cj > hn + 2n. Then H is computable because it is a c.e.

set with an increasing enumeration, and it clearly has density 0.

Theorem 2.5. Suppose that A is an intrinsically small set. Then A is small for the class of
total computable injective functions with computable range.

Proof. We argue by contrapositive: Suppose f is a total computable injective function with com-

putable range, and A is a set with ρ(f(A)) > 0. Then we construct a computable permutation π
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such that ρ(π(A)) > 0.

Let H ⊆ range(f) be a computable set of density 0. Now define π : ω → ω as follows: If

f(n) 6∈ H, π(n) = f(n). If f(n) ∈ H, let π(n) be the least element of H ∪ range(f) not realized in

the range of π by m < n. Then π is a computable permutation, and

ρn(π(A)) =
|π(A) � n|

n
≥ |f(A) � n| − |H � n|

n
= ρn(f(A))− ρn(H).

(The inequality comes from the fact that π and f agree on f−1(range(f)\H).) Therefore, we obtain

ρ(π(A)) ≥ ρ(f(A))− ρ(H) = ρ(f(a)) > 0.

Therefore, π is a computable permutation for which ρ(π(A)) > 0, so A is not intrinsically small.

There are simpler proofs of Theorem 2.5, which do not require us to create an error set and

construct a permutation. However, this proof is illustrative of the techniques we shall use for more

difficult proofs.

Corollary 2.6. If A is intrinsically small and f is a total computable injective function with
computable range, then f(A) is intrinsically small.

Proof. This follows from Theorem 2.5. We use the fact that π(f(A)) = π ◦ f(A) and π ◦ f is a total

computable injective function with computable range because f is.

Corollary 2.7. If A and B are intrinsically small, then so is A⊕B.

Proof. If f is the function sending n to 2n, and g is the function sending n to 2n + 1, then by

Corollary 2.6 f(A) and g(B) are both intrinsically small. It is easy to check that the union of two

intrinsically small sets is intrinsically small, as the permutation of the union is the union of the

images under the permutation. Therefore, A⊕B = f(A) ∪ g(B) is intrinsically small.

We can improve this result. The use of H in the proof allows us to notice that we can change a

subset of density 0 in the range and not suffer any consequences for preserving intrinsic smallness.

Definition 2.8. A (partial) function f : ω → ω is *-injective, or almost injective, if ρ({n :
|f−1({n})| > 1}) = 0. That is, a (partial) function is almost injective if the subset of the
range where injectivity fails has density 0.

Theorem 2.9. Suppose that A is an intrinsically small set. Then A is small for the class of
total computable *-injective functions with computable range.
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Proof. We again argue by contrapositive: Suppose f is total computable *-injective function with

computable range, and A is a set with ρ(f(A)) > 0. Then we construct a total computable injective

function g with computable range such that ρ(g(A)) > 0 and invoke Theorem 2.5.

Let H ⊆ range(f) be infinite, computable, and have density 0. Then define g(n) = f(n) if f(n)

has not been realized in range(g) by some m < n, and to be the least element of H not realized in

range(g) otherwise. Then g is injective, as by construction g(n) cannot be in range(g � n) for any

n. Furthermore,

ρn(g(A)) =
|g(A) � n|

n
≥ |f(A) � n| − |H � n| − |{k : |f−1({k})| > 1} � n|

n
=

ρn(f(A))− ρn(H)− ρn({k : |f−1({k})| > 1)).

This gives

ρ(g(A)) ≥ ρ(f(A))− ρ(H)− ρ({k : |f−1(k)| > 1} = ρ(f(A)) > 0.

Note that while an intrinsically small set is small for the class of total computable *-injective

functions with computable range, the image under such functions need not be intrinsically small. To

see this, take the set A and function f from the proof of Theorem 2.3 and let g(n) = 2f(n). Then g

is *-injective because its entire image has density zero. However, there is a computable permutation

π that maps image(g) to the non-factorials and the complement to the factorials. Then π ◦ g(A)

includes all but finitely many of the non-factorials and is therefore density 1.

To this point, we’ve seen that injectivity almost everywhere has been essential in allowing all

intrinsically small sets to be small for our class of functions. However, up to this point, we’ve also

relied heavily on knowing that the range is computable: if the range is not computable, we may

potentially fill in part of the range that A would have been sent to later. In this case, we’d need to

shift where the elements of A are sent, potentially making the density 0 in the process. As we’ll see

below, there are cases in which we can avoid this issue.

Theorem 2.10. Suppose A is a set and f is a *-injective function with ρ(f(A)) = q > 0 and
ρ(range(f))− ρ(range(f)) < q. Then there is a *-injective function g with computable range
such that ρ(g(A)) > 0.

Proof. As range(f) is c.e., there is a computable subset H of range(f) with ρ(H) > ρ(range(f))− q
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by Downey, Jockusch, and Schupp [9]. In particular,

ρ(range(f) \H) ≤ ρ(range(f))− ρ(H) < q.

Define g : ω → ω via g(n) = f(n) if f(n) ∈ H, and g(n) = 0 otherwise. Notice that g is *-injective,

as

{n : |g−1({n})| > 1} ⊆ {n : |f−1({n}| > 1} ∪ {0}.

Furthermore, range(g) = H ∪ {0} is computable. Lastly, notice that

ρn(g(A)) =
|g(A) � n|

n
≥ |f(A) � n| − |{k < n : k 6∈ H and k ∈ f(A)|

n
≥

|f(A) � n| − |(range(f) \H) � n|
n

= ρn(f(A))− ρn(range(f) \H).

We saw above that ρ(range(f) \H) ≤ ρ(range(f))− ρ(H) < q. It follows that

ρ(g(A)) > ρ(f(A))− q = q − q = 0;

that is, ρ(g(A)) > 0.

Corollary 2.11. Suppose that A is an intrinsically small set. Then A is small for the class
of total computable *-injective functions whose range has defined density.

Proof. We again argue by contrapositive: Suppose f is total computable *-injective function whose

range has defined density, and A is a set with ρ(f(A)) > 0. Then by Theorem 2.10, as ρ(range(f))−

ρ(range(f)) = 0, there is a *-injective function g with computable range such that ρ(g(A)) > 0.

Then the conclusion follows by Theorem 2.9.

By the remark following the proof of Theorem 2.9, we see that the image of an intrinsically small

set under a total computable *-injective function whose range has defined density need not be intrin-

sically small. However if we restrict ourselves to injective functions, can we recover the analogue of

Corollary 2.6? We shall discuss this formally in Questions 4.1 and 4.2 at the end of this dissertation.

Corollary 2.11 can already be used in conjunction with known results. For example, Jockusch

(correspondence with Astor) showed that r-maximal sets have intrinsic density (and therefore den-

sity) 1, so the image of any intrinsically small set under a computable injective function whose range

is maximal is small.
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2.2 Hyperimmunity and Intrinsic Smallness

We now turn our attention to hyperimmune sets, a competing notion of smallness. Astor [4]

studied the connection between varying notions of immunity and intrinsic density thoroughly. In

particular, it is known that hyperimmune sets have intrinsic lower density 0, and therefore that

hypersimple sets have intrinsic upper density 1. (Hypersimple sets are c.e. sets whose complement

is hyperimmune. Recall that hyperimmune sets are infinite by definition, so hypersimple sets are

co-infinite.) One question left open in [4] (later answered by Astor in [3] using a degree argument)

was whether or not a hypersimple set could have lower density 0, or at least non-1 lower density. The

answer is yes, showing that hypersimple sets need not have defined density. We give a constructive

proof, showing that every hypersimple set yields a Turing equivalent hypersimple set that has lower

density 0. (That is, every hypersimple set has an equivalent hypersimple set which is “as small as

possible.”)

First, it is important to note that when studying whether or not certain properties relate to

intrinsic smallness, we shall study the sets themselves rather than their degrees: coding tricks can

show that every Turing degree contains a set with undefined density. In the c.e. degrees, this set

can be taken to be c.e.

Proposition 2.12. Every Turing degree contains a set W with ρ(W ) = 0 and ρ(W ) = 1.

Proof. Given C, let D = {n! : n ∈ C} and W = D ∪
⋃
n∈ω((2n)!, (2n+ 1)!). Then W ≡T D ≡T C,

and ρ(W ) = 0 because

ρ(2n+2)!(W ) =
|W � (2n+ 2)!|

(2n+ 2)!
≤ (2n+ 1)!

(2n+ 2)!
=

1

2n+ 2
.

Conversely, ρ(W ) = 1 as

ρ(2n+1)!(W ) =
|W � (2n+ 1)!|

(2n+ 1)!
≥ (2n+ 1)!− (2n)!

(2n+ 1)!
= 1− 1

2n+ 1
.

Clearly if C is c.e., then so is W .

We shall see below that additional properties on the starting set C can be recovered in W by

modifying the construction.

Theorem 2.13. Let C be a hypersimple set. Then there is a hypersimple set W ≡T C with
ρ(W ) = 0.
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Proof. As C is hypersimple, it has intrinsic upper density (and therefore upper density) 1. We

cannot use the strategy from Proposition 2.12 directly, as the resulting set will not even be immune,

let alone hyperimmune. To avoid this problem, we shall leave intervals of C intact and introduce

gaps between the intervals in noncomputable fashion. Informally, we first wish to shift portions of

C over to make large gaps, ensuring that the resulting set has lower density 0. We then leave an

even larger interval of C intact (albeit shifted over finitely much) to ensure that the upper density

is 1. (See Figure 2.1.)

Formally, we shall define c.e. sets Hi and gaps [ui, ui+mi) inductively. Let H0 = C. Enumerate

H0 until there is a stage s and a number n such that we see ρn(H0) > 1
2 , which exists because

C = H0 has upper density 1. Then let u0 = n and let m0 be the least natural number such that

u0

u0+m0
< 1

2 .

Given He and [ue, ue + me), define He+1 and [ue+1, ue+1 + me+1) as follows: Define He+1 =

(He � ue) ∪ (H≥uee + me). (For convenience, here X≥k denotes {n ∈ X : n ≥ k}, and X + m =

{n + m : n ∈ X}.) Enumerate He+1 until we come to a stage s and a number n > ue + me such

that ρn(He+1,s) > 1− 1
e+2 . Then set ue+1 = n and me+1 to be the least natural number such that

ue+1

ue+1+me+1
< 1

e+2 . Finally, let H be the set with characteristic function H(m) = limn→∞Hn(m).

Note, first off, that
⋃
e∈ω[ue, ue + me) is a c.e. set with increasing enumeration, and hence, com-

putable. Furthermore, note that H itself is c.e., as limn→∞Hn(m) = Hs(m) for any s with us > m.

Then ρ(H) = 0 as desired, as ρui+mi(H) < 1
i+2 for all i.

H cannot serve as the desired W : The complement contains the computable subset
⋃
e∈ω[ue, ue+

me), so it is not even immune, let alone hyperimmune. Instead, let W = H ∪
⋃
n∈C [un, un +mn):

that is, enumerate the n-th gap into W whenever n enters C. Then W is c.e., and we claim that it

is hypersimple.

Recall that a set is hyperimmune if and only if its principal function is not computably bounded.

Suppose that W is not hyperimmune. Then its principle function is bounded by some total com-

putable function f . However, the total computable function g defined via g(n) = f(n + Σi≤nmi)

must bound C: The elements of W are the elements of C shifted up plus the elements of [un, un+mn)

for n 6∈ C. Therefore to bound cn, we only need to bound the first n+Σi≤nmi elements of W , as this
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0

H≥00 + 0
C = H0

u0

H0 � u0

u0 +m0

H≥u0

0 +m0
H1

u1

H1 � u1

u1 +m1

H≥u1

1 +m1
H2

...
...

Figure 2.1. Visualization of the construction of H in Theorem 2.13

will contain at least n elements of C and no more than Σi≤nmi elements introduced via gaps in W .

(It is possible that this encompasses more than n elements of C, but it at least captures the n-th one.)

Thus, we have shown that W is a hypersimple set. Sine
⋃
e∈ω[ue, ue+me] is computable, W can

compute C by ignoring the intervals. C can clearly compute H and hence W , so they are Turing

equivalent.

By using C as an oracle rather than an enumeration of C, it is clear that this result also applies

to co-hyperimmune sets in general, not just hypersimple sets.

Thus, Theorem 2.13 separates these two notions of smallness computationally. Nowhere in

the Turing degrees are they equivalent. However, we can still gain some inspiration from the

hyperimmune sets. Perhaps the most useful characterization of the hyperimmune sets is that a set

is hyperimmune if and only if its principle function is not computably bounded. While Theorem

2.13 shows that hyperimmunity and intrinsic smallness are unrelated notions of smallness, we would

like to know whether it is possible to provide a simple characterization of intrinsic smallness using

principal functions, similar to the characterization of hyperimmunity. Perhaps the most natural

candidate is that of weak computable traceability from [3], which does provide us with a useful test

for intrinsic smallness:

Proposition 2.14. Suppose that A is not intrinsically small. Then the principle function
pA(n) of A is weakly computably traced, i.e. there are computable functions g and h with
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|Dg(n)| ≤ h(n) for all n and pA(n) ∈ Dg(n) for infinitely many n.

Proof. Since A is not intrinsically small, there is a computable permutation π such that ρ(π(A)) =

q > 0. Define functions h = λn(n!) and g such that Dg(n) = π−1([0, n!)). Then we claim that g and

h witness that pA is weakly computably traced.

To get a contradiction, suppose this is not the case. Then pA(k) ∈ Dg(k) = π−1([0, k!)) for only

finitely many k. In particular, π(n) ≥ n! for all but finitely many n ∈ A. However, this implies that

ρ(π(A)) = 0, since ρn(π(A)) ≤ s+m+1
m! where s is the number of k for which pA(k) ∈ π−1([0, k!))

and m is the largest number with m! ≤ n. As s+m+1
m! approaches 0 in the limit, this contradicts the

fact that ρ(π(A)) = q > 0, so g and h must witness that pA is weakly computably traced.

The contrapositive of Proposition 2.14 tells us that if the principle function of A is not weakly

computably traced, then A is intrinsically small. Unfortunately, Theorem 2.3 tells us that we cannot

hope to reverse this in general. However, notice that the proof in fact proves a stronger statement:

If A is not intrinsically small, then it is weakly computably traced with witness h = λn(n!). That

is, if pA is not weakly computably traced by h, then A is intrinsically small. If this can be reversed,

that would characterize the intrinsically small sets. This is Question 4.5 below.

2.3 Intrinsic Computability

Having studied intrinsically small sets, we now turn our attention to their use as error sets in

“almost computable” settings. Astor [4] first described four possible variations of “intrinsic” generic

computability, that is “intrinsic” generic descriptions of A which ensure the existence of generic

descriptions of π(A) for all π a computable permutation. The four notions differ by how uniformly

we can obtain a generic description for a given permutation. We provide the generalizations of each

of these notions to the remaining three notions of asymptotic computability mentioned in Section

1.1.1, which gives us a total of sixteen separate notions. Throughout this section, x will denote

an arbitrary element of {effective dense, generic, coarse, dense}. We shall begin by describing the

strongest of the four notions, which is the most overtly related to our study of intrinsically small

sets.

Definition 2.15. A ⊆ ω is intrinsically x-ly computable if there is an x description of A with
an intrinsically small error set.

Astor originally defined this notion as strongly intrinsically x-ly computable, however we shorten
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the definition for the sake of readability.

This is the most natural intrinsic variant of asymptotic computability, as it is obtained by simply

requiring the error set to meet a stronger smallness condition. As we shall see, the other three no-

tions introduced in [3] are not obtained by simply modifying the error set, but rather by introducing

new restrictions on the computation.

We should verify that the intrinsically x-ly computable sets are not just the computable sets:

clearly the computable sets meet this definition for any x, but are there noncomputable examples?

It turns out that for the strongest notion, intrinsically effectively densely computable sets, this is

not the case:

Proposition 2.16. Suppose that A is intrinsically effectively densely computable. Then A is
computable.

