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ON BASIC AND BASS QUATERNION ORDERS

SARA CHARI, DANIEL SMERTNIG, AND JOHN VOIGHT

Abstract. A quaternion order O over a Dedekind domain R is Bass if every

R-superorder is Gorenstein, and O is basic if it contains an integrally closed

quadratic R-order. In this article, we show that these conditions are equivalent
in local and global settings: a quaternion order is Bass if and only if it is basic.

In particular, we show that the property of being basic is a local property of

a quaternion order.

1. Introduction

Orders in quaternion algebras over number fields arise naturally in many contexts
in algebra, number theory, and geometry—for example, in the study of modular
forms and automorphic representations and as endomorphism rings of abelian va-
rieties. In the veritable zoo of quaternion orders, authors have distinguished those
orders having favorable properties, and as a consequence there has been a certain
proliferation of terminology. In this article, we show that two important classes of
orders coincide, tying up a few threads in the literature.

Setup. Let R be a Dedekind domain and let F be its field of fractions. Let B
be a quaternion algebra over F , and let O ⊆ B be an R-order. We say that
O is Gorenstein if its codifferent is an invertible R-lattice in B, or equivalently
HomR(O, R) is projective as a left or right O-module. Gorenstein orders were
studied by Brzezinski [4], and they play a distinguished role in the taxonomy of
quaternion orders—as Bass notes, Gorenstein rings are ubiquitous [2]. Subsequent
to this work, and given the importance of the Gorenstein condition, we say O is
Bass if every R-superorder O′ ⊇ O in B is Gorenstein. As Bass himself showed [2],
Bass orders enjoy good structural properties while also being quite general. A Bass
order is Gorenstein, but not always conversely. Being Gorenstein or Bass is a local
property over R, because invertibility is so.

On the other hand, we say that O is basic if there is a (commutative) quadratic
R-algebra S ⊆ O such that S is integrally closed in its total quotient ring FS. Basic
orders were first introduced by Eichler [8] over R = Z (who called them primitive),
and studied more generally by Hijikata–Pizer–Shemanske [12] (among their special
orders), Brzezinski [5], and more recently by Jun [13]. The embedded maximal
quadratic R-algebra S allows one to work explicitly with them, since a basic order
O is locally free over S of rank 2: for example, this facilitates the computation of
the relevant quantities that arise in the trace formula [11]. Locally, basic orders
also appear frequently: local Eichler orders are those that contain R×R, and local
Pizer (residually inert) orders [14, §2] are those orders in a division quaternion
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algebra that contain the valuation ring of an unramified quadratic extension. It is
not immediate from the definition that being basic is a local property.

Results. The main result of this article is to show these two notions of Bass and
basic coincide, in both local and global settings. We first consider the local case.

Theorem 1.1. Let R be a discrete valuation ring (DVR) and let O be a quaternion
R-order. Then O is Bass if and only if O is basic.

Theorem 1.1 was proven by Brzezinski [5, Proposition 1.11] when R is a com-
plete DVR with charR 6= 2 and perfect residue field; the proof relies on a lengthy
(but exhaustive) classification of Bass orders. Here, we present two essentially
self-contained proofs that are uniform in the characteristic, one involving the ma-
nipulation of ternary quadratic forms and the second exploiting the structure of
the radical.

Next, we turn to the global case.

Theorem 1.2. Let R be a Dedekind domain whose field of fractions is a number
field, and let O be a quaternion R-order. The following statements hold.

(a) O is basic if and only if the localization O(p) is basic for all primes p of R.
(b) O is Bass if and only if O is basic.

In fact, we show that if O is Bass (equivalently, basic), then O contains infinitely
many nonisomorphic quadratic R-algebras S and moreover they can be taken to
be free as R-modules (Corollary 7.6). Theorem 1.2(b) over R = Z was proven by
Eichler [8, Satz 8] using a somewhat different method.

We also prove the conclusions of Theorem 1.2 in a large number of cases in
which R is a Dedekind domain whose field of fractions is a global function field: see
Theorem 7.5. (We lack in the function field case a sufficiently general local–global
result on representations by ternary quadratic forms, see section 6.)

