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Abstract. We provide algorithms to count and enumerate representatives of the (right) ideal
classes of an Eichler order in a quaternion algebra defined over a number field. We analyze the
run time of these algorithms and consider several related problems, including the computation of
two-sided ideal classes, isomorphism classes of orders, connecting ideals for orders, and ideal princi-
palization. We conclude by giving the complete list of definite Eichler orders with class number at
most 2.
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Since the very first calculations of Gauss for imaginary quadratic fields, the prob-
lem of computing the class group of a number field F has seen broad interest. Due
to the evident close association between the class number and regulator (embodied
in the Dirichlet class number formula), one often computes the class group and unit
group in tandem as follows.

Problem (ClassUnitGroup(ZF )). Given the ring of integers ZF of a number field
F , compute the class group ClZF and unit group Z∗

F .
This problem appears in general to be quite difficult. The best known (prob-

abilistic) algorithm is due to Buchmann [7]: for a field F of degree n and abso-

lute discriminant dF , it runs in time d
1/2
F (log dF )

O(n) without any hypothesis [32],
and assuming the generalized Riemann hypothesis (GRH), it runs in expected time
exp

(
O
(
(log dF )

1/2(log log dF )
1/2

))
, where the implied O-constant depends on n.

According to the Brauer–Siegel theorem, already the case of imaginary quadratic

fields shows that the class group is often roughly as large as d
1/2
F (log dF )

O(1). Similarly,
for the case of real quadratic fields, a fundamental unit is conjectured to have height

often as large as d
1/2
F (log dF )

O(1), so even to write down the output in a näıve way
requires exponential time (but see Remark 1.2). The problem of simply computing
the class number h(F ) = #ClZF , or for that matter determining whether or not a
given ideal of ZF is principal, appears in general to be no easier than solving Problem
(ClassUnitGroup).

In this article, we consider a noncommutative generalization of the above problem.
We refer to section 1 for precise definitions and specification of the input and output.

Problem (ClassNumber(O)). Given an Eichler order O in a quaternion algebra
over a number field F , compute the class number h(O).

Problem (ClassSet(O)). Given an Eichler order O in a quaternion algebra over a
number field F , compute a set of representatives for the set of invertible right O-ideal
classes ClO.
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The main results of this article are embodied in the following two theorems, which
provide algorithms to solve these two problems depending on whether the order is
definite or indefinite.

Theorem A.
(a) If O is indefinite, Problem (ClassNumber(O)) is deterministic polynomial-

time reducible to Problem (ClassUnitGroup(ZF )).
(b) If O is definite, then Problem (ClassNumber(O)) is reducible in probabilistic

time

O
(
d
3/2
F log4 dF + log2 N d

)

to the factorization of the discriminant d of O and O(2n) instances of Problem

(ClassUnitGroup) with fields having discriminant of size O(d
5/2
F ).

Here and throughout the paper, unless otherwise noted the implied O-constants
are absolute.

Corollary. There exists a probabilistic polynomial-time algorithm to solve Prob-
lem (ClassNumber) over a fixed field F for indefinite orders and definite orders with
factored discriminant.

Theorem B. There exists an algorithm to solve Problem (ClassSet) for orders
over a fixed field F . This algorithm runs in probabilistic polynomial time in the size
of the output for indefinite orders and for definite orders with factored discriminant.

It is important to note in Theorem B that we do not claim to be able to solve
Problem (ClassSet) in probabilistic polynomial time in the size of the input, since the
output is of exponential size, and so even to write ideal representatives (in the usual
way) requires exponential time.

The algorithmic results embodied in Theorems A and B have many applications.
Quaternion algebras are the noncommutative analogues of quadratic field extensions
and so present an interesting and rewarding class to analyze. For example, the norm
form on a quaternion order gives rise to quadratic modules of rank 3 and 4 over ZF

and computing ideal classes amounts to finding all isometry classes of forms in the
same genus (see, e.g., Alsina and Bayer [1, Chapter 3] for the case F = Q). Ideal
classes in quaternion orders are also intimately related to automorphic forms. In the
simplest case where F = Q, the ideal classes of a maximal order in a quaternion
algebra of discriminant p are in bijection with the set of supersingular elliptic curves
in characteristic p. This correspondence has been exploited by Pizer [39], Kohel [29],
and others to explicitly compute spaces of modular forms over Q. By extension, one
can compute with Hilbert modular forms over a totally real field F of even degree
using these methods via the Jacquet–Langlands correspondence [14], and the algo-
rithms described below have already been used for this purpose [15]. Finally, this
work allows explicit computations with Shimura curves, including the computation of
complex multiplication (CM) points [47].

The outline of this article is as follows. In section 1, we review background
material from the theory of Eichler orders of quaternion algebras and their ideals. In
section 2, we introduce the algorithmic problems we will consider and discuss some of
their interrelationships. In section 3, we treat the problem of computing the set of two-
sided ideal classes and connecting ideals for Eichler orders. In section 4, we enumerate
ideal classes in indefinite orders; we deduce Theorem A and its corollary in this case
from Eichler’s theorem of norms. In section 5, we introduce the Eichler mass formula,
which gives rise to an algorithm to count ideal classes in a definite quaternion order,
completing the proof of Theorem A. In section 6, we discuss ideal principalization in
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definite orders, rigorously analyzing the lattice search employed to find a generator, if
it exists. In section 7, we show how to enumerate ideal classes in definite orders and
use the Ramanujan property of the p-neighbors graph to prove Theorem B. Finally,
in section 8, we use our implementation of these algorithms in Magma [4] to compute
the complete list of definite quaternion orders (over an arbitrary totally real field F )
with class number at most 2 (Tables 8.1–8.2): counted up to a natural notion of
equivalence, there are exactly 76 equivalence classes of definite Eichler orders with
class number 1 and 217 with class number 2.

We conclude this introduction by indicating two other results of significance found
in the paper. In section 5, we give a rigorous complexity analysis for computing the
value ζF (−1) of the Dedekind zeta function of a totally real field F . We then prove
a complexity result (Proposition 5.8), which serves as a partial converse to Theorem
B: the problem of factoring integers a with O(log log a) prime factors is probabilistic
polynomial time reducible to Problem (ClassNumber) over Q. In particular, if one can
compute the class number of a definite rational quaternion order efficiently, then one
can efficiently factor integers with a bounded number of prime factors.

1. Quaternion algebras, orders, and ideals. In this section, we introduce
quaternion algebras and orders, and we describe some of their basic properties; for
further reading, see Reiner [41], Vignéras [44], and Brzeziński [5]. Throughout, let F
be a number field of degree [F : Q] = n and absolute discriminant dF , and let ZF be
its ring of integers.

Number rings. We follow the usual algorithmic conventions for number fields
and finitely generated abelian groups (see Cohen [11], Lenstra [32]). In particular,
following Lenstra [32, section 2.5] to compute a finitely generated abelian group G
means to specify a finite sequence di ∈ Z≥0 and an isomorphism

⊕
i Z/diZ

∼−→ G,
in turn specified by the images of the standard generators. Moreover, we represent
a finitely generated torsion-free ZF -module I by a pseudobasis over ZF , writing I =⊕

i aiγi with ai fractional ideals of ZF and γi ∈ I. See Cohen [12, Chapter 1] for
methods of computing with finitely generated modules over Dedekind domains using
pseudobases.

As in the introduction, we have the following basic problem.
Problem 1.1 (ClassUnitGroup(ZF )). Given ZF , compute the class group ClZF

and unit group Z∗
F .

Remark 1.2. The representation of the output of Problem (ClassUnitGroup) is not
unique, and therefore different algorithms may produce correct output but conceivably
of arbitrarily large size. Indeed, we do not require that the outputted generators of
the unit group Z∗

F be represented in the usual way as a Z-linear combination of an
integral basis for ZF , since in general these elements can be of exponential size (as in
the case of real quadratic fields). Instead, we allow the units to be represented as a
straight-line program involving elements of ZF written in the usual way, for example,
as a (finite) product

∏
uc(u) of elements u ∈ F ∗ with c(u) ∈ Z. In this way, one may

be able to write down a set of generators of subexponential size.
Proposition 1.3. There exists an algorithm to solve Problem (ClassUnitGroup),

which runs in time d
1/2
F (log dF )

O(n); assuming the GRH and a “smoothness condi-
tion,” this algorithm runs in time

exp
(
O
(
(log dF )

1/2(log log dF )
1/2

))
,

where the implied constant depends on n.



ENUMERATION OF QUATERNION IDEAL CLASSES 1717

The algorithm underlying Proposition 1.3 is due to Buchmann [7] (see therein
for the “smoothness condition,” which is known to hold for quadratic fields). See
Lenstra [32, Theorem 5.5], Cohen, Diaz y Diaz, and Olivier [13], and Cohen [11,
Algorithm 6.5.9] for further detail, and also Schoof [42] for a detailed analysis from
the perspective of Arakelov geometry.

Remark 1.4. A deterministic variant of the algorithm in Proposition 1.3 runs

in time d
3/4
F (log dF )

O(n), due to the need to factor polynomials over finite fields. We
allow probabilistic algorithms in what follows.

Further, there exists an algorithm which, given the internal calculations involved
in the class group computation of Proposition 1.3, determines whether or not an ideal
a ⊂ ZF is principal and if so, outputs a generator (see Cohen [11, Algorithm 6.5.10]).
No estimates on the running time of this algorithm have been proven, but it is reason-
able to expect that they are no worse than the time for the class group computation
itself. (See also Remark 6.2 below for an alternative approach, which gives a princi-
palization algorithm which runs in deterministic polynomial time over a fixed totally
real field F .)

Quaternion algebras. A quaternion algebra B over F is a central simple algebra
of dimension 4 over F , or equivalently an F -algebra with generators α, β ∈ B such
that

(1.1) α2 = a, β2 = b, αβ = −βα
with a, b ∈ F ∗. Such an algebra is denoted B = (a,bF ) and is specified in bits by the
elements a, b ∈ F ∗, and an element γ = x + yα + zβ + wαβ ∈ B is specified by the
elements x, y, z, w ∈ F .

Let B be a quaternion algebra over F . Then B has a unique (anti)involution
: B → B called conjugation such that γ + γ, γγ ∈ F for all γ ∈ B. We define

the reduced trace and reduced norm of γ to be trd(γ) = γ + γ and nrd(γ) = γγ,
respectively. For B = (a,bF ) as in (1.1) we have

(1.2) γ = x− (yα+ zβ + wαβ), trd(γ) = 2x, nrd(γ) = x2 − ay2 − bz2 + abw2.

Let K be a field containing F . Then BK = B ⊗F K is a quaternion algebra over
K, and we say K splits B if BK

∼= M2(K). If [K : F ] = 2, then K splits B if and
only if there exists an F -embedding K ↪→ B.

Now let v be a place of F , and let Fv denote the completion of F at v. We say
B is split at v if Fv splits B, and otherwise we say that B is ramified at v. The set
of ramified places of B is of even (finite) cardinality and uniquely characterizes B up
to F -algebra isomorphism. We define the discriminant D = disc(B) of B to be the
ideal of ZF given by the product of all finite ramified places of B. One can compute
the discriminant of B in probabilistic polynomial time given an algorithm for integer
factorization [51].

We say that B is totally definite if F is totally real and every real infinite place
of F is ramified in B; otherwise, we say that B is indefinite or that B satisfies the
Eichler condition.

Quaternion orders. A ZF -lattice I ⊂ B is a finitely generated ZF -submodule
of B with IF = B. An order O ⊂ B is a ZF -lattice which is also a subring of B (hence
1 ∈ O), and an order is maximal if it is not properly contained in another order. We
represent a ZF -lattice by a pseudobasis, as above. The problem of computing a max-
imal order O is probabilistic polynomial-time equivalent to integer factorization [46].
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We will use the general principle throughout that ZF -lattices are determined by
their localizations. For every prime ideal p of ZF , let ZF,p denote the completion of
ZF at p. For a ZF -lattice I, we abbreviate Ip = I ⊗ZF ZF,p. Then for two ZF -lattices
I, J ⊂ B, we have I = J if and only if Ip = Jp for all primes p.