Proof. By definition, if A is intrinsically effectively densely computable, then the error set is an

intrinsically small computable set. However, no infinite computable set can be intrinsically small,

as there is a computable permutation that maps it to the nonfactorials and its complement to the

factorials. Therefore, the error set must be finite. As A differs from a computable set by only finitely

much, it must be computable.

Fortunately, the other three do admit noncomputable examples. For generic computability,

as mentioned in [3], any c.e. set with intrinsic density 1, such as a maximal set, is intrinsically

generically computable. Similarly, any set of intrinsic density 1 or 0 is intrinsically coarsely com-

putable. Notice that any intrinsically generically computable set with defined intrinsic density must

have intrinsic density 0 or 1 and thus be intrinsically coarsely computable: let ϕe be an intrinsic

generic description of A. If {n : ϕe(n) ↓= 1} is finite, then A has intrinsic density 0 because

A = {n : ϕe(n) ↓= 1} ∪ (A ∩We) is a union of a finite set with an intrinsically small set. If this set

is not finite, then it is an infinite c.e. subset of A. Therefore the absolute upper density of A is 1

because every infinite c.e. set has a computable subset, which can be mapped to the nonfactorials

by a computable permutation. As A has defined intrinsic density and its absolute upper density is

1, it must have intrinsic density 1. In both cases, A is intrinsically coarsely computable. The fol-

lowing lemma shows that the intrsincially generically computabile sets and the intrinsically coarsely

computable sets are not the same, however.

31



Draft document [July 29, 2021 at 16:34]

Theorem 2.17. There is an intrinsically coarsely computable set that is not intrinsically
generically computable.

Proof. By Lemma 2.1, there is an intrinsically small set A such that for each infinite c.e. set We,

there exists ae ∈ A∩We with ae < as for e < s. That is, there is a unique designated element ae of

A for each infinite c.e. set We. We cannot in general use ∅′ to determine if a c.e. set is infinite, but

we can use the jump to ask if there is a large enough element of We to continue the construction

and put that into A if it exists. This may designate some elements for finite c.e. sets, but this is

acceptable.

Now define B ⊆ A by agreeing with A away from the ae’s and diagonalizing against the e-th

turing machine using B(ae), i.e. B(ae) = 1− ϕe(ae). (Note that ϕe(ae) ↓ because ae ∈ We.) Then

B ⊆ A has intrinsic density 0 and cannot be intrinsically generically computable because it disagrees

with every Turing machine with infinite domain at least once.

The reverse separation remains open: it is easy to ensure that a given Turing function is not an

intrinsic generic description by simply finding one place where it is wrong. However, to ensure that

a given Turing function is not an intrinsic coarse description, we must force it to disagree on an

infinite set that is not intrinsically small, which is more difficult. The natural strategy is to take an

intrinsic generic description Wi, say a maximal set, and attempt to change it to diagonalize against

the total functions in such a way that the description is still c.e. and the complement is still intrin-

sically small. The issue arises from our not being able to enumerate all of the total functions using

computable indices: there is an enumeration of c.e. indices which contains exactly the computable

sets (given an index e, enumerate We so long as the enumeration is increasing, but do not enumerate

smaller elements), but there is no way to distinguish the infinite sets from the finite ones. If we

know a given c.e. index e yields an infinite computable set, it is easy to wait for convergence of ϕe

and diagonalize against it on an infinite computable subset of Wi, forcing ϕe to fail to be an intrinsic

coarse description. However if We is in fact finite, then we will never see convergence, and failing to

converge for the indices of finite sets will make the complement of our new enumeration no longer

intrinsically small. If we give up waiting for convergence after some length of time, then there is

no guarantee that an infinite computable set will ever enumerate quickly enough to be diagonalized

against. This is Question 4.4 below.

Fortunately, the answer to this question resolves the remaining implications involving intrinsi-
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cally densely computable sets:

Lemma 2.18. The intrinsically densely computable sets are exactly the intrinsically coarsely
computable sets if every intrinsically generically computable set is intrinsically coarsely com-
putable, and the intrinsically densely computable sets strictly contain all of the intrinsically
generically computable sets and intrinsically coarsely computable sets if this is not the case.

Proof. By Theorem 2.17 there is a set B which is intrinsically coarsely computable but not in-

trinsically generically computable. Suppose for the first case that A is a set which is intrinsically

generically computable but not intrinsically coarsely computable. An application of Corollary 2.7

tells us that A ⊕ B is intrinsically densely computable. However A ⊕ B cannot be intrinsically

coarsely computable or intrinsically generically computable because any intrinsic coarse/generic de-

scription of A⊕B would necessarily yield an intrinsic coarse/generic description of A/B.

Now, we consider the second case. Suppose that every intrinsically generically computable set

is intrinsically coarsely computable, and let A be intrinsically densely computable with witness ϕe.

Then the set B defined via the characteristic function

χB(n) =


ϕe(n) n ∈We

0 n ∈We

is intrinsically generically computable with witness ϕe. Therefore, it is intrinsically coarsely com-

putable via some total witness ϕi. Thus, ϕi witnesses that A is intrinsically coarsely computable as

well because the error set is contained within the union of two intrinsically small sets (the comple-

ment of We and the error set of ϕi on B) and thus is intrinsically small.

The remaining three generalizations of asymptotic computation to the intrinsic setting use a

separate idea: Rather than having an intrinsically small error set that ensures the existence of

descriptions, we simply assert that descriptions must exist for any computable permutation. Varying

the level of uniformity for these descriptions is how we reach three separate notions (Recall that

x ∈ {effective dense, generic, coarse, dense}):

Definition 2.19.

• A is weakly intrinsically x-ly computable if π(A) is x-ly computable for every computable
permutation π.

• A is uniformly x-ly computable if there is a computable function f(e, n) such that λn(f(e, n))
is a(n) x description of ϕe(A) when ϕe is a computable permutation.
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• A ⊆ ω is oracle x-ly computable if there is a Turing functional Φi such that ΦXi is a(n) x
description of ϕe(A) whenever ϕe is a computable permutation and X = graph(ϕe).

As in the case of the intrinsically x-computable sets, Astor’s original definitions were “uniformly

intrinsically x-ly computable” and “oracle intrinsically x-ly computable,” however we shorten these

definitions for readability.

It is immediate that all of the straightforward implications from asymptotic computability apply

here in each of the three cases; i.e. uniformly coarsely computable sets are uniformly densely com-

putable and so on. Furthermore, it is easy to see that for all x ∈ {effective dense, generic, coarse, dense},

intrinsically x-ly computabile sets are uniformly and oracle x-ly computable, where these are both

weakly x-ly computable. Furthermore, albeit slightly less trivial, is the fact that oracle x-ly com-

putable sets are uniformly x-ly computable: Given a Turing functional Φi witnessing that A is

oracle x-ly computable, define the partial computable function f(e, n) via f(e, n) = Φ
graph(ϕe)
i (n).

Then the definition of oracle x-ly computable ensures that this function f witnesses uniformly x-ly

computable. This means that for a fixed x, the four notions form a chain.

As noted in [4], it is unclear at first whether these notions are distinct (i.e. whether or not

the chain collapses), even when restricting ourselves just to the generic case. Below we shall see

that they are not distinct here, although the argument will not generalize to the coarse and dense

settings. However, a slight modification of it will provide a similar but not identical result for the

effective dense setting.

Theorem 2.20. Suppose that A is oracle generically computable. Then A is intrinsically
generically computable.

Proof. Let Φi witness that A is oracle generically computable. Then define the partial computable

function f as follows: Note that the set of finite binary strings σ that are initial segments of graphs

of injective functions is computable. For σ in this set, let fσ denote the partial injective function

with finite range such that graph(fσ) is the infinite binary string obtained by adding infinitely many

0’s to σ. Compute f(n) by searching for such a σ with n ∈ range(fσ) and Φσi (fσ(n)) ↓. If one is

found, define f(n) = Φσi (fσ(n)) for the first such σ. Otherwise, f(n) ↑.

First, note that f(n) ↓ implies f(n) = A(n): If f(n) ↓, then there is some σ such that

Φσi (fσ(n)) ↓. As σ is an initial segment of the graph of an injective function, σ can be extended to

X where X is the graph of some computable permutation ϕe. Then as Φi witnesses that A is oracle
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generically computable, ΦXi is a generic description of ϕe(A), so ΦXi (ϕe(n)) ↓ implies

ΦXi (ϕe(n)) = ϕe(A)(ϕe(n)) = A(n).

In particular, the finite use principle tells us that

A(n) = ΦXi (ϕe(n)) = Φσi (fσ(n)) = f(n).

Thus, f is correct about A wherever it converges.

Therefore, it remains to show that the domain of f has intrinsic density 1. Notice that if ϕe is

a permutation, then ϕe(dom(f)) contains dom(Φ
graph(ϕe)
i ), as if Φ

graph(ϕe)
i (k) ↓, there is an initial

segment σ of graph(ϕe) with k ∈ range(fσ) that witnesses convergence, and therefore witnesses

f(ϕ−1e (k)) ↓. However, ρ(dom(Φ
graph(ϕe)
i )) = 1 as Φ

graph(ϕe)
i is a generic description of ϕe(A) and

therefore has density 1. Thus dom(f) has density 1 under every computable permutation and thus

has intrinsic density 1 as desired.

Corollary 2.21. Suppose that A is oracle effective densely computable. Then A is intrinsi-
cally generically computable.

Proof. Construct the description f of A as in the proof of Theorem 2.20, however instead of searching

for convergence, search for convergence to either 0 or 1.

As mentioned above, this argument does not in general apply to oracle coarsely computable sets

and oracle densely computable sets. The issue lies in the fact that coarse and dense computation

allows for mistakes, so we cannot ensure that any convergent computation is correct.

The remaining implications remain open other than the previously observed chains. The dif-

ficulty in separating these notions lies in the fact that the constructed sets cannot be described

by building one error set, but rather have a different error set for each computable permutation.

More importantly, these countably many computable requirements are heavily interlocked: Con-

sider attempting to construct a weakly intrinsically generically computable set which is not weakly

intrinsically coarsely computable. As an example, we may try to define an error set for the identity

permutation. However, this defines the membership of the constructed set on a given c.e. set We. If

we wish to diagonalize for a given computable permutation π, we may find that π(We) has density
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1, in which case we can’t respect We and also diagonalize on a set of positive density.

2.4 Relative Intrinsic Density

We shall close this section on intrinsic smallness with a topic that transitions smoothly to our

next topic on intermediate intrinsic density. The definition of intrinsic density, and by extension

the definition of intrinsic smallness, admits a natural relativization:

Definition 2.22. The X-absolute upper density of A ⊆ ω is

PX(A) = sup{ρ(π(A)) : π an X-computable permutation}

and the absolute lower density of A is

PX(A) = inf{ρ(π(A)) : π an X-computable permutation}.

If PX(A) = PX(A), then we call this limit the X-intrinsic density of A and denote it by
PX(A).

It is easy to see that no infinite, co-infinite set A is A-intrinsically small. In fact, no infinite,

coinfinite set A has A-intrinsic density. (One way to observe this is to note that the permutation

taking A to the set W in deg(A) from Proposition 2.12 is A-computable.) Furthermore, given a set

A, the set of Turing degrees for which A is not intrinsically small is closed upwards and contains

the cone above A. One may ask whether, for A intrinsically small, the set of degrees for which A is

not intrinsically small is exactly the cone above A. The answer is no.

Proposition 2.23. There is an intrinsically small set A and a permutation π 6≥T A such that
ρ(π(A)) > 0.

Proof. Let B and C be Turing incomparable intrinsically small sets. (These exist given by result

of Astor saying that the degrees containing intrinsically small sets are the degrees that are high or

DNC.) Then by Corollary 2.7, A = B ⊕ C is intrinsically small. Now let π be the B-computable

permutation mapping {2n : n ∈ B} to the non-factorials and the complement to the factorials.

Then π(B ⊕ C) contains the non-factorials, so it has density 1.

As a corollary, we see that given an intrinsically small set A, the set of X for which A is X-

intrinsically small is not necessarily equal to the degrees strictly below A. Since B and C in the

above proof are Turing incomparable, B⊕C is strictly Turing above B, but is not intrinsically small

relative to B. However, it is clear that given a set A, the collection of Turing degrees of X with A

X-intrinsically small is closed downwards. Must it be a Turing ideal? The following lemma shows

the answer is no.
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Proposition 2.24. There exist an intrinsically small setA and setsB,C withAB-intrinsically
small and C-intrinsically small but not B ⊕ C-intrinsically small. That is, the set of X for
which A is X-intrinsically small is not a Turing ideal.

Proof. By the Sacks Splitting Theorem [22], there are low sets B and C such that B ⊕ C ≡T ∅′.

Therefore, a modification of Lemma 2.1 allows us to obtain a set A ≤ ∅′ which is both B-intrinsically

small and C-intrinsically small. (As B and C are low, B′ ≡T C ′ ≡T ∅′, so ∅′ can enumerate the

partial B and C computable injective functions and determine suitability for them.) However, A

cannot be B ⊕ C-intrinsically small because A ≤T ∅′ ≡T B ⊕ C.

Note that although the set of X for which A is X-intrinsically small need not be a Turing ideal,

Definition 2.22 still makes sense if one considers all I-computable permutations in a Turing ideal I

rather than computable in a set X.

We have mentioned the fact that the intrinsically small sets are found in exactly the high or DNC

degrees multiple times. It is natural to ask whether this is true under relativization. The obvious

strategy is to first attempt to relativize Astor’s original proof. This is successful for arithmetical

degrees, but not necessarily all degrees.

Proposition 2.25 (Essentially Astor). Let X be an arithmetical set. Then the Turing degrees
that contain an X-intrinsically small set A are the X-high or X-DNC degrees.

Proof. We merely need to check that the proof of Corollary 2.7 from Astor [3] relativizes. A result

of Kjos-Hanssen, Merkle, and Stephan [15], when relativized, says that a set A is X-weakly com-

putably traceable if and only if it is X-high or X-DNC. (It is straightforward to check that the

proof given by Downey and Hirschfeldt [8] of this result relativizes.)

We can relativize the rest of the proof of [3] Theorem 2.4, and this allows us to relativize [3]

Corollary 2.5 and [3] as well. To obtain Corollary 2.7 from [3] , Astor employs the following result

of Jockusch [11]: Given some property P of some sets of natural numbers, if there is an arithmetical

set with the property P and P is closed under taking subsets, then the collection of Turing degrees

that contain a set exhibiting P is closed upwards. The relativized form of Lemma 2.1 above yields

an X ′-computable X-intrinsically small set A. Since X is arithmetical, A is arithmetical, so we may

apply the result of Jockusch to obtain the relativization of [3] Corollary 2.7.

There is an obvious gap in Proposition 2.25. Specifically, can the arithmetical requirement on

X be dropped? There are certainly sets X for which there are no arithmetical X-intrinsically
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small sets A: If X = ∅(ω), then X computes every arithmetical set. Therefore, there cannot be

an arithmetical X-intrinsically small set.1 An important note here is that the relativization of [3]

Corollary 2.5 and Theorem 2.6 did not rely on the fact that X was arithmetical, so we already know

that X-weakly computably traced sets are not X-intrinsically small, and that any non-X-weakly

computably traced set computes an X-intrinsically small set for even non-arithmetical X.

Fortunately, we can use noncomputable coding methods to close this gap. We shall use the into

operation paired with the join to show that the X-intrinsically small degrees are indeed the X-high

or X-DNC degrees even for nonarithmetical X.

One downside of the into operation is that the degree of A . B is not necessarily equal to the

degree of A⊕B. This is because A.B cannot necessarily compute A or B. However, given B as an

oracle, A . B can easily compute A = {n : bn ∈ A . B}. Therefore, combining the into operation

with the join allows us to prove results about Turing degrees.

Lemma 2.26. Suppose a property P ⊆ 2ω is closed under subsets and closed under self join,
i.e. if X ∈ P then X ⊕X ∈ P also. Then the P -degrees are closed upwards.