Returning to the local situation, if R is a DVR then several equivalent charac-
terizations of Bass orders are known [17, Proposition 24.5.3] and this list is further
extended by our results. For the reader’s convenience we give a comprehensive list.

Corollary 1.3. Let R be a DVR with maximal ideal p, and let O be a quaternion
R-order. Then the following are equivalent.

(i) O is a Bass order;
(ii) O and the radical idealizer O\ are Gorenstein;
(iii) The Jacobson radical radO is generated by two elements (as left, respec-

tively, right ideal);
(iv) O is a basic order;
(v) Every O-ideal is generated by two elements;
(vi) Every O-lattice is isomorphic to a direct sum of O-ideals; and

(vii) O is not of the form O = R+ pI with I an integral R-lattice.

The implications (v)⇒ (i)⇒ (vi) hold more generally [17, Section 24.5]. The
implication (vi)⇒ (v) holds only in specific settings; for quaternion orders it follows
from work of Drozd–Kiričenko–Rŏıter [7, Proposition 12.1, 12.5]. While we do not
give another proof of this implication, we provide a direct proof for (i)⇒ (v). With
the exception of statement (vi), we therefore give a full proof of the equivalences in
Corollary 1.3.
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Outline. The paper is organized as follows. After introducing some background
in section 2, we prove Theorem 1.1 and Corollary 1.3 in sections 3–4. In the
remaining sections, we prove Theorem 1.2: in section 5 we treat the case when
strong approximation applies, in section 6, we treat definite orders over rings of
integers in a number field, and we conclude the proof in section 7.
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2. Background

In this section, we briefly review the necessary background on orders and qua-
dratic forms. For a general reference, see Voight [17].

Properties of quaternion orders. Let R be a Dedekind domain with Frac(R) =
F . Let B be a quaternion algebra over F and let O ⊆ B be an R-order.

Definition 2.1. We say that O is Gorenstein if the codifferent

codiff(O) := {α ∈ B : trd(αO) ⊆ R} ⊆ B
is invertible, and we say O is Bass if every R-superorder O′ ⊇ O is Gorenstein.

For more detail and further references, see Voight [17, Sections 24.2, 24.5]. Being
Gorenstein is a local property—O is Gorenstein if and only if the localizations
O(p) := O ⊗R R(p) are Gorenstein for all primes p of R—so it follows that Bass is
also a local property.

Definition 2.2. We say that O is basic if there is a (commutative) quadratic R-
algebra S ⊆ O such that S is integrally closed in its total quotient ring FS.

Remark 2.3. The term primitive is also used (in place of basic), but it is potentially
confusing: we will see below that a primitive ternary quadratic form corresponds
to a Gorenstein order, not a “primitive” order.

Local properties. Now suppose R is a local Dedekind domain, i.e., R is a dis-
crete valuation ring (DVR) with maximal ideal p and residue field κ := R/p. The
Jacobson radical of O is the intersection of all maximal left (or equivalently right)
ideals of O. The semisimple κ-algebra O/radO is one of the following [17, 24.3.1]:

• O/radO is a quaternion algebra (equivalently, O is maximal);
• O/radO ' κ× κ, and we say that O is residually split (or Eichler);
• O/radO ' κ, and we say that O is residually ramified; or
• O/radO is a separable quadratic field extension of κ and we say that O is

residually inert.

The radical idealizer of O is the left order O\ := OL(radO).

Ternary quadratic forms. Still with R a DVR, we review the correspondence be-
tween quaternion orders and ternary quadratic forms (see also Voight [17, Chapters
5, 22] and [17, Remark 22.6.20] for a full history).

We define a similarity of two ternary quadratic formsQ : R3 → R andQ′ : R3 → R
to be a pair (f, u), where f : R3 → R3 is an R-module isomorphism and u ∈ R× is
such that Q′(f(x)) = uQ(x) for all x ∈ O.
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Proposition 2.4 (Gross–Lucianovic [10]). There is a discriminant-preserving bi-
jection O ↔ Q(O) between quaternion R-orders up to isomorphism and nondegen-
erate ternary quadratic forms over R up to similarity. Moreover, an R-order O is
Gorenstein if and only if the corresponding quadratic form Q(O) is primitive.

