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Context

We work in Cantor space, 2ω. Unless otherwise stated, we assume all sets are
infinite.

We are interested in sets which are random with respect to the r-Bernoulli
measures µr for real numbers r: given a finite binary string σ, let |σ| denote the
length of σ, and let #σ denote the number of 1’s in σ. Then

µr([σ]) = r#σ(1 − r)|σ|−#σ

µ 1
2

is the Lebesgue measure on the unit interval. When we say µr-random, we
mean µr-ML-random, i.e. not contained in any u.c.e. null set relative to µr.



Asymptotic Density

Definition
For a set X ∈ 2ω and n ∈ ω,

ρn(X) =
#(X ↾ n)

n
Then

ρ(X) = lim sup
n→∞

ρn(X), ρ(X) = lim inf
n→∞

ρn(X)

are called the upper density of X and the lower density of X respectively. If
ρ(X) = ρ(X), then we call this value the (asymptotic) density of X and denote it by
ρ(X).
The law of large numbers says that ρ(X) = r for any set X which is µr-random.



Sampling

Asymptotic density, or the law of large numbers, is not a particularly random
property: the set of even numbers has density 1

2 , but is clearly not random.
However, sufficiently random sets satisfy a stronger property: the density remains
the same even if we sample subsets in some predictable fashion. Conversely, if we
can sample in order to obtain a sequence of different density, the original sequence
was not random.

We think of this as having flipped infinitely many r-biased coins and hiding them
underneath cups. We may then re-arrange or remove coins in an attempt to, after
revealing the coins, obtain a sequence of different asymptotic density.



Stochasticity

A set X is r-Church stochastic if, whenever we are allowed to remove cups
following some total computable process, where we are allowed to look at the first
n coins to determine whether or not we should remove the n + 1-st coin, the
resulting density is r whenever the sequence is infinite.

A set X is r-MWC stochastic if the density is r for every infinite sequence selected
by computable processes like those for Church stochasticity, however the
processes need not be total.

X is r-KL stochastic if the density is r for partial computable processes which are
allowed to check and remove coins out of order, but are still required to base their
next decision only on the values of previously checked coins.



Intrinsic Density
A special case of KL-stochasticity is injection stochasticity, which chooses the same
subsequence non-monotonically regardless of coin value. (In other words, it is
uniform KL-stochasticity.)

Astor proved that r-injection stochasticity corresponds with intrinsic density r.

Definition
The absolute upper density of X is

P(X) = sup
π

{ρ(π(X)) : π a computable permutation}

The absolute lower density, P(X), is defined similarly for the lim inf. If these are
equal, we denote the quantity by P(X) and call it the intrinsic density of X. We use
PY to denote intrinsic density relative to Y.



Intrinsic Density and Randomness

If X is µr-random, then the fact that X satisfies the law of large numbers and the
fact that the class of µr-randoms is closed under computable permutation proves
that P(X) = r.

However, it is not hard to see that the converse is false. If A has intrinsic density 1
2 ,

then A ⊕ A has intrinsic density 1
2 as well. However, A ⊕ A is not random by Van

Lambalgen’s Theorem, which says that A ⊕ B is only random if A and B are
relatively random to each other.



Separating Randomness and Stochasticity

While this shows that there are sets which have intrinsic density but are not
random, it is a structural fact. If A is random, A ⊕ A can still trivially compute A,
and therefore can compute a random. We have not shown any difference in
computational properties between the two notions.

This will be our goal. We shall prove that, for almost all r, there is an r-computable
set of intrinsic density r. As a corollary, this set will not be able to compute any
µr-random set, as a set random with respect to X cannot be X computable. To do
this, we first need to develop some machinery.



The Into Operation

Definition
Given two sets

A = {a0 < a1 < a2 < . . . }

and
B = {b0 < b1 < b2 < . . . }

we define the set B ▷ A, or “B into A,” to be

{ab0 < ab1 < ab2 < . . . }

As an example: If E is the set of even numbers and T is the set of multiples of
three, then E ▷ T is the set of multiples of six.



Connection Outside Computability

Y is said to preserve normality if, for all X, X is 2-normal implies X ▷ Y is 2-normal.

