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What is Randomness?

It’s a well-known maxim in computer science that computers cannot generate a
sequence of numbers which is "truly random."

But what does it mean for a sequence to be random? The natural idea is that an
object is random if, with high probability, it is the end result of a random process.
To formalize this, however, we instead say an object is not random if it is the result
of a nonrandom process.

Historically, there are many different (and equivalent) formal definitions of what
constitutes randomness. This inevitably leads to comparisons between them.



Probability Measures

We work in Cantor space, 2ω.

A probability measure µ on 2ω is a measure with the property µ(2ω) = 1.

We will be most interested in the r-Bernoulli measure µr for real numbers r: given
a finite binary string σ, let |σ| denote the length of σ, and let #σ denote the number
of 1’s in σ. Then

µr([σ]) = r#σ(1 − r)|σ|−#σ

µ 1
2

is the Lebesgue measure on the unit interval.



Martingales

Definition
A µ-martingale m : 2<ω → R is a betting function for which expected value is
preserved. In other words,

µ([σ])m(σ) = µ([σ1])m(σ1) + µ([σ0])m(σ0)

We say m succeeds on a a set X if lim supn→∞ m(X ↾ n) = ∞.

X is µ-ML-Random (µ-1-Random) if no µ-c.e. µ-martingale succeeds on X. For
noncomputable µ, we work with respect to any representation of µ. The specifics
of representations are outside the scope of this talk, but essentially we are working
with respect to an oracle which can computably approximate µ([σ]) uniformly in
σ.



Different Types of Randomness

If we require martingales to be computable rather than c.e., then the
corresponding notion is µ-computable randomness.

If we additionally require that the lim sup goes to infinity computably, the
corresponding notion is µ-Schnorr randomness.

If we require our martingales to be computable but allow them to bet out of order,
then we obtain the notion of µ-KL randomness.



Law of Large Numbers

The law of large numbers states that, as the number of iterations of some random
process increases, the average of the outcomes approaches the expected value.

A set which is random with respect to the r-Bernoulli measure is thought of as the
outcome of infinitely many independent r-Bernoulli trials, i.e. r-biased flips of a
0,1-sided coin. The expected value of one such flip is given by r · 1 + (1 − r) · 0 = r.

Thus, if our notion of randomness is correct, then the average number of 1’s in a
µr-random set should be r.



Asymptotic Density

Definition
For a set X ∈ 2ω and n ∈ ω,

ρn(X) =
#(X ↾ n)

n
Then

ρ(X) = lim sup
n→∞

ρn(X), ρ(X) = lim inf
n→∞

ρn(X)

are called the upper density of X and the lower density of X respectively. If
ρ(X) = ρ(X), then we call this value the (asymptotic) density of X and denote it by
ρ(X).
The law of large numbers suggests that ρ(X) = r for any set X which is
µr-random. This is in fact true.



Sampling

Asymptotic density is not a particularly random property: the set of even numbers
has density 1

2 , but is clearly not random. However, sufficiently random sets satisfy
a stronger property: the density remains the same even if we sample a nice subset.

Definition
A selection (sampling) function is a partial function f : 2<ω → {0, 1}. Then we use
f (X) to denote the set {n : f (X ↾ n) = 1}.

The level of µr-randomness which X exhibits determines the selection functions f
for which ρ(f (X)) = r.



Stochasticity

A set X is r-Church stochastic if f (X) is finite or ρ(f (X)) = r for all total
computable selection functions f . If X is µr-computably random, then it is
r-Church stochastic.

A set X is r-MWC stochastic if f (X) is finite or ρ(f (X)) = r for all partial
computable selection functions f . If X is µr-ML random, then it is r-MWC
stochastic.

X is r-KL stochastic if f (X) is finite or ρ(f (X)) = r for all non-monotonic
computable selection functions. If X is KL-random, then it is r-KL stochastic.



Injection Stochasticity

A special case of KL stochasticity is injection stochasticity, which is stochasticity
with respect to non-monotonic selection functions which ignore the input. (I.e.,
uniform KL stochasticity.)

Astor proved that r-injection stochasticity corresponds with intrinsic density r.

Definition
The absolute upper density of X is

P(X) = sup
π

{ρ(π(X)) : π a computable permutation}

The absolute lower density, P(X), is defined similarly for the lim inf. If these are
equal, we denote the quantity by P(X) and call it the intrinsic density of X.



Intrinsic Density and Randomness

If X is µr-ML random, then it has intrinsic density r. Is the converse true?