We now briefly review the construction of the bijection in Proposition 2.4. Since
R is a PID, O is free of rank 4 as an O-module. A good basis 1, i, j, k for an R-order
O is an R-basis with a multiplication table of the form

(2.5)

i2 = ui− bc jk = ai = a(u− i)
j2 = vj − ac ki = bj = b(v − j)
k2 = wk − ab ij = ck = c(w − k)

with a, b, c, u, v, w ∈ R. Every R-basis of O can be converted to a good basis in a
direct manner. For all x, y, z ∈ R and α = xi+ yj + zk ∈ O, we find

(2.6)
trd(α) = ux+ vy + wz

nrd(α) = bcx2 + acy2 + abz2 + (uv − cw)xy + (uw − bv)xz + (vw − au)yz

Associated to O and the good basis, we attach the ternary quadratic form
Q : R3 → R defined by

(2.7) Q(x, y, z) = ax2 + by2 + cz2 + uyz + vxz + wxy ∈ R[x, y, z].

The similarity class of Q is well-defined on the isomorphism class of O. Conversely,
given a nondegenerate ternary quadratic form Q : R3 → R, we associate to Q its
even Clifford algebra O = Clf0(Q), which is a quaternion R-order. A change of
good basis of O induces a corresponding change of basis of Q, and conversely every
such change of basis of Q arises from a change of good basis of O.

3. Locally Bass orders are basic

In this section, we give our first proof of Theorem 1.1. To this end, in this section
and the next let R be a DVR with fraction field F := Frac(R) and maximal ideal
p = πR. For x, y ∈ R, we write π | x, y for π | x and π | y.

Let B be a quaternion algebra over F and O ⊆ B an R-order. According to the
following remark, we could work equivalently in the completion of R.

Remark 3.1. The order O is basic (or Bass) if and only if its completion is basic
(or Bass). Indeed, invertibility and maximality can be checked in the completion.

We choose a good R-basis 1, i, j, k for O and let Q be the ternary quadratic form
over R associated to O with respect to this basis, as in (2.7).

Lemma 3.2. The order O is not basic if and only if for every α ∈ O there exists
r ∈ R such that π | trd(α− r) and π2 | nrd(α− r).
Proof. Let α ∈ O and consider the R-algebra R[α] = R + Rα. Then R[α] fails to
be integrally closed if and only if there exists β ∈ F [α], integral over R, such that
β 6∈ R[α]; this holds if and only if there exists r ∈ R such that β = π−1(α − r) is
integral over R, which is equivalent to trd(β) = π−1 trd(α − r) ∈ R and nrd(β) =
π−2 nrd(α− r) ∈ R, as claimed. �

A slight reformulation gives a local version of the result of Eichler [8, Satz 8].
Recall that a semi-order I ⊆ B is an integral R-lattice with 1 ∈ I [17, Section 16.6].
Basic semi-orders are defined analogously to basic orders.



ON BASIC AND BASS QUATERNION ORDERS 5

Lemma 3.3. A semi-order I is not basic if and only if it is of the form I = R+pJ
with J ⊆ B an integral R-lattice.

Proof. As in the previous lemma, if I = R+ pJ , then I is not basic. Conversely, if
I is not basic, each α ∈ I is of the form α− r = πβ with an integral β. Take J to
be the R-lattice generated by all these β. �

As an application of Lemma 3.2, we prove one implication in Theorem 1.1.

Proposition 3.4. If O is basic, then O is Bass.

Proof. Suppose O is basic. Then every R-superorder O′ ⊇ O is also basic. So
to show that O is Bass, we may show that O is Gorenstein. To do so, we prove
the contrapositive. Suppose that O is not Gorenstein. Then the quadratic form Q
associated to O has all coefficients a, b, c, u, v, w ∈ p. From (2.6), we see that for all
α = xi+ yj + zk ∈ O we have π | trd(α) and π2 | nrd(α). Therefore O is not basic
by Lemma 3.2. �

Lemma 3.5. If O is maximal, residually inert, or residually split, then O is basic
and Bass.

Proof. By the previous proposition it suffices to show that O is basic. In each case,
O/radO contains a separable quadratic algebra over R/p which lifts to a valuation
ring in O. See also Voight [17, 24.5.2, Proposition 24.5.5]. �

Remark 3.6. It is not always possible to embed an integrally closed quadratic order
that is a domain into a residually split (Eichler) order; this justifies the (more
general) definition of basic orders allowing nondomains such as R×R.

