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Abstract

We study the Noether-Lefschetz locus of the moduli spaceM of K3[2]-fourfolds

with a polarization of degree 2. Following Hassett’s work on cubic fourfolds, De-

barre, Iliev, and Manivel have shown that the Noether-Lefschetz locus in M is

a countable union of special divisorsMd, where the discriminant d is a positive

integer congruent to 0, 2, or 4 modulo 8. We compute the Kodaira dimensions

of these special divisors for all but finitely many discriminants; in particular, we

show that for d > 224 and for many other small values of d, the space Md is a

variety of general type.

Résumé

On étudie le lieu de Noether-Lefschetz dans l’espace de modulesM des variétés

de type K3[2] munies des polarisations de degré 2. Selon l’approche de Hassett

pour les cubiques de dimension quatre, Debarre, Iliev, et Manivel ont établi que

ce lieu dansM est une réunion des diviseurs spéciauxMd, où le discriminant d

est un entier positif congru à 0, 2, ou 4 modulo 8. On calcule les dimensions de

Kodaira des diviseurs spéciaux pour presque tous les discriminants; en partic-

ulier, on démontre que, pour d > 224 et d’autres petits entiers d, l’espace Md

est une variété de type général.

1. Introduction

The aim of this paper is to study the internal geometry of some moduli

spaces of hyperkähler fourfolds. Let M denote the moduli space of complex
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four-dimensional polarized hyperkähler (HK) manifolds of K3[2] type with po-

larization of degree 2, the simplest possible polarization degree. The varietyM,

quasi-projective and of dimension 20, is also the period space for Gushel–Mukai

fourfolds, as well as the period space for EPW double sextics. A very general

X ∈ M has the property that X has Picard rank 1. The locus where this

property fails is the Noether-Lefschetz locus NL(M) of M:

NL(M) = {(X,H) ∈M(C) : rk PicX ≥ 2},

which is a union of countably many irreducible divisors known as the (Noether-

Lefschetz)-special divisors in M. Our specific goal in this paper is the compu-

tation of the Kodaira dimensions of these special divisors.

1.1. Statement of main theorem

Recall that for any HK manifold X, the Picard group Pic X injects (via

the exponential exact sequence) into the singular cohomology group H2(X,Z).

The Beauville-Bogomolov form qX : H2(X,Z) → Z equips H2(X,Z) with the

structure of an even integral lattice. A point p ∈ M is represented by a pair

(X,H) where X is an HK fourfold of deformation type K3[2] and H ∈ Pic(X) ↪→
H2(X,Z) is an ample divisor with qX(H) = H2 = 2. A polarized HK fourfold

(X,H) is said to be special if (X,H) ∈ NL(M). A primitive sublattice K ⊆
PicX of rank 2 containing H forms the data of a special labelling of discriminant

d for X (or more precisely, for (X,H)), where d = |D(K⊥H2(X,Z))| (cf. [DM, §4]).

For each d, there is a moduli space Md ⊂ M of polarized special K3[2]-

fourfolds of discriminant d. The nonempty Md are hypersurfaces in M, first

studied by Debarre, Iliev, and Manivel in [DIM15] as the locus of Hodge struc-

tures possessing a special discriminant d labelling in the period domain for prime

Fano fourfolds of index 10 and degree 2 (such Fano fourfolds are also known as

Gushel–Mukai fourfolds). They prove that the moduli space Md is nonempty

if and only if d /∈ {2, 8} and d ≡ 0, 2, 4 mod 8. Furthermore, the divisor Md is

irreducible if d ≡ 0, 4 mod 8 or d = 10; otherwise, when d ≡ 2 mod 8, the hyper-

surfaceMd of special fourfolds of discriminant d is the union of two irreducible

divisors, denoted M′d and M′′d , which are birationally isomorphic (see [DM,

Theorem 6.1]).

In this paper, we determine the Kodaira dimension of Md for nearly every

value of d. We show Md is of general type for almost all d:

d > 224 =⇒ κ(Md) = 19.

Moreover, we push our methods to determine the Kodaira dimension for many

other small values of d. Our results, together with the additional inputs to be

discussed in §1.2, determine information about the birational type ofMd for all

but 34 discriminants.
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Our goal is to prove the following theorem:

Theorem 1.1. LetM denote the moduli space of hyperkähler fourfolds of degree
2 of K3[2]-type, and let Md ⊂ M denote the moduli space of special K3[2]-
fourfolds with a special labelling of discriminant d.

1. Suppose that d = 8m with m ≥ 11. Then Md is of general type for
m /∈ {11, 12, 13, 14,
16, 17, 22, 25, 28}. Furthermore, for m /∈ {14, 16, 22}, the variety Md has
nonnegative Kodaira dimension.

2. Suppose that d = 8m + 2 with m ≥ 12. Then Md has two birationally
isomorphic irreducible components, M′d and M′′d , both of which are of
general type when
m /∈ {12, 13, 14, 15, 16, 17, 21, 23}. Furthermore, for m /∈ {14, 16}, the
varieties M′d and M′′d have nonnegative Kodaira dimension.

3. Suppose that d = 8m+ 4 with m ≥ 14. Then Md is of general type if
m /∈ {15, 17, 21, 25, 27}. Furthermore, for m 6= 15, the variety Md has
nonnegative Kodaira dimension.

The idea of the proof is to work with the global period domain Dd, an

irreducible quasi-projective variety. The Torelli theorem forM shows thatMd

is a Zariski open subset of Dd. Then we use automorphic techniques developed

by Gritsenko-Hulek-Sankaran in [GHS07] and [GHS13] to study the Kodaira

dimension of Dd. This requires the construction of special odd weight modular

forms on certain quotients of type IV Hermitian symmetric domains of the form

Õ+(L)\Ω+
L (see §2 for the relevant definitions).

We note that by a result of Ma, there are only finitely many even integral

lattices L of signature (2, n) such that Õ+(L)\Ω+
L is not of general type ([Ma,18,

Theorem 1.3]). Ma’s result implies that each nonempty Dd is of general type

for d ≥ D0, where D0 is some constant D0 ≥ 5.5 · 1016. In the present work, we

find a smaller upper bound, d0 = 224, such that each nonempty Dd is of general

type for d > d0.

1.2. Relationship to Kd and Cd
There are 40 values of d for which the techniques used to prove Theorem 1.1

do not yield any information aboutMd. However, it is possible to use results on

2The 34 discriminants for which we have no information on the Kodaira dimension of Md

at the present time are: 12, 16, 18, 24, 28, 32, 36, 40, 42, 48, 50, 52, 56, 58, 60, 64, 66, 68, 72,
74, 76, 80, 82, 84, 90, 92, 100, 108, 112, 114, 124, 128, 130, 176.
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the Kodaira dimension of the moduli space of degree d polarized K3 surfaces Kd
to conclude something about Md for some of these discriminants. For d = 2k

with 1 ≤ k ≤ 13 or k ∈ {15, 16, 17, 19}, it is known that Kd has negative Kodaira

dimension, and in fact Kd is unirational ([GHS13, Theorem 4.1] and [Nue16]).

Since Kd dominates Md whenever d is not divisible by a prime 3 mod 4 and

Md 6= ∅ ([DIM15, Proposition 6.5]), we conclude thatMd has negative Kodaira

dimension and is in fact unirational when d ∈ {4, 10, 20, 26, 34}.
Similarly, the moduli space Cd of special cubic fourfolds of discriminant d

dominates Md whenever d ≡ 2 or 20 mod 24 and the only odd primes dividing

d are congruent to ±1 mod 12 ([DIM15, Proposition 6.5]). The only new infor-

mation this yields about the Kodaira dimension ofMd is thatM44 has negative

Kodaira dimension, since C44 is uniruled by work of Nuer (see [Nue16]).

1.3. EPW double sextics and Md

O’Grady has shown that a general (X,H) ∈M is a smooth EPW double sex-

tic (see [O’G06]). Precisely, there is a Zariski open subset U ofM parametrizing

pairs (X,H) with ample and base-point free H such that |H| : X → P5 realizes

X as a ramified double cover of an EPW sextic in P5. We can consider the sub-

variety Ud =Md ∩U ⊂M in U parametrizing EPW double sextics which have

a special labelling of discriminant d. It is possible (see [DM, Example 6.3]) that

dimUd < dimMd: if d = 4 then Ud = ∅, and while Ud is known to be nonempty

for d ≥ 10 and d ≡ 0, 2, 4 mod 8, it is unknown whether dimUd = dimMd for

such d. Still, for d sufficiently large, the variety Ud is birational toMd (because

U is an open subset ofM), and thus we can conclude that Ud is of general type

for such d. It would follow from a conjecture of O’Grady [DM, Example 6.3]

that Ud is birational to Md for all d 6= 4.