The answer is no. It is not hard to show that if A has intrinsic density 1
2 , then

A ⊕ A has intrinsic density 1
2 as well. However, A ⊕ A is not random by Van

Lambalgen’s Theorem, which says that A ⊕ B is only random if A and B are
relatively random to each other.



Separating Randomness and Stochasticity

While this shows that there are sets which have intrinsic density but are not
random, it is a structural fact. If A is random, A ⊕ A can still trivially compute A,
and therefore can compute a random. We have not shown any difference in
computational properties between the two notions.

This will be our goal. We shall prove that, for almost all r, there is an r-computable
set of intrinsic density r. As a corollary, this set will not be able to compute any
µr-random set. To do this, we first need to develop some machinery.



The Into Operation

Definition
Given two sets

A = {a0 < a1 < a2 < . . . }

and
B = {b0 < b1 < b2 < . . . }

we define the set B ▷ A, or “B into A,” to be

{ab0 < ab1 < ab2 < . . . }

As an example: If E is the set of even numbers and T is the set of multiples of
three, then E ▷ T is the set of multiples of six.



Into and Asymptotic Density

Lemma
ρ(B ▷ A) = ρ(B)ρ(A)

Proof Sketch.
We will be able to estimate the limsup for B ▷ A with

lim sup
n→∞

n + 1
abn + 1

· bn + 1
bn + 1

≤ (lim sup
n→∞

bn + 1
abn + 1

)(lim sup
n→∞

n + 1
bn + 1

)

The latter term will be the limsup for B, and the former will be no greater than the
limsup for A. The liminf will be similar, and as both B and A have density we are
done.



Into and Intrinsic Density

The following theorem is central to our argument. We shall use it to combine sets
and manipulate intrinsic density.

Theorem
If A has intrinsic density α and B has intrinsic density β relative to A, then B ▷ A has
intrinsic density αβ.

To prove this, we need to introduce another operation.



The Within Operation

Definition
Given two sets

A = {a0 < a1 < a2 < . . . }

and
B = {b0 < b1 < b2 < . . . }

we define the set B ◁ A, or “B within A,” to be

{n : an ∈ B}

In other words, B ∩ A ⊆ A, so there is some set X such that X ▷ A. We use B ◁ A to
represent this set X.



Basic Properties

• A = A ▷ ω
• A = ω ▷ A
• (B ▷ A) ⊔ (B ▷ A) = A
• ▷ is associative
• ω = A ◁ A

• (B ◁ A) ⊔ (B ◁ A) = ω

• If B ⊆ A, (B ◁ A) ▷ A = A ∩ B.
• ◁ is not associative
• (B ▷ A) ◁ A = B
• A ⊕ B = (A ▷ E) ⊔ (B ▷ O)



A Set Calculus
In proving theorems using these operations, we often use technical lemmas about
their behavior which say nothing about stochasticity or randomness.

Lemma
For any sets A, B, C:
• ρ(B ▷ A) = ρ(B)ρ(A).
• (A ◁ C) ◁ (B ◁ C) = A ◁ (B ∩ C).
• (A ◁ C) ◁ (B ◁ C) = (A ◁ B) ◁ (C ◁ B).
• If C ∩ E is infinite and coinfinite and

ρ((A ▷ E) ◁ (C ∩ E)) = ρ((B ▷ E) ◁ (C ∩ E)) = r

then ρ((A ⊕ B) ◁ C) = r



Within and Intrinsic Density

Theorem
If C is computable and P(A) = α, P(A ◁ C) = α.

The proof technique for this result is used to prove the main Into theorem.



Back to the Into Theorem

Theorem
If A has intrinsic density α and B has intrinsic density β relative to A, then B ▷ A has
intrinsic density αβ.



Proof of Theorem

Proof.
Suppose not. Then there is a computable permutation π such that
ρ(π(B ▷ A)) ̸= αβ.

Define an A-computable permutation f such that f (B ▷ A) = B modulo a set of
density 0 and an A-computable permutation g such that
g(π(B ▷ A)) = π(B ▷ A) ◁ π(A) modulo a set of density 0. Then
ρ(g(π(f−1(B)))) = β, so by the A-intrinsic density of B, ρ(π(B ▷ A) ◁ π(A)) = β.

However, by the asymptotic density theorem for Into and the fact that P(A) = α,

ρ(π(B ▷ A)) = ρ((π(B ▷ A) ◁ π(A)) ▷ π(A)) = ρ(π(B ▷ A) ◁ π(A))ρ(π(A)) = αβ

This is a contradiction.



Intersections

Corollary
If A has intrinsic density α and B has intrinsic density β relative to A, then A ∩ B has
intrinsic density αβ.