Proof. Suppose A computes B, with B ∈ P . Then B ⊕ B ∈ P as P is closed under self join.

Therefore, B ⊕ (A . B) ∈ P because it is a subset of B ⊕ B. Furthermore, B ⊕ (A . B) ≡T A as

A computes B and thus computes B ⊕ (A . B), which in turn computes A as mentioned above.

Therefore (B ⊕ (A . B) witnesses that the degree of A is a P -degree.

Lemma 2.26 gives us an easy proof of the classic fact that the hyperimmune degrees are closed

upwards. Hyperimmune sets are closed under subsets because if B ⊆ A, then the principal function

of B is an upper bound on the principal function of A. They are closed under self join because if

f(n) computably dominates p(B⊕B)(n), then f(2n) computably dominates pB(n). Therefore, we

have met the conditions to apply Lemma 2.26.

More importantly, Lemma 2.26 allows us to close the gap in Proposition 2.25.

Corollary 2.27. For any X, the Turing degrees of X-intrinsically small sets are exactly the
X-high or X-DNC degrees.

1A natural question arises from the appearance of ∅(ω). A set A is said to be arithmetically intrinsically small
if it is X-intrinsically small for every arithmetical set X. The natural question is whether there an arithmetically
intrinsically small set which is not ∅(ω)-intrinsically small. The answer is yes, as ∅(ω) can uniformly compute all of
the arithmetical permutations. Therefore a modification of Lemma 2.1 allows us to construct a ∅(ω)-computable set
which is arithmetically intrinsically small.
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Proof. By the comments above, we only need to show that the degrees of X-intrinsically small sets

are closed upwards.

By the relativized form of Corollary 2.7, the X-intrinsically small sets are closed under self-

join. They are clearly closed under subsets by the definition of intrinsic smallness. Therefore, these

degrees are closed upwards by Lemma 2.26, completing the proof.

An important note about Lemma 2.26 is that it is not a strengthening of Jockusch’s result:

In fact, Jockusch proved this theorem to show that the cohesive degrees are closed upwards, and

cohesive sets are quite easily seen to not be closed under self join. In practice, it is likely that most

natural phenomena being studied will have an arithmetical example, and, thus, Jockusch’s result

will apply. Therefore it is likely that Lemma 2.26 will mostly be used as it was above: to prove

the relativized version of a theorem where the relativization ensures there is no arithmetical example.

It is natural to ask about the Turing degrees of intrinsic density r sets for r ∈ (0, 1). The

proof that every high or DNC set computes an intrinsically small set does not generalize to intrinsic

density r for arbitrary r. Even the above proof that handled the upwards closure for the intrinsically

small case does not work for intrinsic density r because sets of intrinsic density r are obviously not

closed under subsets. However, using a different noncomputable coding technique, we can show that

the degrees of intrinsic density r sets are closed upwards. One of our main goals in the next section

will be to separate the property of having intrinsic density r from being µr-Random. This will serve

as one such separation, as the µr-Random degrees are not closed upwards. The proof requires a

strengthening of Corollary 2.7 that we shall prove later, but we put the next result here due to its

similarity with the previous one.

Theorem 2.28. The Turing degrees of the intrinsic density r ∈ (0, 1) sets are closed upwards.

Proof. Let A compute B and let P (B) = r. Then, again by the result of Astor [3], B must be of

high or DNC degree. Therefore, A is as well, so there must be Â ≡T A with Â intrinsically small.

Thus it follows that P (Â4B) = r, since

ρ(π(Â4B)) ≤ ρ(π(Â ∪B)) ≤ ρ(π(Â)) + ρ(π(B)) = ρ(π(B)) = r

and

ρ(π(Â4B)) ≥ ρ(π(B \ Â)) ≥ ρ(π(B))− ρ(π(Â)) = ρ(π(B)) = r
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By Theorem 3.3 below, the intrinsic density r sets are closed under join and, thus, P (B⊕(B4Â)) =

r. However, B ⊕ (B4Â) ≡T A because A computes both B and Â, and B ⊕ (B4Â) computes Â

via Â = {n : B4Â(n) 6= B(n)} and therefore computes A. Thus B ⊕ (B4Â) witnesses that the

degree of A contains a set of intrinsic density r.
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CHAPTER 3

INTRINSIC DENSITY AND STOCHASTICITY

3.1 Computable Coding and Intrinsic Density

3.1.1 The Join

The join is the canonical operation for combining sets in computability theory. If we want to

generate new sets with intrinsic density, it is natural to ask if the join does so. It is easy to show

that if A has asymptotic density α and B has asymptotic density β, then A ⊕ B has asymptotic

density α+β
2 . However, this is not the case with intrinsic density.

Proposition 3.1. If P (A) 6= P (B), then A⊕B does not have intrinsic density.

Proof. We shall proceed by showing that there is a computable permutation that sends A ⊕ B to

A modulo a set of density 0, and similarly for B. Then the upper (and lower) density of A ⊕ B

under these permutations will match that of A and B respectively. Therefore if these densities are

different, the density of A⊕B is not invariant under computable permutation.

Let F = {n! : n ∈ ω}, and let G = F . For any fixed computable permutation π, there is

another computable permutation π̂ defined via enumerating the odds onto the factorials in order

and enumerating the evens onto the nonfactorials according to the ordering induced by π. That is,

π̂(2n+ 1) = fn and π̂(2n) = gπ(n).

Since F has density 0, Lemma 1.10 yields

ρ(π̂(A⊕B)) = ρ(π̂(A⊕B) \ F ).

Since the image of the odds under π̂ is a subset of F ,

π̂(A⊕B) \ F = π̂(A⊕ ∅)
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and

ρ(π̂(A⊕B)) = ρ(π̂(A⊕ ∅)).

Notice that π̂(A⊕ ∅) is just π(A) with each element n increased by |F � n|. Thus,

ρn(π(A)) ≥ ρn(π̂(A⊕ ∅)) ≥ |π(A) � n| − |F � n|
n

.

As F is the factorials, the final expression tends to ρn(π(A)) in the limit, so we see that

ρ(π̂(A⊕ ∅)) = ρ(π(A))

and

ρ(π̂(A⊕B)) = ρ(π̂(A⊕ ∅)) = ρ(π(A)).

We also have ρ(π̂(A⊕B)) = ρ(π(A)) by a nearly identical argument.

In particular, P (A⊕B) ≥ P (A) and P (A⊕B) ≤ P (A) because we are taking the limit superior

and inferior over all computable permutations, of which π̂ is but one. (Basically, π̂ sends A⊕B to

π(A) modulo a set of density zero, so the intrinsic upper (lower) density of A⊕B cannot be smaller

(larger) than the intrinsic upper (lower) density of A.) Reversing the use of the evens and the odds in

the definition of π̂, we get that the same is true for B in place of A, so P (A⊕B) ≤ min(P (A), P (B))

and P (A⊕B) ≥ max(P (A), P (B)). Therefore, if P (A) 6= P (B), then P (A⊕B) 6= P (A⊕B).

In fact, the converse is true. The proof is much more complicated, however, and will require

noncomputable coding techniques. We shall first prove a technical lemma to aid in this and later

proofs.

Lemma 3.2. Let f0, f1, . . . , fk be a finite collection of injective computable functions and let
C be a computable set. (By convention, sets are infinite unless otherwise stated. In particular,
here we take C to be infinite.) Then there is a computable set H ⊆ C such that ρ(fi(H)) = 0
for all i.

Proof. Let h0 = c0. Then given hn, define hn+1 to be the least element c of C with fi(c) ≥ hn! for

all i. Set H = {h0 < h1 < h2 < . . . }. Then ρ(fi(H)) = 0 for all i because |fi(H) � n| ≤ |{n! : n ∈

ω} � n|.

Theorem 3.3. Suppose P (A) = P (B) = α. Then P (A⊕B) = α.
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Proof. We shall use a technical lemma to complete the proof. Let E represent the even numbers,

and let O represent the odd numbers. Lemma 3.3.1 will prove that for any computable permutation

π,

ρ(π(A⊕B) / π(E)) = ρ(π(A⊕B) / π(O)) = α.

To show this, we give a computable permutation that sends A to π(A ⊕ B) / π(E) modulo a set

of density zero. We will first show that there is a computable injective function which takes A to

π(A ⊕ B) / π(E), and then use noncomputable coding techniques to transform it into a suitable

permutation. We can use the same method to send B to π(A⊕B)/π(O) modulo a set of density 0.

From there, we will use Lemma 3.3.1 to show that ρ(π(A⊕B)) = α, proving the theorem.

Lemma 3.3.1. Let π be a computable permutation and let A and B be as in the statement
of Theorem 3.3. Then

ρ(π(A⊕B) / π(E)) = ρ(π(A⊕B) / π(O)) = α.

Proof. Let h : π(E)→ ω send the n-th element of π(E) to n (the inverse of the principal function),

and let d : ω → E be defined via d(n) = 2n. Then notice that d(A) = A ⊕ ∅. Furthermore,

observe that for any X ⊆ π(E), h(X) = X /π(E), by the definition of h and the within operation.

Therefore,

h(π(d(A))) = h(π(A⊕ ∅)) = π(A⊕ ∅) / π(E).

Since π(A⊕B) ∩ π(E) ⊆ π(A⊕ ∅),

π(A⊕ ∅) / π(E) = π(A⊕B) / π(E).

Thus, h(π(d(A))) = π(A⊕B)/π(E). We shall now massage h and d into permutations that preserve

the relevant densities.

By Lemma 3.2, there is a computable set H ⊆ π(E) with ρ(h(H)) = 0. Now, define the com-

putable permutation πh via πh(n) = h(n) for n ∈ π(E) \ H, and have πh enumerate π(O) t H

onto h(H) in order. Similarly, define the computable permutation πd via πd(n) = d(n) for n ∈

ω \ d−1(π−1(H)), and have πd enumerate d−1(π−1(H)) onto O t π−1(H).
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Since πd agrees with d on d−1(π−1(H)), we now see that

πd(A \ π−1d (π−1(H))) = (A⊕ ∅) \ π−1(H).

Furthermore, applying π shows that

π(πd(A \ π−1d (π−1(H)))) = π((A⊕ ∅) \ π−1(H)) = π(A⊕ ∅) \H.

Since πh agrees with h on π(E) \H and h(π(A⊕ ∅)) = π(A⊕B) / π(E), we have

πh(π(A⊕ ∅) \H) = (π(A⊕B) / π(E)) \ h(H).

Therefore, (π(A⊕B)/π(E))\h(H) ⊆ πh(π(πd(A))) and πh(π(πd(A))) ⊆ (π(A⊕B)/π(E))∪h(H).

By choice of H, ρ(h(H)) = 0, so Lemma 1.10 shows that

ρ(πh(π(πd(A)))) = ρ((π(A⊕B) / π(E)) \ h(H)) = ρ(π(A⊕B) / π(E))

and

ρ(πh(π(πd(A)))) = ρ((π(A⊕B) / π(E)) \ h(H)) = ρ(π(A⊕B) / π(E)).

Since P (A) = α and πh ◦ π ◦ πd is a computable permutation, it follows that

ρ(π(A⊕B) / π(E)) = α.

A nearly identical argument with O in place of E and B in place of A shows that

ρ(π(A⊕B) / π(O)) = α.

We shall now show that this implies that ρ(π(A⊕B)) = α. Consider ρn(π(A⊕B)). By definition,

ρn(π(A⊕B)) =
|π(A⊕B) � n|

n
.
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Since ω = π(E) t π(O),

|π(A⊕B) � n|
n

=
|π(A⊕B) ∩ π(E) � n|+ |π(A⊕B) ∩ π(O) � n|

n
.

The latter expression can be rewritten as

|π(E) � n|
|π(E) � n|

· |π(A⊕B) ∩ π(E) � n|
n

+
|π(O) � n|
|π(O) � n|

· |π(A⊕B) ∩ π(O) � n|
n

.

Let m be the largest number such that the m-th element of π(E) is less than n, and let k be the

analogous number for π(O). It follows from the definition of the within operation that

|π(A⊕B) ∩ π(E) � n|
|π(E) � n|

= ρm(π(A⊕B) / π(E))

and

|π(A⊕B) ∩ π(O) � n|
|π(O) � n|

= ρk(π(A⊕B) / π(O)).

Therefore, we can rewrite ρn(π(A⊕B)) as

ρm(π(A⊕B) / π(E)) · ρn(π(E)) + ρk(π(A⊕B) / π(O)) · ρn(π(O)).

Using the fact that ρn(π(E)) + ρn(π(O)) = 1,

ρn(π(A⊕B)) = ρm(π(A⊕B) / π(E)) · ρn(π(E)) + ρk(π(A⊕B) / π(O)) · (1− ρn(π(E))).

Rearranging, this is equal to

ρk(π(A⊕B) / π(O)) + ρn(π(E)) · (ρm(π(A⊕B) / π(E))− ρk(π(A⊕B) / π(O))).

A n goes to infinity, m and k must both go to infinity. Thus, by Lemma 3.3.1,

lim
n→∞

ρm(π(A⊕B) / π(E))− ρk(π(A⊕B) / π(O)) = 0.

Since ρn(π(E)) is bounded between 0 and 1, the second term vanishes. Therefore

lim
n→∞

ρn(π(A⊕B)) = lim
n→∞

ρk(π(A⊕B) / π(O)) = ρ(π(A⊕B) / π(O)) = α
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as desired.

Proposition 3.1 and Theorem 3.3 can easily be generalized.

Definition 3.4. Let H be an infinite, co-infinite set. Then the H-join of A and B, denoted
by A⊕H B, is

(A . H) t (B . H)

Notice that A ⊕ B = A ⊕E B. Furthermore, there is a computable permutation π that sends

E to H and O to H in order whenever H is computable. Therefore, π(A ⊕ B) = A ⊕H B, so

the generalizations of Proposition 3.1 and Theorem 3.3 follow immediately from the definition of

intrinsic density.

While Proposition 3.1 is useful for allowing us to construct new sets with defined intrinsic density,

we see that it is not sufficient for changing intrinsic density.

3.1.2 The Cartesian Product

Another classical candidate would be the Cartesian product A × B. However, this is even less

reliable than the join. Whether or not A×B even has asymptotic density related to the density of

A and the density of B can depend on the selected pairing function. For example, if 〈, 〉 : ω2 → ω

is a pairing function, consider the function f : ω2 → ω defined via

f(i, n) = 〈i− 1, n〉!

for i > 0 and

f(0, n) = sn,

where S is the set of nonfactorials. Then f has all of the properties we desire in a pairing function: it

is a computable bijection with computable inverse between ω2 and ω. Using f as a pairing function,

A × B (as a set of codes for pairs 〈a, b〉, a ∈ A and b ∈ B) would have density equal to that of B

if 0 ∈ A and density 0 otherwise. Removing or adding a single element from A never changes the

density, let alone the intrinsic density, but we could toggle the upper density of A × B between 0

and ρ(B) by toggling whether or not 0 is in A.

Even if we fix a pairing function 〈, 〉 that does respect the density of A and B, the above f

shows that this will not extend to intrinsic density. Since f and 〈, 〉 are both computable and have
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computable inverse, there is a permutation π such that π(〈n,m〉) = f(n,m). Then π(A × B) will

be as in the previous paragraph, so A×B cannot have intrinsic density determined by the intrinsic

densities of A and B.