Corollary 1.2. Let Ud denote the moduli space of smooth EPW double sextics
that possess a special labelling of discriminant d. Then for all sufficiently large
d the following hold:

• If d ≡ 0, 4 mod 8, then the space Ud is of general type.

• If d ≡ 2 mod 8, then both irreducible components of Ud are of general type.

If O’Grady’s conjecture is true, then one can take d > 224 in Corollary 1.2,

but as of this writing the result remains ineffective.

Remark 1.3. There is an remarkable geometric association, first appearing
in [IM11], between Gushel–Mukai fourfolds and EPW double sextics, which
gives a morphism from the 24-dimensional moduli stack of GM fourfolds to the
20-dimensional moduli stack of EPW double sextics; in particular, the image
of a special Gushel–Mukai fourfold of discriminant d is a special EPW double
sextic of discriminant d (cf. [DIM15], [DK18]), and hence the image of the locus
of special Gushel–Mukai fourfolds lies in Ud.
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1.4. Overview

In §2 we review some relevant notions about lattices and hyperkähler vari-

eties. Then we give the definitions of the moduli spacesM andMd, and explain

how the work of Gritsenko–Hulek–Sankaran determines Kodaira dimension of

these varieties provided a modular form can be constructed with special prop-

erties. The strategy is to build modular forms using a kind of “pulling back” of

the Borcherds modular form Φ12. For this, we need to construct special lattice

embeddings.

The systematic study of these lattice embeddings is taken up in §3. Here,

we use a slightly modified version of the “lattice engineering” trick from [Tan19,

Section 4]. We formulate elementary conditions on certain lattice embeddings

from which Theorem 1.1 will follow.

In §4, we take up actual construction of these embeddings with the desired

properties, breaking our analysis into the cases d = 8m, 8m+2, and 8m+4 (see

§4.1, §4.2, §4.3). We then reduce the problem of constructing special embed-

dings to a number theoretic problem concerning the integer valued points on a

diagonal quadric. To guarantee the existence of such points for all sufficiently

large d, we invoke a classical result of Halter-Koch on the sums of three squares.

The final part of the argument deals with the low values of the discriminant

d using computer code code written in the Magma language [BCP97], which is

provided on the author’s webpage.

2. Basic notions and definitions

In this section we define the main objects of the paper, starting with a

review of lattice theory in §2.1 and the moduli and periods of our hyperkähler

fourfolds in §2.2. The special divisorsMd and Dd are discussed in §2.3, and the

orthogonal modular varieties Fd are discussed in §2.4.

2.1. Lattices

(References:[CS99], [Ser73].) An (integral) lattice is a free Z-module L of

finite rank together with a nondegenerate symmetric Z-bilinear form

(·, ·) : L× L→ Z.

The signature (r, s) of L is the signature of a Gram matrix for L. A lattice L is

even if (x, x) := x2 ∈ 2Z for all x ∈ L. An element x ∈ L is primitive if it is not

an integral multiple of any other vector in L. An (n)-root of L is any primitive

vector r of square-length r2 = n.

An embedding L ↪→M of integral lattices is primitive if the quotient group

M/L is torsion-free. The orthogonal complement of L in M will be denoted

L⊥M , or simply L⊥ with the ambient lattice understood from context. To every
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even integral lattice L, there is the associated dual lattice L∨ = Hom(L,Z)

with an embedding L ↪→ L∨ given by x 7→ (x, ·). The group D(L) := L∨/L

is a finite abelian group, called the discriminant group. The natural extension

of (·, ·) to L∨ endows L∨ with a Q-valued bilinear form,. which in turn gives

rise to a Q/2Z-valued bilinear form bL on L∨/L, called the discriminant form.

An integral lattice is unimodular if it has trivial discriminant group. Let O(L)

denote the group of automorphisms of L preserving (·, ·), and let Õ(L) denote

the subgroup of automorphisms which preserve the discriminant form; that is,

Õ(L) := ker(O(L)→ O(L∨/L)).

The group Õ(L) is a finite index subgroup of O(L) and is known as the stable

orthogonal group. In this work, the notation (n) for a nonzero integer n will

denote a rank 1 integral lattice with a generator x of length n. Following

standard practice, the lattice A1 denotes the lattice (2). If L is a lattice, then

L(n) denotes the lattice with the same underlying abelian group as L with

pairing given by

(x, y)L(n) = n · (x, y)L.

Often, we will write down a lattice by writing down a Gram matrix for a basis

of the lattice. The lattices U and E8 denote, respectively, the hyperbolic plane

given by the Gram matrix

(
0 1

1 0

)
, and the unique unimodular positive-definite

even lattice of rank 8. Later, when perform explicit computation involving E8,

we make use of the Gram matrix for E8 ([CS99, Ch 4, §8]):

E8
∼=



2 0 −2 −1 0 0 0 0

0 2 0 −1 −1 0 0 0

−2 0 4 0 0 0 0 1

−1 −1 0 2 0 0 0 0

0 −1 0 0 2 −1 0 0

0 0 0 0 −1 2 −1 0

0 0 0 0 0 −1 2 0

0 0 1 0 0 0 0 2


.

We also need the “checkerboard” lattice D6 ([CS99, §7]): let e1, . . . , e6 denote

the standard basis of Z6 ⊂ R6 with the usual dot product. Then we define

an even integral lattice D6 by D6 = {
∑
ciei ∈ Z6 :

∑
ci ≡ 0 mod 2} ⊂ Z6.

The 2-roots of D6 (i.e. the square-length 2 vectors) are given by S ∪−S, where

S = {ei ± ej : i 6= j}. The dual lattice D∨6 is the Z-span of Z6 and the vector

( 1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ).

Remark 2.1. If A⊕2
1 ↪→ E8 a is primitive embedding of lattices, then (A⊕2

1 )⊥ ∼=
D6. This can be verified by direct computation, first on a single embedding, and
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then by using that embeddings A⊕2
1 ↪→ E8 are unique up to isometry (see [Nik79,

Theorem 1.14.4]).

When L has signature (2,m), we also define the subgroup O+(L) of auto-

morphisms which preserve the orientation on the positive-definite part of L.

Note that O+(L) is a finite index subgroup of O(L) and that O+(L) acts on the

period space for L:

Ω+
L := {x ∈ P(L⊗C) : (x, x) = 0, (x, x) > 0}+

where the + notation indicates that we are taking one component of the two-

component set {x ∈ P(L⊗C) : (x, x) = 0, (x, x) > 0} (the two components are

exchanged by complex conjugation). For any primitive vector r ∈ L of square

length r2 < 0, there is a rational quadratic divisor in Ω+
L defined by

Ω+
L(r) := {Z ∈ Ω+

L : (Z, r) = 0}.

We will also need the group

Õ+(L) := O+(L) ∩ Õ(L)

which is a finite index subgroup of the groups O(L), O+(L), and Õ(L), and

acts properly and discontinuously on Ω+
L (as does any finite index subgroup

Γ ⊆ O+(L)). For a sublattice K ⊂ L, define

O(L, (K)) = {g ∈ O(L) : g(K) = K}

and define

O(L,K) = {g ∈ O(L, (K)) : g|K = idK}.

We will write O(L, v) := O(L,Zv) for v ∈ L. One can also define O+(L, (K)),

Õ+(L,K), and so on.

2.2. Moduli and periods of hyperkähler fourfolds of K3[2]-type

(Reference: [Deb22]). Let X be a complex algebraic variety which is de-

formation equivalent to the Hilbert scheme S[2] of length-two zero-dimensional

subschemes of a K3 surface S (a variety of K3[2]-type). Then X is a four-

dimensional hyperkähler (HK) manifold — meaning X is simply connected with

a nowhere degenerate 2-form ω such that H0(X,Ω2
X) = Cω. Any HK manifold

has Hr(X,OX) = 0 for any r odd, so the exponential exact sequence shows that

PicX injects into H2(X,Z). The second integral singular cohomology also un-

derlies a Hodge structure of weight 2 of K3-type. The gives another realization

of the Picard group as PicX = H1,1(X) ∩H2(X,Z).

