Problem XVII.12. Prove that an R-module E is a generator if and only if it is balanced and finitely generated projective over $\text{End}_R E$.

Solution. Lang proves the (\Rightarrow) direction as Theorem 7.1, so it suffices to show that if E is balanced and finitely generated projective over $\text{End}_R E$, then R is a homomorphic image of a direct sum of E with itself.

Since E is finitely generated projective over $\text{End}_R E$, we have an isomorphism $(\text{End}_R E)^n \cong E \oplus F$ for some $\text{End}_R E$-module F. Therefore we have the following isomorphisms of $\text{End}_R E$-modules:

$$E^n \cong \text{Hom}_{\text{End}_R E}((\text{End}_R E)^n, E) \cong \text{Hom}_{\text{End}_R E}(E \oplus F, E) \cong \text{Hom}_{\text{End}_R E}(F, E) \oplus \text{End}_{\text{End}_R E}(E).$$

If we define the operation of $\text{End}_R E$ to be composition of mappings on the left, these become isomorphisms over R. Since E is balanced, $\text{End}_{\text{End}_R E}(E) \cong R$, so E is a generator.

Problem X.9(a). Let A be an artinian commutative ring. Prove all prime ideals are maximal. [Hint: Given a prime ideal p, let $x \in A$, $x \notin p$. Consider the descending chain $(x) \supset (x^2) \supset \ldots$.]

Solution. We show that any artinian domain is a field. Let p be a prime ideal, so that A/p is a domain. Any quotient ring of an artinian ring is artinian (Proposition 7.1), so A/p is artinian. Let $x \in A/p$ be nonzero. Then the descending chain $(x) \supset (x^2) \supset \ldots$ must terminate, so $(x^k) = (x^{k+1})$ for some integer k; therefore there exists a $y \in A/p$ such that $x^{k+1}y = x^k$, which is to say $x^k(1 - xy) = 0$, so $xy = 1$, and $x \in (A/p)^\times$. Therefore A/p is a field, so p is maximal.

Problem X.9(b). There is only a finite number of prime, or maximal, ideals. [Hint: Among all finite intersections of maximal ideals, pick a minimal one.]

Solution. Let S be the set of finite intersections of maximal ideals in A. This set is nonempty, so by Exercise XVII.2(c), there exists a minimal such intersection $m_1 \cap \cdots \cap m_r$. If m is any maximal ideal of A, then $m \cap \bigcap_i m_i = \bigcap_i m_i$ so $m \supset \bigcap_i m_i \supset m_1 \cap m_2 \cap \cdots m_r$. A maximal ideal is prime, so $m \supset m_i$ for some i, but since m_i is maximal so $m = m_i$.

Date: April 1, 2003.
XVII: 12 (first sentence); X: 9, 10, 11.
Problem X.9(c). The ideal N of nilpotent elements in A is nilpotent, that is there exists a positive integer k such that $N^k = (0)$. [Hint: Let k be such that $N^k = N^{k+1}$. Let $a = N^k$. Let b be a minimal ideal such that $ba \neq 0$. Then b is principal and $ba = b$.]

Solution. Let k be such that $N^k = N^{k+1}$. Suppose that $N^k \neq 0$; let S be the set of ideals b of A such that $bN^k \neq 0$. The set S is nonempty because $N^k \in S$, as $N^kN^k = N^{2k} = N^k \neq 0$. Since A is artinian, S has a minimal element b. There is an element $b \in b$ such that $bN^k \neq 0$; therefore $(b) = b$, in particular, b is finitely generated. But $bN^k \subset b$ and $(bN^k)N^k = bN^{2k} = bN^k$, so again by minimality, $bN^k = b$. But every element of N^k is nilpotent hence contained in every maximal ideal, so by Nakayama’s lemma, $b = 0$, a contradiction.

Problem X.9(d). A is noetherian.

Solution. Let k be an integer such that $N^k = 0$ as in part (c). Then $\bigcap_i m_i = N$ = N, but by part (a) this implies $N = \bigcap_i m_i$. Let k be an integer such that $N^k = 0$. Then

$$N^k = 0 = (\bigcap_i m_i)^k = (m_1 \ldots m_r)^k = m_1^k \ldots m_r^k.$$

Consider A as a module over itself; A is noetherian as an A-module if and only if A is noetherian as a ring. We have a filtration

$$A \supset m_1 \supset m_2^2 \supset \cdots \supset m_i^k \ldots m_r^k = 0$$

of A. At the step $E \supset E m_i$ in the filtration, $E/E m_i$ is a vector space over the field A/m_i, which is finite-dimensional as A is artinian (as in Exercise XVII.2(a)). Therefore A has a finite simple filtration, so by Proposition 7.2, A is noetherian as well as artinian.