Theorem (Kamae-Weiss, 1973)
If limn→∞

yn
n < ∞, then Y preserves normality if and only if Y is completely

deterministic. (This means a specific form of entropy is zero.)



Into and Asymptotic Density

Lemma
ρ(B ▷ A) = ρ(B)ρ(A)

Proof Sketch.
We will be able to estimate the limsup for B ▷ A with

lim sup
n→∞

n
an + 1

≤ lim sup
n→∞

n + 1
abn + 1

· bn + 1
bn + 1

≤ (lim sup
n→∞

bn + 1
abn + 1

)(lim sup
n→∞

n + 1
bn + 1

)

The latter term will be the limsup for B, and the former will be no greater than the
limsup for A. The liminf will be similar, and as both B and A have density we are
done.



Into and Intrinsic Density

The following theorem is central to our argument. We shall use it to combine sets
and manipulate intrinsic density.

Theorem
If A has intrinsic density α and B has intrinsic density β relative to A, then B ▷ A has
intrinsic density αβ.

To prove this, we need to introduce another operation.



The Within Operation

Definition
Given two sets

A = {a0 < a1 < a2 < . . . }

and
B = {b0 < b1 < b2 < . . . }

we define the set B ◁ A, or “B within A,” to be

{n : an ∈ B}

In other words, B ∩ A ⊆ A, so there is some set X such that X ▷ A = A ∩ B. We use
B ◁ A to represent this set X. As an example, if S is the set of multiples of 6, and T
is the set of multiples of 3, S ◁ T = E, the set of even numbers.



Basic Properties

• A = A ▷ ω
• A = ω ▷ A
• (B ▷ A) ⊔ (B ▷ A) = A
• ▷ is associative
• ω = A ◁ A

• (B ◁ A) ⊔ (B ◁ A) = ω

• If B ⊆ A, (B ◁ A) ▷ A = B.
• ◁ is not associative
• (B ▷ A) ◁ A = B
• A ⊕ B = (A ▷ E) ⊔ (B ▷ O)



A Set Calculus
In proving theorems using these operations, we often use technical lemmas about
their behavior which say nothing about stochasticity or randomness, nor even
computability.

Lemma
For any sets A, B, C:
• ρ(B ▷ A) = ρ(B)ρ(A).
• (A ◁ C) ◁ (B ◁ C) = A ◁ (B ∩ C).
• (A ◁ C) ◁ (B ◁ C) = (A ◁ B) ◁ (C ◁ B).
• If C ∩ E is infinite and coinfinite and

ρ((A ▷ E) ◁ (C ∩ E)) = ρ((B ▷ E) ◁ (C ∩ E)) = r

then ρ((A ⊕ B) ◁ C) = r



Within and Intrinsic Density

Theorem
If C is computable and P(A) = α, P(A ◁ C) = α.

Proof Sketch.
Suppose not. Then, without loss of generality, there is a computable permutation
π such that ρ(π(A ◁ C)) > α. In addition, there is the map fC : C → ω such that
fC(cn) = n, and π(f (A)) = π(A ◁ C). However, fC is not a permutation of ω.

Using fC, construct a computable permutation πC such that πC agrees with π
everywhere but a small computable subset of C, which is used to turn fC into a
permutation. Then πC will witness ρ(πC(A)) = ρ(π(A ◁ C)) > α, so P(A) ̸= α.



Back to the Into Theorem

Theorem
If A has intrinsic density α and B has intrinsic density β relative to A, then B ▷ A has
intrinsic density αβ.

Proof Sketch.
Assume P(A) = α, and suppose the theorem fails, i.e. without loss of generality
there is a computable permutation π such that ρ(π(B ▷ A)) > αβ.

Apply the same technique as in the previous theorem, using the fact that B has
intrinsic density relative to A to construct an A-computable permutation πA which
witnesses that ρ(πA(B)) = ρ(π(B ▷ A) ◁ π(A)) > β. Therefore PA(B) > β.



Intersections

Corollary
If A has intrinsic density α and B has intrinsic density β relative to A, then A ∩ B has
intrinsic density αβ.

Proof.
By the relativized form of the Within theorem, B ◁ A has intrinsic density β relative
to A. By the Into theorem, A ∩ B = (B ◁ A) ▷ A has intrinsic density αβ.