The group H2(X,Z) (and its subgroup PicX) inherits the structure of a

quadratic space from the Beauville-Bogomolov-Fujiki (BBF) form qX , a cer-
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tain canonically defined nondegenerate integral quadratic form of signature

(3, b2(X) − 3). For more on qX we refer the reader to [Bea83]. For S a K3

surface, the second cohomology with the BBF form (H2(S[2],Z), qS) is isomor-

phic to H2(S,Z)⊕ Zδ with δ2 = −2. The summand H2(S,Z) is the K3 lattice

and carries an intersection form given by the cup product, with s · s = q(s).

The class 2δ is corresponds to the divisor in S[2] parametrizing nonreduced sub-

schemes of S of length two. Since q(H2(S[2],Z)) = 2Z, the cohomology group

H2(S[2],Z) has the structure of an even, integral lattice.

The second integral cohomology with the BBF form is deformation invariant.

As H2(S,Z) ∼= U⊕3⊕E8(−1)⊕2 for any K3 surface S, it follows for X a fourfold

of K3[2]-type that H2(X,Z) is isomorphic to the lattice

M = U⊕3 ⊕ E8(−1)⊕2 ⊕ (−2).

Let u, v denote a null basis for the first copy of U in the decomposition of M :

u2 = v2 = 0, (u, v) = 1.

Let u′, v′ denote a null-basis for the second copy of U , and let w denote the

(−2) factor in the decomposition above.

A polarized HK fourfold is a pair (X,H) where H ∈ PicX is a primitive,

ample divisor with q(H) = e > 0. The integer e is called the degree of the polar-

ized fourfold. In this work we consider the lowest possible polarization degree

K3[2]-type fourfolds, those with degree e = 2. There is a coarse quasi-projective

moduli space M, which is irreducible and has dimension 20, parametrizing po-

larized K3[2]-type fourfolds of degree 2 up to isomorphism; O’Grady showed

that this moduli space is unirational (see [O’G06, Theorem 1.1]). A marking of

an HK fourfold of K3[2]-type is an isomorphism

ϕ : H2(X,Z) ∼= M.

Every marking on some (X,H) ∈M is equivalent, under O(M), to one sending

H to h := u+ v. One computes that

h⊥ = Λ := U⊕2 ⊕ E8(−1)⊕2 ⊕ (−2)⊕2.

We briefly recall some relevant Hodge theory for our degree 2 K3[2]-fourfolds.

The period of a point (X,H) ∈M together with marking ϕ is the line

ϕC(H2,0(X)) ∈ Λ⊗C.

A period determines, via the Hodge-Riemann relations, a weight 2 Hodge struc-

ture on Λ of K3-type. The global and local period domains for Λ are spaces

that parametrize these Hodge structures. There exists a map to the local period
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domain Ω+
Λ ,

{(X,H,ϕ) : (X,H) ∈M, ϕ : H2(X,Z)→M, ϕ(H) = h} −→ Ω+
Λ ,

which sends a triple (X,H,ϕ) to its period; after quotienting out by isomorphism

of these triples, one gets a map into the global period domain

τ : M→D := Õ+(Λ)\Ω+
Λ .

Applying well-known results of Baily-Borel [BB66], the arithmetic quotient D is

a quasi-projective, irreducible, normal variety. Using Markman’s computation

on the monodromy of K3[n]-type manifolds ([Mar10, Theorem 1.2]), we see that

the the group Õ+(Λ) is the monodromy group generated by parallel-transport

operators respecting the polarization. Hence, by the global Torelli theorem for

polarized HK fourfolds, due to Verbitsky and Markman (see [Mar11, Theorem

8.4]), the morphism τ is algebraic and is an open immersion. We note for later

use that

Õ+(Λ) = {γ ∈ O+(Λ) : γ ∈ O(M,h)|Λ},

by a result of Nikulin [Nik79, Corollary 1.5.2] (Nikulin’s result is about the

group Õ(Λ), but nevertheless yields the above when restricting to the subgroup

Õ+(Λ)).

2.3. Noether-Lefschetz locus

We say that X possesses a special labelling of discriminant d if there exists

a primitive sublattice K ⊂ PicX of rank 2 with H ∈ K such that |D(K⊥)| = d.

A very general fourfold X inM has rk PicX = 1 (see [Zar90, Section 5.1] for a

standard argument for this fact) and thus does not possess any special labelling.

The following result of Debarre, Iliev, and Manivel classifies all possible special

labelling (we are able to employ their result because the nonspecial cohomology

lattice of a discriminant d Gushel-Mukai fourfold is isomorphic to the nonspecial

cohomology lattice of a discriminant d K3[2] fourfold):

Theorem 2.2. [DIM15, Proposition 6.2] A special sublattice K, i.e. a rank 2
sublattice K ⊂ M with u + v ∈ K of signature (1, 1), must have discriminant
d ≡ 0, 2, 4 mod 8. Furthermore, the orbits of O+(Λ) acting on the set of special
rank 2 sublattices are as follows:

1. If d = 8m, there is just one orbit for each m > 0, represented by Kd with

Kd
∼=
(

2 0
0 −2m

)
and Kd ∩ Λ = Z(u′ −mv′).

2. If d = 8m + 2, there are two orbits for each m > 0, exchanged by an
automorphism of Λ switching w and u− v. Both of these orbits consist of
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lattices isomorphic to

(
2 0
0 −2− 8m

)
. One of these orbits has representa-

tive K ′d with K ′d∩Λ = Z(u−v+2u′−2mv′). The other has representative
K ′′d such that K ′′d ∩ Λ = Z(w + 2u′ − 2mv′).

3. If d = 8m + 4, there is just one orbit for each m > 0. This orbit has a

representative Kd with Kd
∼=
(

2 0
0 −4− 8m

)
, and Kd ∩ Λ = Z(u − v +

w + 2u′ − 2mv′).

Using [Nik79, Corollary 1.5.2] once again, we observe that

Õ+(Λ,Kd ∩ Λ)|K⊥d = O+(M,Kd)|K⊥d = Õ+(K⊥d )

and

Γd := Õ+(Λ, (Kd∩Λ))|K⊥d = (O+(M,h)∩O+(M, (Kd)))|K⊥d = 〈Õ+(K⊥d ),− idK⊥d 〉.
(2.1)

In particular, the group Õ+(K⊥d ) is an index 2 subgroup of Γd.

We define the divisor Dd ⊂ D for each d ≡ 0, 2, 4 as in Theorem 2.2 as

follows: For d ≡ 0, 4 mod 8, define

Ω+
d := {ω ∈ Ω+

Λ : ω⊥ ⊇ Kd ∩ Λ};

Then Dd is the image of Ω+
d under the projection map Ω+

Λ → DΛ, and is an

irreducible divisor. We define Md to be Md := τ−1(Dd); when nonempty, this

is a divisor in M. Note that Md parameterizes the (X,H) ∈ M that possess

a special labelling of discriminant d. For d ≡ 2 mod 8, the irreducible divisors

D′d,D′′d ⊆ D and Md ⊆M are similarly defined.

The following theorem of Debarre and Macr̀ı, a consequence of [DM, Propo-

sition 4.1 and Theorem 6.1], gives the image of τ :

Theorem 2.3 (Debarre-Macr̀ı). The image of the Torelli map τ : M → D
meets exactly the following divisors (d > 0):

1. If d ≡ 0, 4 mod 8, the image meets Dd except for d = 4 and d = 8.

2. If d ≡ 2 mod 8, the image meets D′d and D′′d , except for: d = 2, and one
of D′d,D′′d for d = 10.

To prove Theorem 1.1, it suffices to compute the Kodaira dimension for Dd,
since Md and Dd are birational.

Notational Convention 2.4. For d ≡ 2 mod 8, we will set Dd = D′d, as we
only care about Kodaira dimension, and D′d is isomorphic to D′′d . We will also
set Kd = K ′d.
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2.4. Orthogonal modular varieties

Let us now relate Dd via a birational map to an orthogonal modular variety,

that is, a quotient of the form Γ\Ω+
L for any Γ ⊆ O+(L) of finite index. Our

approach to finding an appropriate orthogonal modular variety Fd birational to

Dd is inspired by Hassett’s work ([Has96], [Has00]) on the analogous problem

for special cubic fourfolds, which is lucidly explained in [Huy19] and in [Bra21].

Then we discuss how to apply the low-weight cusp form trick.

