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Abstract. We compute a complete set of isomorphism classes of cubic fourfolds
over F2. Using this, we are able to compile statistics about various invariants of
cubic fourfolds, including their counts of points, lines, and planes; all zeta func-
tions of the smooth cubic fourfolds over F2; and their Newton polygons. One
particular outcome is the number of smooth cubic fourfolds over F2, which we fit
into the asymptotic framework of discriminant complements. Another motivation
is the realization problem for zeta functions of K3 surfaces. We present a refine-
ment to the standard method of orbit enumeration that leverages filtrations and
gives a significant speedup. In the case of cubic fourfolds, the relevant filtration
is determined by Waring representation and the method brings the problem into
the computationally tractable range.

Introduction

The study of cubic fourfolds over finite fields (e.g., [1], [2], [9], [12], etc.) has
grown as a respectable side industry supporting the main threads of investigation—
the rationality problem and its connections to derived categories, algebraic cycles,
K3 surfaces, and hyperkähler varieties—of complex cubic fourfolds. In this paper
and its accompanying code [4], we generate a database of all cubic fourfolds over
F2 up to isomorphism. We also compute many of their most important invariants,
including their automorphism groups, their point counts, and information about
their algebraic cycles. In particular, we can report the following.

Theorem 1. Of the 3 718 649 isomorphism classes of cubic fourfolds over F2, ex-
actly 1 069 562 are smooth, of which 533 262 are ordinary, 8688 are supersingular,
107 552 are Noether–Lefschetz general, and 702 153 contain a plane. The smooth
cubic fourfolds admit 86 472 distinct zeta functions.

The algorithmic methods to generate our database of cubic fourfolds are of in-
dependent interest: we present a new technique for enumerating a complete set of
orbit representatives of a finite group G acting linearly on a high-dimensional vector
space V over a finite field that leverages G-stable filtrations of V . In the case of
cubic fourfolds over F2, the relevant action is the representation of G = GL6(F2)
on the 56-dimensional F2-vector space V = Sym3(F6

2) of homogeneous cubic forms
in six variables. In certain situations, our method provides a substantial speedup
over complete orbit partition methods, such as union-find. The advantage of our
method, assuming the existence of good G-stable filtrations, is that we do not need
to iterate through every element of V . A complexity analysis in §1.2 shows that
under favorable situations our method is linear in the number of orbits, which is
asymptotically optimal; in the case of cubic fourfolds over F2, our method gives a
roughly square-root speedup.

Our work on cubic fourfolds was partially inspired by Kedlaya and Sutherland’s
census [27] of quartic K3 surfaces over F2. There, a complete partition of quartic
surfaces into GL4(F2)-orbits was achieved in a few days on a powerful computer;
with our method, it takes 3 minutes on a laptop to compute a complete set of orbit
representatives. They also compute the zeta functions of the smooth orbits, as well
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as a longer list of potential zeta functions of K3 surfaces over F2. This is achieved by
enumerating the candidate Weil polynomials on the middle `-adic cohomology [27,
Computation 3(c)]. Kedlaya and Sutherland pose the following.

Problem 1. Determine the set of zeta functions of K3 surfaces defined over F2.

We remark that the Tate conjecture for K3 surfaces (proved by [36], [7], [8],
[33], [28], [34], [26]), implies that there are finitely many isomorphism classes of K3
surfaces defined over a fixed finite field by the work of Lieblich, Maulik, and Snow-
den [32], which holds in any characteristic. A resolution of Problem 1 would provide
a kind of Honda–Tate theory for K3 surfaces. The work of Taelman [41] implies
that the transcendental part of every Weil polynomial in [27, Computation 3(c)] is
expected to arise from some K3 surface defined over a suitable extension of the base
field, but we are interested in which zeta functions arise from K3 surfaces over F2.

Over the complex numbers, cubic fourfolds are Fano varieties of K3 type, with
the Hodge structures on their middle cohomology resembling those of K3 surfaces.
Hassett [21] classified those cubic fourfolds that admit Hodge-theoretically associ-
ated K3 surfaces, namely the admissible special cubic fourfolds. Over a finite field,
the Weil polynomial on the middle dimensional `-adic cohomology of a special cubic
fourfold has a factor (the nonspecial Weil polynomial) that looks like the Weil poly-
nomial of a K3 surface, and we would expect this polynomial to be realizable by a
K3 surface defined over F2 whenever a Hodge-theoretically associated K3 surface
is defined over F2. Thus our computation of the zeta functions of cubic fourfolds
(see §4) provides many new Weil polynomials that should arise from K3 surfaces,
and fertile ground for the arithmetic study of the associated K3 surface. In cases
where there is an explicit algebraic construction of an associated K3 surface, for
example, for cubic fourfolds containing a plane, the nonspecial Weil polynomial of
the cubic is the primitive Weil polynomial of some K3 surface over F2. On the other
hand, our census exhibits many explicit special cubic fourfolds that cannot have an
associated K3 surface because such a K3 would have “negative point counts” as
well as certain special cubic fourfolds that are not expected to have associated K3
surfaces over F2, yet whose nonspecial Weil polynomial is still contained on Kedlaya
and Sutherland’s list, raising further questions about associated K3 surfaces over
finite fields (see the forthcoming work of the first and third authors [3]). Future
census projects could help further populate the list of Weil polynomials that are
realized by K3 surfaces over F2.

Finally, as stated in Theorem 1, our census also provides a count of the F2-points
of the complement of the generic discriminant of cubic forms in six variables. From
this, we find that the probability that a random cubic fourfold is smooth is about
29%, and we connect this to asymptotic results of Poonen [38], Church–Ellenberg–
Farb [10], Vakil–Wood [43], and Howe [23] in algebraic geometry, number theory,
and topology.

This article is organized as follows. In §1, we present our new method for com-
puting orbit representatives for a finite group G acting on a finite vector space V
admitting a filtration by G-stable subspaces, which we coin the “filtration method.”
We also compare the computational complexity of our method compared with that
of more traditional methods. In §2, we describe the range of applicability of the fil-
tration method to enumerating degree d hypersurfaces in Pn over Fq, including the
case of cubic fourfolds over F2. Finally, in §3 and §4, we compute many invariants
associated to cubic fourfold, including their counts of points, lines, and planes, their
automorphism groups, and their zeta functions. We also discuss many connections
and complements to the existing literature.
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1. Orbits via filtrations

Let k be a finite field and V be a finite-dimensional k-vector space on which a
finite group G acts linearly and faithfully. For v ∈ V we denote by G.v the G-orbit
containing v, and by Gv the stabilizer subgroup of v. If we are only interested in
the cardinality of the orbit set V/G, then we can use the orbit counting formula
(sometimes called “Burnside’s Lemma” or the “Cauchy–Frobenius Lemma”)

(1) |V/G| = 1

|G|
∑
g∈G
|V g| = |C|

|G|
∑
c∈C
|E1(c)|

where C is the set of conjugacy classes in G and E1(c) is the 1-eigenspace of a
representative of c ∈ C, whose cardinality does not depend on the representative.