For γ1, . . . , γ4 ∈ B, we let disc(γ1, . . . , γ4) = det(trd(γiγj))i,j=1,...,4. For an order
O ⊂ B, the ideal of ZF generated by the set

{disc(γ1, . . . , γ4) : γi ∈ O}

is a square, and we define the (reduced) discriminant d = disc(O) of O to be the
square root of this ideal. If O =

⊕
i aiγi, then we compute the discriminant as

d2 = (a1 · · · a4)2 disc(γ1, . . . , γ4).

An order O is maximal if and only if d = D.
An Eichler order is the intersection of two maximal orders, and it is this class

of orders which we will study throughout. The level of an Eichler order O is the
ideal N ⊂ ZF satisfying d = DN; the level N is coprime to the discriminant D of
B. Alternatively, given a maximal order O ⊂ B, an ideal N coprime to D and an
embedding ιN : O ↪→ M2(ZF,N), where ZF,N denotes the completion of ZF at N, an
Eichler order of level N is given by

(1.3) O0(N) = {γ ∈ O : ιN(γ) is upper triangular modulo N} ,

and all Eichler orders arise in this way up to conjugation. In particular [41, Theorem
39.14], an order O is hereditary (all one-sided ideals of O are projective) if and only
if O is an Eichler order with squarefree level.

We can compute an explicit pseudobasis for an Eichler order O0(N) from the de-
scription (1.3) as follows. First, we compute a maximal order O ⊂ B as above. Next,
for each prime power pe ‖ N, we compute an embedding ιp : O ↪→M2(ZF,p); this can
be accomplished in probabilistic polynomial time [51]. From ιp, one easily computes
O0(p

e) using linear algebra. Then O0(N) =
⋂

pe‖N O0(p
e), and this intersection can

be computed as ZF -lattices.
Two orders O,O′ are conjugate (also isomorphic or of the same type) if there

exists ν ∈ B∗ such that O′ = ν−1Oν, and we write O ∼= O′.
Proposition 1.5 (see [44, Corollaire III.5.5]). The number of isomorphism

classes of Eichler orders O ⊂ B of level N is finite.

Quaternion ideals. We define the reduced norm nrd(I) of a ZF -lattice I to be
the fractional ideal of ZF generated by the set {nrd(γ) : γ ∈ I}.

Let I, J be ZF -lattices in B. We define the product IJ to be the ZF -submodule
of B generated by the set {αβ : α ∈ I, β ∈ J}; we have nrd(IJ) ⊃ nrd(I) nrd(J). We
define the left colon

(I : J)L = {γ ∈ B : γJ ⊂ I}

and similarly the right colon

(I : J)R = {γ ∈ B : Jγ ⊂ I}.
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The colons (I : J)L, (I : J)R and the product IJ are ZF -lattices. If I = J , then
(I : I)L = OL(I) (resp., (I : I)R = OR(I)) also has the structure of a ring, called the
left (resp., right) order of the ZF -lattice I. One can compute the left and right colon
in deterministic polynomial time using the Hermite normal form for ZF -lattices (see
Friedrichs [22, section 2.3]).

Let O ⊂ B be an order. A right fractional O-ideal is a ZF -lattice I such that
OR(I) = O. In a similar fashion, we may define left fractional ideals; however,
conjugation

I 	→ I = {γ : γ ∈ I}

gives a bijection between the sets of right and left fractional O-ideals, so when dealing
with one-sided fractional ideals, it suffices to work with right fractional ideals. If I
(resp., J) is a right fractional O-ideal, then OR((I : J)R) ⊂ O (resp., OL((I : J)R) ⊂
O). Note that any ZF -lattice I is by definition a right fractional OR(I)-ideal (and
left fractional OL(I)-ideal).

A ZF -lattice I is integral if I ⊂ OR(I), or equivalently if I is a right ideal of
OR(I) in the usual sense; for any ZF -lattice I, there exists a nonzero d ∈ ZF such
that dI is integral.

A ZF -lattice I is a left fractional OL(I)-ideal and a right fractional OR(I)-ideal,
and we say that I is a fractional OL(I),OR(I)-ideal; if OL(I) = OR(I) = O, we say
that I is a two-sided O-ideal.

A right fractional O-ideal is left invertible if there exists a left fractional O-ideal
I−1 such that I−1I = O. If I is left invertible, then necessarily

I−1 = (O : I)L = I/ nrd(I).

Equivalently, I is left invertible if and only if I is locally principal, i.e., for each (finite)
prime ideal p of ZF , the ideal Ip is a principal right Op-ideal. It follows that if I is
an O′,O-ideal, then I is left invertible if and only if I is right invertible (analogously
defined), and so we simply say I is invertible and then II−1 = O′ and I−1 = (O′ : I)R.
If I is an invertible right fractionalO-ideal and J is an invertible left fractionalO-ideal,
then (IJ)−1 = J−1I−1 and nrd(IJ) = nrd(I) nrd(J), and moreover

OL(IJ) = OL(I) and OR(IJ) = OR(J).

We note that for an order O, every right fractional O-ideal I is invertible if and only
if O is hereditary.

Let I, J be invertible right fractional ideals. Then (I : J)R is a fractional
OR(J),OR(I)-ideal and similarly (I : J)L is a fractional OL(I),OL(J)-ideal, and so
we will also call (I : J)L (resp., (I : J)R) the left (resp., right) colon fractional ideal.

Let I, J be invertible right fractional O-ideals. We say that I and J are in the
same right ideal class, and we write I ∼ J if there exists an α ∈ B∗ such that I = αJ .
We have I ∼ J if and only if I and J are isomorphic as right O-modules, and so in this
case we also say that I and J are isomorphic. It is clear that ∼ defines an equivalence
relation on the set of right fractional ideals of O; we write [I] for the ideal class of I.
Since B is noncommutative, the ideal class [IJ ] of two right fractional O-ideals I, J is
in general not determined by the ideal classes [I] and [J ], so the set of right ideal classes
may not form a group. We denote the set of invertible right O-ideal classes by ClO.
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The set of invertible two-sided fractional O-ideals forms a group under multipli-
cation, and the quotient of this group by the (normal) subgroup of principal two-sided
fractional O-ideals is called the two-sided ideal class group of O; two invertible two-
sided fractional O-ideals I, J are in the same ideal class if they are equal in the two-
sided ideal class group of O, or equivalently if IJ−1 is a principal two-sided fractional
O-ideal.

An order O is connected to an order O′ if there exists an invertible fractional
O,O′-ideal I, the connecting ideal. The relation of being connected is an equivalence
relation, and two Eichler orders O,O′ are connected if and only if they have the same
level N.

Proposition 1.6 (see [44, Théorème III.5.4], [41, section 26]). The set ClO is
finite and #ClO is independent of the choice of Eichler order O of a given level.

We let h(O) = #ClO denote the class number of the Eichler order O.

2. Algorithmic problems. In the remainder of this article, we will be con-
cerned with a constellation of interrelated algorithmic problems which we now intro-
duce.

Problem 2.1 (ClassNumber(O)). Given an Eichler order O, compute the class
number h(O).

Problem 2.2 (ClassSet(O)). Given an Eichler order O, compute a set of repre-
sentatives for the set of invertible right O-ideal classes ClO.

Obviously, a solution to Problem 2.2 (ClassSet) gives a solution to Problem 2.1
(ClassNumber), but as we will see, this reduction is not the most efficient approach.

Given a set of representatives for ClO and a right fractional ideal I of O, we may
also like to determine its class [I] ∈ ClO, and so we are led to the following problems.

Problem 2.3 (IsIsomorphic(I, J)). Given two invertible right fractional ideals
I, J of an Eichler order O, determine if I ∼ J , and if so, compute ξ ∈ B∗ such that
I = ξJ .

Problem 2.4 (IsPrincipal(I)). Given an invertible right fractional ideal I of an
Eichler order O, determine if I is principal, and if so, compute a generator ξ of I.

In fact, these two problems are computationally equivalent.
Lemma 2.5. Problem (IsIsomorphic) is equivalent to Problem (IsPrincipal).
Proof. Let I, J be invertible right fractional O-ideals. Then I = ξJ for ξ ∈ B∗

if and only if the left colon ideal (I : J)L is generated by ξ as a right fractional
OL(J)-ideal. Therefore, I ∼ J if and only if (I : J)L is a principal fractional right
OL(J)-ideal.

We also have the corresponding problem for two-sided ideals.
Problem 2.6 (TwoSidedClassSet(O)). Given an Eichler order O, compute a set

of representatives for the two-sided invertible ideal classes of O.
Finally, we consider algorithmic problems for orders.
Problem 2.7 (IsConjugate(O,O′)). Given two Eichler orders O,O′ of B, deter-

mine if O ∼= O′, and if so, compute ν ∈ B∗ such that νOν−1 = O′.
Problem 2.8 (ConjClassSet(O)). Given an Eichler order O of level N, compute

a set of representatives for the conjugacy classes of Eichler orders of level N.
Problem 2.9 (ConnectingIdeal(O,O′)). Given Eichler orders O,O′, compute a

connecting ideal I with OR(I) = O and OL(I) = O′.
We conclude by relating Problem 2.2 (ClassSet) to Problem 2.8 (ConjClassSet).
Proposition 2.10. Let Oi be representatives of the isomorphism classes of Eich-

ler orders of level N. For each i, let Ii be a connecting fractional Oi,O-ideal, and let
Ji,j be representatives of the two-sided invertible fractional Oi-ideal classes.
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Then the set {Ji,jIi}i,j is a complete set of representatives of ClO.
Proof. Let I be an invertible right fractional O-ideal. Then OL(I) ∼= Oi for a

uniquely determined i, so OL(I) = ν−1Oiν for some ν ∈ B∗. But then Ii = νKI,
where K = ν−1IiI

−1 is a two-sided invertible fractional OL(I)-ideal, and so I ∼
KIi ∼ Ji,jIi for some j, again uniquely determined.

It follows from Proposition 2.10 that if one can solve Problem 2.8 (ConjClassSet),
then one can solve Problem 2.2 (ClassSet), given algorithms to solve Problem 2.9
(ConnectingIdeal) and Problem 2.6 (TwoSidedClassSet). We will discuss this further
in sections 3–4.

Conversely, if one can solve Problem 2.2 (ClassSet), then one can solve Problem 2.8
(ConjClassSet) given an algorithm to solve Problem 2.7 (IsConjugate): indeed, by
Proposition 2.10, one obtains a set of representatives for the conjugacy classes of
orders by computing OL(I) for [I] ∈ ClO. The difficulty of solving Problem 2.7
(IsConjugate) is discussed in sections 4 and 6.

3. Two-sided ideal classes and connecting ideals. In this section, we dis-
cuss Problem 2.6 (TwoSidedClassSet) and Problem 2.9 (ConnectingIdeal).

Two-sided ideal classes. Let O ⊂ B be an Eichler order of discriminant d
and level N. The two-sided ideals of O admit a local description, as follows. Let Fp

denote the completion of F at p, let ZF,p denote its ring of integers, and let π be a
uniformizer for ZF,p.

First, suppose that Bp = B ⊗F Fp is a division ring. Then the discrete valuation
v of ZF,p extends to Bp, and Op is the unique maximal order of Bp. The fractional
right Op-ideals form a cyclic group generated by the principal ideal

rad(Op) = {γ ∈ Op : v(γ) > 0};

in particular, they are all two-sided [41, Theorem 13.2] and invertible. We have
rad(Op) = [Op,Op], where [Op,Op] denotes the two-sided Op-ideal generated by the
set {γδ − δγ : γ, δ ∈ Op} (see Reiner [41, Theorem 14.5]).