Recall that K⊥d denotes the orthogonal complement (in M) of the repre-

sentative Kd given in Theorem 1.1. We defined (2.1) a group Γd ⊂ O+(K⊥d )

which contains Õ+(K⊥d ) as an index 2 subgroup. We have natural morphisms

of algebraic varieties:

Gd := Õ+(K⊥d )\Ω+
K⊥d
→ Fd := Γd\Ω+

K⊥d
→ Õ+(Λ)\Ω+

Λ = D (2.2)

By definition, the image of the second morphism in (2.2) is Dd, so we may

rewrite these morphisms as

Gd
φ−→ Fd

ψ−→ Dd. (2.3)

The variety Gd parametrizes marked special weight 2 Hodge structures of K3

type on K⊥d (a Hodge structure on K⊥d together with the data of a lattice

embedding Kd ↪→M) , while Fd parametrizes labelled weight 2 Hodge structures

of K3 type on K⊥d (Hodge structures on M together with the data of the image

of a lattice embedding Kd ↪→M).

Remark 2.5. We note that since − id acts as the identity on Ω+
K⊥d

, we have

that Fd = Gd. We choose to work with Fd to avoid the potential issues due
to irregular cusps (although this only happens when d = 32, see [Ma,21]), and
because the property that − id ∈ Γd will be useful in §3.2.

The next proposition, whose proof we mirror on similar arguments appear-

ing in [Huy19, Corollary 2.5] and [Bra21], has the key consequence that the

morphism ψ appearing in (2.3) is generically injective:

Proposition 2.6. The morphism ψ is the normalization of Dd.

Proof. We show ψ is finite of degree 1. We begin by showing the properness of
ψ: start with observation that the morphisms (in the complex analytic category)
Ω+

Λ → DΛ, Ω+
K⊥d
→ Ω+

Λ , and Ω+
K⊥d
→ Fd are closed, and that the composition

Ω+
K⊥d
→ Ω+

Λ → Dd is closed as well. Since we can further factor this closed

morphism into the composition of two other morphisms with the first being
closed,

Ω+
K⊥d
→ Fd → Dd,
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it follows that Fd → Dd is closed. Since each fiber is a compact set — indeed
a finite set— this is a proper morphism. Furthermore, as ψ is quasi-finite and
proper, it follows that ψ is finite.

Let n denote the degree of ψ, i.e. there is an open set U ⊆ Fd such that, for
any x ∈ U , the fiber ψ−1(x) has cardinality n. Since a very general (X,H) ∈Md

has rk(PicX) = 2 (again by the reasoning in [Zar90, Section 5.1]), a very general
fiber must consist of a single point. Therefore, we have n = 1 and so ψ is a
birational morphism. By [BB66], the variety Fd is normal, so Fd must be the
normalization of Dd.

Since ψ is a birational map, we may conclude

κ(Fd) = κ(Dd) = κ(Md).

To use the low-weight cusp-form trick to compute κ(Fd) = κ(Md), we review

a little theory of modular forms on orthogonal groups. Let L be a signature (2, n)

lattice with n ≥ 3, let Γ ⊆ O+(L) be a finite index subgroup, let χ : Γ→ C× be a

character, and let Ω+•
L denote the affine cone over Ω+

L . A modular form of weight

k with character χ for the group Γ is a holomorphic function F : Ω+•
L → C

satisfying the following properties for all z ∈ Ω+•
L :

1. For every γ ∈ Γ, we have F (γz) = χ(γ)F (z)

2. For every t ∈ C×, we have F (tz) = t−kF (z).

Let us denote by Mk(Γ, χ) the collection of all such modular forms. A cusp

form is a modular form F ∈Mk(Γ, χ) vanishing at the cusps of the Baily-Borel

compactification of the variety Γ\Ω+
L , and all such forms form a vector space

denoted Sk(Γ, χ). The low-weight cusp form trick is summarized in the following

theorem of Gritsenko, Hulek, and Sankaran:

Theorem 2.7. ([GHS07, Theorem 1.1] and [Ma,21]) Let L be a lattice of sig-
nature (2, n) with n ≥ 9 and Γ ⊆ O+(L) a subgroup of finite index containing
− id. The variety Γ\Ω+

L is of general type if there exists a cusp form F for
the group Γ with weight a < n and character χ such that F vanishes along the
divisor of ramification of the projection map Ω+

L → Γ\Ω+
L . If there is a nonzero

cusp form of weight n for Γ with character det, then κ(Γ\Ω+
L) ≥ 0.

To apply Theorem 2.7 to compute the Kodaira dimension of Γd\Ω+
K⊥d

, one

needs a supply of modular forms which are modular with respect to Γd. For

us, these are provided by quasi-pullbacks of modular forms with respect to some

higher rank orthogonal group, which we now describe. Let L2,26 denote the

unique even unimodular lattice of signature (2, 26):

L2,26 = U⊕2 ⊕ E8(−1)⊕3

12



It is known ([Bor95]) that M12(O+(L2,26),det) is a one-dimensional complex

vector space spanned by a modular form Φ12, called the Borcherds form. The

divisor of zeros of Φ12 is the union

div(Φ12) =
⋃

r∈L2,26,r2=−2

Ω+
L2,26

(r), (2.4)

where Ω+
L2,26

(r) denotes a rational quadratic divisor as in §2.1, and the order

of vanishing of Φ12 is exactly 1 along each such divisor. Given a primitive

embedding of lattices ι : L ↪→ L2,26, with L of signature (2, n), let

R−2(ι) := {r ∈ L2,26 : r2 = −2, (r, ι(L)) = 0}.

When the embedding is clear from context, we may sometimes write R−2(L).

To construct a modular form for some subgroup of O+(L), one might try using

the pullback of Φ12 along the naturally induced closed immersion Ω+•
L → Ω+•

L2,26
.

But for any r ∈ R−2(L), one has Ω+•
L ⊂ Ω+

L(r), and hence Φ12 vanishes identi-

cally on Ω+•
L . The method of the quasi-pullback, due to Gritsenko, Hulek, and

Sankaran, deals with this issue by dividing out by appropriate linear factors:

Theorem 2.8. [GHS13, Theorem 8.2] Let L be a lattice of signature (2, n),
with 3 ≤ n ≤ 26. Given a primitive embedding of lattices ι : L ↪→ L2,26 and the
naturally induced embedding Ω+•

L → Ω+•
L2,26

, the set R−2(L) of (−2)-vectors of
L2,26 orthogonal to L is a finite set. The quasi-pullback of Φ12 with respect to
this embedding

Φ|ι(L) :=
Φ12(Z)∏

r∈R−2(L)/±1(Z, r)
|Ω+•

L

is a nonzero modular form in MN(ι(L))+12(Õ+(L),det) where N(ι(L)) := #R−2(ι)/2.
If N(ι(L)) > 0, then Φ|ι(L) is a cusp form.

We will need modularity with respect to Γd, so we will need to be careful that

our quasi-pullbacks are modular with respect to the additional transformation

− id. Throughout this paper, when an underlying embedding ι : K⊥d ↪→ L is

clear from context, we will adopt the notation Φ|K⊥d = Φ|ι and N(K⊥d ) = N(ι).

Thus, to show that κ(Md) = 19, we will first construct embeddings ι : K⊥d ↪→
L2,26 such that 0 < N(ι) < 7, and using the quasi-pullback trick this gives a

modular form Φ|ι(K⊥d ) of weight 12 + N(K⊥d ) (if an embedding of K⊥d satisfies

N(K⊥d ) = 7, we may still use this embedding in a proof that κ(Md) ≥ 0). These

embeddings will automatically be modular with respect to Õ+(K⊥d ). Still, there

is nothing in Theorem 2.8 to guarantee automatically that Φ|K⊥d vanish along

the ramification divisor. We will deal with this in §3, where we see how the extra

condition that the quasi-pullback is modular with respect to Γd guarantees this

vanishing.
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3. Constructing embeddings: generalities

In this section, we begin constructing embeddings K⊥d ↪→ L2,26 such that

N(K⊥d ) < 7. Let us first write down the lattices K⊥d we are studying. Using the

representatives from Theorem 2.2, we compute the lattices K⊥d . The results of

this straightforward computation are summarized in the following proposition.

We introduce for ease of notation lattices Md defined by their Gram matrices

(see also [DIM15, Proposition 6.2] and [Per19, Lemma 4.6]):

d = 8m, Md :=

−2 0 0

0 −2 0

0 0 2m



d = 8m+ 2, Md :=

−2 0 0

0 −2 1

0 1 2m



d = 8m+ 4, Md :=

−2 0 1

0 −2 1

1 1 2m


Proposition 3.1. Let Kd be the representative rank 2 lattice from Theorem 2.2.
Then

K⊥d
∼= Md ⊕ U ⊕ E⊕2

8 (−1).

