Origami and Mathematics

Juanita Duque-Rosero

December 12, 2019
What are "nice" properties of paper?

- Cannot be stretched or compressed.
What are "nice" properties of paper?

- Cannot be stretched or compressed.
- Cannot be sheared.
What are "nice" properties of paper?

- Cannot be stretched or compressed.
- Cannot be sheared.
- It can be easily folded!
What are "nice" properties of paper?

- Cannot be stretched or compressed.
- Cannot be sheared.
- It can be easily folded!
Something else...
Something else...

You can trisect an angle by folding paper!
You can trisect an angle by folding paper!

This shows how origami is more powerful than straightedge and compass.
You can trisect an angle by folding paper!

\[\alpha \rightarrow \beta \]
You can trisect an angle by folding paper!

This shows how origami is more powerful than straightedge and compass.
How to do it?
How to do it?
What is happening?

We are finding simultaneous tangents to parabolas.
An algebra application: solving $x^3 + ax + b$

We will find the solutions for $x^3 + ax + b = 0$ where $a, b \in \mathbb{R}$ and $b \neq 0$ by finding a simultaneous tangent to:

$\left(y - \frac{1}{2}a\right)^2 = 2bx$ \hspace{1cm} \text{and} \hspace{1cm} y = \frac{1}{2}x^2$
An algebra application: solving $x^3 + ax + b$

We will find the solutions for $x^3 + ax + b = 0$ where $a, b \in \mathbb{R}$ and $b \neq 0$ by finding a simultaneous tangent to:

$$\left(y - \frac{1}{2}a\right)^2 = 2bx \quad \text{and} \quad y = \frac{1}{2}x^2$$

The slopes are:

$$m_1 = \frac{b}{y_1 - \frac{1}{2}a} \quad \text{and} \quad m_2 = x_2$$
An algebra application: solving $x^3 + ax + b$

We will find the solutions for $x^3 + ax + b = 0$ where $a, b \in \mathbb{R}$ and $b \neq 0$ by finding a simultaneous tangent to:

$$(y - \frac{1}{2}a)^2 = 2bx \quad \text{and} \quad y = \frac{1}{2}x^2$$

The slopes are:

$$m_1 = \frac{b}{y_1 - \frac{1}{2}a} \quad \text{and} \quad m_2 = x_2$$

Hence:

$$x_1 = \frac{b}{2m_1^2} \quad \text{and} \quad x_2 = m_2$$

$$y_1 = \frac{b}{m_1} + \frac{a}{2} \quad \text{and} \quad y_2 = \frac{m_2^2}{2}$$
So the slope of the line between these points is:

\[
m = \frac{y_2 - y_1}{x_2 - x_1} = \frac{m^4 - 2bm - am^2}{2m^3 - b}
\]
$x_1 = \frac{b}{2m^2}$

$y_1 = \frac{b}{m} + \frac{a}{2}$

$x_2 = m$

$y_2 = \frac{m^2}{2}$

So the slope of the line between these points is:

$m = \frac{y_2 - y_1}{x_2 - x_1} = \frac{m^4 - 2bm - am^2}{2m^3 - b}$

$m(m^3 + am + b) = 0$

$m^3 + am + b = 0$
Solutions for cubic polynomials

Real roots of $x^3 + ax + b$ are the slope of a simultaneous tangent to:

$$\left(y - \frac{1}{2}a\right)^2 = 2bx \quad \text{and} \quad y = \frac{1}{2}x^2$$
Example: \(a = 2 \) and \(b = 1 \)

\[
(y - 1)^2 = 2x \quad \text{and} \quad y = \frac{1}{2}x^2
\]

Directrix

\[
x = -\frac{1}{2}
\]

Focus

\[
\left(\frac{1}{2}, 1\right)
\]

\[
\left(0, \frac{1}{2}\right)
\]
\[(y - 1)^2 = 2x\] \[y = \frac{1}{2}x^2\]
The method

\[P_1 = (0.5, 1), \, \ell_1 : x = -0.5 \quad P_2 = (0, 0.5), \, \ell_2 : y = -0.5 \]

1. **Construct the x and y axis.**
2. Identify \(P_1, \, P_2, \, \ell_1 \) and \(\ell_2 \) in the paper.
3. Make a fold such that \(P_1 \) touches \(\ell_1 \) and \(P_1 \) touches \(\ell_1 \) at the same time. The slope \(m \) of the resulting line is the solution.
4. Find the point \((m, 0)\)
The method

\[P_1 = (0.5, 1), \ell_1 : x = -0.5 \]

\[P_2 = (0, 0.5), \ell_2 : y = -0.5 \]