Lemma 3.7. Suppose O is Gorenstein with associated quadratic form Q in a good
basis as in (2.7) and that O is not basic. Then the following statements hold.

(a) If π | 2 in R, then π | u, v, w.
(b) Suppose that π | u, v, w. Let s ∈ {a, b, c} and suppose π | s. Then π2 | s.

Proof. For (a), to show that π | u, by Lemma 3.2 there exists r ∈ R such that
π | trd(i − r) = u − 2r; since π | 2, we have π | u. Similarly, arguing with j, k we
have π | v, w. For (b), without loss of generality we suppose s = a and b ∈ R×. By
Lemma 3.2,

(3.8) π2 | nrd(k − r) = nrd(k)− r trd(k) + r2 = ab− rw + r2.

But π | a,w, so π | r2. Thus π | r, so π2 | rw, r2, so π2 | ab; since b ∈ R×, we get
π2 | a. �

Lemma 3.9. Suppose O is Gorenstein, not basic, and residually ramified. Then
there exists a good basis of O such that the associated quadratic form is given by

Q(x, y, z) = ax2 + by2 + cz2 + uyz + wxy,

with π | u,w and π2 | c and one of the following conditions holds:

(i) a ∈ R× and π2 | b; or
(ii) π2 | a and b ∈ R× and w = 0.

Proof. As explained in section 2, a change of good basis of O corresponds to a
change of basis for Q, so we work with the latter. By a standard “normal form”
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argument (see e.g. Voight [16, Proposition 3.10]), there exists a basis e11, e12, e13
such that Q becomes

(3.10) Q1(x, y, z) = a1x
2 + b1y

2 + c1z
2 + u1yz

with a1, b1, c1, u1 ∈ R and not all in p, and u1 = 0 if 2 ∈ R×. Let 1, i1, j1, k1 be the
corresponding good basis for O.

We modify this basis further to obtain the desired divisibility, as follows. First,
suppose that 2 ∈ R×. Then u1 = 0. Swapping basis vectors, we obtain the diagonal
quadratic form Q2(x, y, z) = a2x

2 + b2y
2 + c2z

2 with a2 ∈ R×. If b2 ∈ R×, then
k ∈ O satisfies k2 = −a2b2 ∈ R× so O is not residually ramified, a contradiction,
so we must have π | b2 and by symmetry π | c2. By Lemma 3.7, we get π2 | b2, c2,
and we are in case (i) (which becomes case (ii) after a basis swap).

Second, suppose that 2 6∈ R×, so π | 2. By Lemma 3.7(a), we have π | u1. If
π | c1, we keep the basis unchanged and pass all subscripts 1 to 2. If π | b1, we
take e21, e22, e23 := e11, e13, e12 (swapping second and third basis elements); in this
basis, we obtain the quadratic form

(3.11) Q2(x, y, z) = a2x
2 + b2y

2 + c2z
2 + u2yz

with a2 = a1, b2 = c1, c2 = b1, and u2 = u1, with π | c2. Otherwise, suppose
b1, c1 ∈ R×. Since O is residually ramified, we have O/radO ' R/p. Moreover
i21 = u1i1 − b1c1. Reducing modulo p, we conclude that −b1c1 ∈ (R/p)×2, so there
exists s1 ∈ R such that s21 ≡ −c1b−11 (mod p). We take the new basis e21, e22, e23 :=
e11, e12, e13 + s1e12. In this basis, we obtain (3.11) where now

a2 = a1, b2 = b1, c2 = c1 + s1u1 + s21b1, and u2 = u1 + 2s1b1.

Since π | u1 and π | (c1 + s21b1), we have π | c2. In all cases, we have π | c2. By
Lemma 3.7, we immediately upgrade to π2 | c2. Finally, since O is Gorenstein,
either π | a2 and then b2 ∈ R× and π2 | a2 as in case (ii), or we have a2 ∈ R×.