However, to assemble a list of orbit representatives, one has to work harder. To do
this, one typically runs an algorithm, such as union-find (see §1.2 for more details),
to sort each element of V into orbits under G, as is done for quartic surfaces over F2

in [27]. Alternatively, one could develop a sufficiently goodG-invariant hash function
on V and try randomly sampling elements of V until one finds elements in all the
orbits. The random sampling method will often succeed in identifying elements in
all large orbits after sampling O

(
|V/G| log(|V/G|)

)
elements, but it can fail to find

elements in small orbits in reasonable time. This method has been used successfully
by Costa, Harvey, and Kedlaya [11] to give a census of quartic K3 surfaces over F3

and was used by Halleck-Dubé [20] to enumerate a set of orbit representatives for
99.9% of the cubic fourfolds over F2.

However, working directly on V may prove to be too costly (as in the case of
cubic fourfolds over F2), and we introduce a method that can avoid this.

1.1. Filtration method. Suppose that there is a filtration of the G-module V

0 = W0 ⊂ · · · ⊂W` ⊂ V
by G-submodules Wi ⊂ V , such that enumerating G-orbits in all of the associated
graded pieces Wi+1/Wi becomes a feasible task. Then using such a filtration, we
are able to compute a full set of G-orbit representatives for V by chasing lifts of
G-orbits of V/W` up the successive quotients

V → V/W1 → · · · → V/W`.
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Let us illustrate the method with a single-step filtration

0 ⊂W ⊂ V

and consider U = V/W with G-equivariant quotient map π : V → U . We first note
that every G-orbit G.v in V/G maps to a G-orbit G.π(v) in U/G. This lets us write
the orbit space V/G of G as a disjoint union

V/G =
⊔

O∈U/G

π−1(O)/G

over the orbit sets of G acting on the inverse images π−1(O) ⊂ V of orbits O ∈ U/G.
So to give representatives of the orbits of V/G, we need to give a complete list of

representatives for the G-orbits in each of the component orbit spaces π−1(O)/G.
The following elementary lemma says that we can find a complete set of represen-
tatives for π−1(O)/G by considering the action of a smaller group on a smaller
subspace.

Lemma 1.1. Let V be a k-vector space with a G-action and let W be a G-invariant
subspace. Let v ∈ V and let π : V → V/W be the natural projection. Then:

(1) The coset π−1(π(v)) = v + W has a natural Gπ(v)-action, i.e., v + W is a
Gπ(v)-set.

(2) Let O = G.π(v) ⊂ V/W denote the G-orbit of π(v). Then the map

(v +W )/Gπ(v) → π−1(O)/G

defined by Gπ(v).x 7→ G.x, is a bijection.
(3) Gv ≤ Gπ(v).

The upshot of Lemma 1.1(2) is that a complete set of orbit representatives for the
orbit space (v +W )/Gπ(v) will also be a complete set of orbit representatives for G

acting on π−1(O)/G, and it is a far less expensive a computation to find the former
set of representatives. We now give the full description of an algorithm that uses
this principle across successive quotients to find a set of representatives of V/G.

In the following, if we have vector spaces V ⊇ W , we denote the quotient by
πV/W : V → V/W .

Algorithm 1.2. Orbits(G, X, F)
Input:

• A k-vector space V with the action of a group G.
• A known G-invariant filtration F : 0 = W0 ⊂ · · · ⊂W` ⊂ V of length `.
• A G-invariant affine subspace X of V such that X +W` = X.

Output: A complete set of orbit representatives for G acting on X, together with
their stabilizers.
Steps:

(1) If ` = 0 then return Orbits(G, X), a set of orbit representatives of G acting
on X together with their stabilizers.

(2) Set F : 0 = W1/W1 ⊂ · · · ⊂ W`/W1 ⊂ V/W1, a G-invariant filtration of
length `− 1, i.e., F is the reduction of F modulo W1.

(3) Compute Orbits(G, X/W1, F) via recursion.
(4) For each orbit representative y ∈ X/W1 with stabilizer Gy found in the

previous step, compute Orbits(Gy, π
−1
V/W1

(y)) together with their stabilizers.

(5) return the union of results from step (4).
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The orbit computations in Steps (1) and (4) above can be computed by a generic
algorithm. Our implementation uses the default methods in Magma [6].

1.2. Complexity comparison. We consider the situation of a finite groupG acting
on a finite set X and define the expected stabilizer order

eG(X) =
1

|X|
∑
x∈X
|Gx|

of the G-set X. Then 1 ≤ eG(X) ≤ |G| with eG(X) = 1 if and only if G acts freely
on X and eG(X) = |G| if and only if G acts trivially on X. We remark that the
proof of the orbit counting formula implies that

|X/G| = eG(X)
|X|
|G|

.

A naive orbit partition algorithm, such as implemented in union-find, to partition
all the elements of X into orbits, works by iteratively selecting the next unlabelled
element x ∈ X and then by labelling the elements of G.x as being in the same orbit
by enumerating over G. One easily finds the runtime of this procedure.

Lemma 1.3. The runtime of a naive orbit partition algorithm to partition the ele-
ments of X into orbits under G is proportional to

|G| · |X/G| = eG(X) · |X|.

In the situation we are interested in, where X is a vector space with a faithful
G-representation, we usually have that eG(X) is approximately equal to 1. For
example, the expected order of the stabilizer of a cubic fourfold over F2 turns out
to be approximately 1.04.

The main improvement introduced by using the filtration method is that one runs
several orbit partitions over linear spaces of smaller dimension. We give a precise
estimate of the improvement in runtime.

Lemma 1.4. For a single-step filtration 0 ⊂W ⊂ V of G-modules, with U = V/W ,
the runtime complexity of Algorithm 1.2 is proportional to

eG(W )eG(U)

eG(V )
· |V/G|.

Proof. Let Orbits(G,U) be a chosen set of representatives v ∈ V for the G-orbits on
U . For a vector v ∈ V denote its image in U by v̄. The filtration method algorithm
consists of a union find over (v + W )/Gv for each v ∈ Orbits(G,U). The runtime
complexity is then proportional to

(2)
∑

v∈Orbits(G,U)

|Gv| · |(v +W )/Gv|.

One sees immediately that this is bounded by |G| · |V/G| = eG(V ) · |V |, which is the
runtime of a naive orbit partition algorithm, see Lemma 1.3. On the other hand,
for each v we have

|Gv| · |(v +W )/Gv| =
∑
g∈Gv̄

|(v +W )g| ≤
∑
g∈G
|(v +W )g| ≤

∑
g∈G
|W g| = |G| · |W/G|

where the rightmost inequality follows from the observation that for any element
z ∈ (v + W )g, translation by z induces a bijection W g → (v + W )g. Thus (2) is
bounded by |W/G| · |U/G| · |G| = eG(W )eG(U)/eG(V ) · |V/G|. �
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Lemma 1.4 shows that the filtration method, in the presence of a nontrivial filtra-
tion, will strictly improve upon (unless the action is trivial) a naive orbit partition
for the purposes of finding a set of orbit representatives.