Note that in every Md, there is a primitively embedded copy of the lattice

A1(−1)⊕2 corresponding to the upper-left 2 × 2 block in the Gram matrix of

Md, so from here on we will refer to a sublattice A := A1(−1)⊕2 ⊂Md.

We want to consider as many embeddings K⊥d ↪→ L2,26 as possible. We will

label the factors in our decomposition of L2,26 as follows:

L2,26 = U1 ⊕ U2 ⊕ E8(−1)(1) ⊕ E8(−1)(2) ⊕ E8(−1)(3).

By Nikulin’s analog of Witt’s theorem (see [Nik79, Theorem 1.14.4]), a primitive

embedding U ⊕ E8(−1)⊕2 ↪→ L2,26 is unique up to isometry of L2,26, and the

same is true for any primitive embedding A1(−1)⊕2 ↪→ U⊕E8(−1). Thus, with-

out loss of generality, we will from now on assume that all of our embeddings:

1. identify the factor U ⊕ E⊕2
8 (−1) appearing in our decomposition of K⊥d

in Proposition 3.1 with U1 ⊕ E8(−1)(1) ⊕ E8(−1)(2) ⊂ L2,26 ; and

2. Isometrically embed A1(−1)⊕2 ⊂ Md into E8(−1)(3). Let a1, a2 denote

the images of generators of the two A1(−1) summands.
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So the problem of writing down embeddings to prove Theorem 1.1 is reduced

to choosing ` ∈ U2 ⊕ E8(−1)(3) such that `2 = 2m and
(`, a1) = (`, a2) = 0 if d = 8m,

(`, a1) = 1, (`, a2) = 0 if d = 8m+ 2

(`, a1) = (`, a2) = 1 if d = 8m+ 4.

(3.1)

We will say that a vector ` = αe + βf + v, where {e, f} is a null basis fo U2,

v ∈ E8(−1)(3), and `2 = 2m, is admissible for d if one of the three equations

in (3.1) holds. Note that if a vector ` is admissible, there is a unique associated

discriminant d ∈ {8m, 8m+ 2, 8m+ 4} such that (3.1) is true. For admissible `

and its associated discriminant d, we introduce the following notations:

• ι` : K⊥d ↪→ L2,26 is the embedding associated to `

• R` is the set R−2(ι`(K
⊥
d ))

• N` = #R`/2.

• Φ` is the modular form Φ|ι`(K⊥d ).

Remark 3.2. Every primitive embedding K⊥d ↪→ L2,26 is isometric to ι` for
some admissible `—although not every admissible ` yields primitive ι`. In what
follows, we can guarantee that a choice of ` gives a primitive embedding ι`
whenever α and β are coprime.

For each d, we wish to find admissible ` such that the following hold:

(A) ι` is primitive and 0 < N` < 7 with N` odd (or 0 < N` ≤ 7 with N` odd if

attempting to prove κ(Md) ≥ 0).

(B) Φ` vanishes along the ramification locus of the projection Ω+
K⊥d
→ Γ\Ω+

K⊥d
.

Then we can apply Theorem 2.8 to these embeddings to produce the cusp forms

we need to prove Theorem 1.1. The condition that N` is odd will guarantee

that the cusp form vanishes along the ramificiation divisior, as we explain later

in this section.

The remainder of the paper will be dedicated to the search for admissible `

with these desired properties.

3.1. Controlling the size of R`

The next two lemmas from [Tan19, Section 4], which we state in a slightly

more general form, will help us count the number of roots R`. Recall one of our

goals ((A) above) is to keep N` small.
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Lemma 3.3. Let L = U ⊕ E8(−1) where U = 〈e, f〉 with e2 = f2 = 0 and
(e, f) = 1, and let L0 be a primitive rank 2 sublattice of E8(−1). Let ` ∈ L have
length `2 = 2m, for some m > 0 a positive integer, such that ` = αe+βf+v with
α, β ∈ Z and v ∈ E8(−1), and suppose further that α 6= β and m < αβ < 2m.
Let R` denote the finite set

{r ∈ U ⊕ (L0)⊥E8(−1) : r2 = −2, (r, `) = 0}.

Let r = α′e+ β′f + v′ ∈ R`. Then α′β′ = 0 and there are three types of vectors
r ∈ R`:

1. Type I vectors r = v′. In this case α′ = β′ = 0 and r ∈ (L0)⊥E8(−1).

2. Type II vectors r = α′e+ v′, α′ 6= 0. In this case, (v, v′) ≡ 0 mod β.

3. Type III vectors r = β′f + v′, β 6= 0. In this case, (v, v′) ≡ 0 mod α.

Proof. See [Tan19, Lemma 4.1] and [Tan19, Remark 4.2]. The proof there works
for this slightly more general statement, as it only relies on the Cauchy-Schwarz
inequality and on the negative definiteness of L0.

Imposing slightly stronger inequalities, we get an even stronger statement:

Lemma 3.4. [Tan19, Lemma 4.3] Suppose we are in the situation of Lemma 3.3,
and suppose furthermore that the following three inequalities hold:

α >
√
m, β >

√
m, αβ <

5m

4
.

Then every r ∈ R` is a vector of Type I, i.e. r ∈ (L0)⊥E8(−1).

Proof. Let r = α′e + β′f + v′ ∈ R`. Since α′β′ = 0 by Lemma 3.3, it follows
that (v′)2 = −2. Then by Cauchy-Schwarz,

(v, v′) ≤
√

2|v2| =
√

4(αβ − n) <

√
4

(
5n

4
− n

)
=
√
n.

But then (v, v′) is not divisible by α, nor by β, by the first two inequalities in
the hypotheses above. So r is of Type I.

Remark 3.5. In fact, for our embeddings, we will want to impose a stronger
condition for α and β, for some ρ > 0 to be determined later:

√
(1 + ρ)m < α <

√
5m

4
,
√

(1 + ρ)m < β <

√
5m

4
(3.2)

16



3.2. Modularity with respect to Γd

The quasi-pullback Φ` along any one of our embeddings is already modular

with respect to Õ+(K⊥d ). Since Fd = Gd, we could simply work with the

smaller modular group Õ+(K⊥d ) ⊂ Γd and then verify that Φ` vanishes along

the ramification divisor along the lines of [GHS13, Proposition 8.13]. We offer

an alternative approach to the vanishing along the ramification divisor using

modularity with respect to the larger group Γd.

Remark 3.6. Our results are unchanged whether we consider modularity with
respect to Õ+(K⊥d ) or Γd, since all modular forms for Õ+(K⊥d ) computed in the
small discriminant range in §4 are also modular with respect to Γd.

We would like to choose ` such that Φ|` is in addition modular with respect

to − id ∈ O(K⊥d ). Then Φ|K⊥d will be modular with respect to Γd since − id

and Õ(K⊥d )+ generate Γd. But since we already know that Φ|K⊥d is Õ+(K⊥d )-

modular by 2.8, then we can conclude that

Φ`(− idZ) = Φ`(−Z) = (−1)N`Φ`(Z).

As a consequence, we have shown the following important lemma:

Lemma 3.7. Let ι : L ↪→ L2,26 be a primitive embedding of lattices as in The-
orem 2.8 . Then Φ|L is modular with respect to − id ∈ O+(L⊥) if and only if
N(ι(L)) (as defined in Theorem 2.8) is odd.

Thus, to guarantee Γd-modularity of the quasi-pullback, we want to be cer-

tain that each embedding ι` which we construct has the property thatN(ι`(K
⊥
d ))

is odd (this is why we said as much in A).

The main purpose for us in asking for modularity with respect to Γd is

guaranteeing vanishing along the ramification divisor, which we explain now.

For r ∈ L such that r2 < 0, we say that r is reflective whenever the reflection

σr : v 7→ v − 2
(v, r)

(r, r)
r

is an isometry of L, i.e. σr ∈ O(L). A rational quadratic divisor Ω+
L(r) is said to

be a reflective divisor if r is reflective. The following proposition of Gritsenko,

Hulek, and Sankaran describes the ramification divisor of the projection Ω+
L →

Γ\Ω+
L as a union of certain reflective divisors:

Proposition 3.8. (see [GHS07, Corollary 2.13]) Let L be a lattice of signature
(2, n) and Γ be a finite index subgroup of O+(L). Then the ramification divisor
Bdiv(πΓ) of the projection πΓ : Ω+

L → Γ\Ω+
L is given as the countable union

Bdiv(πΓ) =
⋃

r∈L primitive
r2<0
±σr∈Γ

Ω+
L(r).
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Let us now apply the above proposition to a modular form Φ ∈Mk(Γd,det).