Next, suppose that Bp
∼=M2(Fp) and that

(3.1) Op
∼=

(
ZF,p ZF,p

peZF,p ZF,p

)
⊂M2(ZF,p),

so that pe ‖ N. Then the principal (equivalently, invertible) two-sided fractional ideals
of Op form an abelian group generated by πOp and

(
0 1
πe 0

)
Op = [Op,Op]

(see the proof given by Eichler [18, Satz 5] for e = 1, which applies mutatis mutandis
for all e). Since [Op,Op]

2 = πeOp, this group is cyclic if and only if e is odd or e = 0.
In particular, it follows from the preceding discussion that [O,O] is an invertible

two-sided O-ideal, and we have the following description of the group of two-sided
ideals.
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Lemma 3.1. The set of invertible fractional two-sided O-ideals forms an abelian
group generated by the set

{pO : p ⊂ ZF } ∪ {[O,O] + peO : pe ‖ d}.

Proof. The group of invertible two-sided fractional O-ideals is abelian, since it is
so locally by the above.

Let I be an invertible two-sided fractional O-ideal. Clearing denominators, we
may assume I is integral. Let M be an invertible maximal two-sided O-ideal contain-
ing I. Then by maximality, there exists a unique prime ideal p of ZF such that Mq =
Oq for all q �= p. Thus by the preceding discussion, M = pO or M = [O,O] + peO
with pe ‖ d. Now IM−1 is again integral, and nrd(IM−1) = nrd(I)/ nrd(M) | nrd(I),
so the result follows by induction.

For an alternative proof of Lemma 3.1 when O is hereditary, see Vignéras [44,
Théorème I.4.5].

Proposition 3.2. The group of invertible, two-sided fractional ideal classes of
O is a finite abelian group generated by the classes of

{aO : [a] ∈ Cl(ZF )} ∪ {[O,O] + peO : pe ‖ d}.

If B is indefinite, one can omit all generators [O,O] + peO for which e is even.
Proof. Since the principal two-sided fractional O-ideals form a subgroup, the first

statement follows from the preceding lemma. For the second statement, we skip ahead
and apply Proposition 4.1: if e is even, the ideals pe/2O and [O,O] + peO have the
same reduced norm pe, so they are in the same ideal class if B is indefinite.

Corollary 3.3. Problem (TwoSidedClassSet(O)) for an Eichler order O with
factored discriminant d is polynomial-time reducible to Problem (ClassUnitGroup)(ZF )
and O(h(ZF )

2 N d2) instances of Problem (IsIsomorphic).
Proof. Since ([O,O] + peO)2 = peO (as this is true locally), there are at most

2ω(d)h(ZF ) two-sided ideal classes, where ω(d) denotes the number of prime factors
of d. We have trivially 2ω(d) ≤ N d, and the result follows.

Eichler orders and connecting ideals. We now exhibit an algorithm to test
if an order is an Eichler order.

Algorithm 3.4. Let O ⊂ B be an order of discriminant d = DN with N prime to
the discriminant D of B, and let ιN : O ↪→M2(FN). This algorithm determines if O is
an Eichler order, and if so, returns an element ν ∈ B such that ιN(ν−1Oν) = O0(N)
(as in (1.3)).

1. Compute μ ∈ B such that ιN(μ−1Oμ) ⊂M2(ZFN
). Let ι′N = μιNμ

−1.
2. Factor the ideal N, and for each prime power pe ‖ N,

a. From the restriction ι′p : O ↪→ M2(Fp) of ι′N, use linear algebra over
ZF,p to test if there is a common eigenvector (xp, zp) ∈ (ZF /p

e)2 for the
elements of a ZF,p-module basis of Op. If not, return false.

b. Compute yp, wp such that Np =
( xp yp
zp wp

) ∈ GL2(ZF /p
e).

3. By the Chinese remainder theorem, compute ν ∈ B such that ιp(νp) ≡ Np

(mod pe). Return true and μν.
Proof of correctness. We refer to work of the second author [51] for more on

step 1.
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For the rest of the algorithm, we note that the property of being an Eichler order
is local: in particular, we see that a local order Op = O⊗ZF ZF,p with disc(Op) = pe is
Eichler if and only if there exists such a common eigenvector modulo pe of all γ ∈ Op.
Conjugation by the matrix Np as in step 2(b) then shows that (1, 0) is an eigenvector
modulo all such pe, as desired.

Now let O,O′ be two Eichler orders in B having the same level N. We consider
Problem 2.9 (ConnectingIdeal) and compute an invertible O′,O-ideal I.

For any prime p � N, by maximality the ZF,p-lattice (O′O)p is a O′
p,Op-ideal. So

suppose p | N. Since any two Eichler orders of the same level are locally conjugate,
there exists νp ∈ Bp such that O′

p = νpOpν
−1
p . The map I 	→ νpI gives an equivalence

between the category of fractional two-sided Op-ideals and the category of fractional
O′

p,Op-ideals.
From this analysis, we arrive at the following algorithm.
Algorithm 3.5. Let O,O′ ⊂ B be Eichler orders of level N. This algorithm

computes an invertible fractional O′,O-ideal.
1. Let ν, ν′ be the output of Algorithm 3.4 for the orders O,O′ and a common

choice of splitting ιN.
2. Compute a nonzero d ∈ ZF such that μ := dν−1ν′ ∈ O′ as follows: write
ν−1ν′ in terms of a ZF -pseudobasis for O′ and compute a nonzero d as the
least common multiple of the denominators of the coefficients of ν−1ν′.

3. Compute nrd(μ)ZF = na with a prime to N and return the ZF -lattice I :=
μO + nO′O.

Proof of correctness. In step 1, we obtain from Algorithm 3.4 that for all p | N
we have Op = νpO0(N)pν

−1
p and Op = ν′pO0(N)pν

′−1
p . It is clear that step 2 gives the

correct output, and hence O′
p = μpOpμ

−1
p for all such p.

To conclude, we need to show that OL(I) = O′ and OR(I) = O. It suffices to
check this locally. For any prime p � N, we have μp ∈ O′

p = npO′
p, so Ip = (O′O)p,

which is a fractional O′
p,Op-ideal by the above. For p | N, we have

npO′
p = O′

pnp = O′
pμpμp ⊂ O′

pμp = μpOp,

since μp ∈ O′
p. Hence Ip = μpOp, and the result follows by the equivalence above,

since Op is a two-sided Op-ideal, so Ip is a fractional O′
p,Op-ideal.

Corollary 3.6. Problem (IsConjugate) for two Eichler orders with factored dis-
criminant d is probabilistic polynomial-time reducible to Problems (TwoSidedClassSet)
and (IsIsomorphic).

Proof. By Proposition 2.10, if I is an invertible right O-ideal, then OL(I) is
conjugate to O if and only if I is equivalent to an invertible two-sided O-ideal J : in
fact, if J = νI, then O = νO′ν−1. Thus, to check whether two given Eichler orders
O,O′ (of the same level) are conjugate, it suffices to construct a connecting ideal I as
in Algorithm 3.5—which can be done in probabilistic polynomial time—and one can
accordingly check for an isomorphism given a solution to Problems (TwoSidedClassSet)
and (IsIsomorphic).

4. Ideal classes in indefinite orders. In this section, we discuss the difficulty
of solving Problems 2.1 (ClassNumber) and 2.2 (ClassSet) in the indefinite case.

Let B be an indefinite quaternion algebra, and let O ⊂ B be an Eichler order.
Let S∞ denote the set of ramified (real) infinite places of B, and let ClS∞ ZF denote
the ray class group of ZF with modulus S∞. The quotient group ClS∞ ZF /ClZF is
an elementary 2-group isomorphic to Z∗

F,S∞/Z
∗2
F , where

Z∗
F,S∞ = {u ∈ Z∗

F : v(u) > 0 for all v ∈ S∞}.
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Proposition 4.1 (Eichler’s theorem). If B is indefinite and O ⊂ B is an Eichler
order, then the reduced norm map

nrd : ClO → ClS∞ ZF

is a bijection (of sets).
For a proof of this proposition, see Reiner [41, Corollary 34.21] or Vignéras [44,

Théorème III.5.7]. We have the following immediate corollary, which proves Theorem
A in the indefinite case; we restate it here for convenience.

Corollary 4.2. If B is indefinite, then Problem (ClassNumber(O)) is reducible
in deterministic polynomial time to Problem (ClassUnitGroup(ZF )).

In other words, there exists an algorithm to solve Problem (ClassNumber) which,
given an algorithm to solve Problem (ClassUnitGroup), runs in deterministic polyno-
mial time in its output size. (See Remark 1.2.)

Proof. We compute h(O) = #(Z∗
F,S∞/Z

∗2
F )h(ZF ). Given the class group ClZF ,

its order h(ZF ) = #ClZF can be computed in polynomial time. Similarly, given
generators for the unit group Z∗

F , one can compute in deterministic polynomial time
(in the size of their representation) their signs for each real place v and using linear
algebra over F2 determine the 2-rank of the group Z∗

F,S∞/Z
∗2
F .

It follows immediately from Corollary 4.2 that for Eichler orders over a fixed
number field F , Problem 2.1 (ClassNumber) can be solved in time O(1), which proves
the corollary to Theorem A.

Next, we discuss Theorem B in the indefinite case. First, we exhibit an auxiliary
algorithm for computing ideals with given norm, which works for both definite and
indefinite quaternion orders.

Algorithm 4.3. Let O be an Eichler order, and let a ⊂ ZF be an ideal which
is coprime to D. This algorithm returns an invertible right O-ideal I such that
nrd(I) = a.

1. Factor a into prime ideals.
2. For each pe ‖ a, find a zero of the quadratic form nrd(αp) ≡ 0 (mod p), and

choose a random lift of αp modulo p2 so that nrd(αp) is a uniformizer at p.
Let βp = αe

p.
3. Use the Chinese remainder theorem to find β ∈ ZF such that β ≡ βp (mod pe)

for all pe ‖ a. Return the right O-ideal βO + aO.
From Eichler’s theorem (Proposition 4.1), we then have the following straightfor-

ward algorithm.
Algorithm 4.4. Let O be an indefinite Eichler order. This algorithm solves

Problem 2.2 (ClassSet).
1. For each a in a set of representatives for ClS∞ ZF /2ClS∞ ZF , compute using

Algorithm 4.3 an ideal Ia of norm a.
2. Return the set {cIa}a,c, with c2 in a set of representatives of 2 ClS∞ ZF .

Proposition 4.5. Problem 2.2 (ClassSet) for indefinite orders over a fixed field
F can be solved in probabilistic polynomial time.

Proof. One can solve Problem (ClassUnitGroup) for the field F in constant time,
and one can further factor the generating ideals a which are given as output. The
statement follows by noting that step 2 of Algorithm 4.3 can be performed in proba-
bilistic polynomial time [51] by extracting square roots modulo p.

Proposition 4.5 thus proves the indefinite case of Theorem B.
Remark 4.6. In practice, in Algorithm 4.4 one may wish to find representatives of

ClO with the smallest norm possible; one can then simply find small representatives
a for each ideal class of ClS∞ ZF (using the LLL algorithm of Lenstra, Lenstra, and
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Lovász [33], part of the algorithms used in the algorithm described in Proposition 1.3)
and then repeat step 1 for each such ideal a.

To solve Problem 2.8 (ConjClassSet) for Eichler orders, we amend Algorithm 4.4
as follows.

Algorithm 4.7. Let O ⊂ B be an indefinite Eichler order of discriminant d.
This algorithm solves Problem 2.8 (ConjClassSet).

1. Let H be the subgroup of ClS∞ ZF generated by 2ClZF and [pe] for all pe ‖ d
with e odd.

2. For each a in a set of representatives for ClS∞ ZF /H , let α ∈ O be such that
nrd(α) is a uniformizer of a, and let Ia := αO + aO.

3. Return the set {OL(Ia)}a.
Proof of correctness. By Proposition 3.2, the image of the reduced norm of the

set of two-sided ideal classes maps is exactly H . It then follows from Proposition 2.10
that one recovers all conjugacy classes of Eichler orders of level N as OL(Ia) for the
right O-ideals Ia with a as in step 2.

Finally, we are left with Problem 2.4 (IsPrincipal). Let I be a right fractional O-
ideal. Again, by Eichler’s theorem (Proposition 4.1), we see that I is principal if and
only if nrd(I) ⊂ ZF is trivial in ClS∞ ZF , and the latter can be tested as in section 2.
In other words, simply testing if a right O-ideal is principal is no harder than testing
if an ideal is principal in ZF .