If we make the heuristic assumption that the expected stabilizer orders of W, U,
and V are all approximately equal to 1, then the asymptotic runtime is linear in the
total number of orbits in V , i.e., linear in the size of the output. In particular, our
algorithm would be asymptotically optimal. This assumption seems to hold in the
cases identified in §2.4.

2. Enumerating hypersurfaces

Let n, d be positive integers, and Fq denote the finite field with q elements. In
this section, we explain when and how the filtration method (Algorithm 1.2) can
be used to produce a complete enumeration of the set of Fq-isomorphism classes of

degree d hypersurfaces in Pn+1
Fq

.

Proposition 2.1. Let k be any field. If n ≥ 3 and d ≥ 3, then the set of k-
isomorphism classes of degree d hypersurfaces in Pn+1

k is in bijection with the set of

PGLn+2(k)-orbits on the set of lines P(Symd(kn+2))(k) in Symd(kn+2).
Moreover, if every element of k× is a dth power, e.g., if k = Fq and q − 1 is

relatively prime to d, then the set of k-isomorphism classes of degree d hypersurfaces
in Pn+1

k is in bijection with the set of nonzero GLn+2(k)-orbits on the k-vector space

Symd(kn+2).

Proof. The Grothendieck–Lefschetz Theorem [19, Exp. XII, Corollaire 3.6] says that
any automorphism of a (not necessarily smooth) hypersurface of dimension n ≥ 3
and degree d ≥ 3 extends to the ambient Pn+1

k . In particular, two such hypersurfaces
are k-isomorphic if and only if they lie in the same PGLn+2(k)-orbit of the linear
system of OPn+1(d).

When every element of k× is a dth power, the central Gm ⊂ GLn+2 acts transi-
tively on the set of multiples of a given homogeneous form of degree d over k, so
that the natural surjective map

Symd(kn+2)/GLn+2(k)→ P(Symd(kn+2))(k)/PGLn+2(k)

is a bijection. �

2.1. A filtration on cubic fourfolds over F2. By Proposition 2.1, the GL6(F2)-
orbits of nonzero cubic forms in 6 variables are precisely the F2-isomorphism classes
of cubic fourfolds. We will now show how the filtration method lets us enumerate
a representative cubic fourfold in each isomorphism class, equivalently, a complete
set of nonzero GL6(F2)-orbit representatives on V = H0(P5

F2
,O(3)).

Using Equation (1), one computes that that the number of orbits is 3 718 650,
which seems manageable compared the total number |V | = 256 of cubics. Even with
the unrealistically generous assumption that computing fg, for some general f ∈ V
and g ∈ GL6(F2), takes 10−9 (s), a naive orbit partition algorithm applied to V
using a single 4 GHz processor would take at least

256

86400 · 4 · 109
∼ 208 days.

In other words, a direct, parallelized, and highly optimized implementation of union-
find might enumerate all of the orbits, but it would nevertheless take a while.

Instead, we make use of a natural two-step filtration of G-submodules

0 ⊂W1 ⊂W2 ⊂ V
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and employ Algorithm 1.2. Here, W1 ⊂ V is the subspace of Waring representable
cubic forms, i.e., those that can be written as a sum of cubes of linear forms, and
W2 ⊂ V is the subspace of cubic forms that can be written as a sum of products of
a linear form and a square of a linear form. In other words,

W1 = span{l3 : l ∈ H0(P5
F2
,O(1))}

W2 = span{l1 · l22 : l1, l2 ∈ H0(P5
F2
,O(1))}.

A computer calculation shows that dimF2(W1) = 21 and dimF2(W2) = 36.
Our implementation in Magma [6] of Algorithm 1.2 with this particular two-step

filtration outputs a complete set of representatives for the 3 718 650 orbits in V with
runtime under 100 minutes on a household laptop computer. A complete set of orbit
representatives together with the code to read them in is available as an ancillary
file in the arXiv distribution of this article. Our complete code library is available
from [4]. The intrinsic LoadCubicOrbitData from the CubicLib.m library reads in
the orbit representatives.

2.2. A filtration on quartic surfaces over F2. As an alternative to the orbit
partition method employed in [27], we implemented the filtration method to find
a representative of each PGL4(F2)-orbit of quartic surfaces over F2. We note that
because there are automorphisms of K3 surfaces that do not fix a given degree 4
polarization, some isomorphism classes split up into different linear orbits, but a
list of orbit representatives will contain a complete set of isomorphism classes as a
subset. By Lemma 2.1, we can compute the GL4(F2)-orbits on the 35-dimensional
F2-vector space V = H0(P3

F2
,O(1)) of homogeneous quartic forms in four variables.

Let W ⊂ V be the submodule spanned by all quartics of the form l31l2 + l1l
3
2 where l1

and l2 are linear forms. A computer calculation shows that dimF2(W ) = 20. Then
Algorithm 1.2, with the one-step filtration 0 ⊂W ⊂ V , finds a complete set of orbit
representatives for the 1 732 564 orbit in V in about 3 minutes on a laptop computer.
We stumbled upon theG-submoduleW ⊂ V using Magma’s IsIrreducible intrinsic.

2.3. Cubic fourfolds over F3. Unfortunately, the GL6(F3)-module of the 56-
dimensional F3-vector space V of cubic forms in six variables has an irreducible
composition factor of dimension 50. Hence the filtration method alone does not
provide a sufficiently significant speedup to make the orbit enumeration problem
computational tractable in this case.

2.4. Filtration method for general hypersurfaces. One may wonder about
the extent to which the filtration method presented in §1 can aid in the census
of isomorphism classes of hypersurfaces of dimension n and degree d over Fq for
various (n, d, q). Since the dth symmetric power of the standard representation
of the linear algebraic group GLn+2 is irreducible, the GLn+2(Fq)-representation

Symd(Fn+2
q ) is irreducible for all Fq with char(Fq) > d (cf. [40, Theorem 1.1]),

hence the filtration method is not applicable. On the other hand, the GLn+2(Fq)-
representation Symd(Fn+2

q ) is reducible for all Fq with char(Fq) ≤ d, hence the
filtration method does offer some speedup when q is small. However, one quickly
sees (see Tables 1, 2, 3) even for moderately small parameters that such a census
is infeasible simply because it is not computationally practical to store the answer.
(We consider 1014 a generous allowance for the maximum number of orbits that can
be computed.)