To finish, we suppose that a2 ∈ R× and we make one final change of basis
to get us into case (i). As in the previous paragraph, we have k22 = −a2b2, so
there exists s2 ∈ R such that s22 ≡ −b2a−12 (mod p). We take the new basis
e31, e32, e33 := e21, e22 + s2e21, e23, giving the quadratic form Q3(x, y, z) = a3x

2 +
b3y

2 + c3z
2 + u3yz + w3xy and

a3 = a2, b3 = b2 + a2s
2
2, c3 = c2, u3 = u2, and w3 = 2a2s2.

Now π | b3 by construction, and π | u3, w3 so π2 | b3 and we get to case (i). �

We now prove Theorem 1.1.

Theorem 3.12. The order O is Bass if and only if O is basic.

Proof. We proved (⇐) in Proposition 3.4. We prove (⇒) by the contrapositive: we
suppose that O is not basic and show O is not Bass by exhibiting a R-superorder
O′ ⊇ O that is not Gorenstein. If O is not Gorenstein then it is not Bass, so we
are done. Suppose then that O is Gorenstein. By Lemma 3.5, we must have O
residually ramified. Then by Lemma 3.9, there exists a good basis for O such that
the corresponding quadratic form satisfies either (i) or (ii) from that lemma.

We begin with case (i). We first claim that π2 | u. By Lemma 3.2, there exists r
such that π2 | nrd(j+k−r) = ac+ab−au−rw+r2; since π | b, c, u, w we conclude
π | r; then π2 | b, c, r2, rw implies π2 | au, and since a ∈ R× we get π2 | u. This
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gives us a (minimal) non-Gorenstein superorder, as follows. Let i′ := π−1i and let
O′ := R + Ri′ + Rj + Rk. Then O′ ⊇ O and O′ has the following multiplication
table, with coefficients

a′ := πa, b′ := π−1b, c′ := π−1c, u′ := π−1u, w′ := w

in R:

(3.13)

(i′)2 = π−2(ui− bc) = u′i′ − b′c′ jk = ai = a′i′

j2 = −ac = −a′c′ ki′ = π−1bj = b′j

k2 = wk − ab = w′k − a′b′ i′j = π−1ck = c′k.

Thus O′ is an R-order with Q′(x, y, z) = a′x2 + b′y2 + c′z2 + u′yz + w′xy, all of
whose coefficients are divisible by π. We conclude O′ is not Gorenstein and so O
is not Bass.

Case (ii) follows similarly, taking instead j′ := π−1j and O′ := R+Ri+Rj′+Rk,
with associated quadratic form Q′(x, y, z) = a′x2 + b′y2 + c′z2 + u′yz satisfying
a′ = π−1a, b′ = πb, c′ = π−1c, u′ = u, all of which are divisible by π. �

Remark 3.14. If O is a Gorenstein order that is neither residually split nor max-
imal, the radical idealizer O\ = OL(radO) = OR(radO) is the unique minimal
superorder by [17, Proposition 24.4.12]. In the previous proof [O′ : O]p = p, and
hence necessarily O\ = O′. We have therefore proved that if O and O\ are both
Gorenstein, then O is basic. We return to this in the next section.

Remark 3.15. When 2 ∈ R×, the argument for Theorem 1.1 is quite simple [17,
Proposition 24.5.8]: diagonalizing up to similarity, the ternary quadratic form as-
sociated to a Gorenstein order O is x2 + by2 + cz2 with v(b) ≤ v(c), and O is Bass
if and only if v(b) ≤ 1.

4. A second proof for local Bass orders being basic

In this section, we given a second proof of (the hard direction of) Theorem 1.1.
We retain our notation from the previous section; in particular R is a discrete
valuation ring with maximal ideal p = πR.

By classification, we see that a quaternion R-order O is a local ring (has a unique
maximal left [right] ideal, necessarily equal to its Jacobson radical radO) if and
only if O is neither maximal nor residually split.

Lemma 4.1. Suppose that O is a local ring. Let α ∈ radO. Then the following
statements hold.

(a) We have π | trd(α),nrd(α) and α2 ∈ pO.
(b) If O is not basic, then π2 | nrd(α) and α2 ∈ p radO.