Unions

We shall construct sets using the Into theorem, then combine them using disjoint
unions.

Theorem (Essentially Jockusch and Schupp, 2012)
Suppose {Si}i∈N is a countable sequence of sets. If all of the following occur:
• The Si’s are disjoint
• Si has positive intrinsic density for all i
• the limit of the density of the tail of this sequence goes to 0 as i goes to infinity

then the union has defined intrinsic density and it is the sum of the densities of the Si’s.



Powers of Two

Theorem (Van Lambalgen, 1990)
Any set random with respect to µ 1

2
can be decomposed into countably many sets which are

random with respect to µ 1
2

relative to any combination of the others.

Theorem
There is a countable, disjoint sequence of sets {Ai}i∈ω such that Ai has intrinsic density

1
2i+1 . Furthermore, this satisfies the requirements of Jockusch and Schupp’s result.

Proof Sketch.
Let X be 1-Random. Then by Van Lambalgen’s theorem and the fact that
1-Randoms have intrinsic density 1

2 , we have countably many sets Xn all with
intrinsic density relative to any combination of the rest. Then define B0 to be all of
the naturals, An = Xn ▷ Bn, and Bn+1 = Xn ▷ Bn.



Avoiding Randomness
Theorem
If r is random with respect to µ 1

2
, then r computes a set of intrinsic density r.

Proof.
Let r be random with respect to µ 1

2
and let Br be the set corresponding to its binary

expansion to avoid confusion. We use Br in place of X to construct the sequence
from the previous theorem.

Then by the theorem of Jockusch and Schupp, A =
⋃

n∈Br
An will have intrinsic

density the sum of the densities of the An’s for n ∈ Br. However, as Br is the binary
expansion of r and each An has intrinsic density 1

2n+1 , these sum to r, completing
the proof.
Note that no µr-random set can be r-computable, so this set cannot compute any
µr-random set.



MWC and Church Stochasticity

What about other notions of stochasticity? It is natural to ask if the above
techniques can be used to provide a similar separation between randomness and
other notions of stochasticity.

However, there are some key structural differences between MWC and Church
stochasticity and injection stochasticity which will cause the above argument to
fail.

We will state our results in terms of MWC stochasticity, but they will apply to
Church stochasticity as well.



Differences in Stochasticity

Lemma
If A is MWC stochastic for some real other than 1, then A ⊕ A is not MWC stochastic.

Lemma
There exist disjoint sets A and B such that both are 0-MWC stochastic, but A ⊔ B is not
MWC stochastic.

Lemma
(Bienvenu) There exist disjoint sets A and B such that both are 1

2 -MWC stochastic, but
A ⊔ B is not MWC stochastic.



Similarities in Stochasticity

Theorem
If A is r-MWC stochastic and C is computable, then A ◁ C is r-MWC stochastic.

Theorem
If A is α-MWC stochastic relative to B and B is β-MWC stochastic relative to A, then
B ▷ A is αβ-MWC stochastic.
This second theorem looks similar to the Into theorem for intrinsic density.
However, notice that there is an extra relativization requirement on A. It is
unknown if this is necessary.

Theorem
If A is α-MWC stochastic relative to B and B is β-MWC stochastic relative to A, then
A ∩ B is αβ-MWC stochastic.



Unions

Theorem
If A is α-MWC stochastic relative to B, and B is β-MWC stochastic relative to A, then
A ∪ B is α + β − αβ-MWC stochastic.

Theorem
If A is α-MWC stochastic relative to B, and B is β-MWC stochastic relative to A, then
A ⊔ (B ▷ A) is α + β − αβ-MWC stochastic.



Constructing MWC stochastic sets

Theorem
Every µ 1

2
-random set X computes a set of r-MWC stochasticity, where r is any real in the

unit interval equal to a finite sum of powers of 2.

Proof.
We construct An and Bn from X as in the intrinsic density case. Van Lambalgen’s
Theorem ensures we have the relativization necessary even for the additional
requirements. Then we verify that any finite union of the An’s is of the form
necessary to apply the second union theorem.



Some Open Questions

Question
For r nonrandom, is there an intrinsic density r set which cannot compute a µr-random
set?

Question
Given r, is there an r-MWC-stochastic set which cannot compute a µr-random set?