We first observe that −σr ∈ Γd ⇐⇒ σr ∈ Γd. Thus, to prove Φ vanishes along

Bdiv(πΓd
), it suffices to show that Φ vanishes on all reflective divisors Ω+

K⊥d
(r)

with σr ∈ Γd. By modularity, we have det(σr)Φ(Z) = Φ(σrZ) for all Z ∈ Ω+,•
K⊥d

.

We observe that det(σr) = −1 and (σr)|Ω+

K⊥
d

(r)• = id. It follows that Φ vanishes

on Ω+
K⊥d

(r)•. This yields the following proposition:

Proposition 3.9. Every modular form for Γd with character det vanishes along
the ramification divisor.

4. Constructing embeddings: specifics

In this section, we prove Theorem 1.1. This will follow from the following

proposition:

Proposition 4.1. For each discriminant for which we claim Md is of general
type in Theorem 1.1, there is some `, admissible for d, which satisfies condi-
tions (A) and (B) above.

Proof of Theorem 1.1, assuming Proposition 4.1. For each d in the theorem state-
ment, there is some ` from Proposition 4.1 such that the quasi-pullback (The-
orem 2.8) Φ` is a nonzero cusp form of weight ≤ 19 for Γd with character det.
Furthermore, by Proposition 3.9, this quasi-pullback vanishes along the ramifi-
cation locus of Ω+

K⊥d
→ Γ\Ω+

K⊥d
. It follows from 2.7 that Γ\Ω+

K⊥d
is a variety of

general type.

All that remains to do is provide a proof for Proposition 4.1. The rest of the

paper is dedicated to this goal.

Given an embedding ι`, we may count N` with the help of Lemmas 3.3

and 3.4 using L0 = 〈a1, a2〉, in which case (L0)⊥E8(−1) = D6(−1). The upshot of

Lemma 3.4 is that, for any admissible ` = αe+βf +v such that α and β satisfy

the inequalities (3.2), the set R` is contained entirely in D6(−1):

R` = {r ∈ D6(−1) : r2 = −2, (r, `) = 0}.

Proof of Proposition 4.1. We need to construct primitive embeddings ι` associ-
ated to ` = αe+βf +v such that 0 < N` ≤ 7 and N` is odd. We construct such
an ` for all large m by picking α, β such that (3.2) holds, and can pick v thanks
to Lemma 4.3 below. We then compute a lower bound on the discriminants
for which these conditions can always be met. This leaves us with a finite list
of discriminants to analyze. We handle these cases with a computer, giving a
summary of this procedure in §4.4. We break our analysis into the three cases
of discriminant congruent to 0, 2, or 4 modulo 8 in sections §4.1, §4.2, and §4.3.
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4.1. Analysis: d = 8m

For the case d = 8m, we are searching for α, β, and v such that ` = αe+βf+v
of length 2m is admissible for d = 8m. For the admissibility of `, it is necessary
and sufficient that (`, a1) = (`, a2) = 0 (by (3.1)), which amounts to requiring
v ∈ D6(−1). The next lemma gives a way to construct ` such that the associated
embedding has small N`:

Lemma 4.2. Let ` = αe+ βf + v ∈ U ⊕D6(−1). Suppose that α, β satisfy the
inequalities (3.2), and that v is of the form

v = x1e1 + x2e2 + x3e3 + e4 + e5 (4.1)

with x1, x2, x3 all nonnegative integers, not all equal. Then N` ≤ 5. In particu-
lar, N` is always odd in this case, and:

1. If the nonnegative integers x1, x2, x3 are distinct and none of them equal
to 1, then R` = {±(e4 − e5)}.

2. If the nonnegative integers x1, x2, x3 are distinct with xj = 1, then R` =
{±(e4 − e5),±(e4 − ej),±(e5 − ej)}.

3. If the nonnegative integers x1, x2, x3 are distinct with xi = 0 and none of
them is equal to 1, then R` = {±(e4 − e5),±(e1 − e6),±(e1 + e6)}.

4. If the nonnegative integers x1, x2, x3 are distinct with xi = 0, xj = 1, then
R` = {±(ei + e6),±(ei − e6),±± (e4 − ej),±(e5 − ej),±(e4 − e5)}.

Proof. By hypothesis, all vectors in R` are of Type I (Lemma 3.3). We shall
write x4 = x5 = 1 and x6 = 0. The roots of D6(−1) are ±ei ± ej , 1 ≤ i, j ≤ 6,
i 6= j. We have for all such roots r ∈ D6(−1), (r, v) = ±(ei±ej , v) = ±(xi±xj).
. The other cases are proved similarly.

Thus, to find v as in the lemma, it would suffice to pick α, β satisfying (3.2)
such that 2(αβ−m−1) is a sum of three distinct coprime squares: any triple of
distinct nonnegative integers (x1, x2, x3) ∈ Z3

≥0 with gcd(x1, x2, x3) = 1 which
is a solution to

x2
1 + x2

2 + x2
3 = 2(αβ −m− 1), x1x2x3 6= 0 (4.2)

yields v for which Lemma 4.2 applies. The next lemma, guarantees the existence
of these solutions in many cases, is from [Hal83, Section 1, Korollar 1]:

Lemma 4.3. Every integer ∆ 6≡ 0, 4, 7 mod 8 with

∆ /∈ {1, 2, 3, 6, 9, 11, 18, 19, 22, 27, 33, 43, 51, 57, 67, 99, 102, 123, 163, 177, 187, 267, 627}∪{N}

may be written as the sum of three distinct, coprime squares. If the generalized
Riemann hypothesis is true for all global L-functions, then we may take N = 1,
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but if a generalized Riemann hypothesis (GRH) is false for certain L-functions,
then N > 5 · 1010.

We also have the following lemma to give us more flexibility in our choice of
α and β beyond (α, β) = 1

Lemma 4.4. Assume that ` = αe + βf + v ∈ U ⊕ E8(−1) has square length
`2 = 2m, with v primitive in D6(−1) = 〈a1, a2〉⊥E8(−1) , and furthermore assume

that 2 - (α, β). Then the embedding ι` : K⊥8m ↪→ L2,26 is primitive.

Proof. It is enough to check thatMd = A1(−1)⊕2⊕〈2m〉 embeds primitively into
U⊕E8(−1). To show an embedding is primitive, it suffices to show the image of
every primitive vector is primitive. Thus, we check that xu+ y` is primitive in
U ⊕ E8(−1) for any relatively prime integers x and y and any primitive vector
u ∈ 〈a1, a2〉. Suppose that there is a positive integer n dividing xu + y` in
U ⊕ E8(−1). Then n|y(α, β). As E8(−1)/(A1(−1)⊕2 ⊕D6(−1)) ' Z/2× Z/2,
we must have n|2. It follows that n|y, so n|x as well (as A1(−1)⊕2 is primitively
embedded in E8(−1)). As x and y are coprime, we must have n = 1, so
xu+ y` is indeed primitive under the embedding ι`, and we conclude that ι` is
primitive.

To build our desired embeddings, we will show that for m large enough, we
can choose α, β so that: (a) 2 - (α, β), (b) the inequalities (3.2) hold, and (c)
2(αβ −m− 1) is a sum of three distinct coprime nonnegative squares. Observe
that it is necessary and sufficient for (c) to hold that αβ−m−1 be both odd and
avoid some finite set of exceptional values (see Lemma 4.3). Then by Lemma 4.4
and Lemma 4.2, we get a primitive embedding ι` : K⊥d → L2,26 with N` ∈ {1, 3}.

We begin by choosing some real number ρ > 0 such that√
5m

4
−
√

(1 + ρ)m > 2. (4.3)

If m ≡ 0 mod 2, we are able to pick α and β = α + 1 satisfying (3.2), thanks
to (4.3). If m ≡ 1 mod 2, we again can use (4.3) to pick α ≡ 1 mod 2 satisfying
the inequality for α in (3.2), and set α = β. So in any case, with these choices
for α and β, (a), (b) hold, and also the quantity αβ −m− 1 is odd.