Proof. Since O/pO is Artinian, (radO)/pO is nilpotent, so there exists r ∈ Z≥1
such that αr ≡ 0 (mod pO). Thus the image of α in the R/p-algebra has reduced
characteristic polynomial x2, so α2 ∈ pO and trd(α),nrd(α) ≡ 0 (mod p), proving
(a). Since α satisfies its reduced characteristic polynomial f(x) = x2 − trd(α)x +
nrd(α) ∈ R[x], if π2 - nrd(α), then f(x) is an Eisenstein polynomial so R[α] is
a DVR and in particular integrally closed, contradicting that O is not basic and
proving the first part of (b). Finally, nrd(α) ∈ p2 ⊆ p radO so α2 = trd(α)α −
nrd(α) ∈ p radO. �
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Lemma 4.2. Let A be a local Artinian R-algebra with R/p ' A/radA via R→ A.
If y1, . . . , yn generate radA as ideal of A, then they generate A as R-algebra.

Proof. Let J = radA. Since A is Artinian, there exists m ≥ 0 with Jm = 0.
For l ∈ [1,m], let Zl = {yν1 · · · yνl : ν1, . . . , νl ∈ 1, . . . , n}. Since R/p ' A/J
is commutative, it is easily seen that Zl generates J l/J l+1 as R/p-module. Using
A ⊇ J ⊇ · · · ⊇ Jm = 0, we see that {1}∪Z1∪· · ·∪Zl generates A as R-module. �

Theorem 4.3. Let O be a residually ramified Bass R-order and suppose that radO
is generated by two elements as left [right ] ideal. Then O is basic.

Proof. Let J = radO, and let α1, α2 generate J as left ideal (the other case being
symmetric). Their images generate J/J2 over O/J ' R/p, so dimR/p J/J

2 ≤ 2.

Suppose to the contrary that O is not basic. Observe πJ ⊆ J2 since πO ⊆ J .
Lemma 4.1 implies α2

1, α2
2, (α1 + α2)2 ∈ πJ . Thus 0 ≡ (α1 + α2)2 ≡ α1α2 + α2α1

(mod πJ). By Lemma 4.2 the elements α1 + πJ , α2 + πJ generate O/πJ as R-
algebra. Since they anticommute, we see that they are normal elements in O/πJ .
It follows that J2/πJ is generated by α1α2 + πJ as O/πJ-module.

Again using that α1 + πJ and α2 + πJ anticommute, we have α1(α1α2) ≡ 0 ≡
α2(α1α2) (mod πJ). This implies that J2/πJ is in fact generated by α1α2 +πJ as
O/J-module, and hence as R/p-vector space.

Let λ(M) be the length of an O-module M . Since dimR/p J/J
2 ≤ 2 we have

λ(O/J2) ≤ 3. Because O is residually ramified and J/πO ' πJ/π2O we find
λ(πJ/π2O) = 3. Now

(4.4) 8 = λ(O/π2O) = λ(O/πJ) + λ(πJ/π2O) = λ(O/πJ) + 3

yields λ(O/πJ) = 5. But λ(J2/πJ) = 1 gives λ(O/J2) = 4, a contradiction. �

The previous theorem together with the characterization of Bass orders [17,
Proposition 24.5.3] implies that every (residually ramified) Bass order is basic.
Alternatively, it is easy to see directly that the assumption of Theorem 4.3 holds
for Bass orders, as the next proposition shows.

Proposition 4.5. If O and O\ are Gorenstein R-orders, then radO is generated
by two elements (as a left, respectively, right O-ideal).

Proof. If O is hereditary, then radO is principal [17, Main Theorems 21.1.4 and
16.6.1]. If O is Eichler, it is easily seen from an explicit description of O that radO
is generated by two elements [17, 23.4.15]. We thus suppose that O is a local ring.

Let J = radO. Then O\ = (JO#)# with O# = Oα for some α ∈ B× [17, Propo-
sition 24.4.12]. (using that O is Gorenstein). Since JO# is the unique maximal
left [right] O-submodule of O# by the proof of the same proposition, dualizing im-
plies that there is no right [left] O-module properly between O and O\ [17, Section
15.5]. Hence O\/O is a cyclic right [left] O-module. So O\ = O + βO = O +Oβ′
with β, β′ ∈ O\. Since O\ is also Gorenstein and OL(J) = O\, the ideal J is in-
vertible and hence principal [17, Proposition 24.2.3 and Main Theorem 16.6.1]. So
J = γO\ = O\γ′. Altogether J = γO + γβO = Oγ′ +Oγ′β′. �

We now characterize local Bass orders.