Proof.
By the relativized form of the Within theorem, B ◁ A has intrinsic density β relative
to A. By the Into theorem, A ∩ B = (B ◁ A) ▷ A has intrinsic density αβ.



Unions

We shall construct sets using the Into theorem, then combine them using disjoint
unions.

Theorem (Essentially Jockusch and Schupp, 2012)
Suppose {Si}i∈N is a countable sequence of sets. If all of the following occur:
• The Si’s are disjoint
• Si has intrinsic density for all i
• the limit of the density of the tail of this sequence goes to 0 as i goes to infinity

then the union has defined intrinsic density and it is the sum of the densities of the Si’s.



Powers of Two
Theorem (Van Lambalgen, 1990)
Any set random with respect to µ 1

2
can be decomposed into countably many sets which are

random with respect to µ 1
2

relative to any combination of the others.

This is essentially verifying the intuition that random sets are the output of
countably many independent Bernoulli variables.

Theorem
There is a countable, disjoint sequence of sets {Ai}i∈ω such that Ai has intrinsic density

1
2i+1 . Furthermore, this satisfies the requirements of Jockusch and Schupp’s result.

Proof Sketch.
Let X be 1-Random. Then by Van Lambalgen’s theorem and the fact that
1-Randoms have intrinsic density 1

2 , we have countably many sets Xn all with
intrinsic density relative to any combination of the rest. Then define B0 to be all of
the naturals, An = Xn ▷ Bn, and Bn+1 = Xn ▷ Bn.



Avoiding Randomness
Theorem
If r is random with respect to µ 1

2
, then r computes a set of intrinsic density r.

Proof.
Let r be random with respect to µ 1

2
and let Br be the set corresponding to its binary

expansion to avoid confusion. We use Br in place of X to construct the sequence
from the previous theorem.

Then by the theorem of Jockusch and Schupp, A =
⋃

n∈Br
An will have intrinsic

density the sum of the densities of the An’s for n ∈ Br. However, as Br is the binary
expansion of r and each An has intrinsic density 1

2n+1 , these sum to r, completing
the proof.
Note that no µr-random set can be r-computable, so this set cannot compute any
µr-random set.



MWC and Church Stochasticity

What about other notions of stochasticity? It is natural to ask if the above
techniques can be used to provide a similar separation between randomness and
other notions of stochasticity.

However, there are some key structural differences between MWC and Church
stochasticity and injection stochasticity which will cause the above argument to
fail. We will state the results in terms of MWC stochasticity, but they will apply to
Church stochasticity as well.



Differences in Stochasticity

Lemma
If A is MWC stochastic for some real other than 1, then A ⊕ A is not MWC stochastic.

Lemma
There exist disjoint sets A and B such that both are 0-MWC stochastic, but A ⊔ B is not
MWC stochastic.

Lemma
(Bienvenu) There exist disjoint sets A and B such that both are 1

2 -MWC stochastic, but
A ⊔ B is not MWC stochastic.



Similarities in Stochasticity

Theorem
If A is r-MWC stochastic and C is computable, then A ◁ C is r-MWC stochastic.

Theorem
If A is α-MWC stochastic relative to B and B is β-MWC stochastic relative to A, then
B ▷ A is αβ-MWC stochastic.
This second theorem looks similar to the Into theorem for intrinsic density.
However, notice that there is an extra relativization requirement on A. It is
unknown if this is necessary.

Theorem
If A is α-MWC stochastic relative to B and B is β-MWC stochastic relative to A, then
A ∩ B is αβ-MWC stochastic.



Unions

Theorem
If A is α-MWC stochastic relative to B, and B is β-MWC stochastic relative to A, then
A ∪ B is α + β − αβ-MWC stochastic.

Theorem
If A is α-MWC stochastic relative to B, and B is β-MWC stochastic relative to A, then
A ⊔ (B ▷ A) is α + β − αβ-MWC stochastic.



Constructing MWC stochastic sets

Theorem
Every µ 1

2
-random set X computes a set of r-MWC stochasticity, where r is any real in the

unit interval equal to a finite sum of powers of 2.

Proof.
We construct An and Bn from X as in the intrinsic density case. Van Lambalgen’s
Theorem ensures we have the relativization necessary even for the additional
requirements. Then we verify that any finite union of the An’s is of the form
necessary to apply the second union theorem.



Some Open Questions

Question
For r nonrandom, is there an intrinsic density r set which cannot compute a µr-random
set?

Question
Given r, is there an r-MWC-stochastic set which cannot compute a µr-random set?

Question
Can we generalize the Into and Within theorems to work for random sets?