We also need to ensure that αβ − m − 1 misses a finite set of exceptional
values. For this, note that

α2 + α−m− 1 > α2 −m− 1 > ρm− 1 (4.4)

holds for all m,α for which (3.2) holds. So given our choices of α and β from
the previous paragraph, we have the inequality

2(αβ −m− 1) > 2ρm− 2.
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Now, we impose the additional constraint that

ρm > 52 (4.5)

guaranteeing that 2(αβ −m − 1) > 102 and thereby avoiding the exceptional
values of Lemma 4.3 (note that there are no odd values in the list of exceptional
values which lie between 103 and 627), except perhaps N . If 2(αβ−m−1) = N ,
then the inequalities

β2 − β −m− 1 < β2 −m− 1 < β2 −m <
m

4

hold under our continuing assumption of (3.2) , so

N <
m

2
.

Therefore, we have m > 10 · 1010. If we take ρ to be sufficiently small and m is
large enough, then √

5m

4
−
√

(1 + ρ)m > 4 (4.6)

so we can adjust α by ±2 to avoid N (and still keep the quantity αβ −m − 1
odd).

At this point, we have demonstrated that whenever m and ρ satisfy the
inequalities (4.5) and (4.3), it is possible to pick α and β and v to prove Md is
of general type. A simple optimization for (4.3) and (4.5) yields m ≥ 648 for
ρ = 0.0804. If m > 10 · 1010, then (4.6) holds, so α may be adjusted to avoid N
if necessary.

Putting everything together, we have now shown that when m ≥ 648, Propo-
sition 4.1 is true for d = 8m. For the discriminants d = 8m with m < 648, we
make use of a computer to find explicit embeddings. See §4.4 for details.

4.2. Analysis: d = 8m+ 2

As in the d = 8m case, we are searching for α, β, and v such that the square-
length 2m vector ` = αe+βf+v is admissible (i.e. satisfies (3.1) for d = 8m+2
and yields a small, odd value for N`. For the admissibility of `, it is necessary
and sufficient that the vector v ∈ E8(−1) may be written as

v =
−a2

2
+ v′ ∈ (〈a1, a2〉 ⊕D6(−1))∨ = 〈a1, a2〉∨ ⊕D6(−1)∨,

where v′ ∈ D6(−1)∨ = (〈a1, a2〉⊥)∨.
For each m greater than the lower bound that is to be determined, our argu-

ment is written in a way that relies on the choice of a1, a2 ∈ E8(−1); precisely, for
each m, we will construct E8(−1) as a specific overlattice of A1(−1)⊕2⊕D6(−1),
and then consider embeddings for which a1, a2 generate image of the summand
A1(−1)⊕2. The theory of overlattices is explained in [Nik79, Section 1.4], a con-
sequence of which is the following: there are exactly two unimodular negative
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definite even integral sublattices L1 and L2 of rank 8 (necessarily isomorphic
to E8) contained in (A1(−1)⊕2)∨ ⊕ D6(−1)∨, each of which corresponds to
one of the two maximal isotropic subgroups L1/(A1(−1)⊕2) ⊕ D6(−1)) and
L2/(A1(−1)⊕2 ⊕D6(−1)) of D(A1(−1)⊕2 ⊕D6(−1)). To describe L1 and L2,
let h1, h2 each denote a generator of an orthogonal summand of A1(−1)⊕2, and
define elements b1, b2,p in 〈h1, h2〉∨ ⊕D6(−1)∨ by

b1 := e1 +
h1 + h2

2

b2,p :=
1

2
(e1 + e2 + e3 + e4 + e5 + e6) +

hp
2

where the index p is either 1 or 2. Then Lp is generated as a submodule of
(A1(−1)⊕2)∨ ⊕D6(−1)∨ by b1, b2,p, and 〈h1, h2〉 ⊕D6(−1).

We now prove two simple lemmas: one will help ensure our eventual choice
for v′ actually gives an embedding, and the other controls the size of N`.

Lemma 4.5. Suppose that v′ ∈ D6(−1)⊗Q is of the form

v′ =
1

2
(x1e1 + x2e2 + x3e3 + 3e4 + 3e5 + 3e6) (4.7)

with xi ∈ Z all nonnegative odd. Then v′ ∈ D6(−1)∨ and there is always a
choice of p ∈ {1, 2} such that v := v′ − h2

2 ∈ Lp.

Proof. We have v′ ∈ D6(−1)∨ because all the coefficients with respect to the
{e1, . . . , e6} basis are half-integers. For the other statement, we compute

(v, b1) =
−3 + 1

2
= −x1

2
+

1

2

(v, b2,p) = −1

4
(9 + x1 + x2 + x3)− 1

4
(h2, hp).

These inner products are integer-valued if and only if v ∈ L∨p = Lp. By taking
p = 1 when x1 + x2 + x3 ≡ 3 mod 4 or choosing p = 2 otherwise, we see there
is always p such that v ∈ Lp.

Lemma 4.6. Suppose that

• α, β, and m are positive integers satisfying the inequalities (3.2),

• v′ = 1
2 (x1e1 +x2e2 +x3e3 +3e4 +3e5 +3e6) ∈ D6(−1)∨, as in Lemma 4.5,

• (v′)2 = 2(m− αβ) + 1
2 ,

• the integers x1, x2, x3 in v′ are distinct integers, none of which are equal
to 3.

Choose p ∈ {1, 2} so that v′ − h2

2 ∈ Lp, and fix an identification of Lp with
E8(−1). Let ι` be the embedding defined by a1 = h1, a2 = h2, and ` = αe+βf +
v′ − a2

2 . Then R` = {±(e4 − e5),±(e5 − e6),±(e4 − e6)}.

22



Proof. Omitted, as it is completely similar to the proof of Lemma 4.2.

Assuming we have chosen α, β, and m satisfying the inequalities (3.2), we
show that it is always possible to pick v′ ∈ D6(−1) satisfying the hypothesis of
the lemma. A vector v′ as in (4.7) satisfies

−(2v′)2 = x2
1 + x2

2 + x2
3 + 27 = −(8(m− αβ) + 2) = 8(αβ −m)− 2.

So it suffices to find a solution to

x2
1 + x2

2 + x2
3 = 8(αβ −m)− 29 (4.8)

subject to certain conditions; precisely, we want distinct nonnegative integer
solutions (x1, x2, x3), such that 3 /∈ {x1, x2, x3}. Since every square is 0 or
1 mod 4, it follows that any solution satisfying these conditions is a triple of
odd integers. As 8(αβ −m) − 29 ≡ 3 mod 8, we can apply Lemma 4.3 to find
a coprime triple of distinct nonnegative integers (x1, x2, x3) satisfying (4.8)
as long as the expression 8(αβ − m) − 29 avoids a finite list of exceptional
values. Suppose that we arrange, by appropriately choosing α and β, that
3|8(αβ − m) − 29. If x2

i ≡ 0 mod 3 for all i = 1, 2, 3, then the xi are not
coprime, so we must have x2

i ≡ 1 mod 3 for all i; in particular, the xi are
distinct from 3. Therefore, if we impose the additional condition on α, β, and
m that 3|8(αβ − m) − 29, then there exists a v′ satisfying the hypotheses of
Lemma 4.6.

To build our embeddings, it suffices to arrange that: (a) (α, β) = 1 (to
guarantee primitivity), (b) the inequalities (3.2) hold, and (c) 8(αβ −m) − 29
is a sum of three distinct coprime nonnegative squares. We have already seen
that (c) holds if

8(αβ −m)− 29 > 627, 8(αβ −m)− 29 6= N (4.9)

and
3|8(αβ −m)− 29. (4.10)

If the inequality √
5m

4
−
√

(1 + ρ)m > 6 (4.11)

holds, then there must exist relatively prime α, β satisfying (3.2) such that both
β = α+ g for some g ∈ {1, 3} and 3|8(αβ −m)− 29.

By considering the conditions (4.11) and (4.9), we can now successfully de-
termine a lower bound m0 such that M8m+2 is of general type for m ≥ m0.
First, note that for α, β = α+ g, and m satisfying (3.2), we have the inequality

αβ −m = α2 + gα−m > α2 −m > ρm (4.12)

23



and, as an immediate consequence,

8(αβ −m)− 29 > 8ρm− 29.

Thus, taking
ρm > 82 (4.13)

will ensure that 8(αβ −m)− 29 > 627. If 8(αβ −m)− 29 = N , where N is as
defined in Lemma 4.3, then the inequalities

αβ −m = β2 − gβ −m < β2 −m <
m

4

hold under our continuing assumptions on α, β = α + g, and m. Therefore for
such N we must have

N < 2m− 29.