These methods seem like they should generalize to any attempt at “nicely” coding A and B into

computable sets in such a way that we can easily recover them. This intuition will be formalized in

Theorem 3.5. Therefore, we now look to apply noncomputable methods to intrinsic density. 1

3.2 Into, Within, and Intrinsic Density

We already know that every real in the unit interval is achieved as an intrinsic density, witnessed

a set with the correct type of randomness. For intrinsic density 0 and 1, randomness will only

give the trivial examples ∅ and ω. However, nontrivial examples are known to exist from the work

in [4] and [3], as well as the first section of this dissertation. The reliance on randomness here is

not ideal. Intrinsic density is itself not a good notion of randomness because there are sets with

defined intrinsic density that can be computed by arbitrarily small subsets. Let A be 1-Random

and let X0 = A and Xn+1 = Xn ⊕Xn. By Proposition 1.19 and Theorem 3.3, Xk will be a set of

intrinsic density 1
2 , but {n : 2kn ∈ Xk} = A, so there is a subset with density 1

2k+1 that computes

all of Xk. However, much of the existing work on intermediate intrinsic density (and other notions

of stochasticity such as MWC) is obtained solely through appealing to randomness. For example,

Astor [4] proved that if A has intrinsic density α and B is 1-Random relative to A, then A∩B has

intrinsic density α
2 . We shall build technology for exploring intrinsic density that works at the level

of intrinsic density rather than at the more powerful level of randomness. For example, our tech-

niques will allow us to generalize this result of Astor and drop the relative randomness requirement

in the process. These methods will allow us to, for any r ∈ (0, 1), construct a set of intrinsic density

r which is computable from r and any µ 1
2
-random. For almost every r, the set we construct will be

the first known example of an intrinsic density r set which cannot compute a µr-random set.

The methods of Section 3.1 illustrate why coding methods that enumerate a set onto a com-

putable one are insufficient for our purposes. So long as we computably know where one of our sets

1We shall see in Section 3.2 that we can prove results about the union and intersection for intrinsic density, but in
general they are poor tools for working with asymptotic density. ρ(A∩B) and ρ(A∪B) cannot be computed using a
formula involving only ρ(A) and ρ(B). Furthermore, these operations do not represent a form of coding as we cannot
compute A from A ∪B even with the help of B for example.
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A is being coded, there is a permutation which can make the resulting set look like A modulo a set

of density 0, so the best case scenario is that the resulting set can have the same intrinsic density

as the original sets. We therefore turn to our noncomputable coding methods.

The following theorem formalizes the observation at the end of Section 3.1: If we have some

computable method of coding sets, then this method will at best preserve intrinsic density.

Theorem 3.5. Let C be computable and P (A) = α. Then P (A / C) = α.

Proof. Under the map which takes cn to n, A ∩ C is mapped to A / C. However, unless C is ω,

this is not a permutation. Using Lemma 3.2, we are able to massage this map into a permutation

which takes cn to n modulo a set of density 0. Then under this permutation, A∩C and A both go

to A/C modulo a set of density 0. Therefore, if A/C did not have intrinsic density α, then A also

could not, by Lemma 1.10.

Formally, assume P (A/C) 6= α. Suppose π is a computable permutation with ρ(π(A/C)) > α.

Let f : C → ω be defined via f(cn) = n. Then f(A ∩ C) = A / C:

A ∩ C A / C π(A / C)
f π

By Lemma 3.2, there is H ⊆ C computable with ρ(π(f(H))) = 0. Define πf : ω → ω via

πf (n) = f(n) for n ∈ C \H, and for n ∈ C tH, define πf (n) to be the least element of f(H) not

equal to πf (j) for some j < n. Since f agrees with πf on C \H,

πf ((A ∩ C) \H) = f(A ∩ C) \ f(H) = (A / C) \ f(H).

Therefore by applying π,

π(πf ((A ∩ C) \H)) = π((A / C) \ f(H)) = π(A / C) \ π(f(H)).

It follows from the above equality that

ρ(π(πf ((A ∩ C) \H))) = ρ(π(A / C) \ π(f(H))).
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Since ρ(π(f(H))) = 0, we apply Lemma 1.10 to see that

ρ(π(A / C) \ π(f(H))) = ρ(π(A / C)).

From the fact that (A ∩ C) \H ⊆ A, we obtain

ρ(π(πf (A))) ≥ ρ(π(πf ((A ∩ C) \H))) = ρ(π(A / C)).

However, we assumed that ρ(π(A / C)) > α, so ρ(π(πf (A))) > α. Since π ◦ πf is a computable

permutation, this implies P (A) 6= α.

This proves that if π is a computable permutation with ρ(π(A / C)) > α, then P (A) 6= α. If

there is no such permutation, then there must be a computable permutation π with ρ(π(A/C)) < α

because we assumed that P (A / C) 6= α. Then because

(π(A / C)) t (π(A / C)) = π((A / C) t (A / C)) = π(ω) = ω,

we have ρn(π(A / C)) = 1− ρn(π(A / C)) for all n. Therefore, by the subtraction properties of the

limit superior,

ρ(π(A / C)) ≥ 1− ρ(π(A / C)).

By our assumption that ρ(π(A / C)) < α,

1− ρ(π(A / C)) > 1− α.

Thus, ρ(π(A / C)) > 1 − α. We now apply the previous case to get that P (A) 6= 1 − α, which

automatically implies P (A) 6= α.

We obtain an alternate proof of Proposition 3.1 as a corollary of this result.

Corollary 3.6. (Proposition 3.1) If P (A) 6= P (B), then A⊕B does not have intrinsic density.

Proof. Suppose A ⊕ B has intrinsic density γ. Let E be the set of even numbers and O the set of

odd numbers. By Theorem 3.5,

P ((A⊕B) / E) = P ((A⊕B) / O) = γ.
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However (A⊕B) / E = A and (A⊕B) / O = B, so P (A) = P (B) = γ.

Knowing that we cannot change density using computable coding, we turn our attention to cod-

ing within noncomputable sets via into. This will allow us to multiply intrinsic densities.

We now make an observation about the asymptotic density of B . A, which will be critical for

investigating the intrinsic density of sets obtained via use of the into operation.

Lemma 3.7.

• ρ(B . A) ≤ ρ(B)ρ(A).

• ρ(B . A) ≥ ρ(B)ρ(A).

Proof. By Lemma 1.9,

ρ(B . A) = lim sup
n→∞

n+ 1

abn + 1
= lim sup

n→∞

n+ 1

abn + 1
· 1 = lim sup

n→∞

n+ 1

abn + 1
· bn + 1

bn + 1
.

By the submultiplicativity of the limit superior,

ρ(B . A) ≤ (lim sup
n→∞

bn + 1

abn + 1
)(lim sup

n→∞

n+ 1

bn + 1
) = (lim sup

n→∞

bn + 1

abn + 1
)ρ(B).

Since { bn+1
abn+1}n∈ω is a subsequence of { n+1

an+1}n∈ω, it holds that

lim sup
n→∞

bn + 1

abn + 1
≤ lim sup

n→∞

n+ 1

an + 1
= ρ(A).

Therefore, ρ(B . A) ≤ ρ(B)ρ(A), as desired.

The case for the limit inferior is nearly identical, reversing ≤ to ≥ and using supermultiplicativity

along with the corresponding identity from Lemma 1.9.

Corollary 3.8. If ρ(A) = α and ρ(B) = β, then ρ(B . A) = αβ.

Therefore, if B.A has intrinsic density, its intrinsic density must be the product of the densities

of A and B. Our next goal is to prove that B . A does indeed have defined intrinsic density with

sufficient assumptions on A and B.

Theorem 3.9. If P (A) = α and PA(B) = β, then P (B . A) = αβ.
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Proof. The proof is similar to the proof of Theorem 3.5. However, we shall present it fully here

without referring to techniques from that proof, as it is quite technical. The idea is that for any fixed

computable permutation π, there is an A-computable permutation that sends B to π(B .A) / π(A)

modulo a set of density 0. Therefore, if π witnesses that B . A does not have intrinsic density αβ,

π(B . A) does not have density αβ, and A has intrinsic density α, then Lemma 3.7 will show that

π(B . A) / π(A) does not have density β, so B does not have A-intrinsic density β.

Formally, assume P (A) = α. Assume that P (B . A) 6= αβ. We shall show that PA(B) 6= β.

First, suppose that there is some computable permutation π such that ρ(π(B .A)) > αβ. We shall

let π(A) = {p0 < p1 < p2 < . . . }. Let f : A → ω be defined via f(an) = n and g : π(A) → ω

via g(pn) = n, f maps A to its indices and g maps π(A) to its indices. Then f(B . A) = B and

g(π(B . A)) = π(B . A) / π(A):

B . A π(B . A)

B π(B . A) / π(A)

π

f g

It follows from Lemma 3.7 that ρ(π(B . A) / π(A)) > β. From the definition,

(π(B . A) / π(A)) . π(A)) = π(B . A)

and ρ(B.A) > αβ by assumption. Since P (A) = α, we have ρ(π(A)) = α, so ρ(π(B.A)/π(A)) ≤ β

would contradict Lemma 3.7.

From this point forward we shall let

X = π(B . A) / π(A)

for the sake of readability.

By Lemma 3.2 relativized to A and applied to g ◦ π, there is an A-computable set H ⊆ A such

that:

ρ(g(π(H))) = 0

We shall now define permutations which preserve the properties of f and g outside of H. Define

πf : ω → ω via πf (k) = f(k) for k ∈ A \ H, and for k ∈ A t H, let πf (k) be the least element
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of f(H) not equal to πf (m) for some m < k. Define πg : ω → ω similarly using π(A), π(H), and

g(π(H)) in place of A, H, and f(H), respectively. Then πf and πg are A-computable because H,

f , and g are, and they are permutations because f and g are bijections (from A and π(A) to ω

respectively) which have been modified to be total without violating injectivity or surjectivity.

Now we shall compute πg(π(π−1f (B \ f(H)))). Since f(B . A) = B and f agrees with πf on H,

π−1f (B \ f(H)) = (B . A) \H.

In addition, it holds that

π((B . A) \H) = π(B . A) \ π(H).

Since g(π(B . A)) = X and πg agrees with g on π(H),

πg(π(B . A) \ π(H)) = g(π(B . A)) \ g(π(H)) = X \ g(π(H)).

Thus πg(π(π−1f (B \ f(H)))) = X \ g(π(H)). Because ρ(g(π(H)) = 0, Lemma 1.10 implies that

ρ(X \ g(π(H))) = ρ(X).

By the definition of X,

ρ(X) = ρ(π(B . A) / π(A)),

which is greater than β by the above. Since B \ f(H) ⊆ B, we have

πg(π(π−1f (B \ f(H)))) ⊆ πg(π(π−1f (B))).

Thus,

ρ(πg(π(π−1f (B)))) ≥ ρ(πg(π(π−1f (B \ f(H))))).

Therefore,

ρ(πg(π(π−1f (B)))) ≥ ρ(π(B . A) / π(A)) > β.

Since πg ◦ π ◦ π−1f is an A-computable permutation, PA(B) 6= β.

We have proved that if there is some computable permutation π such that ρ(π(B . A)) > αβ,
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then PA(B) 6= β. If there is no such permutation, then there must be a computable permutation π

such that ρ(π(B .A)) < αβ, because we assumed that P (B .A) 6= αβ. Since A = (B .A)t (B .A),

we get π(A) = π(B . A) t π(B . A). Therefore

ρ(π(B . A)) = ρ(π(A) \ π(B . A)).

The fact that ρn(π(A)) = ρn(π(B . A)) + ρn(π(A) \ π(B . A)), when combined with the properties

of the limit superior with regards to subtraction, implies

ρ(π(A) \ π(B . A)) ≥ ρ(π(A))− ρ(π(B . A)).

We know that ρ(π(A)) = α because P (A) = α. We assumed that ρ(π(B . A)) < αβ, so

ρ(π(α))− ρ(π(B . A)) > α− αβ = α(1− β).

All together, we have

ρ(π(B . A)) > α(1− β).

Thus, we can apply the first case of the proof to show that PA(B) 6= 1 − β. This automatically

implies PA(B) 6= β, so we are done.

Astor [4] proved that whenever P (A) = α and B is 1-Random relative to A, then P (A∩B) = α
2 .

By Proposition 1.19, the fact that B is 1-Random relative to A implies B has A-intrinsic density

1
2 . This hints at a more general theorem, which we can prove as a corollary of the previous two

theorems.

Corollary 3.10. If P (A) = α and PA(B) = β, then P (A ∩B) = αβ.

Proof. By definition,

A ∩B = (B / A) . A.

Since PA(B) = β, Theorem 3.5 relativized to A shows that PA(B/A) = β. Therefore, we can apply

Theorem 3.9 to A and B / A to get that

P ((B / A) . A) = P (A ∩B) = αβ.
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Before continuing, we consider possible improvements to this theorem. It is natural to ask

whether or not either of the intrinsic density requirements in the statement of Theorem 3.9 can be

removed or weakened. It is immediate that we cannot drop the requirement that A has intrinsic

density. Because PA(ω) = 1 for any A, ω always satisfies the requirements on B, but ω . A = A,

so A must have intrinsic density. Similarly, B . ω = B for any B, so B must have intrinsic density.

Therefore, the only possible weakening of Theorem 3.9 would be to require P (B) = β as opposed

to PA(B) = β. However, this fails.

Proposition 3.11. Let P (A) = 1
2 . Then P (A ⊕ A) = 1

2 , but A . (A ⊕ A) does not have
intrinsic density.

Proof. Because P (A) = 1
2 implies P (A) = 1

2 , A⊕A has intrinsic density 1
2 by Theorem 3.3.

Let E represent the set of even numbers. Notice that A⊕A contains exactly one of 2k or 2k+ 1

for all k ∈ ω. Therefore, the n-th element of A ⊕ A is 2n if n ∈ A and 2n + 1 if n 6∈ A. Thus, by

definition,

E / (A⊕A) = A.

By the properties of the within operation,

A . (A⊕A) = (E / (A⊕A)) . (A⊕A) = E ∩ (A⊕A) = A⊕ ∅.

By Proposition 3.1, however, A⊕ ∅ does not have intrinsic density.

We cannot extend this result to A ⊕H A in general. Specifically, it is not always true that

H / (A⊕H A) = A. For example, consider the set H of naturals congruent to 2 modulo 3, and let

A be a set containing 0 but not containing 1. Then 0 6∈ H / (A⊕H A), because pA⊕HA(0) = 1 and

1 6∈ H. Thus, H / (A⊕H A) 6= A as witnessed by 0.2

With these tools in hand, we may now look towards constructing a set of arbitrary intrinsic

density. To do this, we would like to have a countable collection of sets that all have intrinsic

density relative to each other, so that we may apply Theorem 3.9 repeatedly.

2Recall that Theorem 3.5 says that if P (A) = α and C is computable, then A / C also has intrinsic density α.
It is natural to wonder if this is symmetric: does C / A have intrinsic density? The proof of Proposition 3.11 shows
that it is possible for C /A to have intrinsic density. However, this is not true in general, as C / ω = C. Future work
exploring this may reveal something interesting about the structure of sets with intrinsic density: let P (A) > 0, C be
coinfinite, computable with P (C /A) > 0. Such sets would witness the failure of the weak version of Theorem 3.9, as
(C / A) . A = C ∩A and no coinfinite subset of a computable set can have intrinsic density greater than zero.
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Lemma 3.12. There is a countable, disjoint sequence of sets {Ai}i∈ω such that P (Ai) = 1
2i+1 .

Furthermore, the Ai’s form a partition of ω.

Proof. For a given set X, X [i] denotes the i-th column of X, {n : 〈i, n〉 ∈ X}. Let X ⊆ ω be

1-Random. Then for all i, X [i] is 1-Random relative to
⊕

j 6=iX
[j]. (This is essentially Van Lam-

balgen’s Theorem [25]. See Downey-Hirschfeldt [8] Corollary 6.9.6 for the details.) Proposition

1.19, when relativized, implies that Z-1-Randoms have Z-intrinsic density 1
2 . In particular, tak-

ing a single 1-Random automatically gives us infinitely many mutually 1-Random sets, and, thus,

infinitely many sets with intrinsic density 1
2 relative to each other. Using these sets and applying

Theorem 3.9, we can construct the desired sequence, where the mutual randomness ensures us that

the conditions of the theorem are met.

Let B0 = ω. Given Bn, let

An = X [n] . Bn

and

Bn+1 = X [n] . Bn.