Problem X.9(e). There exists an integer r such that

$$A \cong \prod_m A/m_i^r$$

where the product is taken over all maximal ideals.

Solution. Let r be such that $N^r = 0$, and let m_i be the maximal ideals of A. Since $m_i + m_j = A$ for $i \neq j$, we also have $m_i^r + m_j^r = A$ for $i \neq j$ (otherwise, $m_i^r + m_j^r \subset m$ for some maximal ideal m; then $m_i^r \subset m$ so $m_i \subset m$, and similarly $m_j \subset m$, a contradiction). By the Chinese remainder theorem, then,

$$A \rightarrow \prod_m A/m_i^r$$

is surjective. It is also injective, since $\bigcap_i m_i^r = N^r = 0$ (as in part (d)), therefore it is an isomorphism.

Problem X.9(f). We have

$$A \cong \prod_p A_p$$

where again the product is taken over all prime ideals p.

Solution. It is enough to show that this map is an isomorphism considered as a map of \(A \)-modules. Let \(p_i \) be the primes (maximal ideals) of \(A \). Since localization preserves exact sequences (it is flat), it is enough to show that the map \(A \rightarrow \prod_i A_{p_i} \) is an isomorphism after localization at every prime ideal \(p \) of \(A \). But in this circumstance we have the map

\[
A_p \rightarrow \prod_i (A_{p_i})_p = \prod_i (A_{p_i})_{p_i}.
\]

Now \(A_p \) is artinian (descending chains of ideals of \(A_p \) are descending chains of ideals of \(A \) contained in \(p \)) and a local ring with maximal ideal \(p A_p \), so \(N = p A_p \) and \((p A_p)^r = 0 \). Then for \(p \neq p_i \), if \(x_i \in p \setminus p_i \), \(x_i^r = 0 \), so \((A_{p_i})_p = 0 \) and the map is an isomorphism.

Problem X.10. Let \(A, B \) be local rings with maximal ideals \(m_A, m_B \), respectively. Let \(f : A \rightarrow B \) be a homomorphism. Suppose that \(f \) is local, i.e. \(f^{-1}(m_B) = m_A \).

Assume that \(A, B \) are noetherian, and assume that:

1. \(A/m_A \rightarrow B/m_B \) is an isomorphism;
2. \(m_A \rightarrow m_B/m_B^2 \) is surjective;
3. \(B \) is a finite \(A \)-module, via \(f \).

Prove that \(f \) is surjective.

Solution. First, \(m_B \) is a finitely generated \(B \)-module (since \(B \) is noetherian) and \(f(m_A) \) is a finitely generated \(B \)-submodule of \(m_B \) with \(m_B = f(m_A) + m_B^2 \) by (2). By Nakayama’s lemma (X.4.2), \(f(m_A) = m_B \).

Second, since \(B \) is finite over \(A \) and \(f(A) \) is a \(B \)-submodule with \(B = f(A) + m_BB \) by (1), since \(A \rightarrow B/m_B \) is surjective. But \(m_BB = m_AB \) treating \(B \) as an \(A \)-module by \(f \), so by Nakayama’s lemma, \(f(A) = B \), so \(f \) is surjective.

Problem X.11. Let \(A \) be a commutative ring and \(M \) an \(A \)-module. Define the support of \(M \) by

\[
\text{Supp}(M) = \{ p \in \text{Spec} \ A : M_p \neq 0 \}.
\]

If \(M \) is finite over \(A \), show that \(\text{Supp}M = V(\text{Ann}(M)) \), where \(V(a) = \{ p \in \text{Spec} \ A : p \supset a \} \) and \(\text{Ann}(M) = \{ a \in A : aM = 0 \} \).

Solution. Let \(p \in \text{Spec} \ A \) be so that \(M_p \neq 0 \). If \(aM = 0 \) then \(aM_p = 0 \) so if \(a \notin p \) then \(M_p = 0 \); hence \(\text{Ann}(M) \subset p \).

Conversely, suppose \(\text{Ann}(M) \subset p \). Let \(m_1, \ldots, m_r \) generate \(M \) over \(A \). Suppose that \(M_p = 0 \); then for all \(i \) there exists an \(a_i \notin p \) such that \(a_im_i = 0 \in M \). Then \(a = \prod_i a_i \) has \(aM = 0 \); therefore \(a \in p \), a contradiction.