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Flipping Coins

We have a sequence of countably many coins. Each coin exhibits a 1
(heads) or 0 (tails). The coins are identically p-biased, i.e. flipping one
would result in 1 with probability p.

We think of this sequence as a set of natural numbers, with n being in
the set if and only if the n-th coin shows a 1. While we generally
associate coins with random outcomes via coin flips, nothing is
stopping one from arranging a sequence of coins to have a specific,
desired outcome.



Coin Sequences



The Stochasticity Game

Each coin in the sequence has been hidden under a cup. We don’t
know which side is face up until we look under the corresponding cup.

Our opponent (the house) claims that the hidden sequence was
obtained by flipping each coin randomly, with no modification. We are
challenged to prove them wrong by finding a subsequence of coins
which fails the law of large numbers.

The sequence is said to be stochastic if our opponent wins the game,
i.e. we cannot find such a subsequence. Depending on how we define
legal plays for this game, we obtain different notions of stochasticity.
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Adaptivity

A stochasticity notion is called adaptive if we are allowed to
incorporate previously revealed information into our strategy.
Stochastic notions under which we cannot use information revealed
about the subsequence are called non-adaptive.



Order

A stochasticity notion is called disorderly if we are allowed to make
decisions on coins regardless of their order in the original sequence.
Stochastic notions which force us to make decisions in the order
imposed by the original sequence are called orderly.



The Law of Large Numbers

Definition
The asymptotic density of A, if it exists, is

ρ(A) = lim
n→∞

|A ↾ n|
n

The law of large numbers states that a countable sequence A
generated by independent p-Bernoulli random variables satisfies
ρ(A) = p with probability 1.



Tools for Working with Density

Definition
Given

A = {a0 < a1 < a2 < . . . }

and
B = {b0 < b1 < b2 < . . . }

B ◁ A, “B within A”, is defined via

B ◁ A = {n : an ∈ B}

This notation is useful because B ◁ A takes B ∩ A and turns it into a
sequence indexed by the natural numbers.



von Mises-Wald-Church Stochasticity

A selection function is a function f : 2<ω → {Yes,No}. Given A,

f (A) = {n : f (A ↾ n) = Yes}

We say A is p-MWC stochastic if

ρ(A ◁ f (A)) = p

for all partial computable selection functions f . A is Church stochastic if
it wins on all total computable selection functions.

Church and MWC stochasticity are both orderly and adaptive:
decisions are made in order, and previous information can influence
future decisions.
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Kolmogorov-Loveland Stochasticity

KL-stochasticity is a stochasticity notion which is disorderly and
adaptive. Much like MWC stochasticity, we can use the information
from any previously visited coin in our decisions. We can also visit
coins out of order: in addition to a selection function which determines
whether or not we should include the next coin in our subsequence, we
have a scan rule which determines what coin we will visit next.

KL-Stochasticity is disorderly and adaptive.
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Injection Stochasticity

A set A is p-injection stochastic if

ρ(f−1(A)) = p

for all total computable injections f . This can be thought of as “uniform
KL-stochasticity” because this is equivalent to having a scan rule and
selection function ignore the provided information and just operate
computably. This is a disorderly, non-adaptive stochasticity notion.

Astor [Ast15] proved that this is equal to intrinsic density, which is
having density p under every computable permutation.
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The Zoo thus Far

The implications (black arrows) are immediate from the definition of
KL-Stochasticity being the most general.

The separation of MWC and KL (pink arrow) is due to Merkle, Joe
Miller, Nies, Reimann, and Stephan. [MMN+06].

[Mil21] proved that intrinsic density is preserved under joins, so the
other two separations are immediate.



Disorderly, Non-Adaptive?

Our main motivation for this project was the following: If

ρ(A ◁ C) = p

for all infinite computable sets C, then does A have intrinsic density
(injection stochasticity) p?

It turns out that this is equivalent to asking if “uniform
MWC-stochasticity” implies “uniform KL-stochasticity.” As we’ve
mentioned, the latter is injection stochasticity/intrinsic density, but to
our knowledge the former has not been seriously studied.



Increasing Stochasticity/Computable Density

A set A is p-Increasing stochastic if

ρ(f−1(A)) = p

for all total computable (strictly) increasing functions f . Alternatively,
ρ(A ◁ range(f )) = p for all such functions. This justifies the alternative
name computable density.

This is “uniform MWC stochasticity,” and as such is disorderly and
non-adaptive.



Order vs Disorder in the Non-Adaptive Setting

It is immediate that injection stochasticity implies increasing
stochasticity, and equivalently, that intrinsic density p implies
computable density p. But what about the converse?

It turns out that the converse fails, the proof of which gives rise to an
interesting construction technique.

Theorem (Ko, M.)
There is a set A which has computable density 0 (a computably small
set), but there is a permutation h of the naturals such that

ρ(h−1(A)) = 1

That is, A is as far as possible from having intrinsic density 0 (it is not
intrinsically small).



Generalizing Beyond 0

An immediate objection one might have to this theorem is that
density/stochasticity 0 and 1 are the least interesting variants from a
randomness perspective. In terms of our randomness motivation, a
1-biased coin doesn’t have any interesting meaning. However, the
following lemma shows that the case for 0 is sufficient to obtain the
more interesting ones.

Lemma
If there is a set A which has computable density 0 but not intrinsic
density 0, then for any α there is a set B with computable density α but
not intrinsic density α.



Proof

Proof.
Given such A, let B have intrinsic density α. Consider B \ A. Then it is
straightforward to show that B \ A has computable density α. If it does
not have intrinsic density α, then we are done.