To then actually exhibit a generator for a principal ideal, we rely upon the fol-
lowing standard lemma (see Pizer [39, Proposition 1.18]).

Lemma 4.8. Let I be a right invertible fractional O-ideal. Then γ ∈ I generates
I if and only if nrd(γ)ZF = nrd(I).

By Lemma 4.8, the right ideal I is principal if and only if there exists γ ∈ I such
that nrd(γ) = nrd(I) = cZF (with v(c) > 0 for all v ∈ S∞). Unfortunately, since
B is indefinite, the norm form Trnrd : B → Q is not positive definite; hence it does
not induce the structure of a (definite) lattice on I (in the definite case it will; see
sections 6–7). One option is to use a form of indefinite lattice reduction (as in Ivanyos
and Szántó [24]). We instead find a substitute quadratic form, which will still allow us
to find “small” elements. When F is totally real and B has a unique split real place,
such a form has been found [50], and inspired by this result we make the following
definitions.

Let B = (a,bF ). For an infinite place v of F and γ = x+ yα+ zβ + wαβ, define

(4.1) Qv(γ) = |v(x)|2 + |v(a)||v(y)|2 + |v(b)||v(z)|2 + |v(ab)||v(w)|2.

We then define the absolute reduced norm by

Q : B → R

γ 	→
∑
v

Qv(γ);

by construction, the form Q is positive definite and gives I the structure of a definite
Z-lattice of rank 4[F : Q].

Remark 4.9. The form Q is clearly only one of many choices for such a positive
definite form, and so one may reasonably try to understand what the cone of such
forms corresponds to.
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When F is totally real and B has a unique split real place, the choice of the
positive definite quadratic form corresponds to the choice of a center p for a Dirichlet
fundamental domain in the upper half-plane H and at the split place measures the
inverse radius of the corresponding isometric circle [50]. The same is true for a
quaternion algebra of arbitrary signature as follows: If B has g split real places and s
(split) complex places, then the group O∗

1 of units of O of reduced norm 1 embeds in
SL2(R)

g × SL2(C)
s and acts on Hg × (H3)s discretely, where H (resp., H3) denotes

the upper half-plane (resp., hyperbolic 3-space) (see, e.g., Beardon [3] and Elstrodt,
Grunewald, and Mennicke [20]). In this case, the choice of a positive definite quadratic
form corresponds again to the choice of a center p for a Dirichlet domain and at each
place measures an inverse radius, either of an isometric circle or sphere. The above
choice of form Q corresponds to a (normalized) choice of center p = (i, . . . , i, j, . . . , j).

Because of the connection with the classical theory of positive definite quadratic
forms on a real quadratic field, which can be understood more generally from the per-
spective of Arakelov theory [42], we view these observations as the beginning of a form
of noncommutative Arakelov theory and leave it as a subject for further investigation.

We then have the following algorithm.
Algorithm 4.10. Let I ⊂ O be a right fractional O-ideal. This algorithm solves

Problem 2.4 (IsPrincipal).
1. Compute nrd(I) ⊂ ZF and test if nrd(I) is principal; if not, then return false.

Otherwise, let nrd(I) = cZF .
2. Determine if there exists a unit u ∈ Z∗

F such that v(uc) > 0 for all ramified
(real) places v; if not, then return false. Otherwise, let c := uc and initialize
α := 1.

3. If c ∈ Z∗
F , return α. Otherwise, view I as a Z-lattice equipped with the

quadratic form Q. Reduce I using the LLL algorithm [33]. By enumerating
short elements in I, find γ ∈ I such that nrd(γ) = cd with N(d) < N(c). Let
α := γα/d, let I := dγ−1I, let c := d, and return to step 2.

Proof. In step 2, we have nrd(dγ−1I) = d2/(cd) nrd(I) = dZF , and so the algo-
rithm terminates, since in each step Nnrd(I) ∈ Z>0 decreases. The algorithm gives
correct output, since dγ−1I = αO if and only if I = (γα/d)O.

In practice, Algorithm 4.10 runs quite efficiently and substantially improves upon
a more näıve enumeration. However, we are unable to prove any rigorous time bounds
for Algorithm 4.10. Already the first step of the algorithm requires the computation of
the class group ClZF ; even if we suppose that the class group has been precomputed,
there do not appear to be rigorous time bounds for the principal ideal testing algorithm
[11, Algorithm 6.5.10] (see section 1). With that proviso, given the generator c as in
step 1, we can measure the value of the LLL-step as follows.

Lemma 4.11. There exists C(O) ∈ R>0, depending on O, such that for every
principal fractional ideal I of O, the first basis element γ in the LLL-reduced basis of
Algorithm 4.10 satisfies

|N(nrd(γ))| ≤ C(O)N(nrd(I)).

Proof. Suppose that I = ξO. The F -endomorphism of B given by left mul-
tiplication by ξ has determinant nrd(ξ)2, and it follows that the corresponding Q-
endomorphism of L⊗Z Q has determinant N(nrd(ξ))2. Hence

det(I) = det(ξO) = N(nrd(ξ))4 det(O).
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Now, for any γ = x+ yα+ zβ + wαβ, from (4.1) we have

|v(nrd(γ))| ≤ Qv(γ) ≤ Q(γ)

for all places v. Thus, the output of the LLL algorithm [33, Proposition 1.9] yields
γ ∈ I, which satisfies

|v(nrd(γ))| ≤ Q(γ) ≤ 2(4n−1)/4 det(I)1/(4n) = 2(4n−1)/4 det(O)1/(4n) N(nrd(I))1/n.

We conclude that

|N(nrd(γ))| =
∏
v

|v(nrd(γ))| ≤ 2(4n
2−n)/4 det(O)1/4 N(nrd(I))

as claimed.
From Lemma 4.8, we conclude that the algorithm produces elements which are

close to being generators.

5. Computing the class number for definite orders. In this section, we dis-
cuss the difficulty of solving Problem 2.1 (ClassNumber) in the definite case. Through-
out this section, let B denote a totally definite quaternion algebra of discriminant D.
Here, the class number is governed by the Eichler mass formula.

Given an ideal N (coprime to D), the mass is defined to be the function

(5.1) M(D,N) = 21−n|ζF (−1)|h(ZF )Φ(D)Ψ(N),

where

(5.2) Φ(D) =
∏
p|D

(N(p)− 1) and Ψ(N) = N(N)
∏
p|N

(
1 +

1

N(p)

)
.

The mass of an Eichler order O ⊂ B of level N is defined to be M(O) =M(D,N).
The class number of an Eichler order differs from its mass by a correction factor

coming from torsion, as follows. An embedded elliptic subgroup in B is an embedding
μq ↪→ O∗/Z∗

F , where q ∈ Z≥2 and O is an Eichler order such that the image is a
maximal (cyclic) subgroup of O∗/Z∗

F ; the level of the embedding is the level of O. An
elliptic cycle is a B∗-conjugacy class of embedded elliptic subgroups. Let eq(D,N)
denote the number of elliptic cycles of B∗ of order q and level N.

Proposition 5.1 (Eichler mass formula [44, Corollaire V.2.5]). Let O ⊂ B be
an Eichler order of level N. Then

h(O) =M(D,N) +
∑
q

eq(D,N)

(
1− 1

q

)
.

Remark 5.2. A variant of the Eichler mass formula [44, Corollaire V.2.3] which
is also useful for algorithmic purposes (see Remark 7.5) reads

M(D,N) =
∑

[I]∈ClO

1

[OL(I)∗ : Z∗
F ]
.
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We first characterize the embedding numbers eq(D,N). Given an embedded ellip-
tic subgroup μq ↪→ O∗/Z∗

F of level N, the image of μq generates a quadratic subring
R ⊂ O; such an embedding R ↪→ O with RF ∩ O = R is said to be an optimal em-
bedding. Conversely, to every optimal embedding ι : R ↪→ O, where R is a quadratic
ZF -order with [R∗ : Z∗

F ] = q and O is an Eichler order of level N, we have the
embedded elliptic subgroup R∗

tors/Z
∗
F
∼= μq ↪→ O∗. This yields a bijection

{Elliptic cycles of B∗ of order q and level N}
�{

B∗-conjugacy classes of optimal embeddings ι : R ↪→ O
with [R∗ : Z∗

F ] = q and O an Eichler order of level N

}
.

The quadratic ZF -orders R with [R∗ : Z∗
F ] = q come in two types. Either we

have R∗
tors

∼= μ2q and we say R is fully elliptic, or [R∗ : Z∗
FR

∗
tors] = 2 and we say R is

half elliptic. We see that if R is half elliptic, then in particular R ⊂ ZF [
√−ε] for ε a

totally positive unit of ZF .
The (global) embedding numbers eq(D,N) can then be computed by comparison

to the local embedding numbers

m(Rp,Op) = #{O∗
p-conjugacy classes of optimal embeddings ι : Rp ↪→ Op},

where Op is a p-local Eichler order of level N.
Lemma 5.3 (see [44, page 143]). We have

eq(D,N) =
1

2

∑
[R∗:Z∗

F ]=q

h(R)
∏
p

m(Rp,Op).

There are formulas [49, section 2] for the number of local embeddings m(Rp,Op),
for example,

(5.3) m(Rp,Op) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1 if p � DN,

1−
(
Kq

p

)
if p | D and p � f(R),

1 +

(
Kq

p

)
if p ‖ N;

here, we letKq = F (ζ2q), and f(R) denotes the conductor of R (in ZKq ). In particular,
we have by (5.3) that m(Rp,Op) = 1 for almost all p.

We now discuss the computability of the terms in the formula of Proposition 5.1.
To compute the mass, we will use the following proposition.

Proposition 5.4. The value ζF (−1) ∈ Q can be computed using O(d
3/2
F log4 dF )

bit operations.
Proof. From the functional equation for the Dedekind zeta function, we have

(5.4) ζF (−1) =

( −1

2π2

)n

d
3/2
F ζF (2).

From (5.1) and Proposition 5.1, we have ζF (−1) ∈ Q; in fact, ζF (−1) has the de-
nominator bounded by Q, the least common multiple of all q ∈ Z≥2 such that
[F (ζ2q) : F ] = 2.



ENUMERATION OF QUATERNION IDEAL CLASSES 1729

We compute an approximation to ζF (−1) from the Euler product expansion for
ζF (2), as follows (see also Buchmann and Williams [8, section 2], or Dokchitser [17]
for a more general approach). For P ∈ Z≥2, let

ζF,≤P (s) =
∏

N p≤P

(
1− 1

N ps

)−1

denote the truncated Euler product for ζF (s), where we take the product over all
primes p of ZF for which N p ≤ P . Note that for s > 1 real we have

ζF,≤P (s) ≤ ζF (s) =
∏
p

(
1− 1

N ps

)−1

≤
∏
p

(
1− 1

ps

)−n

= ζ(s)n.

Now we estimate

0 <
ζF (2)

ζF,≤P (2)
− 1 =

∏
N p>P

(
1− 1

N p2

)−1

− 1

=
∑

N p>P

1

Np2
+

∑
N p≥N q>P

1

N(pq)2
+ · · ·

≤
∑
p>P

n

p2
+

∑
p,q>P

n2

(pq)2
+ · · · ≤

∑
x>P

n

x2
+

∑
x>P 2

n2

x2
+ · · ·

≤ n

P
+
n2

P 2
+ · · · = 1

(P/n)− 1
.

It follows that ζF (2)−ζF,≤P (2) < ε whenever P > n(1+ζF,≤P (2)/ε), which is satisfied
when

P > n

(
1 +

ζ(2)n

ε

)
= n

(
1 +

(π2/6)n

ε

)
.

To obtain the value ζF (−1) within an interval of length smaller than 1/(2Q), from
(5.4) it suffices to take

ε =
1

2Q

(2π2)n

d
3/2
F

.