Note that for all i, Bi+1 ⊆ Bi and Ai ∩Bi+1 = ∅, since Bi+1 = X [i] . Bi and Ai = X [i] . Bi. Then

for i < j, Ai ∩ Aj = ∅ because Aj ⊆ Bj ⊆ Bi+1. Thus, the family {Ai}i∈ω is disjoint. We now

verify that P (Ai) = 1
2i+1 and P (Bi) = 1

2i by induction.

For the base case, P (B0) = P (ω) = 1, and B0 is computable. Suppose that Bi is
⊕

j<iX
[j]-

computable and that P (Bi) = 1
2i . Then Bi+1 = X [i] . Bi is Bi ⊕ X [i]-computable, and therefore⊕

j<i+1X
[j]-computable. Then by the above, both X [i] and X [i] are 1-Random relative to Bi.

Therefore, by the relativization of Proposition 1.19, we get PBi(X
[i]) = PBi(X

[i]) = 1
2 . Thus, by

Theorem 3.9, we have

P (Ai) = P (X [i] . Bi) = P (X [i])P (Bi) =
1

2
· 1

2i
=

1

2i+1
.

A nearly identical argument for P (Bi+1) verifies P (Bi+1) = 1
2i+1 , which completes the induction.

Finally, suppose for the sake of contradiction that the Ai’s do not form a partition of ω. Since

we have already shown that the sequence is disjoint, there must exist a least m with m 6∈ Ai for

any i. Therefore, there must be some k such that m is the least element of Bn for all n ≥ k. This

55



Draft document [July 29, 2021 at 16:34]

is because every m is in B0 and Bi+1 is a subset of Bi missing only elements of Ai. It follows that

0 ∈ X [n] for all n > k, as 0 ∈ X [n] would imply that m ∈ An since An = X [n].Bn and m is the least,

i.e. 0-th, element of Bn. However, this means that {〈n, 0〉 : n > k} is an infinite computable subset

of X, which contradicts the assumption that X is 1-random since it is a basic fact that 1-random

sets cannot have infinite computable subsets. Therefore, every m must be in some Ai as desired.

Jockusch and Schupp [12] proved that asymptotic density enjoys a restricted form of countable

additivity: if there is a countable disjoint sequence {Si}i∈ω of sets such that ρ(Si) exists for all i,

and

lim
n→∞

ρ(
⊔
i>n

Si) = 0,

then

ρ(
⊔
i∈ω

Si) =
∞
Σ
i=0

ρ(Si).

The intrinsic density analog of this results follows immediately from the fact that permutations

preserve disjoint unions. That is, if there is a countable disjoing sequence {Si}i∈ω of sets such that

P (Si) exists for all i and

lim
n→∞

P (
⊔
i>n

Si) = 0,

then

P (
⊔
i∈ω

Si) =
∞
Σ
i=0

P (Si).

Note that limn→∞ P (
⊔
i>nAi) = 0 must be true for any collection of sets satisfying Lemma 3.12

because limn→∞ P (
⊔
i≤nAi) = 1. This, when combined with the previous lemma, will allow us to

construct a set with intrinsic density r for any r ∈ (0, 1).

Theorem 3.13. For every r ∈ (0, 1) and any 1-random set X, r ⊕ X computes a set with
intrinsic density r.

Proof. Let r ∈ (0, 1). Let Br ⊆ ω be the set whose characteristic function is identified with the

binary expansion that gives r, the set of all n such that the n-th bit in the binary expansion for r

is 1. Let {Ai}i∈ω be constructed from X as in the proof of Lemma 3.12, and let Xr =
⊔
n∈Br An.

We now describe the process by which Xr is computable from r ⊕X. For a given m, m ∈ An for

some n since the Ai’s form a partition of ω. X can uniformly compute the Ai’s and thus compute

n. Then m ∈ Xr if and only if n ∈ Br, which r can compute.

56



Draft document [July 29, 2021 at 16:34]

Now, note that

lim
n→∞

P (
⊔

i∈Br,i>n
Ai) = 0

because
⊔
i∈Br,i>nAi ⊆

⊔
i>nAi and limn→∞ P (

⊔
i>nAi) = 0. By the fact that countable unions

sum intrinsic densities and the definition of Xr,

P (Xr) = Σ
n∈Br

P (An) = Σ
n∈Br

1

2n+1
.

By the definition of the binary expansion,

P (Xr) = Σ
n∈Br

1

2n+1
= r.

Corollary 3.14. If r is itself 1-random, then r can compute a set of intrinsic density r.

Proof. Use r in place of X in Theorem 3.13.

In particular, this constructed set cannot compute an r-random set because no r-random set

can be computable from r: a set X is r-random by definition if it is random with respect to some

representation of µr. In particular, this representation cannot compute X, but every representation

of µr can compute r as shown by Riemann and Slaman [21] Proposition 2.3. Therefore r cannot

compute X either.

Almost all r ∈ (0, 1) are 1-random, so for almost all r we can apply this corollary to obtain an

intrinsic density r set which cannot compute an r-random set. From each such example, we may

use Theorem 3.5 to generate more examples.

3.3 MWC-Density Compared to Intrinsic Density

The fact that intrinsic density is equivalent to injection stochasticity motivates us to ask the

same questions about other notions of stochasticity found in the literature. Much as in the intrinsic

density case, much of what is known about MWC and Church-stochastic sets is either a byproduct

of facts about randomness, or a separation from randomness as in the work of Ambos-Spies [1] and

Wang [28]. We would like to develop an understanding of MWC-density which does not rely on

randomness, as we did for intrinsic density in Section 3.2. This approach will allow us to separate
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MWC-density and intrinsic density, in the same spirit as computable and Martin-Löf randomness

have been separated. We shall see that the into and within operations behave similarly for MWC

and Church-densities as they do for intrinsic density, however other operations are less well behaved.

As per the remark following Definition 1.20, we need to measure A / f(A) for all computable

monotone selection functions f to check MWC-density, and the total such f to check Church-density.

(Recall that f(A) = {n : f(A � n) ↓= 1}.) Throughout this section, we shall focus on MWC-density.

However, all of our results will go through for Church-density as well. We will often be given a mono-

tone selection function and need to modify it to suit our needs. Our modification will never make a

total monotone selection function not total, so the result will hold in the Church-density case as well.

Much like the intrinsic density case, it is not hard to see that every real in the open unit interval

is achieved as the MWC-density of some set, as argued by Bienvenu [Personal Communication].

Pick a set X by putting n in X with probability r. For a fixed total computable monotone se-

lection function f that selects infinitely many bits, after applying f to X we obtain a sequence

of independent r-Bernoulli random variables. Then this has asymptotic density r with probability

1. Because there are only countably many total computable monotone selection functions, X has

Church-density r with probability 1. This argument relativizes to ∅′, which implies that the same

is true for MWC-density r sets.

From a computability theory perspective, we can make this very explicit. As in the intrinsic

density case, sets sufficiently random with respect to µr will have MWC-density r. (As in Proposition

1.19, this was previously known and follows from standard arguments. We provide a proof for

completeness.)

Proposition 3.15. For r ∈ (0, 1), if X is r-1-Random, then X has MWC-density r.

Proof. We shall argue by contrapositive. Let f be a monotone selection function, and suppose that

ρ(X /f(X)) > ε > r for some rational ε. It is sufficient to consider this case, for if ρ(X /f(X)) < r,

then ρ(X / f(X)) > 1− r, where f is the monotone selection function obtained by flipping the bits

then applying f . Additionally, without loss of generality, we may assume in the partial case that

f(X � n) ↓ for all n. Given f , we know that infinitely often ρn(X /f(X)) > ε. Therefore, whenever

we have some σ witnessing this fact by stage s, we may force f(τ) to converge to 0 for all τ � σ that

have not converged by stage s. As in Lemma 1.18, if r is noncomputable, then we are implicitly
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working relative to an arbitrary representation for µr, which can compute r.

We shall construct an r-(super)martingale that succeeds on X using f . Let α be as in the proof

of Proposition 1.19 for r and ε, such that (1 + α
r )ε(1 − α

1−r )1−ε > 1. Define m : 2<ω → {0, 1} as

follows:

• m(∅) = 1.

• If f(σ) = 1, let m(σ1) = (1 + α
r )m(σ) and m(σ0) = (1− α

1−r )m(σ).

• If f(σ) = 0, let m(σ1) = m(σ0) = m(σ).

• If f(σ) ↑, let m(σ1) = m(σ0) = 0.

Note that m is a c.e. r-(super)martingale. Furthermore, since f(X � k) ↓ for all k, m(X � n) 6= 0

for all n. Thus,

m(X � n) = (1 +
α

r
)|X�n|(1− α

1− r
)n−|X�n|.

If ρs(X / f(X)) > ε, then let n = pf(X)(s), the s-th element of f(X). Then

|(X / f(X)) � s| = |{k < n : f(X � k) = 1 and k ∈ X}| ≥ εs,

so it follows that

m(X � n) ≥ (1 +
α

r
)εs(1− α

1− r
)(1−ε)s = ((1 +

α

r
)ε(1− α

1− r
)1−ε)s.

By our choice of α, (1 + α
r )ε(1 − α

1−r )1−ε > 1, so supn→∞m(X � n) = ∞ because there are

infinitely many s satisfying the statement above. Thus, m succeeds on X and therefore X is not

r-1-Random.

This shows that every real in the interior of the unit interval is achieved as the MWC-density

of a set.3 There is a body of literature on sets of intrinsic density 0 and 1. There does not seem to

be much known about sets of MWC-density 0 or 1. Technically, ω and ∅ complete the whole unit

interval, albeit trivially. However, nontrivial sets of MWC-density 0 should exist simply by being

“small enough” to appear small under countably many selection functions. This turns out to be the

case.

3If f is a total computable selection function, then the above m is a computable r-martingale and therefore this
shows that computable randoms have Church-density r. Ambos-Spies [1] exhibited a computable random which is
not MWC stochastic, so in general m need not be computable. Wang [28] showed that Schnorr randoms need not be
Church stochastic, so the above result does not extend to r-Schnorr randoms for either type of density.
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Proposition 3.16. There exists an infinite set A ≤T ∅′ such that A has MWC-density (and,
therefore, Church-density) 0.

Proof. The construction is similar in principle to the jump strategy for constructing intrinsically

small sets from Lemma 2.1. However, the details are more complicated. The reason for this is

that monotone selection rules can change their behavior on different inputs, whereas permutations

cannot. It is not enough to simply choose sufficiently large elements to enter our set, for a given

monotone selection rule may refuse to act until it sees an element enter the set. We utilize the power

of the jump to determine if, for a given monotone selection function f , it is possible to force a large

gap into A / f(A) and ensure that the density is small. If it is not possible, then we do not allow

anything into A / f(A) until a large gap appears naturally. If no such gap appears, then A / f(A)

will be finite and we succeed.

Formally, let fi be an enumeration of the partial computable monotone selection functions. The

basic module for ensuring that ρ(A / fi(A)) = 0 for this specific fi is as follows: After seeing the

n-th 1 enter A / fi(A) at σs, we do not allow another 1 to enter until we see n2 0’s enter. (Notice

that convergence is not an issue, because the jump can determine if fi(σ) ↓ uniformly in σ and i.)

We will attempt to achieve this by picking some m such that fi(σs0
k) = 1 for n2 k’s less than m

and setting σs+1 = σs0
m10. The jump can determine if such an m exists.

Suppose we have defined σ � A and there is no m such that fi(σ0m) = 1. Then we cannot

force anything into A / fi(A) without adding extra 1’s to A, potentially adding some 1’s to fj(A)

for some j 6= i. To fix this issue, we say fi is paused for σ if there does not exist an m such that

fi(σ0m) = 1. As mentioned above, ∅′ can determine if fi is paused for σ. When determining how

to extend σs to σs+1 = σs0
m10, if fi(σs0

m1) = 1, then σs+1 puts a 0 into A / fi(A). If not, then

nothing changes. In both cases, no 1’s are added to A / fi(A) by σs. We continue and ask if fi is

paused for σs+1. Either we will eventually see enough 0’s enter A/fi(A) after some number of stages

and be allowed to add a 1, or this will not happen and fi(A) will be finite. We succeed in both cases.

We say fi is almost paused for σ if there is some k such that fi is paused for σ0k and σ0k does

not put enough zeroes into A / fi(A). Here, to say fi is paused means we cannot force another 0

into A / fi(A) by only adding 0’s to A. To say fi is almost paused means we may be able to force

some zeroes into A/fi(A), but we cannot force enough zeroes into A/fi(A). (Being almost paused

resembles a Σ0
2 question, but the bound on the number of zeroes necessary reduces it to a question
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the jump can answer: we can ask if fi is paused for σs: If so, then it is almost paused. If not, then

extend to σs0
k, where k witnesses that fi is not paused for σs. This adds a zero to A / fi(A). Now

ask if fi is paused for σs0
k and repeat. Eventually we will either reach a point where it is paused

or we will put enough zeroes into A / fi(A).)

Finally, we describe the construction using this module on all i simultaneously: at stage s, we

consider only the i ≤ s. Using the jump, determine which i are almost paused at stage s and

ignore them. For the remaining i, we may choose m large enough such that σs+1 = σs0
m10 puts

enough zeroes into A / fi(A) to ensure n2 zeroes are enumerated before the (n + 1)-st 1, where n

is the current number of 1’s in A / fi(A). As we are ignoring all of the almost paused selection

functions, we can always extend to σs+1 and thus A is infinite. Furthermore, ρ(A / fi(A)) = 0 for

all i since either fi(A) is finite or ρn(A / fi(A)) ≤ k+1
k2+k+1 for increasing k. (If there are k + 1 ones

in |A / fi(A) � n|, then there are at least k2 zeroes between the final two.)

This still leaves open MWC-density 1, for it may not be obvious a priori that MWC-density

behaves as intrinsic density does with respect to complements. We can prove that the behavior is

the same, however. This gives a non-trivial example of an MWC-density 1 set.

Proposition 3.17. Let A have MWC-density α. Then A has MWC-density 1− α.

Proof. Let f be a computable monotone selection function. Define f : 2<ω → {0, 1} via f(σ) =

f(1 − σ), where 1 − σ = τ ∈ 2|σ| with τ(n) = 1 − σ(n) for all n < |σ|. Then f(A � n) = f(A � n).

Since A has MWC-density α and f is a computable monotone selection function, either f(A) is

finite or ρ(A / f(A)) = α. If the former, then f(A) is also finite. If the latter, then

A / f(A) = A / f(A) = A / f(A).

Therefore,

ρ(A / f(A)) = ρ(A / f(A)) = 1− ρ(A / f(A)) = 1− α,

as desired.

Having obtained the whole unit interval in nontrivial fashion, we now turn to investigating MWC-

density analogs of results from Section 1.20 to illustrate the differences between the two notions of

stochasticity. We begin with into and within, which behave in nearly the same fashion.
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Theorem 3.18. Suppose C is computable and A has MWC-density α. Then A / C has
MWC-density α.

Proof. Let f be a computable monotone selection function. Define Ĉ : 2<ω → 2<ω via Ĉ(σ) = τ

with τ ∈ 2max(n:cn<|σ|)+1 and τ(i) = σ(ci) for all i < |τ |. Notice that Ĉ(X � cn) = (X / C) � n by

definition.

Now, define fC : 2<ω → {0, 1} via fC(σ) = 1 if and only if |σ| = ci for some i and f(Ĉ(σ)) = 1.

Since C is computable, Ĉ is computable and, thus, fC is a computable monotone selection function.

We now show that A / fC(A) = (A / C) / f(A / C).

We shall show that (A / C) / f(A / C) ⊆ A / fC(A) with a sequence of equivalent statements,

therefore proving the reverse as well. A number n is in (A / C) / f(A / C) if and only if the n-th

element of f(A/C) is in A/C, i.e. the n-th k with f((A/C) � k) = 1 is in A/C. This occurs if and

only if ck ∈ A. Now, note that fC(A) is the set of all ci such that f(Ĉ(A � ci)) = f((A/C) � i) = 1,

so k is as above if and only if ck ∈ fC(A) and ck ∈ A. Note that ck must be the n-th element of

fC(A) because k was the n-th number with f((A / C) � k) = 1, so n ∈ A / fC(A).