Then suppose it does. It then follows by a simple calculation that B ∪ A
cannot have intrinsic density α since A doesn’t have intrinsic density 0,
but A ∪ B must also have computable density α.

This style of proof actually tells us even more. We can show that all of
these degrees are closed upwards using the methods from [Mil21], so
these counterexamples are also closed upwards in the Turing degrees.



Proof Sketch of Main Theorem
Theorem (Ko, M.)
There is a set A which has computable density 0 (a computably small
set), but there is a permutation h of the naturals such that

ρ(h−1(A)) = 1

That is, A is as far as possible from having intrinsic density 0 (it is not
intrinsically small).

Our goal is to build a computable permutation h and a set A such that
ρ(f−1(A)) = 0 for all increasing computable functions f , but
ρ(h−1(A)) = 1. We shall use the trick that we can enumerate the
increasing functions/computable sets by enforcing that Turing
machines never output a number less than or equal to those seen
before. This gives us an effective enumeration fi of the increasing
computable functions. (Many of which are partial and have finite
domain.) h will be built up via a series of finite permutations between
intervals [n,m].



Proof Sketch
Let’s first look at a single increasing function f . There are two ways we
can win:

range(f ) contains many elements, and each “hit” (i.e. element of
A) is preceded by many “misses.” Then f−1(A) will have small
density due to the misses, so we just need to ensure that h−1(A)
is large.
range(f ) contains very few elements. In this case, we concentrate
A away from the points of range(f ) so that h−1(A) is big, but
range(f ) doesn’t see any elements of A.

We construct h in such a way as to balance these two outcomes so
that the construction of A is capable of leveraging either option to
defeat f . This will be done by making h first increase very quickly on a
block of numbers to beat the first case, then map larger blocks to the
gaps between these outputs to beat the second case. The sizes of
each block will increase quickly enough to ensure that a single block
containing elements many of A will send the density towards 1.
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Proof Sketch
This proof method runs into difficulty when we have more than one f .
In looking at a block of numbers, we might need to defeat f0 via the first
method, but defeat f1 via the second method. How can we achieve
both at once?

The solution is a recursive construction: the previous example, of a
quick increase followed by filling in the gaps in order, will be the base
level. Then for each subsequent level, the gaps will not be filled in
order, but by a structure of the previous level in our recursion! These
will be called Disordered Blocks, with a level n disordered block
capable of defeating n increasing functions.

As an example: the first level will have each gap mimic the base level
by having a large increase then filling the gaps in order. So the first
level will start with an increase, then have periods of increasing
followed by periods of gap filling.



Examples



Proof Sketch

We’re now ready to define h. Let h(0) = 0.

Now having defined h up through kn via a level n disordered block,
define h from kn + 1 to kn+1 using a level n + 1 disordered block. (The
ki ’s, the lengths of the blocks, are determined by kn and n + 1.)

h will be a permutation because it is a sequence of finite permutations
stacked on top of each other. It will be computable because the
recursive structure we use to define disordered blocks is computable.



Building A

With our permutation in hand, we’re ready to build A. With access to ∅′,
we can know whether or not a given fi converges up to some finite
point, i.e. if its range is defined up through a given disordered block
inside h.

Then ∅′ can determine for each of the first n fi ’s which winning
condition applies inside the disordered block of level n, and fill in A
accordingly to satisfy the conditions that the density of f−1(A) is small
but the density of h−1(A) is large.

By continuing in this manner across every disordered block, ∅′ can
compute A with the desired properties.



Applications of the Proof

The interesting corollary of this proof is that the specific h that we
constructed can be re-used for different proofs: since h is computable,
it cannot depend on A or knowing how the fi ’s behave.

For example, we can prove that sets with computable density 0 not
having defined intrinsic density satisfy cone avoidance, and h
witnesses the failure to have intrinsic density no matter what cone we
are avoiding.



The New Zoo



Order vs Adaptivity

The major open question in this zoo is whether or not MWC
stochasticity implies injection stochasticity, i.e. whether adaptive,
orderly strategies outperform disorderly, non-adaptive strategies.

Our proof of the main theorem can be improved upon to make some
progress on this question.



Skipping Ahead

A skip sequence is a finite sequence of ordered pairs ⟨n,b⟩ where the
first coordinates are increasing natural numbers and the second
coordinates are 0 or 1. Let S be the set of skip sequences.

A skip rule is a function f : S → ω with f (σ) being strictly larger than n,
where ⟨n,b⟩ = σ(|σ| − 1). Given a set A, the sequence generated by f
on A is defined recursively via:

f (A)(0) = A(f (∅))
f (A)(n + 1) = A(f (f (A) ↾ n))

In other words, skip rules generate subsequences using only the
information in A that is seen along the way.



Weak Stochasticity

A set A is p-weakly (adaptively) stochastic if

ρ(f (A)) = p

for all computable skip rules f .

One can think of this as an “honest” version of MWC stochasticity.
MWC stochasticity allowed us to use the information from all previous
coins when making decisions, regardless of if we included that coin in
our subsequence or not. Weak stochasticity only allows us to look
under a cup if we are going to include that coin in our subsequence.
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Adaptivity vs Disorder

Theorem (Ko, M.)
There is a set A which is 0-weakly stochastic, but

ρ(h−1(A)) = 1

This provides a separation between orderly, adaptive stochasticity
notions and disorderly, non-adaptive ones, which is a new result.

There is still work to be done: it is currently open whether or not weak
stochasticity implies MWC stochasticity. We conjecture that it does not.
If it does, then this is already a separation of injection and MWC.



The Current Zoo
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