To estimate Q, we note that if [F (ζ2q) : F ] = 2, then in particular F contains the
totally real subfield Q(ζ2q)

+ of Q(ζ2q); hence φ(q)/2 | n. Since the fields Q(ζ2q)
+ are

linearly disjoint for q, a power of a prime, we have Q = O(n). (We note this bound is
best possible in terms of n, since after all we may take F = Q(ζ2q)

+.) Putting these
together, we need to evaluate the truncated Euler product with

P = O

(
n

(
π2

6

)n
1

ε

)
= O

(
n2

12n
d
3/2
F

)
.
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Evaluating ζF,≤P (2) amounts to factoring a degree n polynomial over Fp for all
primes p ≤ P ; each such factorization can be performed using a repeated squaring
operation, requiring O(n3 log p) operations in Fp (see, e.g., the survey by von zur
Gathen and Panario [23]), so time O(n3 log3 p); hence altogether time O(n3P log2 P )
by the prime number theorem, so the computation requires

O

(
n5

12n
d
3/2
F log3 dF

)
= O(d

3/2
F log3 dF )

operations with real numbers of precision O(1/ε) = O(d
3/2
F ), requiring therefore

O(d
3/2
F log4 dF ) bit operations.
Remark 5.5. If F is an abelian field, then ζF (−1) can be computed much more

efficiently in terms of Bernoulli numbers [52].
Putting these pieces together, we now prove the following theorem.
Theorem 5.6. There exists a probabilistic algorithm which, given an Eichler or-

der O in a definite quaternion algebra B with factored discriminant d, solves Problem
(ClassNumber) in time

O
(
d
3/2
F log4 dF + log2 N d

)
and the time to solve O(2n) instances of Problem (ClassUnitGroup) with fields of dis-

criminant of size O(d
5/2
F ).

Proof. First, we compute the factored discriminant D of B and level N of O by
computing Hilbert symbols [51]: given the factorization of the discriminant d of O, for
each p | d one can determine whether p | D or p | N in deterministic time O(log2 N p).

We compute h(O) from the Eichler mass formula (Proposition 5.1), with the mass
M(D,N) given as in (5.1). Given the factorization of D and N, we can compute Φ(D)
and Ψ(N) in time O(log2 N(DN)). One recovers h(ZF ) from the given algorithm to
solve Problem (ClassUnitGroup). By Proposition 5.4, we can compute |ζF (−1)| in time

O(d
3/2
F log4 dF ).
We now estimate the time to compute the correction term

∑
q eq(D,N)(1− 1/q)

in Lemma 5.3, up to further instances of Problem (ClassUnitGroup).
As in the proof of Proposition 5.4, if eq(D,N) �= 0, then q = O(n). Thus,

by factoring n (which can be done in negligible time using trial division) we obtain
a finite set of O(n) possible values of q. For each such q, we can factor the qth
cyclotomic polynomial over F in deterministic time (qn log dF )

O(1) (see Lenstra [31])
and determine if each of its irreducible factors has degree 2. (In practice, one might
further restrict the set of possible q by verifying that q | dF if q ≥ 5 and that for
sufficiently many small prime ideals p of ZF coprime to qdF that q | (Np2 − 1),
but this makes no difference in the analysis of the run time.) Since q = O(n) and
n = O(log dF ) by the Odlyzko bounds [38], this becomes simply (log dF )

O(1).
We pause to compute an estimate of discriminants. Let q ∈ Z≥2 be such that

K = F (ζ2q) is quadratic over F . We estimate the discriminant dK = d2F NF/Q dK/F .
Let λ2q = ζ2q + 1/ζ2q; then we have Q(ζ2q)

+ = Q(λ2q) and ζ22q − λ2qζ2q + 1 = 0, so
dK/F | (λ22q − 4)ZF . Therefore

NQ(ζ2q)+/Q(λ
2
2q − 4) = NQ(ζ2q)+/Q(ζ2q − 1/ζ2q)

2 = NQ(ζ2q)/Q(ζq − 1)

=

⎧⎪⎨
⎪⎩
p if q = pr is an odd prime power,

4 if q = 2r,

1 otherwise.
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So dK = d2F NF/Q dK/F ≤ d2F NF/Q(λ
2
2q − 4) = d2F p

2n/φ(2q) if q = pr is an odd

prime power, and similarly dK ≤ d2F 4
2n/φ(2q) if q = 2r and dK = d2F if q is not

a power of a prime. For q a power of a prime p, by the conductor-discriminant

formula [52, Theorem 3.11] we have pφ(2q)/2−1 | dQ(ζ2q)+ , so since d
2n/φ(2q)
Q(ζ2q)+

| dF , we
have pn = O(dF ). Thus we have p2n/φ(2q) = O(d

2/φ(2q)
F ) = O(d

1/2
F ) when q = 5 or

q ≥ 7, and hence dK = O(d
5/2
F ); but for q ≤ 4 this also holds, since by the Odlyzko

bounds there are only finitely many (totally real) number fields with dF ≤ 16n. When

K = F (
√−ε) for ε a totally positive unit of ZF , we have dK = O(d2F 4

n) = O(d
5/2
F )

as well. Thus in all cases, dK = O(d
5/2
F ).

To compute eq(D,N), we need to compute h(R) for all R ⊂ K with [R∗ : Z∗
F ] = q.

First, suppose that R is fully elliptic. Then ZF [ζ2q] ⊂ R ⊂ ZK . We have the bound
f(R)2 | (λ22q − 4) | p on the conductor of R as above, which implies there are at most

O(2n/φ(2q)) = O(dF ) such orders, corresponding to the possible products of ramified
primes over p in the extension F/Q(ζ2q)

+. Each can be constructed by computing
p-overorders for p2 | (λ22q − 4) | p, requiring time qO(1). Now if f = f(R), we have

h(R) =
h(ZKq )

[Z∗
Kq

: R∗]
#(ZK/fZK)∗

#(ZF /fZF )∗
,

and the time required to compute these terms is negligible except for h(ZKq ), for
which we may call our hypothesized algorithm.

Next, suppose that R is half elliptic. In this case, we have ZF [
√−ε] ⊂ R ⊂ ZK .

Here, we have the bound f(R)2 | 4; hence there are at most O(2n) = O(dF ) such
orders, and the arguments in the preceding paragraph apply.

In all, we have at most O(2n) imaginary quadratic fields K to consider, the worst
case being when F has a fundamental system of units which are totally positive.

Finally, the calculation of the local embedding number m(Rp,Op) can be accom-
plished in time O(log2(N p)) for p odd [49, Proposition 2.5] by computing a Legendre
symbol (and in time O(1) after that) and in time nO(1) = (log dF )

O(1) for p even [49,
Remark 2.6].

In all, aside from the time to compute class numbers, since there are O(n) values
of q, we can compute the correction term in time

O(log2 N(DN)) + dF (log dF )
O(1) + (log dF )

O(1).

Combining this estimate with the time to compute the mass, the result follows.
Corollary 5.7. For a fixed number field F , Problem 2.1 (ClassNumber) for

definite orders O is probabilistic polynomial-time reducible to the factorization of the
discriminant of O.

Proof. Only the quantities Φ(D), Ψ(N), and m(Rp,Op) depend on O—the others
can be precomputed for fixed F . These quantities can be computed in probabilistic
polynomial time knowing the factorization of D and N.

Putting together Corollary 4.2, Theorem 5.6, and Corollary 5.7, we have proven
the main Theorem A and its corollary.

We conclude this section by discussing the role of factoring the ideals D,N. It
is well known that factoring ideals in the ring ZF is probabilistic polynomial-time
equivalent to factoring integers. But already for imaginary quadratic fields, it is
also well known that an algorithm for (ClassUnitGroup) can be employed to factor
integers (two such “class group” methods are attributed to Schnorr, Lenstra, Shanks,
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Pollard, Atkin, and Rickert, and Schnorr, Seysen, Lenstra, Lenstra, and Pomerance).
A noncommutative analogue of this result, already in the simplest case where F = Q,
is the following.

Proposition 5.8. The problem of factoring integers a with ω(a) = O(log log a)
prime factors is probabilistic polynomial-time reducible to Problem (ClassNumber) for
definite quaternion algebras over Q.

Proof. For F = Q, the class number is given simply by

h(O) =
1

12
φ(D)ψ(N) +

e2(D,N)

2
+
e3(D,N)

3
.

Let a ∈ Z>0 be an integer to be factored, which we may assume has gcd(a, 26) = 1
and is not a prime power.

We consider quaternion algebras of the form B = (−ac,−13b
Q

), where b, c ∈ Z>0 are

chosen as follows. We choose c ∈ {1, 2} so that (−ac/13) = −1; therefore the algebra
B is ramified at 13 so 13 | D, and it follows that e2(D,N) = e3(D,N) = 0 by (5.3);
hence

h(O) = φ(D/13)ψ(N).

For simplicity, we assume c = 1; the same argument applies when c = 2.
We choose b to be a random squarefree factored positive integer modulo 4a (see,

e.g., Bach [2]) with gcd(b, 26) = 1. If gcd(a, b) �= 1 and a �= 1, b, we have factored
a. Otherwise, with probability at least (1/2)ω(a), we have (−13b/p) = 1 for all p | a,
so then p � D for all p | a; since ω(a) = O(log log a) by assumption, after O(log a)
attempts, this condition will be satisfied with probability at least 1/2.

Now compute an order O ⊂ B which is locally generated by the standard gen-
erators α, β for all primes p �= 2 and which is maximal at 2. Then O is an order
with discriminant 13abε = DN , where ε = 1 or 2. We claim that O is Eichler. Since
gcd(a, b) = 1, b is squarefree, and further a, b are odd, it suffices to show that O is
Eichler at p | a. But for such pe ‖ a, by assumption we have (−13b/p) = 1, so B is
unramified at p, and there exists t ∈ Z∗

p such that t2 = −13b. Then the embedding
O ↪→ O ⊗Z Zp by

α 	→
(
0 1
ac 0

)
, β 	→

(
t 0
0 −t

)

realizes O as an Eichler order of level pe.
It follows that

h(O) =
∏

p|(D/13)

(p− 1)
∏
pe‖N

pe−1(p+ 1);

if a is not squarefree, then gcd(h(O), a) yields a prime factor of a, so we may assume
that a is squarefree.

We now show how to recover a prime factor of a given the values h(O). For each
prime p | b, by computing (−ac/p) we can determine if p is ramified in B or not,
accordingly contributing a factor p − 1 or p + 1 to h(O). Dividing h(O) by these
factors, we may compute the integer

g(b) =
∏
p|D′

(p− 1)
∏
p|N ′

(p+ 1)
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and εa = D′N ′. We compute one such value g(b) and then many more values g(b′),
and we claim that gcd(g(b) + g(b′), a) will find a factor of a. Indeed, with probability
at least ω(a)(1/2)ω(a)+1, we will have the following:

There exists a prime q | a for which (−13b/q) = −(−13b′/q) and
(−13b/p) = (−13b′/p) for all p | εa with p �= q.

It follows then that g(b) ≡ −g(b′) (mod q) as claimed. Again, since by assumption
ω(a) = O(log log a), after O(log a) attempts we will factor a with probability at least
1/2.

6. Ideal principalization for definite orders. In this section, we discuss the
totally definite case of Problem 2.4 (IsPrincipal), which by Lemma 2.5 is equivalent
to Problem 2.3 (IsIsomorphic). We exhibit an algorithm (Algorithm 6.3) to solve this
problem and analyze its running time (Proposition 6.9). This algorithm will be used
in the next section to solve Problem 2.2 (ClassSet) for definite orders. Throughout
this section, let B be a totally definite quaternion algebra over a totally real field F
of discriminant D, and let O ⊂ B be an Eichler order of level N.

Our algorithm is similar to the indefinite case (Algorithm 4.10), where now we are
in the easier situation in that Tr nrd : B → Q is a positive definite quadratic form on
the Q-vector space B. We make use of an improvement due to Dembélé and Donnelly
[15, section 2.2], and we prove below that their idea reduces the principalization
problem to a shortest lattice vector problem.