When the total number of orbits is reasonably sized, the determination of whether
a particular value of (n, d, q) is in the feasible range is based on timings for computing
g.x on a standard laptop. We also assume that 100 cores are available to parallelize
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the computation over the course of a year. Thus, the projections listed in Tables 1,
2, 3 are perhaps excessively optimistic.

n\d 2 3 4 5 6 7 8 9 · · · 48 49
0 Y|Y Y|Y Y|Y Y|Y Y|Y Y|Y Y|Y Y|Y · · · Y|Y X
1 Y|Y Y|Y Y|Y Y|Y Y|Y Y|Y Y|Y X · · · X X

2 Y|Y Y|Y Y|Y N|Y X X X X · · · X X

3 Y|Y Y|Y X X X X X X · · · X X

4 Y|Y N|Y X X X X X X · · · X X

5 Y|Y N|Y X X X X X X · · · X X

6 Y|Y X X X X X X X · · · X X
7 Y|Y X X X X X X X · · · X X

8 N|Y X X X X X X X · · · X X

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

20 N|Y X X X X X X X · · · X X

Figure 1. List of feasible cases for q = 2. Too many orbits indicated
by X; and Y, N indicate yes, no, respectively. The left symbol is for
basic union-find, and the right symbol is using the filtration method.

n\d 2 3 4 5 6 7 8 9 · · · 31 32
0 Y|Y Y|Y Y|Y Y|Y Y|Y Y|Y Y|Y Y|Y · · · Y|Y X

1 Y|Y Y|Y Y|Y Y|Y Y|Y N|Y X X · · · X X

2 Y|Y Y|Y N|Y X X X X X · · · X X

3 Y|Y N|Y X X X X X X · · · X X

4 Y|Y N|Y X X X X X X · · · X X

5 Y|Y X X X X X X X · · · X X
6 N|N X X X X X X X · · · X X

Figure 2. List of feasible cases for q = 3. Too many orbits indicated
by X; and Y, N indicate yes, no, respectively. The left symbol is for
basic union-find, and the right symbol is using the filtration method.

n\d 2 3 4 5 6 7 8 9 · · · 22 23
0 Y|Y Y|Y Y|Y Y|Y Y|Y Y|Y Y|Y Y|Y · · · Y|Y X

1 Y|Y Y|Y Y|Y Y|Y N|Y X X X · · · X X

2 Y|Y Y|Y X X X X X X · · · X X
3 Y|Y N|N X X X X X X · · · X X
4 Y|Y X X X X X X X · · · X X
5 N|N X X X X X X X · · · X X

Figure 3. List of feasible cases for q = 5. Too many orbits indicated
by X; and Y, N indicate yes, no, respectively. The left symbol is for
basic union-find, and the right symbol is using the filtration method.

3. Surveying the database

Our census lets us survey several interesting invariants associated to cubic four-
folds over F2. We now outline the main invariants studied in this section. Our
dataset includes the F2-automorphism groups of every cubic fourfold over F2, which
happens to coincide with GL6(F2)-stabilizer that we compute in the course of run-
ning the filtration method. Some highlights of this automorphism data are presented
in §3.1. In §3.2, the orders of the automorphism groups are used to count F2-points
on the discriminant complement of the moduli space of cubic hypersurfaces in P5;
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we relate this count to work of Poonen [38], Church–Ellenberg–Farb [10], Vakil–
Wood [43], and Howe [23]. Finally, in §3.3, we compute all F2-lines and planes on cu-
bics in our database, verifying statistics predicted by Debarre–Laface–Roulleau [12]
and giving a lower bound on the number of smooth rational cubic fourfolds over F2.

3.1. Automorphisms of cubics. The automorphism groups of cubic hypersur-
faces over various fields have been well-studied. Over the complex numbers, the
symplectic automorphism groups of smooth cubic fourfolds were recently fully clas-
sified by Laza and Zheng [30], and they additionally prove that the Fermat cubic
has the largest automorphism group of any smooth cubic fourfold over C (see also
[37]). In positive characteristic, we do not know of any body of literature on the
automorphism groups of cubic hypersurfaces of dimension > 2. The automorphism
groups of cubic surfaces over algebraically closed fields of arbitrary characteristic
were completely classified by Dolgachev and Duncan [13]. Our orbit-finding method
yields a complete classification of the F2-automorphism groups of cubic surfaces,
threefolds, and fourfolds. We report some specific results on cubic fourfolds here.

First, we compare the automorphism group of a hypersurface with its stabilizer
subgroup.

Proposition 3.1. Let k be a field and assume that n ≥ 3 and d ≥ 3. Let f ∈
Symd(kn+2) be nonzero and X ⊂ Pn+1

k be the associated projective hypersurface.
Then the PGLn+2(k)-stabilizer of the line spanned by f is isomorphic to the group
Autk(X) of k-automorphisms X.

Moreover, if every element in k× is a dth power (e.g., if k = Fq and q − 1 is
relatively prime to d) then the GLn+2(k)-stabilizer of f is isomorphic to the group
Autk(X) of k-automorphisms X.

Proof. The first statement follows immediately from Proposition 2.1. As for the
second statement, if Gf ⊂ GLn+2 denotes the stabilizer k-subgroup scheme of f ,
then we have a short exact sequence of k-group schemes

1→ µd → Gf → Autk(X)→ 1,

where here, Autk(X) is considered as a constant group scheme. The associated
exact sequence in flat cohomology starts

1→ µd(k)→ Gf (k)→ Aut(X)→ H1(k, µd).

Under the hypotheses that every element in k× is a dth power, we have that µd(k)
and H1(k, µd) are trivial. The statement then follows since Gf (k) coincides with the
GLn+2(k)-stabilizer subgroup of f . Indeed, the exact sequence in flat cohomology
associated to the stabilizer subgroup group scheme starts

1→ Gf (k)→ GLn+2(k)→ (GLn+2.f)(k)→ H1(k,Gf )

and, since f is a k-rational point in the orbit, Gf (k) is precisely the subset of
elements of GLn+2(k) acting trivially on f . �

Hence in the case of cubic fourfolds over F2, the stabilizer of a cubic form coincides
with the F2-automorphism group of its associated hypersurface. To compute the
G = GL6(F2)-stabilizer of the cubic form f ∈ V that defines X, we use the same
idea behind Algorithm 1.2 to successively reduce the order of the acting group:
letting π1 : V → V/W1 and π2 : V/W1 → V/W2 denote the natural projections,
Lemma 1.1(3) tells us that

Gf = (Gπ1(f))f = ((Gπ2(f))π1(f))f .
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Remark 3.2 (The isomorphism problem). A similar application of the filtration
method gives an efficient algorithm for solving the cubic isomorphism problem
over F2: our library includes an intrinsic IsEquivalentCubics which determines
whether two cubic fourfolds are F2-isomorphic, and if they are, returns an explicit
isomorphism between them. It runs in about 0.2 seconds per pair of cubics on a
household laptop.

