Problem 1. Find the total value of the income stream \(R(t) = 40000 \) on the interval \(0 \leq t \leq 5 \) and find its future value at the end of the interval using the interest rate 10%.

Solution. We have the total value is \((a = 0, b = 5)\)

\[
TV = \int_{a}^{b} R(t) \, dt = \int_{0}^{5} 40000 \, dt = 40000t \bigg|_{0}^{5} = 200000.
\]

To compute the future value, we have \(r = 0.1, \) so

\[
FV = \int_{a}^{b} R(t)e^{r(b-t)} \, dt = \int_{0}^{5} 40000e^{0.1(5-t)} \, dt = -\frac{40000}{0.1}e^{0.1(5-t)} \bigg|_{0}^{5} = 259488.51.
\]

Problem 2. Find the total value of the income stream \(R(t) = 50000 + 2000t \) on the interval \(0 \leq t \leq 10 \) and find its present value at the beginning of the interval using the interest rate 5%.

Solution. The total value is

\[
TV = \int_{0}^{10} (50000 + 2000t) \, dt = (50000t + 1000t^2) \bigg|_{0}^{10} = 600000.
\]

The present value is \((r = 0.05)\)

\[
PV = \int_{a}^{b} R(t)e^{r(a-t)} \, dt = \int_{0}^{10} (50000 + 2000t)e^{-0.05t} \, dt.
\]

Use integration by parts with \(u = 50000 + 2000t \) and \(v = e^{-0.05t} \) to obtain

\[
\int_{0}^{10} (50000 + 2000t)e^{-0.05t} \, dt = (\frac{-1000000 + 40000t}{0.05}e^{-0.05t} - 800000e^{-0.05t}) \bigg|_{0}^{10} = 465632.55.
\]

Problem 3. You begin saving for your retirement by investing $700 per month in an annuity with a guaranteed interest rate of 6% per year. You increase the amount you invest at the rate of 3% per year. With continuous investment and compounding, how much will you have accumulated in the annuity by the time you retire in 45 years?

Solution. The revenue stream is \(R(t) = 12 \times 700e^{0.03t} = 8400e^{0.03t} \) since you do it for each month. So the future value is

\[
\int_{0}^{45} (8400e^{0.03t})e^{0.06(45-t)} \, dt = 8400e^{2.7} \int_{0}^{45} e^{-0.03t} \, dt = -280000e^{2.7}e^{-0.03t} \bigg|_{0}^{45} = 3086245.73.
\]

See why you should start saving now?

Date: Friday, 10 October 2008.