First of all, if I is a principal right fractional O-ideal, then nrd I = cZF is a
principal ideal of ZF . To compute such a generator c ∈ ZF over a general number
field F , we refer to the discussion following Proposition 1.3. For F totally real as in
this section, we first show that a principal ideal has a generator of polynomial size,
with the constant depending on F . For a real place v of F , corresponding to an
embedding v : F ↪→ R, we abbreviate av = v(a) for a ∈ F .

Lemma 6.1. For a principal fractional ideal a ⊂ F , there exists a generator a
for a with |av| = O((N a)1/n) for all real places v of F , where the implied constant is
effectively computable and depends on the field F .

Proof. Consider the (Minkowksi unit) map

σ : F → Rn

u 	→ (log |uv| − (1/n) logN(u))v,

where v runs over the real places of F . The image σ(F ) is contained in the hyperplane
H :

∑
v xv = 0, and the image of the units σ(Z∗

F ) forms a lattice (of full rank n−1) in
H . But since a is principal, the image σ(a) ⊂ H is simply a translate of this lattice. It
follows that there is a generator a for a with σ(a) inside a fundamental parallelopiped
for σ(Z∗

F ). Therefore, if u1, . . . , un−1 ∈ Z∗
F are a basis for Z∗

F /{±1}, then for each
real place v we have

∣∣∣∣log |av| − 1

n
logN(a)

∣∣∣∣ ≤ 1

2

n−1∑
i=1

| log |ui,v||.

Let Uv =
∏n−1

i=1 e
| log |ui,v ||/2. Then

1

Uv
N(a)1/n ≤ |av| ≤ Uv N(a)1/n,
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so if U = maxUv, then

1

UF
N(a)1/n ≤ |av| ≤ U N(a)1/n

for all v, as claimed.
Remark 6.2. Although we will not make use of it, we remark that Lemma 6.1

gives a method for testing eal a is principal over ZF and, if so, exhibiting a generator.
We simply enumerate all elements a ∈ ZF with |av| ≤ U N(a)1/n for all v, where U is
as in the above proof; we can accomplish this by embedding ZF ↪→ Rn by a 	→ (av)v
as a lattice (by the Minkowski embedding) and enumerating all lattice elements of
(square) norm bounded by nU2 N(a)2/n. By the analysis of Fincke and Pohst [21,
Algorithm (2.12), equation (3.1)] (or alternatively Elkies [19, Lemma 1]), we can
enumerate all such elements in time O(N(a)), where the implied constant depends
only on F .

We now present the main algorithm in this section.
Algorithm 6.3. Let I ⊂ O be a right fractional O-ideal, and let c ∈ ZF such

that nrd I = cZF . This algorithm solves Problem 2.4 (IsPrincipal).
1. Determine if there exists a unit u ∈ Z∗

F such that cvuv > 0 for all real places
v; if not, then return false. Otherwise, let c := cu.

2. Let x1, . . . , xn be a Z-basis of ZF . For each real place v, let κv :=
∑

i |xi,v|/2.
Compute

ε :=
21/n − 1

21/n + 1
,

and let

C := 3max
v

√
cv

εκv
.

3. For each totally positive unit z ∈ Z∗
F,+/Z

∗2
F ,

a. For each real place v of F compute rv := C/
√
cvzv. Represent the

vector (rv)v in terms of the basis x1, . . . , xn, and round the coordinates
to integers to obtain a ∈ ZF .

b. Find the shortest vectors in the Z-lattice aI; if a shortest vector ξ has
nrd(ξ) = a2cz, return true and the element ξ/a.

4. Return false.
Remark 6.4. Note that if F = Q, then in step 3 we have z = 1, and step 3(a)

can be neglected (since it simply rescales the lattice), and hence one can directly find
the shortest vectors in the Z-lattice I.

Proof of correctness. The correctness of the algorithm is a consequence of
Lemma 4.8 and the fact that any generator must have totally positive norm, once
we show the following claim: if I = Oξ with nrd ξ = c, then aξ is a shortest vector in
the lattice aI with a as in step 4(a).

First, by rounding note that |av − rv| ≤ κv for all v. Since

ε =
21/n − 1

21/n + 1
,

we easily deduce that

1 + ε

1− ε
= 21/n.
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Now suppose ξ ∈ B satisfies I = Oξ with nrd ξ = c. We first give an upper bound
on the (square) norm of aξ in the lattice aI. We have

C >
1 +

√
2

εκv

√
cv ≥

√
cv

εκv
(1 +

√
1 + ε).

By the quadratic formula, we then have

(6.1) εC2 − 2
√
cvκvC − κ2vcv > 0,

and rearranging (6.1) we obtain

|a2vcv − C2| = |av√cv − C||av√cv + C| ≤ κv

(
κv +

2C√
cv

)
cv < εC2.

Therefore

(1− ε)C2 < a2vcv < (1 + ε)C2.

Finally, if nrd ξ = c, then

(6.2)

Tr nrd aξ = Tr a2c =
∑
v

a2vcv ≤ n(1 + ε)C2 ≤ n

(
1 + ε

1− ε

)∏
v

(a2vcv)
1/n

< n21/n
∏
v

(a2vcv)
1/n.

Now suppose that λ ∈ I and λ is not a generator of I. Then nrd(λ) is a multiple
of nrd(I), so Nnrd(λ) is a multiple of Nnrd(I) = N c. Thus

∏
v

a2v nrdv λ = N(nrd aλ) ≥ 2N(nrd aξ) = 2
∏
v

a2vcv.

But by the arithmetic-geometric mean inequality, we have

(6.3) Tr nrd aλ =
∑
v

a2v nrdv λ ≥ n
∏
v

(a2v nrdv λ)
1/n ≥ n21/n

∏
v

(a2vcv)
1/n.

Combining (6.2) with (6.3) we have proven the claim.
To analyze the run time of Algorithm 6.3, we first state and prove some prelimi-

nary results on enumeration of (short) vectors in lattices.
Lemma 6.5. There exists an algorithm which, given a lattice L with basis vectors

each of (square) norm at most A ∈ R>0, finds the shortest vectors in L in deterministic
time O(log3A) for fixed dimension n.

Proof. This lemma is a consequence of the celebrated LLL-algorithm of Lenstra,
Lenstra, and Lovász [33]; see, e.g., Kannan [26, section 3].

Remark 6.6. Using floating-point LLL, one could probably replace log3A with
log2A in the lemma above, but this will have no impact on what follows, so we neglect
this possible improvement.

We pause to prove two results which will be used in the next section.
Lemma 6.7. A uniformly random element of a lattice L with norm ≤ A can be

computed in probabilistic probabilistic time (where the implied constant depends on the
lattice L).
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Proof. Choose a random vector v ∈ Zn with each component vi chosen uniformly
in the range [−√

A,
√
A]. Using linear algebra over Q, determine if v ∈ L; if so, output

the vector, otherwise start again. This test can be performed by first computing
once (for the lattice L) the change of basis from L to the standard basis and then
multiplying the vector v by this matrix. The entries of the inverse will be of polynomial
size for fixed dimension, and so each test can be performed in polynomial time. The
probability of success in each trial depends on the density of the lattice, given by its
determinant.

We apply this lemma to computing representatives of ideal classes, which we will
use in the proof of Lemma 7.8.

Lemma 6.8. There exists an algorithm which, given x ∈ Z>0 sufficiently large
and an ideal class [a] ∈ ClS∞(ZF ), computes a uniformly random ideal b ⊂ ZF with
[b] = [a] and N b ≤ x, which runs in probabilistic polynomial time over a fixed totally
real field F .

Proof. Let b ⊂ ZF be an ideal such that Nb ≤ x and [b] = [a]. Then ba−1 is
principal. By Lemma 6.1, there exists a generator a for ba−1 with

|av| ≤ U N(ba−1) ≤ Ux/N a = T

for all real places v of F , where U is an effectively computable constant depending
only on F . In particular, we have that

{b : N b ≤ x, [b] = [a]} ⊂ {aa−1 : a ∈ ZF , |av| ≤ T }.
Now each fractional ideal of F is naturally a lattice under the Minkowski embed-

ding σ : F → Rn by x 	→ (xv)v. Denote by SV(L) the set of shortest vectors in a
lattice L. Then the map

{a ∈ ZF : |av| ≤ T for all v and a ∈ SV(aZF )} → {b : N b ≤ x and [b] = [a]}
a 	→ b = aa−1

is a surjective map of finite sets. If we draw an element a ∈ ZF on the left-hand side
with probability 1/#SV(aZF ) and an ideal b on the right-hand side uniformly, then
this map preserves probabilities.

Therefore, we may compute a uniformly random ideal b as follows. First, we
compute a uniformly random element a ∈ a−1 such that N(a) ≤ x/N a, and let
b = aa. We find such an element a by finding a uniformly random element a ∈ a−1 of
(square) norm ≤ nT 2 in the Minkowski embedding, which can be done in probabilistic
polynomial time by Lemma 6.7. If N a > T , we return and compute another random a.
Given a with N a ≤ T , we compute the shortest vectors in the lattice aZF , which can
be done in deterministic polynomial time by Lemma 6.5 (since a is of polynomial size,
the lattice aZF has a basis which is of polynomial size with the constant depending on
the size of a basis for ZF ). If a is not a shortest vector, we return and compute another
element a; if a is a shortest vector, then we keep a with probability 1/#SV(aZF ) and
otherwise return.

We conclude this section by analyzing the run time of the principalization algo-
rithm.

Proposition 6.9. Algorithm 6.3 runs in deterministic polynomial time in the
size of the input over a fixed totally real field F .

Proof. In step 1, we must solve Problem (ClassUnitGroup) for the field F , which
can be done in constant time. In step 2, we note that logC is of polynomial size in
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the input, with the constant depending only on F . In step 3, there are at most 2n−1

totally positive units z. For each, in step 3(a) the Z-lattice aI has basis vectors with
norm of polynomial size in the input pseudobasis for I, with the constant depending
on F . In step 3(b) we find the shortest vectors in this lattice, and by Lemma 6.5 this
can be performed in deterministic polynomial time in fixed dimension.

Remark 6.10. We now present an alternative approach to Corollary 3.6 which
solves Problem 2.7 (IsConjugate) for a definite algebra by constructing an isomorphism
directly. Let

O(B) = {ϕ ∈ EndF (B) : nrd(ϕ(x)) = nrd(x) for all x ∈ B},
where EndF (B) denotes the endomorphisms of B as an F -vector space and

SO(B) = {ϕ ∈ O(B) : det(ϕ) = 1}.
It is well known (see, e.g., Dieudonné [16, Appendix IV, Proposition 3]) that

SO(B) = {φ : x 	→ νδxδ−1 : ν, δ ∈ B∗, nrd(ν) = 1}.
Since conjugation is an order-preserving antiautomorphism of determinant −1, we
have the following result: Two orders O and O′ of B are conjugate if and only if there
exists ϕ ∈ O(B) such that ϕ(O) = O′.

Therefore, such an isometry can be found using the approach described by Plesken
and Souvignier [40].

Remark 6.11. For a definite quaternion order O, we define its theta series simply
to be the theta series of the corresponding lattice under the quadratic form Tr nrd,
i.e.,

θ(O; q) =
∑
ξ∈O

qTr nrd(ξ) ∈ Z[[q]].

Isomorphic quaternion orders have the same theta series, and so given a complete set
of representatives {Oi} for the set of conjugacy classes of (definite) Eichler orders of a
given level, one can identify the conjugacy class of a given order O by comparing the
first few coefficients of their theta series. This approach is more efficient in practice
to show that two orders are not conjugate than to test for conjugacy directly.

In this way, one can also show that two right ideals of an order O are not isomor-
phic by showing that their left orders are not conjugate, and this idea can be used in
practice to speed up the enumeration of ideal classes.

7. Computing the class set for definite orders. In this section, we dis-
cuss Problem 2.2 (ClassSet) in the totally definite case. The key algorithm is the
S-neighbors algorithm (Algorithm 7.4), but see also Algorithm 7.10, and its running
time is analyzed in Proposition 7.7. The main result (the definite case of Theorem B)
appears as Theorem 7.9. As in the previous section, let B be a totally definite quater-
nion algebra of discriminant D, and let O ⊂ B be an Eichler order of level N.