We now discuss some highlights emerging from our computation of the automor-
phism groups of cubic fourfolds over F2. It is a well-known result that the auto-
morphism group of a generic hypersurface of dimension n ≥ 2 and degree d ≥ 3,
over an algebraically closed field, is trivial (see [35]). Indeed, our survey shows that
AutF2(X) = {id} for most cubic fourfolds.

Computation 3.3. Among the 3 718 649 isomorphism classes of cubic fourfolds
over F2, there are 3 455 271, or about 92.9%, with trivial stabilizer. Among the
1 069 562 isomorphism classes of smooth cubic fourfolds over F2, there are 1 029 478,
or about 96.3%, with trivial stabilizer.

We summarize our computation of all of the nontrivial automorphism groups of
cubic fourfolds in the next theorem.

Theorem 3.4. If X is cubic fourfold over F2, then the order of AutF2(X) is one
of the following 87 possibilities:

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 15, 16, 18, 20, 21, 24, 30, 32, 36, 42, 48, 60,
63, 64, 72, 84, 96, 108, 120, 126, 128, 144, 160, 168, 192, 256, 288, 320, 384,
512, 576, 648, 672, 720, 768, 882, 1024, 1152, 1344, 1440, 1536, 1920, 2016,
2048, 2160, 2304, 3072, 3840, 4032, 4608, 6144, 7680, 9216, 10752, 11520,
12288, 18432, 23040, 24576, 27648, 32256, 36864, 73728, 86016, 172032,
258048, 344064, 516096, 1105920, 1451520, 1806336, 5160960, 10321920,
15482880, 30965760, 319979520.

If X is a smooth cubic fourfold over F2, then the order of AutF2(X) is one of the
following 40 possibilities:

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 15, 16, 18, 24, 30, 32, 36, 48, 64, 72, 96, 108,
120, 128, 144, 160, 192, 288, 384, 512, 576, 648, 1440, 1536, 2160, 4608,
10752, 23040, 1451520.

Remark 3.5 (An extremal cubic fourfold). The smooth cubic fourfold

(3) X1 : x0x
2
3 + x1x

2
4 + x2x

2
5 + x2

0x3 + x2
1x4 + x2

2x5 = 0

is the unique cubic fourfold over F2 with |Aut(X1)(F2)| = 1 451 520; in fact, our
stabilizer computations yield that the F2-automorphisms form a group isomorphic
to the symplectic group Sp(6,F2), and this is the largest F2-automorphism group of
all smooth F2-cubic fourfolds. This cubic fourfold was also studied in [14, 25].

The appearance of the symplectic group admits a simple explanation. We consider
the F4/F2-Hermitian form defined by

H(x, y) := x0y
2
5 + x1y

2
4 + x2y

2
3 + x3y

2
4 + x4y

2
1 + x5y

2
0

where x = (x0, . . . , x5) and y = (y0, . . . , y5) are in F6
4. The map from Hermitian

forms to cubic forms defined by H(x, y) 7→ H(x, x) is injective, so in particular,
g ∈ GL6(F4) fixes H(x, y) if and only if it fixes H(x, x). We observe that the group
of F2-rational points of the unitary group of H is isomorphic to Sp(6,F2).
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Remark 3.6 (The Fermat cubic fourfold). There is also a unique smooth cubic four-
fold X2 with |Aut(X2)(F2)| = 23040, the Fermat cubic fourfold

X2 : x3
0 + x3

1 + x3
2 + x3

3 + x3
4 + x3

5 = 0.

Incidentally, there are also three singular cubic fourfolds with an automorphism
group of this order, two of which have F2-automorphism group isomorphic to AutF2(X2).
One easily sees that the cubic X1 is an F2-form of the Fermat cubic X2, split by any
K/F2 containing a primitive third root of unity; in particular, X1×F2F4

∼= X2×F2F4.

3.2. Point counting on moduli spaces. Let Ud be the the discriminant comple-
ment in the Hilbert scheme of degree d hypersurfaces over Fq, i.e., Ud is the open

subscheme of P(d+n
d )

Fq
parametrizing smooth degree d hypersurfaces in PnFq

. An rel-

evant question is: what is the probability that a randomly chosen hypersurface is
smooth? In [38], Poonen gave an answer asymptotically in d, proving that

lim
d→∞

|Ud(Fq)|

|P(d+n
d )(Fq)|

=
1

ZPn(n+ 1)
=

∏
1≤k≤n

(
1− 1

qk

)
.

Poonen’s result on point counting on discriminant complements has been related
to the phenomena of stabilization in the Grothendieck ring in work of Vakil and
Wood [43], and has also been studied from the perspective of homological and rep-
resentation stability by Church, Ellenberg, and Farb [10] and by Howe [23].

In the case of hypersurfaces in P5 over F2, Poonen’s result says that the probability
as d→∞ that a randomly chosen hypersurface of degree d is smooth should be

(4)
∏

1≤k≤5

(
1− 1

2k

)
= 0.298004150390625

Our computations let us compute |U3(F2)| exactly, and therefore the probability
that a randomly chosen cubic hypersurface in P5

F2
is smooth.

We first give some point counts on a series of related moduli spaces:

C, the coarse moduli space of cubic fourfolds,

Csm, the coarse moduli space of smooth cubic fourfolds,

C , the moduli stack of cubic fourfolds, and

C sm, the moduli stack of smooth cubic fourfolds.

The first point count can be computed without any difficulty using the Burnside
formula (1)

|C(F2)| = 3 718 649.

Next we compute the number of smooth cubic fourfolds. One cannot determine
the number of smooth orbits easily from Burnside’s lemma. Instead, we directly
count the smooth obits using our database of explicit orbit representatives. We can
thus report that the number of smooth cubic fourfolds up to isomorphism is

|Csm(F2)| = 1 069 562,

or about 28.76%.
Using our computations of the automorphism subgroups discussed above, we de-

termine the stacky point counts as well:

|C (F2)| =
∑

X∈C(F2)

1

|AutF2(X)|
=

4803839602528529

1343913984
≈ 3 574 514.18746,
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and

|C sm(F2)| =
∑

X∈Csm(F2)

1

|Aut(X)|
= 1 048 581.

It is interesting to note that the stacky point count of C sm is an integer.
Finally, summing the sizes of the orbits [PGL6(F2) : AutF2(X)] gives the F2-point

count on the discriminant complement U3.

Theorem 3.7. The cardinality of the set of smooth cubic fourfolds over F2 (not
considered up to isomorphism) is

|U3(F2)| = 21 138 040 038 850 560.

and thus the probability that a random cubic fourfold over F2 is smooth is exactly

|U3(F2)|
|P56(F2)|

= 0.29334923433225412736646831035614013671875.