1. **Construct the x and y axis.**
2. Identify \(P_1, P_2, \ell_1 \) and \(\ell_2 \) in the paper.
3. Make a fold such that \(P_1 \) touches \(\ell_1 \) and \(P_1 \) touches \(\ell_1 \) at the same time. The slope \(m \) of the resulting line is the solution.
4. Find the point \((m, 0)\)
The method

\[P_1 = (0.5, 1), \; \ell_1 : x = -0.5 \]

\[P_2 = (0, 0.5), \; \ell_2 : y = -0.5 \]

1. Construct the \(x \) and \(y \) axis.
2. Identify \(P_1, \; P_2, \; \ell_1 \) and \(\ell_2 \) in the paper.
3. Make a fold such that \(P_1 \) touches \(\ell_1 \) and \(P_1 \) touches \(\ell_1 \) at the same time. The slope \(m \) of the resulting line is the solution.
4. Find the point \((m, 0) \)
The method

\[P_1 = (0.5, 1), \; \ell_1 : x = -0.5 \]

\[P_2 = (0, 0.5), \; \ell_2 : y = -0.5 \]

1. Construct the \(x \) and \(y \) axis.
2. Identify \(P_1, \; P_2, \; \ell_1 \) and \(\ell_2 \) in the paper.
3. Make a fold such that \(P_1 \) touches \(\ell_1 \) and \(P_1 \) touches \(\ell_1 \) at the same time. The slope \(m \) of the resulting line is the solution.
4. Find the point \((m, 0) \)
The method

\[P_1 = (0.5, 1), \; \ell_1 : x = -0.5 \]

\[P_2 = (0, 0.5), \; \ell_2 : y = -0.5 \]

1. Construct the \(x \) and \(y \) axis.
2. Identify \(P_1, P_2, \ell_1 \) and \(\ell_2 \) in the paper.
3. Make a fold such that \(P_1 \) touches \(\ell_1 \) and \(P_1 \) touches \(\ell_1 \) at the same time. The slope \(m \) of the resulting line is the solution.
4. Find the point \((m, 0)\)
\[(y - 1)^2 = 2x\] \[y = \frac{1}{2}x^2\]

\[y \approx -0.4534x - 0.102786\]
Remark

The real solution of $x^3 + 2x + 1$ is not rational:

$$x = \sqrt[3]{\frac{1}{2}} \left(\sqrt[3]{177} - 9 \right) - 2 \sqrt[3]{\frac{2}{3 \left(\sqrt[3]{177} - 9 \right)}}$$
Huzita Axioms

1. Given two points P_1 and P_2 there is a unique fold passing through both of them.

2. Given two points P_1 and P_2 there is a unique fold placing P_1 onto P_2.

3. Given two lines L_1 and L_2, there is a fold placing L_1 onto L_2.

4. Given a point P and a line L, there is a unique fold perpendicular to L passing through P.

5. Given two points P_1 and P_2 and a line L, there is a fold placing P_1 onto L and passing through P_2.

6. Given two points P_1 and P_2 and two lines L_1 and L_2, there is a fold placing P_1 onto L_1 and P_2 onto L_2.

7. Given a point P and two lines L_1 and L_2, there is a fold placing P onto L_1 and perpendicular to L_2.

Let O be the set of numbers that are constructible using **origami**.

A is the set of numbers that are constructible with **ruler and compass**.
Let \mathcal{O} be the set of numbers that are constructible using **origami**.

\mathcal{A} is the set of numbers that are constructible with **ruler and compass**.

$\mathcal{A} \subsetneq \mathcal{O}$
Origami numbers

Let \mathcal{O} be the set of numbers that are constructible using origami.

\[
\alpha \in \mathcal{O} \iff \alpha \text{ is constructible by marked ruler}
\]

\[
\iff \alpha \text{ is constructible by intersecting conics}
\]

\[
\iff \alpha \text{ lies on a 2-3 tower } \mathbb{Q} = F_0 \subset F_1 \subset \cdots \subset F_n
\]

\[
\iff \alpha \text{ is algebraic over } \mathbb{Q} \text{ with minimal polynomial of degree } 2^k 3^l
\]
Thank you!