One way to solve Problem (ClassSet) is to simply enumerate the right invertible
fractional O-ideals in some way, building a list of ideal classes by testing each ideal
(an instance of Problem (IsIsomorphic)) to see if it is isomorphic to any ideal in the
list and stopping when one knows that the list is complete. Ultimately, our methods
to solve Problem (ClassSet) will be a variant of just this simple idea. We use the mass
formula (Proposition 5.1) and the accompanying solution to Problem (ClassNumber)
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and stop when equality holds. (See also Remark 7.5 below for the use of the alternate
mass formula.)

Remark 7.1. In the commutative case, one bounds the norm of the ideals in a
generating set for ClZF using a Minkowski-like bound (or the Bach bound, assuming
the GRH). One can in a similar way use the geometry of numbers in the case of
quaternion algebras: the first author [27] has proven that if O is maximal, every ideal
class in ClO is represented by an ideal I with

nrd(I) ≤Mnd
2
F

√
ND,

whereMn is a constant growing exponentially with n. Although this bound is effective,
just as in the commutative case, it would be all but useless in practice except in the
simplest cases.

To enumerate ideals, we note that the group ClZF acts on the set of isomorphism
classes of fractional right O-ideals by multiplication (on the left or right). We say
that an invertible right (integral) O-ideal I is primitive if I is not contained in any
nontrivial two-sided ideal of the form J = aO with a ⊂ ZF . We note that I ⊂ J if
and only if IJ−1 ⊂ O is integral, and if I ⊂ J , then nrd(J) | nrd(I), so I is contained
in only finitely many two-sided ideals J .

Therefore, to enumerate all right O-ideals, we enumerate the products JI of
primitive right O-ideals I and two-sided ideals J = aO. To enumerate primitive right
ideals, we employ the following lemma. For a commutative ring R, we denote by

P1(R) = {(x, y) : xR + yR = R}/R∗

the points of the projective line over R, and we denote by (x : y) the class of (x, y) in
P1(R).

Lemma 7.2. Let a be an ideal of ZF coprime to DN. Then the set of primitive
right invertible O-ideals of norm a are in bijection with P1(ZF /a). Explicitly, given a
splitting

φa : O ↪→ O ⊗ZF ZF,a
∼=M2(ZF,a) →M2(ZF /a),

the bijection is given by

P1(ZF /a) → {I ⊂ O : nrd(I) = a}

(x : y) 	→ I(x:y) = φ−1
a

(
x 0
y 0

)
O + aO.

Proof. We may refer to Vignéras [44, Chapter II, Théorème 2.3(3)]); for conve-
nience, we give a proof here.

It is clear that the ideal I(x:y) is a right O-ideal of norm a; it is invertible since
it is locally principal, and it is primitive since the only two-sided ideals with norm

dividing a are of the form pO, with p | a and
(
x 0
y 0

)
�∈ pM2(ZF,a) for any such p.

To prove the lemma, it suffices to construct an inverse map. Let I be a right
invertible O-ideal of norm a. Then φa(I) is a right principal M2(ZF /a)-ideal, say,
generated by ξ ∈M2(ZF /a). We have det(ξ) = 0, so the kernel

V = {v ∈ (ZF /a)
2 : vξ = 0}

of ξ acting on the right is nonzero. We claim in fact that V is a free ZF /a-module
of rank 1. Indeed, for each prime p | a, we have V/pV one-dimensional since I is
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primitive, and hence ξ �≡ 0 (mod p); it follows from a Hensel lift that V/peV is also
one-dimensional, and the claim then follows by the Chinese remainder theorem. This
argument also shows that a generator v = (x, y) of V has (x : y) ∈ P1(ZF /a) (and
this element is unique), since this is true modulo p for all p | a. Thus the association
I 	→ (−y : x) is well defined, and it is easy to see that this furnishes the desired
inverse.

One natural way to enumerate primitive ideals I would be to order them by
N(nrd(I)), the absolute norm of their reduced norm. Alternatively, one may restrict
the set of possible reduced norms as follows.

Proposition 7.3 (Strong Approximation). Let S be a nonempty set of (finite)
prime ideals of ZF coprime to D which generate ClS∞ ZF . Then there exists a set of
representatives I for ClO such that nrd(I) is supported in S.

Proof. See Vignéras [44, Théorème III.4.3] and the accompanying discus-
sion.

Let p be a prime ideal of ZF , and let I, J be right invertible O-ideals. Then J
is said to be a p-neighbor of I if I ⊃ J and nrd(J) = p nrd(I), or equivalently if
[I : J ] = p2, the index taken as ZF -lattices. Following Schulze-Pillot [43], Pizer [39],
Kohel [29], and Mestre [37], we enumerate primitive ideals by iteratively enumerating
the p-neighbors as follows.

Algorithm 7.4 (S-neighbors). Let O be an Eichler order of level N in a quater-
nion algebra B of discriminant D, and let S be a nonempty finite set of prime ideals of
ZF coprime to DN that generate ClS∞ ZF . This algorithm solves Problem (ClassSet).

1. Solve (ClassNumber) as in Theorem 5.6, and let H = #ClO.
2. Compute ClZF and compute a set C of representatives of the set of ideals of

ZF supported at S modulo principal ideals.
3. Initialize I := ∅, F := {O}, and Fnew := ∅.
4. For each I ∈ F , compute the primitive p-neighbors I ′ of I using Lemma 7.2

for p ∈ S. For each such I ′, determine if I ′ is isomorphic to any ideal in
I ∪ Fnew by an algorithm to solve (IsIsomorphic); if not, add JI ′ to Fnew for
all J ∈ C.

5. Set I := I ∪ F , F := Fnew, and Fnew := ∅. If #I = H , return I; otherwise
return to step 4.

Proof of correctness. The algorithm enumerates all right invertible O-ideals with
norm supported at S by the discussion preceding Lemma 7.2 and so will find all ideal
classes by Proposition 7.3.

Our algorithm was inspired by the implementation due to Kohel in the computer
algebra system Magma [4] for definite quaternion algebras over Q.

Remark 7.5. In Algorithm 7.4, one can alternatively use the mass formula as
in Remark 5.2; here, one trades the difficulty of computing the class number directly
with computing the unit index [O∗ : Z∗

F ] for each order O = OL(I). To compute this
unit index, we consult Vignéras [45, Theorem 6]. If all totally positive units of ZF

are squares, then the group OL(I)
∗/Z∗

F is just the set of shortest vectors in OL(I),
i.e., the reduced norm 1 subgroup O∗

1 modulo {±1}, and this group can be computed
by lattice enumeration. Otherwise, if the norm 1 subgroup is not cyclic, then O∗/Z∗

F

is at most an extension of O∗
1/{±1} of index 2, and we can explicitly write down

candidates for this extension. If the norm 1 subgroup is cyclic, then we must fall back
on a lattice search in O.

To analyze the running time of Algorithm 7.4, we now examine the distribution of
ideal classes among ideals following this enumerative strategy. Let S be a nonempty
finite set of prime ideals of ZF coprime to DN (as in Algorithm 7.4). Let Γ(S) denote
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the set of primitive right invertible O-ideals whose reduced norm is supported in S.
Then Γ(S) can be given the structure of a directed graph, where an edge exists from I
to J if and only if J is a p-neighbor of I for some p ∈ S. Note that by Lemma 7.2, the
set of limit points of Γ(S) is naturally identified with

∏
p∈S P1(ZF,p) =

∏
p∈S P1(Fp),

and Γ(S) is k-regular as an undirected graph, where k =
∏

p∈S(Np+ 1).
The set of α ∈ B∗ such that nrd(α) is supported in S acts on the graph Γ(S)

by multiplication on the left, and the set of vertices of the quotient G(S) is a set of
representatives for ClO by Proposition 7.3. In particular, G(S) is connected and k-
regular. When S = {p} consists of a single prime, we abbreviate G(S) by simply G(p).

The graphs G(p) are known in many cases to be Ramanujan graphs, graphs whose
eigenvalues other than ±k have absolute value at most 2

√
k − 1 and are therefore a

type of expander graph. In the simplest case where F = Q and S = {p}, they were
studied by Lubotzky, Phillips, and Sarnak [35] and Margulis [36]: the nontrivial spec-
trum of G(p) can be identified with the spectrum of the Hecke operators acting on
the space of cusp forms of weight two on Γ0(p), and the eigenvalue bound then follows
from the Ramanujan–Petersson conjecture, a consequence of the Eichler–Shimura iso-
morphism and Deligne’s proof of the Weil conjectures. Charles, Goren, and Lauter
[9] have shown that the same is true for graphs G(l) under the following set of hy-
potheses: F is a totally real field of narrow class number one, B ∼= Bp ⊗Q F , where
Bp is the quaternion algebra of discriminant p over Q, p is unramified in F , and l is a
prime ideal of ZF coprime to p. We note that there are further constructions due to
Jordan and Livné [25]. The general result we will need is due to Livné [34], as follows.

Theorem 7.6. Let S be a finite set of primes with p � dFDN for all p ∈ S. Then
the nontrivial eigenvalues of G(S) are bounded by 2#S

∏
p∈S

√
Np. In particular, the

graph G(p) is Ramanujan if p � dFDN and N p > 4.
Proof. See the proof of the Ramanujan–Petersson conjecture for Hilbert modular

forms by Livné [34, Theorem 0.1] for such primes p and the accompanying discus-
sion.

We now use the Ramanujan property (Theorem 7.6) of these graphs to estimate
the run time of the S-neighbors algorithm (7.4). For a prime p of ZF , let

υ(p) = N p
N p+ 1

N p− 1

so that υ(p) = O(N p) (as N p → ∞), and let υ(S) =
∏

p∈S υ(p).
Proposition 7.7. Let S be a finite set of primes such that p � dFDN and

N p > 4 for all p ∈ S. Then Algorithm 7.4 makes at most υ(S)H3+δ calls to Problem
(IsIsomorphic), where H = #Cl(O) and

δ =
4 log 2

(
∑

p∈S logN p)− log 4
< 13.

Proof. Each right ideal I ∈ F in step 3 of the S-neighbors algorithm has at most∏
p∈S N p neighbors, except for the trivial ideal class with

∏
p∈S(N p + 1) neighbors.

Therefore, the number of vertices with distance ≤ D (with D ∈ Z>0) from the starting
vertex is at most

∏
p∈S

(N p+ 1)

⎛
⎝1 +

∏
p∈S

N p+ · · ·+
∏
p∈S

N pD−1

⎞
⎠

=
∏
p∈S

(N p+ 1)

(∏
p∈S N p

)D − 1(∏
p∈S N p

)− 1
≤

∏
p∈S(N p+ 1)∏
p∈S(N p− 1)

∏
p∈S

N pD.
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Define the distance d(v, w) between two vertices v, w in the graph G = G(S) to
be the length of the shortest path between them, and define the diameter of G to be
D(G) = maxv,w d(v, w). Chung [10] has proven that

(7.1) D(G) ≤
⌈
log(H − 1)

log(k/λ)

⌉
,

where k =
∏

p∈S(N p+ 1) is the regularity of the graph and by Theorem 7.6 we have

the eigenvalue bound λ ≤ 2#S
∏

p∈S

√
N p. It follows that

∏
p∈S

N pD(G) ≤
∏
p∈S

N plogH/ log(k/λ)+1 = H
∑

p∈S log N p/ log(k/λ)
∏
p∈S

N p.

Since (x+ 1)/(2
√
x) ≥ √

x/2 for all x ≥ 0, we have

∑
p∈S logN p

log(k/λ)
≤

∑
p∈S logN p∑

p∈S log
(
(N p+ 1)/(2

√
N p)

) ≤ 2
∑

p∈S logN p(∑
p∈S logN p

)− 2 log 2

= 2 +
4 log 2(∑

p∈S logN p
)− log 4

= 2 + δ.

Putting these together, we find that Algorithm 7.4 has traversed the graph G(S) after
visiting at most

∏
p∈S(N p+ 1)∏
p∈S(N p− 1)

∏
p∈S

N pD(G) ≤ υ(S)H2+δ

vertices. Since each of these must be checked for isomorphism against a set F of size
#F ≤ H , we obtain the result.