We compare this count to some other counts of the proportion of smooth small
degree hypersurfaces over F2, see Figure 4.

n\d 1 2 3 4 5
∏

1≤k≤n+1

(
1−

1

2k

)
1 1 4

9 ≈ 0.444 112
341 ≈ 0.328 1560

4681 ≈ 0.333 98304
299593 ≈ 0.328 3

8 = 0.375

2 1 448
1023 ≈ 0.438 21504

69905 ≈ 0.308 10590854400
34359738367 ≈ 0.308 21

64 ≈ 0.328

3 1 64
151 ≈ 0.424 330301440

1108378657 ≈ 0.298 315
1024 ≈ 0.308

4 1 126976
299593 ≈ 0.424 1409202669256704

4803839602528529 ≈ 0.293 9765
32768 ≈ 0.298

Figure 4. List of proportion of hypersurfaces of degree d in Pn+1

that are smooth, over F2. The last column is the asymptotic pro-
portion as d → ∞ from Poonen’s theorem. The proportion of cubic
fourfolds which are smooth is closer to the Poonen limit than any
other entry in the table.

3.3. Lines on cubic fourfolds. We compute the set of F2-lines on every cubic
fourfold. We find that there exist exactly 65 cubic fourfolds which contain exactly
one F2-line, only 29 of which are smooth (the first example of such a cubic was given
in [12].) Our exhaustive computations confirm that every cubic fourfold X contains
an odd number of F2-lines (so in particular they all contain at least one such line).
In fact, this was already proved by Debarre–Laface–Roulleau.

Lemma 3.8 ([12]). Every cubic fourfold over F2 contains a line defined over F2.

In [12], this result is derived using a formula of Galkin and Shinder ([12, Equation
8], [18]): there is a relation between point counts on X and its Fano variety of lines
F1(X), which in the case of cubic fourfolds over F2 yields

(5) |F1(X)(F2)| = |X(F2)|2 + 2(1 + 24)|X(F2)|+ |X(F4)|
8

+ 4 |Sing(X)(F2)|.

In particular, since |X(F2)| ≥ 1 (by Chevalley–Warning), one has |F1(X)(F2)| ≥ 1.
If one is only interested in the number of lines on a cubic fourfold then the above

formula suffices provided one computes point counts on X (as we do in §4 below),
but we still computed the full set of F2-lines on each cubic with other applications
in mind—for instance, if one is interested in searching for various families of lines
on cubics, like planes and scrolls, it is useful to know the full set of lines.

We plot a histogram, see Figure 5, of the count (weighted by stabilizer) of the
number of isomorphism classes of cubics containing a given number of lines. We
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also plot the same histogram for just the smooth cubics. The histograms match the
prediction from [12].

Figure 5. Stacky counts of the number of cubics containing n lines.
A plot restricting to smooth cubics is given on the right.

Remark 3.9. The maximal number of F2 lines on a smooth cubic fourfold is 315.
The extremal cubic fourfold X1 in Remark 3.5 is the unique smooth cubic fourfold
over F2 with 315 lines.

3.4. Planes on cubic fourfolds. We also compute the complete set of F2-planes
on every cubic fourfold over F2. In contrast to the case of lines, not every cubic has a
plane; indeed, cubic fourfolds containing plane live on the Noether–Lefschetz divisor
C8 ⊂ C. There are 2 116 029 cubic fourfolds, or 56.90% up to isomorphism, containing
at least one F2-plane, of which 702, 153 are smooth, or 65.65% of the smooth cubic
fourfolds up to isomorphism. Figure 6 shows the histograms recording how many
cubic fourfolds (respectively, smooth cubic fourfolds) contain a fixed number of F2-
planes.

Figure 6. Stacky counts of the number of cubics containing n
planes. A plot restricting to smooth cubics is given on the right.

As mentioned in the introduction, the rationality problem for cubic fourfolds has
been a primary motivation for their study over the last 50 years. If X contains a
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pair of disjoint F2-planes P1 and P2, then X is birational to P1 × P2. Counting the
cubics in our database with pairs of disjoint F2 planes gives a lower bound on the
number of rational cubic fourfolds over F2:

Computation 3.10. There are 429 744 isomorphism classes of cubic fourfolds in
C(F2) containing two disjoint F2-planes, and 36 572 of these cubics are smooth.

4. Zeta functions of cubic fourfolds

In this section we explain how we compute the zeta functions of all smooth cubic
fourfolds over F2. The reader interested in the results of the computation is advised
to skip to §4.3.

4.1. Computational methods. Let q = 2, and let F : XFq
→ XFq

be the relative

Frobenius endomorphism. By the Weil conjectures, the zeta function for a smooth
cubic fourfold X/Fq is given by

ZX(q−s) =
1

(1− q−s)(1− q1−s)(1− q2−s)QX(q−s)(1− q3−s)(1− q4−s)
=
ZP4(q−s)

QX(q−s)

where the interesting factor QX(t) is given by, for an odd prime `,

QX(t) = det
(
Id− tF ∗ | H4

ét,prim(XF2
,Q`)

)
.

Let us now describe how we efficiently compute the zeta functions of cubic four-
folds. Our code computes the Weil polynomials

PX(t) = det
(
F ∗ − tId | H4

ét,prim(XF2
,Q`(2))

)
for each isomorphism class of smooth cubic fourfold X/F2 in our database; each
PX(t) is a monic, degree 22 polynomial with coefficients in 1

2Z whose roots lie on the
unit circle. The Weil polynomial PX(t) is related to QX(t) via PX(t) = ±QX(t/4)
where the sign is the sign occurring in the functional equation, see (6) below. Using
a slight adaptation of the algorithm of Addington–Auel in [1] (described below),
we can efficiently compute the point counts of smooth (and even mildly singular)
cubic fourfolds over F2. Then for each smooth cubic X, we compute the first 11
nonleading coefficients of P (t) using the points counts |X(F2k)| for 1 ≤ k ≤ 11.

The 11 remaining coefficients are computed by leveraging the functional equation

(6) PX(t) = (−1)εt11PX(t−1)

to fully determine PX(t). However, to determine the sign ε ∈ {0, 1} of the functional
equation, we use work of T. Saito [39] to relate it to the divided discriminant discd(F )
of an integral homogeneous cubic lift f ∈ Z[x0, . . . , x5] (see [39, Definition 2.2] for
the definition of discd(F )).

Theorem 4.1 ([39, §4]). Let X be a smooth cubic fourfold over F2, and let f ∈
Z[x0, . . . , x5] be a lift of a defining equation for X. Then the sign of the functional

equation in the zeta function of X is (−1)(discd(F )+1)/4.

Applying Saito’s criterion to the smooth cubics in our database, one finds that
nearly half of all smooth cubic fourfolds take the positive sign in their functional
equation.