Since A has MWC-density α,

ρ((A / C) / f(A / C)) = ρ(A / fC(A)) = α.

Since f was arbitrary, A / C also has MWC-density α.

To prove the analog of Theorem 3.9 for MWC-density, we require more relativization. We shall

see that this is the main theme with MWC-density compared to intrinsic density. Unlike intrinsic

density, where the selection and interpretation functions act independently of the input set, MWC-

density can change the selected bits based on finitely much of the input set. This means that if

B is related to A in some predictable fashion, then a monotone selection rule may be able to use

information from B to predict bits of A. Assuming the sets have MWC-density relative to each

other will avoid this issue since using B as an oracle will allow us to simulate an input set involving

B, and vice versa for A. We shall see some consequences of this distinction after Theorem 3.21.

To prove this theorem, however, we shall require the following technical observation. The proof

involves merely unraveling definitions, but we provide it for clarity, because the definitions can be

cumbersome.
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Lemma 3.19. Let A, B and C be sets. Then

(A / C) / (B / C) = A / (B ∩ C).

Proof. By definition,

A / (B ∩ C) = {n : pB∩C(n) ∈ A}.

That is, it is the set consists of those n such that the n-th element of B ∩ C is in A.

Similarly, by definition,

(A / C) / (B / C) = {n : pB/C(n) ∈ A / C}.

That is, the set consists of those n such that the n-th element of B / C is in A / C. However, if

k ∈ A / C for some k, this means ck ∈ A, by definition. Therefore, if n ∈ (A / C) / (B / C), this

translates to cpB/C(n) ∈ A. Since pB/C(n) is the n-th element of B /C, cpB/C(n) is the n-th element

of C which is in B. That is, cpB/C(n) is the n-th element of B ∩ C. This confirms that the sets are

identical.

Here is a corollary of this lemma which we will not need, but does improve our calculus of into

and within.

Corollary 3.20. For any sets A, B, and C,

(A / C) / (B / C) = (A / B) / (C / B).

Proof. As intersection is symmetric,

A / (B ∩ C) = A / (C ∩B).

Therefore, applying Lemma 3.19 once on each side tells us that

(A / C) / (B / C) = (A / B) / (C / B).

Now we are ready to prove the analog of Theorem 3.9.

Theorem 3.21. Suppose that A has MWC-density α relative to B and B has MWC-density
β relative to A. Then B . A has MWC-density αβ.
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Proof. The proof is similar to the proof of Theorem 3.9. However, there is an extra consideration

for MWC-density because the selected bits can depend on the input. In Theorem 3.9, π(B .A) is a

subset of π(A), so we send B to π(B.A)/π(A) (modulo a set of density zero) and apply Lemma 3.7.

However, we don’t know in general whether A / f(A) contains (B .A) / f(B .A) because f(B .A)

need not be a subset of f(A). We first construct a B-computable monotone selection function fB

such that fB(A) = f(B . A) and, therefore, A / fB(A) is a superset of (B . A) / f(B . A). Then

because A has MWC-density α relative to B, A / fB(A) will have density α. At this point, we

shall borrow the proof idea of Theorem 3.9; namely, we shall construct an A-computable monotone

selection function fA such that

B / fA(B) = ((B . A) / f(B . A)) / (A / fB(A)).

Because B has MWC-density β with respect to A, B / fA(B) will have density β. We may then

apply Lemma 3.7 to show that (B . A) / f(B . A) has density αβ, as desired.

Formally, let f be a computable monotone selection function. If f(B .A) is finite or undefined,

we are done. If not, define fB : 2<ω → {0, 1} via fB(σ) = f(B . σ), where B . σ ∈ 2|σ| is defined as

one might expect: B . σ(n) = 1 if and only if σ(n) = 1 and n is the bi’th m such that σ(m) = 1 for

some i ∈ ω. Since (X . Y ) � n = X . (Y � n), it is immediate that

fB(A) = {n : fB(A � n) = 1} = {n : f(B . (A � n)) = 1} =

{n : f((B . A) � n) = 1} = f(B . A).

Therefore, since B . A ⊆ A,

(B . A) / f(B . A) = (B . A) / fB(A) ⊆ A / fB(A).

Let

X = ((B . A) / f(B . A)) / (A / f(B . A)).

We shall construct an A-computable monotone selection function fA such that B / fA(B) = X via

Lemma 3.19.
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Let fA : 2<ω → {0, 1} be defined via fA(σ) = f(σ . A), where σ . A = τ ∈ 2a|σ| is de-

fined via τ(n) = 1 if and only if n = am and σ(m) = 1 for some m < |σ|. We now claim that

B / fA(B) = (B . A) / (A ∩ f(B . A)).

If n ∈ (B.A)/ (A∩f(B.A)), then the n-th element of A∩f(B.A) is in B.A by the definition

of the within operation. This implies that n is of the form am for m ∈ B, where m is the n-th

number k such that ak ∈ A∩ f(B .A). Since am is in f(B .A), by the definition of fA, this implies

that m is the n-th number with

f((B . A) � am) = f((B � m) . A) = fA(B � m) = 1.

Thus, m is the n-th element of fA(B), and it lies in B, so m = pfA(B)(n) ∈ B. Therefore,

n ∈ B / fA(B). As n was arbitrary,

(B / A) / (A ∩ f(B . A)) ⊆ B / fA(B).

This argument reverses, so B / fA(B) = (B . A) / (A ∩ f(B . A)).

Therefore,

X = ((B . A) / f(B . A)) / (A / f(B . A)) = (B . A) / (A ∩ f(B . A)) = B / fA(B).

The first equality is by definition, the second is by Lemma 3.19, and the final is from the previous

paragraph. This implies that

X . (A / fB(A)) = (B / fA(B)) . (A / fB(A)).

Since A has MWC-density α with respect to B and fB(A) = f(B.A), we have ρ(A/f(B.A)) = α.

Since B has MWC-density β with respect to A, ρ(B / fA(B)) = β. Therefore, by Lemma 3.7,

ρ((B / fA(B)) . (A / f(B . A))) = ρ(B / fA(B))ρ(A / f(B . A)) = αβ.
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Finally, recall from the definition of X that X . (A / f(B . A)) = (B . A) / f(B . A). Therefore,

ρ((B . A) / f(B . A)) = ρ(X . (A / f(B . A))) = αβ,

as desired.

The extra relativization used in Theorem 3.21 rears its head immediately. Following Theorem

3.9, we were able to obtain as an easy corollary that if A has intrinsic density α and B has intrinsic

density β relative to A, then A∩B has intrinsic density αβ. The proof simply observed that B /A

had intrinsic density β relative to A via the relativized form of Theorem 3.5 and then applied Theo-

rem 3.9 because (B /A) .A = A∩B. In the MWC-density case, this argument fails. Theorem 3.21

requires relativization in both directions, and while the relativized form of Theorem 3.18 ensures

that B/A has MWC-density β relative to A, it does not ensure that A has MWC-density α relative

to B / A, so we cannot apply Theorem 3.21 as we wish. Whether this relativization is necessary

remains an open question, which we shall state fully in Question 4.9.

Fortunately, we can recover the intersection property for relatively MWC-dense sets using an

alternate proof, so this is still not a major departure from what is true for intrinsic density.

Proposition 3.22. If A has MWC-density α relative to B and B has MWC-density β relative
to A, then A ∩B has MWC-density αβ.

Proof. Let f be a computable monotone selection function. If f(A ∩B) is finite, then we are done.

Otherwise, consider (A ∩ B) / f(A ∩ B). Define the B-computable monotone selection function

fB : 2<ω → {0, 1} via fB(σ) = 1 if and only if f(σ ∩ B) = 1, where σ ∩ B = τ ∈ 2|σ| is

given by τ(n) = 1 if and only if σ(n) = 1 and B(n) = 1. Then, clearly, fB(A) = f(A ∩ B), so

A / fB(A) = A / f(A ∩B). Since A has MWC-density α relative to B,

ρ(A / fB(A)) = ρ(A / f(A ∩B)) = α.

We shall now construct an A-computable monotone selection function fA such that

B / fA(B) = (B / f(A ∩B)) / (A / f(A ∩B))

via Lemma 3.19.
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Define fA : 2<ω → {0, 1} via fA(σ) = 1 if and only if f(A ∩ σ) = 1 and |σ| ∈ A, where A ∩ σ is

defined similarly to σ∩B in the obvious way. Then it follows immediately that fA(B) = A∩f(A∩B),

so

B / fA(B) = B / (A ∩ f(A ∩B).

By Lemma 3.19,

B / (A ∩ f(A ∩B) = (B / f(A ∩B)) / (A / f(A ∩B)).

Therefore, by the properties of the within operation, we have that

(B / fA(B)) . (A / fB(A)) = (B / f(A ∩B)) / (A / f(A ∩B)) . (A / f(A ∩B)) =

(B / f(A ∩B)) ∩ (A / f(A ∩B)) = (A ∩B) / f(A ∩B).

By Lemma 3.7,

ρ((B / fA(B)) . (A / fB(A)) = ρ((A ∩B) / f(A ∩B)) = αβ.

Since f was arbitrary, A ∩B has MWC-density αβ.

So far, we have seen similar behavior between intrinsic density and MWC-density. This trend

will not continue, however. Both the join and the union are more volatile in the setting of MWC-

density, but we will be able to recover some utility.

Where Theorem 3.3 says that in a specific sense intrinsic density is ignorant of (computable)

internal structure, the opposite is true of MWC-density. In fact, the analog of Theorem 3.3 for

MWC-density fails in very strong fashion.

Proposition 3.23. Suppose that A has MWC-density α for 0 ≤ α < 1. Then A ⊕ A does
not have MWC-density.

Proof. Let E be the set of even numbers and letO be the set of odd numbers. Define f : 2<ω → {0, 1}

via f(σ) = 1 if |σ| ∈ O and σ(|σ|−1) = 1 and f(σ) = 0 otherwise. Then for any A, f(A⊕A) = A.O.

Therefore,

(A⊕A) / f(A⊕A) = (A⊕A) / (A . O) = ω,

so

ρ((A⊕A) / f(A⊕A)) = 1.
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However, because A has MWC-density α < 1, it has density α and A⊕A has density α. Therefore,

A⊕A cannot have MWC-density, since its asymptotic density does not match the density of (A⊕

A) / f(A⊕A).

It is possible to show that the join preserves MWC-density if both sets have the same MWC-

density relative to one another, as one might guess given Van Lambaglen’s theorem for randomness.

Theorem 3.24. If A has MWC-density r relative to B and B has MWC-density r relative
to A, then A⊕B has MWC-density r.

Proof. Let E be the set of even numbers and let O be the set of odd numbers. Given a computable

monotone selection function f , if f(A⊕B) is finite then we are done. Therefore assume it is infinite.

We want to prove that

ρ((A⊕B) / f(A⊕B)) = r.

Define the B-computable monotone selection function fB via fB(σ) = f((σ ⊕ B) � 2|σ|). Notice

that fB(A) = f(A⊕B) / E: n ∈ fB(A) if and only if

fB(A � n) ↓= f(((A � n)⊕B) � 2n) = f(A⊕B) � 2n) ↓= 1.

Therefore, 2n ∈ f(A ⊕ B) if and only if n ∈ fB(A). Thus, f(A ⊕ B) / E = fB(A). We shall now

use the following lemma:

Lemma 3.24.1. Given X and Y , (X . Y ) / Y = X.

Proof. By definition,

(X . Y ) / Y = {n : yn ∈ (X . Y )} = {n : yn = yxk for some k ∈ ω} =

{n : n = xk for some k ∈ ω} = X.

Therefore, by Lemma 3.24.1, we can rewrite A as (A . E) / E. Thus, we have

A / fB(A) = A / (f(A⊕B) / E) = ((A . E) / E) / (f(A⊕B) / E).
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Applying Lemma 3.19, we get

A / fB(A) = ((A . E) / E) / (f(A⊕B) / E) = (A . E) / (f(A⊕B) ∩ E).

Since A has MWC-density r relative to B, ρ((A . E) / (f(A⊕B) ∩ E)) = ρ(A / fB(A)) = r.

A similar argument with fA defined similarly to fB , replacing the roles of the evens with the

odds and the role of A with B, shows that ρ((B . O) / (f(A ⊕ B) ∩ O)) = ρ(B / fA(B)) = r since

B has MWC-density r relative to A.

If f(A⊕B) ∩O is finite, then

(A⊕B) / f(A⊕B) = ((A . E) / f(A⊕B)) t ((B . O) / f(A⊕B))

will differ from (A . E) / (f(A ⊕ B) ∩ E) by finitely much. It will therefore also have asymptotic

density r as desired. By a symmetric argument, the same applies if f(A⊕B)∩E is finite. Therefore,

we can assume that both are infinite, and it then suffices to prove the following lemma:

Lemma 3.24.2. Suppose X ∩H is infinite and coinfinite. Then if ρ((A .H) / (X ∩H)) = r
and ρ((B . H) / (X ∩H)) = r, we have ρ((A⊕H B) / X) = r.

Proof. By the definition of asymptotic density and the within operation,

ρ((A⊕H B) / X) = lim
n→∞

|{k < pX(n) : k ∈ X ∩ (A⊕H B)}|
n

We can use the fact that (A⊕H B) ∩X ∩H = (A .H) ∩X and (A⊕H B) ∩X ∩H = (B .H) ∩X

to split the numerator and obtain

lim
n→∞

|{k < pX(n) : k ∈ X ∩ (A . H)}|
n

+
|{k < pX(n) : k ∈ X ∩ (B . H)}|

n
.

Let t = |(X ∩H) � pX(n)|, that is, t is the number of elements of X ∩H in the first n elements of

X. Then n− t will be the number of elements of X ∩H in the first n elements of X. In particular,

|{k < pX(n) : k ∈ X ∩ (A . H)}| = |{k < pX∩H(t) : k ∈ X ∩ (A . H)}|

69



Draft document [July 29, 2021 at 16:34]

and

|{k < pX(n) : k ∈ X ∩ (B . H)}| = |{k < pX∩H(n− t) : k ∈ X ∩ (B . H)}|.

These equalities can be used to rearrange the above limit and obtain

lim
n→∞

|{k < pX∩H(t) : k ∈ X ∩ (A . H)}|
t

· t
n

+
|{k < pX∩H(n− t) : k ∈ X ∩ (B . H)}|

n− t
· n− t

n
.

Notice that

lim
t→∞

|{k < pX∩H(t) : k ∈ X ∩ (A . H)}|
t

= ρ((A . H) / (X ∩H)) = r

and

lim
n−t→∞

|{k < pX∩H(n− t) : k ∈ X ∩ (B . H)}|
n− t

= ρ((B . H) / X ∩H) = r.

Because both X ∩H and X ∩H are infinite, both t and n − t go to infinity as n goes to infinity.

Therefore, as n goes to infinity, the first fraction in each term goes to r and the limit becomes

ρ((A⊕H B) / X) = lim
n→∞

r · t
n

+ r · n− t
n

= r · lim
n→∞

nt+ n2 − nt
n2

= r · 1 = r,

as desired.

By Lemma 3.24.2, with E playing the role of H and f(A⊕B) playing the role of X, ρ(A⊕B) /

f(A⊕B)) = r, as desired.

However, Proposition 3.23 leaves us unable to generalize the proof that relativization was nec-

essary in the statement of Theorem 3.9 to the analogous proof for Theorem 3.21. This illustrates a

critical difference between intrinsic density and MWC-density. It also blocks us from studying the

Turing degrees of MWC-dense sets in the same fashion as we did in Section 2.4, as our techniques

relied heavily on the fact that the join preserved intrinsic density without relativization.

Not only does the join fail to behave well for MWC-density, but we shall in fact see that the

union also does not behave well. The difficulty lies in the fact that the bits selected by f on A tB

need not, in general, be the union of the bits selected by f on A and the bits selected by f on B.