Before proving the definite case of Theorem B, we prove one further lemma.
Lemma 7.8. There exists an algorithm which, given an ideal class [a] ∈ ClS∞(ZF )

and a finite set T of primes of ZF , computes in probabilistic polynomial time a prime
p �∈ T such that [p] = [a] and N p = O(log2

∏
q∈T N q) for a fixed totally real field F .

Proof. We use a (weak) version of the effective Chebotarev density theorem due
to Lagarias and Odlyzko, applied to the strict Hilbert class field of F . For an ideal
class [a] ∈ ClS∞(ZF ), define the counting function

π[a](x) = #{p ⊂ ZF prime : [p] = [a] and N p ≤ x}

for x ∈ R≥2. Then, by Lagarias and Odlyzko [30, Theorems 1.3–1.4], there exists an
effectively computable constant x0 > 0 which depends only on F such that for all
[a] ∈ ClS∞(ZF ) and all x ≥ x0, we have

(7.2)

∣∣∣∣π[a](x)− 1

h

x

log x

∣∣∣∣ ≤ 1

2h

x

log x
,

where h = #ClS∞ ZF . (In fact, they prove a certainly stronger bound on the error
and show that log x0 = (dFn)

O(1), but this weak version suffices for our purposes.)
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We begin with two precomputation steps. We first compute the constant x0, the
strict class group ClS∞ ZF , and factor the discriminant dF . Next, for each (rational)
prime p ≤ ZF with p ≤ x, we factor pZF and see if there exists a prime p | p such
that [p] = [a] and p �∈ T . If so, we return the ideal p. If not, then for all primes p
with [p] = [a] we have p ∈ T .

Let N(T ) =
∏

q∈T N q, and let x = max(x0, log
2 N(T ), (4h)4). Clearly x =

O(log2 N(T )). Then

#T ≤ N(T ) ≤ √
x ≤ x

4h logx
.

By (7.2), we have

π[a](x)−#T

x
>

1

2h logx
− 1

4h logx
=

1

4h log x
.

We have that #{b ∈ [a] : N b ≤ x} ≤ cx for some constant c > 0. Therefore, by
employing the algorithm of Lemma 6.8, we can find in probabilistic polynomial time
a prime ideal p with [p] = [a], N p ≤ x, and p �∈ T .

We now prove the definite case of Theorem B.
Theorem 7.9. There exists an algorithm to solve Problem (ClassSet) for defi-

nite orders with factored discriminant over a fixed field F which runs in probabilistic
polynomial time in the output size.

Proof. We use Algorithm 7.4. We must, for a given order O of discriminant
d = DN, choose a set S of primes p of ZF which represents the elements of the
narrow class group ClS∞ ZF such that p � dFDN and N p ≥ 5 for all p ∈ S. We do
this by first computing a set of representatives for ClS∞ ZF (which runs in constant
time for fixed F ) and then using the algorithm of Lemma 7.8 with T = {p : p | dFDN},
which runs in probabilistic polynomial time in the size of the input.

We now refer to the proof of Proposition 7.7. We claim that we may arrange so
that the diameter D(G) of the S-neighbors graph G = G(S) is D(G) = 1. By (7.1),
it is sufficient to have

(7.3) H = #ClO <
∏
p∈S

N p+ 1

2
√
N p

.

Thus, we may add primes to S if necessary of polynomial size so that (7.3) holds.
With the set S now computed, we employ Algorithm 7.4. Step 1 can be performed

in probabilistic polynomial time over a fixed totally real field F , and we have already
performed step 2. We conclude from Theorem 7.7 that step 3 requires a number
of calls to Problem (IsPrincipal), which is polynomial in the size of the output H =
#ClO, each with input of polynomial size. In solving Problems (IsIsomorphic) and
consequently (IsPrincipal), we need only to check ideals with the same reduced norm,
since D(G) = 1. By Proposition 6.9, each call to Algorithm 6.3 runs in deterministic
polynomial time, and the proof is complete.

We conclude by proposing an alternative to Algorithm 7.4, which solves Prob-
lems 2.2 (ClassSet) and 2.8 (ConjClassSet) simultaneously by computing two-sided
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ideals and connecting ideals, as in Proposition 2.10. This algorithm appears to per-
form better than Algorithm 7.4 in practice, though we do not prove anything rigorous
along these lines.

Algorithm 7.10. Let O be an Eichler order of level N. This algorithm outputs
a set E = {Oi} of representatives of the conjugacy classes of Eichler orders of level
N, a set C = {Ci} of integral invertible right O-ideals such that OL(Ci) = Oi, and a
set I of representatives of ClO.

1. Solve (ClassNumber) as in Theorem 5.6, and let H = #ClO.
2. Initialize E , C := {O}. Let I be a system of representatives for the two-sided

O-ideal classes as in Proposition 3.2.
3. Choose Oi ∈ E and p an ideal of ZF coprime to DN, and compute the set J

of primitive right Oi-ideals with norm p as in Lemma 7.2.
4. For all I ∈ J such that OL(I) is not isomorphic to any order in E , append

OL(I) to E , and append {JICi}J to I, where J ranges over a set of repre-
sentatives for the two-sided OL(I)-ideal classes.

5. If #I = H , return E , C, I; otherwise, return to step 3.
Proof of correctness. The completeness of I follows from Proposition 2.10 once

we show that the algorithm eventually enumerates all conjugacy classes of orders.
Indeed, let O′ be an Eichler order of level N; then there exists an integral, invertible
right O′,O-ideal I. By Strong Approximation (Proposition 7.3), we may assume that
nrd(I) is coprime to DN. As in the proof of Lemma 3.1, I factors into a product
I = I1I2 · · · Ir, where each Ij is an invertible integral ideal of prime reduced norm
with OR(Ij) = OL(Ij+1). The result now follows.

Remark 7.11. In practice, the ability to choose prime ideals p of small norm
in step 3 is essential to enumerate only a small number of ideals of norm p; for this
reason, we find that it is usually faster to check different orders Oi than to compute
with only one fixed order as in Algorithm 7.4. Nevertheless, the primes p in step 3
must be chosen in a way such that they generate the narrow class group of ZF .

Moreover, if some of the orders Oi have more than one isomorphism class of two-
sided ideals, they contribute to I accordingly, which speeds up the enumeration. In
this case, the alternative evaluation of the mass formula (Remark 7.5) also simpli-
fies, since all right O-ideals with conjugate left orders have the same mass. On the
other hand, if each Oi has only the trivial two-sided ideal class, a condition which
is not obviously anticipated, then Algorithm 7.10 may take somewhat longer than
Algorithm 7.4.

8. Definite Eichler orders with class number at most two. In this section,
we list all definite Eichler orders O with h(O) ≤ 2. From (5.1) and Proposition 5.1,
for such an order we have

2 ≥ h(O) ≥M(O) ≥ 21−n|ζF (−1)| ≥ 2

(4π2)n
d
3/2
F ,

and hence

(8.1) δF = d
1/n
F ≤ (2π)4/3 ≤ 11.594.

By the Odlyzko bounds, there are only finitely many such fields, and they have been
explicitly enumerated [48]: we have 1, 39, 47, 108, 37, 40, 4, 3 fields of degrees n =
1, 2, 3, 4, 5, 6, 7, 8, respectively, and no field satisfying the bound (8.1) with n ≥ 9, for
a total of 279 fields.
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Table 8.1

Definite Eichler orders O with class number h(O) = 1.

n dF D N n dF D N n dF D N n dF D N
1 1 2 1 2 8 1 1 3 49 7 1 4 725 1 1

2 3 1 2 8 1 1 11
2 5 1 4 13 1 1 19
2 9 1 7 29 1 1 29
2 11 1 8 43 1 1957 1 1
3 1 1 14 81 3 1 1 3
3 2 1 16 3 8 1 9
3 4 1 23 19 1 2777 1 1
5 1 14 1 37 1 1 2
5 2 18 1 148 2 1 1 4
7 1 50 1 2 5 5 24217 5 1
13 1 13 1 1 5 1

2 5 1 1 1 3 5 2
1 4 1 9 13 1
1 5 12 1 169 5 1
1 9 17 1 1 13 1
1 11 1 2 316 2 1
1 16 1 4 2 2
1 19 321 3 1
1 20
1 25
1 29
1 44
1 59
20 1
44 1

For each such field, using the methods of section 5 (Proposition 5.4) we compute
the mass M(ZF ,ZF ); then for an Eichler order of level N in a quaternion algebra of
discriminant D over F , we have

M(D,N) =M(ZF ,ZF )Φ(D)Ψ(N) ≤ 2,

which gives a finite list of possible ideals D,N. For each such possibility, we compute
the corresponding class number using the Eichler mass formula as in Theorem 5.6. To
check the computation, we also enumerate the ideal classes explicitly as in section 6
(using Algorithm 7.10 and the alternate mass formula, Remark 5.2) and see that in
all cases they match.

We consider two Eichler orders, specified by the ideals D,N of ZF and D′,N′

of ZF ′ , to be equivalent if there is an isomorphism σ : F
∼−→ F ′ of fields such that

σ(D) = D′ and σ(N) = N′. Two equivalent Eichler orders have the same class number
by the mass formula.

Proposition 8.1. There are exactly 76 equivalence classes of definite Eichler
orders with class number 1 and 217 with class number 2.

These classes are listed in Tables 8.1–8.2. Here we list the degree n, the discrim-
inant dF of F , and the norms D and N of the discriminant D and level N. This way
of recording orders is compact but ambiguous; nevertheless, in all cases the field F
is determined by its discriminant, and in all but a handful of cases, for any choice of
squarefree D and coprime N, an Eichler order of level N in a quaternion algebra of
discriminant D has the given class number. For the handful of exceptions, we refer
to the complete tables which are available online [28].
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Table 8.2

Definite Eichler orders O with class number h(O) = 2.

n dF D N n dF D N n dF D N n dF D N
1 1 2 7 2 8 1 9 3 49 7 8 4 725 1 16

2 17 1 17 7 13 1 25
2 23 1 31 7 27 1 31
3 5 1 47 8 7 1 41
3 7 14 7 13 7 1 49
3 8 34 1 13 13 1 79
3 11 62 1 27 1 1 89
5 3 63 1 41 1 1125 1 1
5 4 12 1 1 71 1 1 5
7 2 1 2 97 1 1 9
7 3 1 3 113 1 1 29
11 1 1 11 127 1 1 59
17 1 1 23 81 3 17 80 1
19 1 6 1 3 19 1600 1 1
30 1 6 11 8 1 1957 1 7
42 1 26 1 17 1 1 23
70 1 39 1 19 3 21 1
78 1 50 1 73 1 2000 20 1

2 5 1 31 13 1 4 148 2 17 2048 1 1
1 36 1 9 2 23 2225 1 1
1 41 1 17 5 4 2304 18 1
1 45 1 23 17 1 2525 1 1
1 49 9 1 25 1 2624 1 1
1 55 12 3 169 5 5 2777 1 8
1 64 39 1 8 1 1 11
1 71 17 1 4 229 2 1 3981 1 1
1 79 1 8 4 1 15 1
1 81 4 1 7 1 4205 1 1
1 89 18 1 257 3 1 4352 14 1
20 9 26 1 5 1 4752 12 1
36 1 21 1 1 7 1 6809 1 1
45 1 1 3 316 2 1 5 14641 11 1
55 1 1 5 2 4 23 1
95 1 12 1 321 3 1 24217 17 1
99 1 20 1 3 3 36497 3 1
124 1 24 6 1 7 1 38569 7 1
155 1 15 1 361 7 1 13 1
164 1 28 6 1 404 2 1 6 300125 1 1

29 1 1 469 4 1 371293 1 1
33 6 1 568 2 1 434581 1 1
37 1 1 485125 1 1
41 1 1 592661 1 1

We note that the results in Table 8.1 for F = Q agree with those of Brzeziński
[6] (when restricted to Eichler orders).
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