Computation 4.2. Among the 1 069 562 isomorphism classes of smooth cubic four-
folds over F2, there are exactly 531 334, or about 49.8%, for which the sign of the
functional equation is +1.
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4.2. Addington–Auel point counting algorithm. For the sake of documenta-
tion, we describe our adaptations to the point counting algorithm of Addington
and Auel [1, §3], the idea of which itself goes back (for counting points on cu-
bic threefolds) to Bombieri–Swinnerton-Dyer [5] and was used by Debarre–Laface–
Roulleau [12, §4.3]. Our improvements are as follows. First, we no longer re-
quire that the cubic fourfold X contains an F2-line not also contained in a plane
P ⊂ X × F2. In fact, if X is smooth, such lines exists aside from 55 cubics in our
database. Second, we remove the hypothesis that X is smooth.

The key step in the algorithm is to transform X into a conic fibration. We denote
P5 := ProjF2[y0, . . . , y5] and X ⊂ P5 an arbitrary cubic fourfold. We let ` ⊂ X be a
rational line (such a line must exist by Lemma 3.8) and change coordinates so that
` = Z(y0, y1, y2, y3). Then the defining equation of X is

(7)
A(y0, . . . , y3)y2

4 +B(y0, . . . , y3)y4y5 + C(y0, . . . , y3)y2
5

+D(y0, . . . , y3)y4 + E(y0, . . . , y3)y5 + F (y0, . . . , y3) = 0

where A, . . . , F are homogeneous polynomials of degrees 1, 1, 1, 2, 2, 3, respectively.
If P ⊃ ` is a plane, then equation (7) shows P meets X along ` ∪ C, where C is a
plane conic.

We consider the projection φ : X 99K P3 away from `, as well as the resolution

φ : X̃ → P3 of φ and the blowing-down morphism π : X̃ → X. Because φ is a linear
projection, we have that π−1(x) is a linear space for every point x ∈ X. Specifically,

π−1(x) ∼=


P0 if x 6∈ `
P2 if x ∈ `, x 6∈ Xsing

P3 otherwise

.

Notice that x ∈ ` is a singularity if and only if the point (x4 : x5 : 0) ∈ P2 is a
basepoint of the 3-dimensional family of conics defined in (7). Thus, depending on
A,B,C, we have one of the following cases

• 0 basepoints (on the hyperplane at infinity),
• 1 basepoint
• 2 basepoints (both defined over F2)
• 2 basepoints (neither defined over F2)
• A line of basepoints. (A = B = C = 0.)

Algorithm 4.3. CountPoints(X, q) (Adapted from [1, §3])
Input:

• A cubic fourfold X
• q = 2r

Steps:

(1) Choose an F2-line ` ⊂ X (guaranteed by Lemma 3.8).
(2) The projection away from ` yields a morphism φ : Bl`(X)→ P3 whose generic

fiber is a conic, as in equation (7).
(3) If A = B = C = D = E = 0, then φ gives X the structure of a cone over a

cubic surface Y . In this case

return |Y (Fq)| · q2 + q + 1.

(4) Compute |Bl`(X)(Fq)| by counting Fq-points in each fiber of φ: let

∆ = Z(AE2 +B2F + CD2 −BDE) ⊆ P3
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be the discriminant subscheme parametrizing the fibers of φ which are either
planes or singular conics. For each y ∈ ∆(Fq), the point-count |(φ−1(y))(Fq)|
is determined as follows:

• if y ∈ ∆ and y /∈ Z(A, . . . , F ), then φ−1(y) is a singular plane conic
over Fq. It has 0, q + 1, or 2q + 1 Fq-points, which can be determined
by its rank and Arf invariant.

• if y ∈ Z(A, . . . , F ), then φ−1(y) is a 2-plane over Fq with 1 + q + q2

Fq-points.

Then

|Bl`(X)(Fq)| =
∑

x∈∆(Fq)

|(φ−1(x))(Fq)|+ (q + 1)(1 + q + q2 + q3 − |∆(Fq)|).

(5) Determine the exceptional divisor E of π.
• If x ∈ ` is not a singular point of X, |π−1(x)(Fq)| = 1 + q + q2.
• If x ∈ ` is a singular point, |π−1(x)(Fq)| = 1 + q + q2 + q3.

In the case that ` ⊂ Xsm, we have |E(Fq)| = (1 + q)(1 + q + q2). Thus, we
may compute

|Bl`(X)(Fq)| = |X(Fq)|+ |E(Fq)| − |P1(Fq)|.

return |X(Fq)|.

As in the original algorithm in [1], we gain significant speedup in the enumeration
of ∆(Fq) by taking the projection ∆\{p} → P2 away from a singular point p ∈
∆sing(F2) and enumerating over P2(Fq) points. We found in the process of running
the point-counting algorithm that every smooth cubic fourfold over F2 contains an
F2-line such that ∆sing(F2) is nonempty, answering a question of [1] (see footnote 4
of loc. cit.).

In fact, there is a simple way to confirm this is true. Choose a line ` ⊂ X and write
X as in Equation (7). Since X is smooth, we have that A,B,C are independent
linear forms, so there is a unique p = (p0 : p1 : p2 : p3) at the intersection of the
zero loci in P3. The fiber φ−1(p) in X is given by

`′ : D(p)y4 + E(p)y5 + F (p) = 0, (y0 : y1 : y2 : y3) = p.

That is, `′ is a line contained withinX. The conic fibration associated to `′ contains a
rational conic of rank 1 (the associated fiber is the original line ` with multiplicity 2).

4.3. Census of the zeta functions. Our computations of all the zeta functions
of smooth cubic fourfolds over F2 yield the following result.

Computation 4.4. There are 86 472 distinct zeta functions realized among the
1 069 562 isomorphism classes of smooth cubic fourfolds over F2.

In doing the computation above, we also verified a conjecture of Elsenhans and
Jahnel [15, Theorem 1.9] in the case of cubic fourfolds over F2.

Theorem 4.5. Let X be a smooth cubic fourfold defined over F2, and PX(t) its
primitive Weil polynomial. Then 2PX(−1) is an integer square.
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4.4. The K3-part of the Weil polynomial of a cubic fourfold. If (1−t) divides
the Weil polynomial PX(t) of some cubic fourfold X, then PX(t)/(1− t) is a degree
21 Weil polynomial, which we call the K3-part of the Weil polynomial of the cubic
fourfold.

Computation 4.6. We compared the Weil polynomials PX(t)/(1 − t) against the
list generated by Kedlaya–Sutherland [27, Computation 3(c)] of Weil polynomials
of degree 21 which are of “K3-type”, finding that there are 71 476 K3-type Weil
polynomials which are the K3-part of the Weil polynomial of some cubic fourfold
over F2.

Computation 4.6 shows that cubic fourfolds realizeK3-type Weil polynomials that
are not realized by any quartic K3 over F2; indeed, there are only 52 755 degree 21
Weil polynomials arising from these quartic surfaces ([27, Computation 4(c)]).