On one hand, it is not difficult to prove that if A has MWC-density α relative to B and B has

MWC-density β relative to A with A and B disjoint, then AtB has MWC-density α+ β. Given a

monotone selection function f , there is a B-computable monotone selection function fB such that
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fB(A) = f(A t B). Similarly, there is an A-computable monotone selection function fA such that

fA(B) = f(A tB). Then, by the properties of the within operation,

(A tB) / f(A tB) = (A / f(A tB)) t (B / f(A tB)) = (A / fB(A)) t (B / fA(B)).

Therefore,

ρ((A tB) / f(A tB)) = ρ(A / fB(A)) + ρ(B / fA(B)) = α+ β.

However, Proposition 3.22 ensures that A ∩ B = ∅ implies that one of A or B has MWC-density 0

under these assumptions, so this result cannot be used to obtain new MWC-densities as the disjoint

unions of sets that have intrinsic density relative to one another.

One may think to drop the requirements that A and B have MWC-density relative to one

another, therefore disallowing the use of Proposition 3.22 and avoiding this problem. However, the

union still need not have MWC-density. The following lemma will allow us to construct such an

example.

Lemma 3.25. If A has MWC-density 0 and g is an increasing, total, computable function,
then B = {an + g(n) : n ∈ ω} also has MWC-density 0.

Proof. We argue by contrapositive. Let f be a monotone selection function such that ρ(B/f(B)) >

0. We shall construct a monotone selection function f̂ such that ρ(A / f̂(A)) ≥ ρ(B / f(B)) > 0.

Given σ ∈ 2<ω, let σ0 < σ1 < · · · < σk represent all indices on which σ is 1. Define g(σ)

to be τ ∈ 2|σ|+g(k+1) with τ(i) = 1 if and only if i = σj + g(j) for some j ≤ k. Finally, define

f̂ : 2<ω → {0, 1} via f̂(σ) = 1 if and only if f(g(σ)) = 1. Suppose that n ∈ B / f(B). Then

pf(B)(n) = ak + g(k) for some k ∈ ω. In particular, f(B � ak + g(k)) = 1. Therefore, since

g(A � ak) = B � ak + g(k), by the definition of g(σ), we have

f̂(A � ak) = f(g(A � ak)) = f(B � ak + g(k)) = 1.

Finally, notice that the m such that pf̂(A)(m) = ak must be less than or equal to n, because each

element of f̂(A) corresponds to an element of f(B) but not necessarily vice versa. It follows that

ρ(A / f̂(A)) ≥ ρ(B / f(B)), since each element of B / f(B) corresponds to an element of A / f̂(A)

which is no larger. Since ρ(B / f(B)) > 0, we are done.
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Proposition 3.26. There exists a set A such that A and A.A both have MWC-density, but
A t (A . A) does not.

Proof. By Proposition 3.16, there is an infinite set X with MWC-density 0. By Lemma 3.25,

A = {xn + n2 : n ∈ ω} also has MWC-density 0. Notice that

an+1 − an = xn+1 + (n+ 1)2 − xn − n2 = xn+1 − xn + 2n+ 1 > 2n+ 1.

It follows that the an-th element ofA is an+n+1. (The only way this could fail is if an+1 ≤ an+n+1.)

Therefore A . A = {an + n+ 1 : n ∈ ω}, so it has MWC-density 0 by Lemma 3.25.

Let f : 2<ω → {0, 1} be defined via f(σ) = 1 if and only if m < |σ| is the largest number with

σ(m) = 1, σ has 2k+1 1’s, and |σ| = m+k+1. It is immediate that f is a total monotone selection

function, and furthermore f(A t (A . A)) = A . A: by the above, A t (A . A) alternates between

elements of A and elements of A . A. The elements of A signal where elements of A . A will sit,

allowing f to select exactly those elements. Therefore,

(A t (A . A)) / f(A t (A . A)) = (A t (A . A)) / (A . A) = ω.

Thus, At (A.A) does not have MWC-density 0. However, it has density 0 as the union of two sets

of density 0, so it does not have MWC-density.

This shows that disjoint unions in general need not sum MWC-densities, a critical difference

between intrinsic density and MWC-density. However, this example relies nontrivially on the fact

that the sets have density 0. Is it possible to find an example with sets of positive MWC-density?

It turns out that the answer is yes. Bienvenu [Personal Communication] shared the following argu-

ment: We shall construct disjoint A and B with both having MWC-density 1
2 but A t B does not

have MWC-density 1. With probability 1
n , keep both 2n and 2n+ 1 out of both A and B. For all

naturals m not explicitly excluded, with independent probability 1
2 put m into A and put it into B

if it does not enter A. Then with probability 1, both A and B will have MWC-density 1
2 . However,

AtB does not have MWC-density 1 because AtB will be a sequence of 00’s and 11’s, so whenever

we see a 0, we select the next bit and obtain an infinite sequence of 0’s. (This will be infinite by

the effective version of the second Borel-Cantelli lemma.)

Another potential solution to the problem of misbehaving unions is to remove the requirement
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that the sets be disjoint. If A has MWC-density α relative to B and B has MWC-density β relative

to A, then must A ∪ B have MWC-density α+ β − αβ? (The inclusion-exclusion principle implies

that ρn(A ∪ B) = ρn(A) + ρn(B) − ρn(A ∩ B). Together with Proposition 3.22, this suggests that

the MWC-density of A ∪ B must be α + β − αβ if it has MWC-density at all.) It turns out that

this is true.

Theorem 3.27. Suppose A has MWC-density α relative to B and B has MWC-density β
relative to A. Then A ∪B has MWC-density α+ β − αβ.

Proof. Let f be a computable monotone selection function. If f(A ∪ B) is finite, we are done.

Otherwise, consider (A ∪B) / f(A ∪B). By definition,

ρ((A ∪B) / f(A ∪B)) = lim
n→∞

ρn((A ∪B) / f(A ∪B)).

By the inclusion-exclusion principle and the properties of the within operation,

ρn((A ∪B) / f(A ∪B)) = ρn(A / f(A ∪B)) + ρn(B / f(A ∪B))− ρn((A ∩B) / f(A ∪B)).

Let fA : 2<ω → {0, 1} be defined via f(σ) = 1 if and only if f(σ ∪ A) = 1, where σ ∪ A = τ ∈ 2|σ|

with τ(n) = 1 if and only if σ(n) = 1 or A(n) = 1. Let fB be defined similarly for B in place of A.

Since A has MWC-density α relative to B and B has MWC-density β relative to A,

ρ(A / fB(A)) = ρ(A / f(A ∪B)) = lim
n→∞

ρn(A / f(A ∪B)) = α

and

ρ(B / fA(B)) = ρ(B / f(A ∪B)) = lim
n→∞

ρn(B / f(A ∪B)) = β.

Therefore, what remains is to use an argument similar to that for Proposition 3.22 to handle the

intersection.

Define f̂A : 2<ω → {0, 1} via f̂A(σ) = 1 if and only if fA(σ) = 1 and |σ| ∈ A. Then it follows

immediately that

f̂A(B) = A ∩ fA(B) = A ∩ f(A ∪B),
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so

B / f̂A(B) = B / (A ∩ f(A ∪B).

By Lemma 3.19,

B / (A ∩ f(A ∪B) = (B / f(A ∪B)) / (A / f(A ∪B)).

Therefore, by the same argument as in Proposition 3.22, we have

ρ((B / fA(B)) . (A / fB(A)) = ρ((A ∩B) / f(A ∪B)) = αβ.

Thus, we have limn→∞ ρn((A ∩B) / f(A ∪B)) = αβ, and it follows that

ρ((A ∪B) / f(A ∪B)) =

lim
n→∞

ρn(A / f(A ∪B)) + lim
n→∞

ρn(B / f(A ∪B))− lim
n→∞

ρn((A ∩B) / f(A ∪B)) = α+ β − αβ,

as desired. Since f was arbitrary, A ∪B has MWC-density α+ β − αβ.

While this will allow us to change MWC-density, the fact that the union is not disjoint can make

this difficult to control if we want to iterate. Fortunately, in addition to the general union, we can

show that a specific type of disjoint union combines MWC-densities using the same formula. The

format and disjointness of this special form is more useful for our attempts to translate the proof

of Theorem 3.13 to MWC-density. Unfortunately, we will not completely succeed. We shall discuss

the attempts to translate this proof into the MWC-density case and why they only partially succeed

below, but we first introduce our special form of disjoint union.

Lemma 3.28. Suppose that A has MWC-density α relative to B and B has MWC-density
β relative to A. Then A t (B . A) has MWC-density α+ β(1− α) = α+ β − αβ.

Proof. Let f be a monotone selection function. We wish to show that

ρ((A t (B . A) / f(A t (B . A))) = α+ β − αβ.

By the properties of the within operation,

(A t (B . A) / f(A t (B . A)) = (A / f(A t (B . A))) t ((B . A) / f(A t (B . A))),
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so

ρ((A t (B . A) / f(A t (B . A))) = ρ((A / f(A t (B . A)))) + ρ(((B . A) / f(A t (B . A)))).

Therefore, we shall first construct a B-computable monotone selection function fB such that

fB(A) = f(A t (B . A)). Then

A / f(A t (B . A)) = A / fB(A),

and, therefore, because A has MWC-density α with respect to B, we have

ρ(A / f(A t (B . A))) = ρ(A / fB(A)) = α.

Define fB : 2<ω → {0, 1} via fB(σ) = 1 if and only if f(σt (B .σ)) = 1, where σt (B .σ) is defined

to be τ ∈ 2|σ| with τ(k) = 1 if and only if σ(k) = 1 or k is the bi-th 0 in σ for some i. From this

definition, it is immediate that fB(A) = f(A t (B . A)), as desired.

It remains to be shown that

ρ((B . A) / f(A t (B . A))) = β(1− α) = β − βα.

We would like to use Theorem 3.21 here. However, we cannot because B . A will not have MWC-

density relative to A. To fix this, we will mimic the proof of Theorem 3.21; that is, we shall construct

a B-computable monotone selection function gB such that gB(A) = f(At (B.A)). Then A/gB(A)

will be a superset of (B . A) / f(A t (B . A)) with density 1 − α because A has MWC-density α

relative to B. Then there is some X such that

X . (A / gB(A)) = (B . A) / f(A t (B . A)).

Finally, it suffices to construct an A-computable monotone selection function gA such that B /

gA(B) = X. The set X will then have density β due to the fact that B has MWC-density β relative

to A, and Lemma 3.7 will ensure that

ρ((B . A) / f(A t (B . A))) = ρ(X . (A / gB(A))) = β(1− α),
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as desired.

Define gB : 2<ω → {0, 1} via gB(σ) = 1 if and only if fB(σ) = 1, where σ is defined to be τ ∈ 2|σ|

with τ(k) = 1 if and only if σ(k) = 0. Then

gB(A) = fB(A) = f(A t (B . A)).

Let gA : 2<ω → {0, 1} be defined via gA(σ) = f(A t (σ . A), where A t (σ . A) = τ ∈ 2pA(|σ|) is

defined via τ(n) = 1 if and only if n ∈ A or n = pA(k) for some k < |σ| and σ(k) = 1. We now

claim that B / gA(B) = X.

Recall that X is

((B . A) / f(A t (B . A))) / (A / gB(A)).

As mentioned above, gB(A) = f(A t (B . A)), so we may apply Lemma 3.19 to obtain

X = (B . A) / (A ∩ f(A t (B . A))).

Suppose n ∈ X. By the definition of X,

pA∩f(At(B.A))(n) ∈ B . A.

That is, the n-th element of A ∩ f(A t (B . A)) is in B . A. Therefore, it is of the form pA(bk) for

some k. Furthermore, pA(bk) ∈ f(A t (B . A)), so by definition, f((A t (B . A)) � pA(bk)) = 1.

This then implies, by the definition of gA, that gA(B � bk) = 1. Therefore, bk ∈ gA(B), and

p−1gA(B)(bk) ∈ B / fA(B). Finally, note that p−1gA(B)(bk) = n, because every element of gA(B) is an

element of A ∩ f(A t (B . A)) by definition, and bk corresponds to the n-th such one. Therefore,

n ∈ B / gA(B). This argument reverses, so B / gA(B) = X.

Note that if A has MWC-density α relative to B and B /A and B has MWC-density β relative

to A, then Theorem 3.27 can be obtained as an easy corollary of Lemma 3.28. We have

A ∪B = A t (B ∩A) = A t ((B / A) . A).

Whether this latter relativization is implied by the other conditions is essentially Question 4.9.
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We are ready to attempt to lift Theorem 3.13 to MWC-density. Proposition 3.15 relativizes in

straightforward fashion. As a result, the proof of Lemma 3.12 immediately lifts to prove an analog

for MWC-density. There is a disjoint sequence of sets {Ai}i∈ω such that each Ai has MWC-density

1
2i+1 relative to the others. (Theorem 3.21 requires more relativization than Theorem 3.9, but the

fact that Theorem 3.21 itself relativizes ensures that the same proof technique applies.)

Unfortunately, the fact that unions do not preserve MWC-density in general means that given

a real r, we do not know that the infinite union of the Ai’s corresponding to the binary expansion

of r will have MWC-Density. In the finite case, however, Lemma 3.28 will ensure the union has the

desired MWC-density.

Proposition 3.29. Let X be 1-Random and let {Ai}i∈ω be constructed from X as in Lemma
3.12. If D is a finite set of natural numbers, then

⊔
i∈D Ai is X-computable and has MWC-

density Σi∈D
1

2i+1 .

Proof. Essentially, each
⊔
i∈D Ai is composed of finitely many unions of the form found in Lemma

3.28 and finitely many applications of the into operation. Van Lambalgen’s theorem will ensure

that we have all of the necessary relativizations so that we can use Lemma 3.28 and Theorem 3.21

to reduce the number of unions by one. Combined with induction on the size of the union, this will

prove the result.

Recall that we defined A0 = X [0] and

Ai = X [i] . X [i−1] . . . . . X [0]

for i > 0. Therefore, ⊔
i∈D

Ai =
⊔
i∈D

X [i] . X [i−1] . . . . . X [0].

(If i = 0 or i = 1 then we take X [i−1] . . . . .X [0] to mean ω and X [0] respectively to ensure that this

does indeed match the definition of Ai from Lemma 3.12.)

We argue by induction on the size of D. If D is a singleton, then its member is of the form

X [i] . X [i−1] . . . . . X [0] for some i. By Van Lambalgen’s Theorem, each X [j] is 1-Random relative

to the join of the other. Therefore, by Proposition 3.15 each has MWC-density 1
2 relative to the
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join of the others. Thus, X [i] . X [i−1] . . . . . X [0] has MWC-density 1
2i+1 , by Theorem 3.21. This

concludes the base case.

Now, suppose it holds that for any 1-Random X and any finite set D of size less than or equal

to n,
⊔
i∈D Ai has MWC-density Σi∈D

1
2i+1 . Let D have size n + 1. First, consider the case when

0 ∈ D. Then using the fact that (A tB) . C = (A . C) t (B . C) and the associativity of the into

operation, ⊔
i∈D

Ai = X [0] t (
⊔

i∈D,i>0

X [i] . X [i−1] . . . . . X [0]) =

X [0] t ((
⊔

i∈D,i>0

X [i] . X [i−1] . . . .X [1]) . X [0])

Let Y be defined via Y [i] = X [i+1]. Y is 1-Random relative to X [0], by Van Lambalgen’s Theorem.

Thus, by the relativized induction hypothesis,

⊔
i∈D,i>0

X [i] . X [i−1] . . . .X [1] =
⊔

i∈D,i>0

Y [i−1] . Y [i−2] . . . . Y [0]

has MWC-density Σi∈D,i>0
1
2i relative to X [0]. Finally, Lemma 3.28 then implies that

X [0] t ((
⊔

i∈D,i>0

X [i] . X [i−1] . . . .X [1]) . X [0])

has MWC-density

1

2
+ ( Σ

i∈D,i>0

1

2i
)(1− 1

2
) =

1

2
+ ( Σ

i∈D,i>0

1

2i+1
) = Σ

i∈D

1

2i+1
.