So we would like to ensure that for m > (N + 29)/2, the quantity ρ > 0 is small
enough so that the difference√

5m

4
−
√

(1 + ρ)m (4.14)

is large enough to adjust α, β by ±3 (to preserve (4.10)) in order to avoid N .
As before, optimization for (4.11)) and (4.13) yields m ≥ 3238 and ρ =

0.025328. In the range m ≥ 3238 for this ρ, one checks that√
5m

4
−
√

(1 + ρ)m > 16000 (4.15)

so we are always able to adjust α to avoid N . As in §4.1, we now have proven
Proposition 4.1 is true when m ≥ 3238. The remaining cases for d = 8m+ 2 are
handled by computer (see §4.4).

4.3. Analysis: d = 8m+ 4

Our argument for d = 8m+ 4 is nearly identical to the case for d = 8m+ 2,
but we write out the details since there is a slight variation in the construction
we use to produce an explicit lower bound. To precisely state the problem,
we wish to show that for all but finitely many positive integers m, there are
positive integers α, β, and v ∈ U ⊕ E8(−1) such that the square-length 2m
vector ` = αe + βf + v is admissible for d = 8m + 4 and yields a small, odd
value for N`. For the admissibility of `, it is necessary and sufficient that the
vector v ∈ E8(−1) may be written as

v =
−a1 − a2

2
+ v′ ∈ (〈a1, a2〉 ⊕D6(−1))∨ = 〈a1, a2〉∨ ⊕D6(−1)∨,

where v′ ∈ D6(−1)∨ = (〈a1, a2〉⊥)∨.
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The following two lemmas adapt Lemmas 4.5 and 4.6 to the case of 8m+ 4.
Recall the vectors h1, h2 are an orthogonal basis for A1(−1) and b1, b2,p for
p ∈ {1, 2} are vectors in A1(−1)∨⊕2 ⊕D6(−1)∨.

Lemma 4.7. Suppose that v′ ∈ D6(−1)⊗Q is of the form

v′ = x1e1 + x2e2 + x3e3 + 3e4 + 3e5 + 3e6 (4.16)

with xi ∈ Z all nonnegative integers such that
∑
xi ≡ 0 mod 2 . Then v′ ∈

D6(−1)∨; furthermore, for any isometrically embedded sublattice A1(−1)⊕2 ⊕
D6(−1) ↪→ E8(−1), the image v of v′−h1+h2

2 under the induced map (A1(−1)⊕2⊕
D6(−1))⊗Q ↪→ E8(−1)⊗Q is an element of E8(−1).

Proof. We have v′ ∈ D6(−1)∨ because all the coefficients with respect to the
{e1, . . . , e6} basis are integers. For the other statement, we recall that for some
p ∈ {1, 2}, E8(−1) is formed by the span of the isometric image of 〈h1, h2〉 ⊕
D6(−1) and b1, b2,p. We compute:

(v, b1) = −x1 + 1

(v, b2,p) = −1

2
(9 + x1 + x2 + x3)− 1

2
.

By hypothesis, the right-hand sides of these equalities are integers, and therefore
v ∈ E8(−1).

Lemma 4.8. Suppose that

• α, β, and m are positive integers satisfying the inequalities (3.2),

• v′ = x1e1 + x2e2 + x3e3 + 3e4 + 3e5 + 3e6 ∈ D6(−1)∨, as in Lemma 4.7,

• (v′)2 = 2(m− αβ) + 1,

• the integers x1, x2, x3 in v′ are distinct integers, none of which are equal
to 3.

Pick any a1, a2 orthogonal (−2)-roots of E8(−1), and let ι` be the embedding
defined by a1 = h1, a2 = h2, and ` = αe + βf + v′ − a1+a2

2 . Then R` =
{±(e4 − e5),±(e5 − e6),±(e4 − e6)}.

Proof. Omitted, as it is completely similar to the proof of Lemma 4.2.

Assuming we have chosen α, β, and m satisfying the inequalities (3.2), we
show that it is always possible to pick v′ ∈ D6(−1) satisfying the hypothesis of
Lemma 4.8. A vector v′ as in (4.16) satisfies

−(v′)2 = x2
1 + x2

2 + x2
3 + 27 = 2(αβ −m)− 1

So it suffices to find a solution to

x2
1 + x2

2 + x2
3 = 2(αβ −m)− 28 (4.17)
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subject to certain conditions; precisely, we want distinct, nonnegative, coprime
integer solutions (x1, x2, x3), such that 3 /∈ {x1, x2, x3}. Suppose we have ar-
ranged that 2(αβ −m) − 28 ≡ 2 mod 4, or, equivalently, that αβ −m is odd.
Then we can always solve (4.17) (by Lemma 4.3), away from the finite list of ex-
ceptional values. Suppose that we have additionally arranged, by appropriately
choosing α and β, that 3|2(αβ −m) − 28. Then each of the integers x1, x2, x3

coming from a solution to (4.17) must be distinct from 3, or else we would have
3|GCD(x1, x2, x3) (recall we are asking that the xi are coprime). Therefore,
if we impose the additional conditions on α, β, and m that 3|2(αβ −m) − 28
and that αβ − m is odd, then there exists a v′ satisfying the hypotheses of
Lemma 4.8.

To build our embeddings, it suffices to arrange that: (a) (α, β) = 1 (to
guarantee primitivity), (b) the inequalities (3.2) hold, and (c) 2(αβ −m) − 28
is a sum of three distinct coprime nonnegative squares. We have already seen
that (c) holds if

2(αβ −m)− 28 > 102, 2(αβ −m)− 28 6= N, (4.18)

3|2(αβ −m)− 28, (4.19)

αβ −m ≡ 1 mod 2. (4.20)

If we insist that the inequality√
5m

4
−
√

(1 + ρ)m > 12 (4.21)

holds, then there must exist relatively prime α, β satisfying (3.2) such that
(c) holds: the inequality (4.21) lets us pick α, β with β = α + g for some
g ∈ {1, 2, 3, 6} such that 3|2(αβ −m)− 2 and αβ −m is odd. Specifically, if m
is odd, pick appropriate α and β = α+ g for g ∈ {1, 3}, while if m is even pick
β = α+ g with g ∈ {2, 6}.

By considering the conditions (4.21) and (4.18), we can now successfully
determine a lower bound m0 such that M8m+2 is of general type for m ≥ m0.
First, note that for α, β = α+ g, and m satisfying (3.2), we have the inequality

αβ −m = α2 + gα−m > α2 −m > ρm (4.22)

and, as an immediate consequence,

2(αβ −m)− 28 > 2ρm− 28.

Thus, taking
ρm > 52 (4.23)

will ensure that 2(αβ −m) − 28 > 2. If 2(αβ −m) − 28 = N , where N is as
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defined in Lemma 4.3, then the inequalities

αβ −m = β2 − gβ −m < β2 −m <
m

4

hold under our continuing assumptions on α, β = α + g, and m. Therefore for
such N we must have

N < m/2− 28.

So we would like to ensure that for m > 2(N + 28), the quantity ρ > 0 is small
enough so that the difference√

5m

4
−
√

(1 + ρ)m

is large enough to adjust α, β by ±6 (to preserve (4.19) and (4.20)) in order to
avoid N .

As before, optimization for (4.21) and (4.23) yields m ≥ 10463 and ρ =
0.0014337. √

5m

4
−
√

(1 + ρ)m > 50000 (4.24)

so we are always able to adjust α to avoid N . As in §4.1,we now have proven
that Proposition 4.1 is true for m ≥ 10772. The remaining cases for d = 8m+ 4
are handled by computer (see §4.4).

4.4. Searching for embeddings by computer

A list of embeddings for the values of m less than the lower bounds we
calculated above is available on the author’s webpage. To find these embeddings,
we used a simple transplantation of the algorithm given in [Tan19, §5]. Our
search for these embeddings was exhaustive: we include in our list every m for
which there exists an embedding K⊥d → L2,26 with our desired properties. We
include this list along with Magma code [BCP97] to certify that the embeddings
in our list produce modular forms of the correct weight3. To count the size of
R−2 corresponding for each embedding, we count by their Type from Lemma 3.3
(see Step (iv) of the algorithm in [Tan19, §5]). Our list of explicit embeddings,
taken together with the analyses in §§4.1, 4.2, 4.3, prove Proposition 4.1.
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