These K3-type Weil polynomials arising form cubic fourfolds are sometimes (but
not always) explained by the phenomenon of associated K3 surfaces mentioned in
the introduction. For instance, whenever there is a geometric construction of an
associated (twisted) K3 surface defined over the ground field k, the K3-part of the
Weil polynomial of the cubic fourfold arises from an honest K3 surface over k. This
is part of a more general phenomenon: whenever there is a k-linear Fourier–Mukai
equivalence between the K3 category of X (as defined in [29], see [24]) and the
derived category of (twisted) coherent sheaves on a K3 surface, Fu and Vial [16]
show that the transcendental zeta functions of S and X agree (in fact, they have
isomorphic rational Chow motives). We refer the interested reader to the excellent
survey of Hassett [22] for more on associated K3 surfaces of cubic fourfolds.

4.5. Newton polygons. Having tabulated the zeta functions of the smooth cubic
fourfolds over F2, we can determine their Newton polygons. The Newton polygon
of a cubic fourfold over a finite field is determined by its height h, which can be any
integer 1 ≤ h ≤ 10, or h = ∞. We find cubic fourfolds over F2 of every possible
height.

Theorem 4.7. Each Newton stratum in the moduli space of smooth cubic fourfolds
contains F2-points.

A cubic fourfold is called ordinary if h = 1 and supersingular if h =∞.

Computation 4.8. There are 8688 supersingular cubic fourfolds and 533, 262 or-
dinary cubic fourfolds up to isomorphism over F2.

h 1 2 3 4 5 6 7 8 9 10 ∞

# 533262 267355 131922 66974 31806 16041 6901 4575 1301 737 8688

Figure 7. Heights of isomorphism classes of cubic fourfolds over F2

4.6. Codimension 2 algebraic cycles on cubic fourfolds. The Tate conjecture
for K3 surfaces over finite fields of characteristic 2 has been proved by Ito–Ito–
Koshikawa [26] and Kim–Madapusi Pera [28], [34]. We now explain how methods
used to prove these results, as well as results for Gushel–Mukai varieties by Fu and
Moonen [17], lead to a proof of the Tate conjecture for codimension 2 cycles on cubic
fourfolds over F2. Since this result is surely known to the experts, we only provide
a sketch of the proof to fill an existing gap in the literature.
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Theorem 4.9. Let X be a smooth cubic fourfold over a finite field k of character-
istic 2. Then the cycle class map induces an isomorphism

CH2(X)⊗Q` → H4
ét(X,Q`(2))Gal(k/k).

Proof. We use Madapusi Pera’s approach to proving the Tate conjecture for codi-
mension 2 cycles on smooth cubic fourfolds outlined in [33, §5.14], together with
the integral 2-adic models of Shimura varieties constructed in [28], and the revised
approach in [34], as adopted in [17].

Let C sm be the stack of smooth cubic fourfolds over Z(2). Let L ⊂ L′ be the

abstract lattice of the primitive part inside the H4 of a cubic fourfold. Then L is
even with signature (20, 2) and discriminant 3 and L′ is odd unimodular of signature

(21, 2). As in [33, §5.14], let C̃ sm → C sm be the double cover parameterizing cubic
fourfolds together with a choice of isomorphism det(L) ⊗ Z` → det(〈h2〉⊥), where
h2 ∈ H4

ét(Xks ,Z`(2)) is the cycle class of the square of the hyperplane section. Then
by the arguments of [28, Proposition 4.15], the classical Kuga–Satake map extends

to a morphism C̃ sm → S(L), where S(L) is a Zp-model of the orthogonal Shimura
variety Sh(L) attached to L, see [28, Theorem 3.10]. Here, one needs to take a
prime p lying above 2 in an extension E/Q (of degree at most 2) that trivializes
the quadratic character induced by the determinant-preserving Galois action on the
primitive cohomology 〈h2〉⊥, see [17, Remark 6.25 and §7.1]. This subtlety, which
arises since the primitive cohomology has even rank, hence its special orthogonal
group contains ±id, is not directly addressed in [33, §5.14]. However, to prove the
Tate conjecture for codimension 2 cycles on X, we are free to take a finite extension
of k, cf. [42, § 2, p. 580], namely, the residue field of Ep.

Following the strategy in [33], the main step is to show that the map C̃ sm → S(L)
is étale. We remark that the de Rham realization of the universal lattice LdR ⊂ L′dR
is a vector subbundle since any polarization (having self-intersection 3) is primitive.
Similarly, we appeal to [34, Lemma 1.10] to show that the map induced on de Rham
realizations extends to an isometry to filtered vector bundles

αdR : LdR(−2)→H4
prim,dR

over C̃ sm. The rest of the proof proceeds as in [33, §5.14], since C̃ sm is a smooth
Artin stack, as proved by Levin [31, §3] (cf. [33, Proof of Theorem 5.15]), and the

deformation theory of C̃ sm is controlled by the degree 4 part of the Hodge filtration
on H4

prim,dR. �

For a Weil polynomial P (t) of a cubic fourfoldX, we write P (t) = Pcyc(t)Pnon−cyc(t)
where Pcyc(t) is the product of all cyclotomic factors of P (t). If (t − 1)m exactly
divides Pcyc(t) and degPcyc(t) = n, then we have, as a direct consequence of the
Tate conjecture, that

rk CH2(X) = m and rk CH2(X) = n

Thus, we can report the following outcome from our computation of all zeta func-
tions.

Theorem 4.10. If X is an smooth cubic fourfold over F2, then the algebraic rank
r = rk CH2(X) can be any integer 1 ≤ r ≤ 10, or r = 12, 16 and, furthermore, there
are ordinary cubic fourfolds of every algebraic rank up to rank 10.

Remark 4.11. In fact, the extremal cubic fourfold X1 in Remark 3.5 is the unique
smooth cubic fourfold over F2 with algebraic rank 16.
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Theorem 4.12. If X is an smooth cubic fourfold over F2 then the algebraic rank
rk CH2(X) can be any odd number ≤ 23, and all such ranks ≤ 21 are realized by
ordinary smooth cubic fourfolds.

We remark that since the Tate conjecture holds for a supersingular cubic fourfold
X, the algebraic cycles CH2(X) span H4

ét(X,Q`(2)) and so any supersingular cubic

fourfold has geometric rank rk CH2(X) = 23.
The tables below summarize our computations of the ranks of the algebraic and

geometric Chow groups of smooth cubic fourfolds over F2.

rk CH2(X) 1 3 5 7 9 11

how many 107552 254144 153410 179596 107911 98978

rk CH2(X) 13 15 17 19 21 23

how many 61054 50777 27339 14588 5525 8688

Figure 8. Rank of the group of geometric cycles CH2(X)

rk CH2(X) 1 2 3 4 5 6 7 8

how many 232218 426619 273007 106035 25521 5377 581 178

rk CH2(X) 9 10 11 12 13 14 15 16

how many 7 13 0 5 0 0 0 1

Figure 9. Rank of the group of algebraic cycles CH2(X)
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