Now, suppose that j > 0 is the least element of D. Then we have

⊔
i∈D

Ai = (X [j] . X [j−1] . . . . . X [0]) t (
⊔

i∈D,i>j
X [i] . X [i−1] . . . . . X [0]) =

(X [j] . (X [j−1] . . . . . X [0])) t (
⊔

i∈D,i>j
(X [i] . X [i−1] . . . . . X [j]) . (X [j−1] . . . . . X [0])) =

(X [j] t (
⊔

i∈D,i>j
X [i] . X [i−1] . . . . . X [j])) . (X [j−1] . . . . . X [0]).

Let Y be defined via Y [i] = Y [i+j] and D̂ = {n − j : n ∈ D}. Then Y is 1-Random by Van

Lambalgen’s Theorem and D̂ is a set of size n that contains 0. Therefore, we can apply the
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relativized version of the previous case to see that

X [j] t (
⊔

i∈D,i>j
X [i] . X [i−1] . . . . . X [j]) = Y [0] t (

⊔
i∈D̂,i>0

Y [i] . Y [i−1] . . . . . Y [0])

has MWC-density

Σ
i∈D̂

1

2i+1
= Σ
i∈D

1

2i+1−j = Σ
i∈D

2j

2i+1

relative to X [j−1] . . . . . X [0]. Since X [j−1] . . . . . X [0] has MWC-density 1
2j relative to X [j] t

(
⊔
i∈D,i>j X

[i] . X [i−1] . . . . . X [j]), by Van Lambalgen’s Theorem and multiple iterations of the

relativized form of Theorem 3.21, it follows that

(X [j] t (
⊔

i∈D,i>j
X [i] . X [i−1] . . . . . X [j])) . (X [j−1] . . . . . X [0])

has MWC-density

( Σ
i∈D

2j

2i+1
)

1

2j
= Σ
i∈D

1

2i+1
.

This completes the induction.

Thus while our current technology does not give us the analog of Theorem 3.13 for every

r ∈ (0, 1), we do obtain it for those r that are finite sums of powers of two.

Unfortunately, it remains open whether or not this can be extended to infinite unions of this

form, which is Question 4.10 below. The difficulty lies once again in the fact that the input set

can change which bits are and are not selected. In theory, given any 0 < r < 1 and the set

coding its binary expansion Br as in Theorem 3.13, for any ε > 0, there exists an N such that⊔
n∈Br,n<N An/f(

⊔
n∈Br,n<N An) has MWC-density within ε of r. If we could impose a nice enough

uniformity condition on the An’s, then we might be able to assert that the change from adding the

remaining An’s is no more than ε. In practice, however, elements of Ak may change which bits are

selected by f in non-uniform fashion so that the density of
⊔
n∈Br,n<N An / f(

⊔
n∈Br,n<N An) is

meaningless compared to the density of
⊔
n∈Br An / f(

⊔
n∈Br An).
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CHAPTER 4

CLOSING REMARKS

4.1 Review and Future Work

In the first half of this dissertation, we studied the intrinsically small sets in detail. We proved

some useful closure properties for them, and proved that hyperimmunity and intrinsic smallness are

not the same anywhere in the Turing degrees. We partially filled out the diagram of relationships

between various notions of intrinsic computation. However, there are still many open questions.

Answering all potential remaining implications and nonimplications is a clear candidate for future

work. We also improved upon the known results about relativized intrinsic density, including a

complete description of the X-intrinsically small sets for all X.

In the second half, we set out to separate intrinsic density and randomness. To do this, we

defined the into and within operations. These turned out to be useful tools for coding sets in

noncomputable fashion. They formed a calculus of sorts for intrinsic density, which allowed us to

construct sets of arbitrary intrinsic density from any 1-Random. For almost all r, this constructed

set could not compute a set random with respect to µr, showing that intrinsic density is much weaker

computationally. We then compared and contrasted intrinsic density to the more well-known notion

of MWC-density. While into and within illustrated the similarities between the notions, the join

and the union highlighted their differences.

There is significant room for future work. We did not investigate full KL-density in this paper,

nor did we investigate how it compares to intrinsic density and MWC-density. Additionally, it is

unknown how into behaves with randomness: if A is µr-random relative to B and B is µs-random

relative to A, is B . A µrs-random? A simple probabilistic argument supports this, but a formal

proof is not immediately obvious. So far, we have exploited the fact that stochasticity is determined

by analyzing the asymptotic density of sets defined using the within operation and utilizing the

connections between into, within, and Lemma 3.7. Different methods seem to be necessary to
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study how the into operation interacts with martingales and/or ML-tests.

We conclude by compiling some specific open questions.

4.2 Open Questions

Recall the following unresolved question from Section 2.1.

Question 4.1. If A is intrinsically small and f is a total computable injective function whose
range has defined density, then is f(A) intrinsically small?

Additionally, the natural follow-up question to Corollary 2.11 remains open. This question is

closely related to Question 4.1.

Question 4.2. Suppose that A is an intrinsically small set. Is A small for the class of total
computable *-injective functions? Total computable injective functions?

Notice that if the answer here is yes, then the analogue of Corollary 2.6 for computable injec-

tive functions follows immediately from the same argument. Therefore, a positive answer yields a

positive answer to Question 4.1, and a negative answer to Question 4.1 yields a negative answer to

Question 4.2. The opposite direction also seems closely related, but no implications are immediately

obvious. 1

We say that X is range stochastic for r if ρ(f(A)/range(f)) = r for all total computable injective

functions f .

Question 4.3. Is it the case that every set of intrinsic density α has range-density α? That
is, for any set A with intrinsic density α, is it the case that f(A) / range(f) has density α for
all total computable injective functions f?

Note that this is similar to Question 4.1.

Recall that we proved there is an intrinsically coarsely computable set that is not intrincially

generically computable. The reverse separation is still open.

Question 4.4. Is there an intrinsically generically computable set which is not intrinsically
coarsely computable?

1Theorems 2.9 and 2.10 help to characterize what must happen in the scenario where the answer to Question 4.2
is no: The upper and lower density of the range are relatively far apart, allowing small elements of f(A) to show up
at late stages after any computable process “thinks” range(f) is done enumerating small elements.
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One potentially useful result to apply to this question is the result of Arslanov [2] that the only

c.e. DNC degree is ∅′. We know from [3] that the degrees that contain an intrinsically small set are

those which are high or DNC. Since the domain of an intrinsic generic description is c.e. and can

compute an intrinsically small set (its complement), its degree must be high or DNC. Therefore, it

is high.

Recall that we have a test for intrinsic smallness using principal functions, but not a character-

ization.

Question 4.5. Is it the case that if A is intrinsically small, then pA is not weakly computably
traced by h = λn(n!)? If it is not the case, is there an intrinsically small set which does not
dominate h? (This would mean that pA(n) ≤ n! infinitely often.)

Of course there are computably dominated intrinsically small sets, by Theorem 2.3. However,

it is not clear if there are any “nice” computable functions (i.e. something naturally occurring in

arithmetic or combinatorics) that dominate an intrinsically small set. It is not even clear if there are

such functions that are not dominated by the principal function of an intrinsically small set. Our

usual strategy for constructing intrinsically small sets is no help for this, as it requires arbitrarily

large witnesses.

Above, we proved that the degrees of intrinsic density r sets are closed upwards. However, it

remains to be seen exactly what those degrees are.

Question 4.6. Which Turing degrees contain a set of intrinsic density r?

We know that this cannot be the high or DNC degrees in general as is the case for the in-

trinsically small sets: as pointed out by Denis Hirschfeldt, there are uncountably many reals and

only countably many sets in each Turing degree, so no degree can have a representative for each r.

Furthermore, it cannot be a subset of the r-high or r-DNC degrees in general because for almost all

r we constructed an intrinsic density r set which is r-computable.

For intrinsic density, we proved that P (A / C) = α if C is computable and P (A) = α. It is

known that C / A does not necessarily have intrinsic density in general, as witnessed by A = ω.

This leads to the following question.

Question 4.7. Are there conditions on A guaranteeing that C / A has intrinsic density for
computable C?
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For a discussion of the applications of this question, see the remark following the proof of Propo-

sition 3.11.

In proving Theorem 3.21, we used more relativization than was necessary in the intrinsic density

analog Theorem 3.9. However, it is not known whether this is necessary or merely useful.

Question 4.8. Is the relativization optimal in Theorem 3.21? That is, are there sets A and
B such that B has MWC-density β relative to A and A has MWC-density α, but B . A does
not have MWC-density αβ?

The same proof that showed the relativization used in Theorem 3.9 is optimal will not work for

Theorem 3.21 because A⊕A will not have MWC-density, by Proposition 3.23.

We could not directly lift the proof that the intersection of two intrinsically dense sets multiplied

the intrinsic densities of the sets to the case of MWC-density due to different relativization require-

ments between Theorem 3.9 and its analog Theorem 3.21. A positive resolution to the following

question would allow us to do this.

Question 4.9. If A has MWC-density α and C is computable, does A have MWC-density α
relative to C / A? If so, does this relativize? If this is not true, is it at least the case that
whenever A has MWC-density α relative to B and B has MWC-density relative to A, then A
has MWC-density α relative to B / A?

Our usual techniques do not suffice to answer this question, since they use oracles, or relativized

information, to answer questions about non-relativized MWC-density. This question requires us to

answer a question about MWC-density relative to a specific set using non-relativized information.

If this is true and relativizes, or the weaker formulation is true, then whenever A has MWC-

density α relative to B and B has MWC-density β relative to A, Theorem 3.21 would imply A∩B

has MWC-density αβ and Lemma 3.28 would imply A ∪ Bhas MWC-density α + β − αβ. (Recall

that both of these facts are true, but they required separate proofs.)

At the end of Section 3.3, we discussed the difficulty in translating the proof of Corollary 3.13

into the intrinsic density case.

Question 4.10. Given a sequence {An}n∈ω as constructed in Lemma 3.12, let 0 < r < 1
and let Br be the set representing its binary sequence. Does

⊔
n∈Br An have MWC-density r?

If this is not so in general, are there additional requirements we can put on the sequence to
guarantee this?
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APPENDIX A

NOTATION

A.1 Strings and Sets

We shall use ω to represent the natural numbers, which include 0. We use ωω to denote the set

of all infinite strings of natural numbers, and ω<ω is the set of all finite strings of natural numbers.

For natural numbers n, nω and n<ω will denote the set of {0, . . . , n− 1}-valued infinite strings and

finite strings, respectively. Of particular importance are 2ω, the set of infinite binary strings, and

2<ω, the set of finite binary strings.

The following notational conventions all apply unless otherwise stated. We shall use lowercase

English letters such as b to represent natural numbers, and uppercase English letters such as B

shall represent infinite sets of natural numbers. We shall write B to represent the complement of B

within the natural numbers. Given a set B, we shall use subscripted lowercase letters to represent

its elements in increasing order, i.e. B = {b0 < b1 < b2 < · · · < bn < . . . }. The principal func-

tion of B, denoted by pB : ω → B, is defined via pB(n) = bn. The characteristic function of B,

denoted by χB : ω → {0, 1}, is defined via χB(n) = 1 if and only if n ∈ B. We will often abuse

notation and write B(n) to mean χB(n). For finite sets, there is a canonical coding that associates

a finite set Dn with a natural number n, for which the k-th bit of the binary expansion of n is 1

if and only if k ∈ Dn. As an example, the binary expansion of 11 is 1011. Therefore, D11 = {0, 1, 3}.

Lowercase Greek letters such as σ will be used to represent finite strings from ω<ω or n<ω. We

shall use |σ| to represent the length of σ. We think of sets as elements of 2ω by identifying them with

their characteristic function, and we think of functions from ω to ω as elements of ωω in the obvious

way. For f ∈ ωω and a natural number n, f � n is the restriction of f to the domain {0, 1, . . . , n−1},

which is an element of ω<ω. Given σ ∈ ω<ω and f ∈ ωω, we say σ � f if σ = f � |σ|. This applies

to sets via the identification with characteristic functions. We will occasionally use lambda notation

to describe functions, where f = λn(f(n)) is the same as saying f is the function from ω to ω that
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takes n to f(n), where f(n) is some fixed expression.

Baire space is the topological space obtained by equipping ωω with the topology generated by

the basic open sets [σ] = {f ∈ ωω : σ � f}. Cantor space is obtained by defining the analogous

topology on 2ω.

A.2 Turing Computation

We shall only list the notation we shall use for computation here. Familiarity with the concept of

Turing computation and its properties is assumed. For a review of these concepts, one may consult

Soare [24].

We use ϕe to represent the Turing machine associated with the code e under some fixed enu-

meration of all Turing machines. Our formal convention will be that our Turing machines take as

input a single natural number and output a single natural number, however informally we may use

some pairing function 〈, 〉 or coding system to replace natural numbers with other nice countable

objects such as finite strings of natural numbers or finite binary strings. We use ϕe,s(x) to represent

running the e-th Turing machine s steps with input x. Here we use ϕe,s(x) ↓= y to mean that the

e-th Turing machine halts on input x after no more than s steps and outputs y. Otherwise, we write

ϕe,s(x) ↑. We say ϕe(x) converges to y if there is some s with ϕe,s ↓= y, and we write ϕe(x) ↓ to

mean there is some y to which ϕe(x) converges. If there is no such y, we say ϕe(x) diverges and

write ϕe(x) ↑.

We let We = {n ∈ ω : ϕe(n) ↓}. A set X is said to be computably enumerable, or c.e., if X = We

for some e.

We use Φσe to represent the e-th oracle Turing machine with a finite binary string σ fed in on the

oracle tape. The above notation for convergence and divergence is used for Φσe in the obvious way,

with the caveat that Φσe (x) ↓ only if the the machine does not query the oracle tape beyond the

length of σ. As shifting the head of the oracle tape counts as a step in our computation, Φσe (x) ↓

implies Φσe,|σ|(x) ↓. Given a set X, we say that ΦXe (x) ↓= y if and only if there exists a σ � X with

Φσe (x) ↓= y.

85



Draft document [July 29, 2021 at 16:34]

BIBLIOGRAPHY

1. K. Ambos-Spies. Algorithmic randomness revisited. Language, Logic and Formalization of
Knowledge, 1997.

2. M. M. Arslanov. Some generalizations of a fixed-point theorem. Izv. Vyssh. Uchebn. Zaved.
Mat., 5:9–16, 1981. English translation: Soviet Math. (Iz. VUZ), 25:5, 1–10, 1981.

3. E. P. Astor. The computational content of intrinsic density. The Journal of Symbolic Logic, 83
(2):817–828, 2018. doi: 10.1017/jsl.2018.4.

4. E. P. Astor. Asymptotic density, immunity, and randomness. Computability, 4(2):141–158,
2015. ISSN 2211-3568. doi: 10.3233/COM-150040.

5. E. P. Astor, D. R. Hirschfeldt, and J. Carl G. Jockusch. Dense computability, upper cones, and
minimal pairs. Computability, 8(2):155–177, 2019. ISSN 2211-3568. doi: 10.3233/COM-180231.

6. L. Bienvenu. Game-theoretic characterizations of randomness: unpredictability and
stochasticity, 2008. URL https://www.labri.fr/perso/lbienvenu/docs/publications/

bienvenu-phd.pdf. PhD dissertation.

7. A. Day and J. S. Miller. Randomness for non-computable measures. Transactions of the Amer-
ican Mathematical Society, 365(7):3575–3591, 2013.

8. R. G. Downey and D. R. Hirschfeldt. Algorithmic randomness and complexity. Theory and
Applications of Computability. Springer, 2010.

9. R. G. Downey, C. G. J. Jr., and P. E. Schupp. Asymptotic density and computably enu-
merable sets. Journal of Mathematical Logic, 13(2), 2013. ISSN 1793-6691. doi: 10.1142/
S0219061313500050.
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