Proof of Corollary 1.3. (i)⇒ (ii) by definition; (ii)⇒ (iii) is Proposition 4.5; (iii)⇒
(iv) by Theorem 4.3 for residually ramified orders, in any other case O is basic
without any assumption on radO by Lemma 3.5. Propositon 3.4 shows (iv)⇒ (i).
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(iv)⇒ (v): Let S be a maximal order of a F -quadratic algebra contained in O.
Any O-ideal I is an S-lattice of rank 2. Since S is local, I is a free S-lattice of rank
two. Thus I is generated by two elements over S and also over O (as left or right
ideal). (v)⇒ (iii) is trivial.

(i)⇔ (vi) holds [17, Proposition 24.5.3]. The implications (v)⇒ (i)⇒ (vi) hold
in large generality, whereas (vi)⇒ (v) for quaternion orders is a result of Drozd–
Kiričenko–Rŏıter. Finally, (iv)⇔ (vii) follows from Lemma 3.3. �

5. Basic orders under strong approximation

In this section, we prove Theorem 1.2 when strong approximation applies. We
start by showing that basic is a local property, i.e., an R-order O is basic if and
only if its localization at every nonzero prime p of R is basic.

Setup. Moving now from the local to the global setting, we use the following
notation. Let F be a global field and let R = R(T ) ⊆ F be the ring of T -integers for
a nonempty finite set T of places of F containing the archimedean places. Let B
be a quaternion algebra over F , and let O ⊆ B be an R-order. For a prime p ⊆ R,
define the normalized valuation vp with valuation ring R(p) ⊆ F , and similarly
define O(p) := O ⊗R R(p) ⊆ B.

Building global quadratic orders. Using discriminants, we combine local (em-
bedded) quadratic orders to construct a candidate global quadratic order which we
may try to embed in O. Recall that free quadratic R-orders are, via the discrimi-
nant, in bijection with elements d ∈ R/R×2 that are squares in R/4R.

Lemma 5.1. Suppose that O(p) is basic for all p. Then there exist infinitely many

d ∈ R/R×2, corresponding to integrally closed quadratic R-orders S (up to isomor-
phism), such that S(p) embeds in O(p).

Proof. For each p, let S(p) be an integrally closed quadratic R(p)-order in O(p) and
let d(p) := disc(S(p)). For each p | discrd(O), let ep := vp(d(p)). If p - 2R, then
ep ≤ 1 by maximality of S(p). Define

d :=
∏

p|discrd(O)

pep .

By the Chebotarev density theorem applied to the Hilbert class field of F , there
exist infinitely many prime ideals q ⊆ R such that q - 2 discrd(O) and dq = d′R is
principal. Let

(5.2) tp :=

{
1, if p - 2R;

max{2vp(2) + 1, ep}, if p | 2R
and let

(5.3) n :=
∏

p|2 discrd(O)

ptp .

By the Chinese Remainder Theorem, there is an element a ∈ R such that a ≡
d(p)(d′)−1 (mod ptp) for each p | 2 discrd(O). By the Chebotarev density theorem
applied to the ray class field of F of conductor n, there exist infinitely many prime
elements π ∈ R such that π ≡ a (mod n).

Define d := d′π, so dR = dqπ. Then for p | 2 discrd(O), we have d = upd(p),
where up = d′πd(p)−1 ≡ 1 (mod n). Because 4 | n, the element d is a square in
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R/4R. Let S be the (free) quadratic R-order of discriminant d. Then S(p) ' S(p)
for p | 2 discrd(O), which is integrally closed. For p - 2 discrd(O), we have S(p) ↪→
O(p) ' M2(R(p)), and S(p) is integrally closed because vp(d) ≤ 1. Therefore, S(p)

is integrally closed for each prime p, so S is integrally closed. Since there were
infinitely many choices for primes q and π, the same is true for S. �

Selectivity conditions. We must now show that we can choose S in Lemma 5.1
such that S ↪→ O. To reach this conclusion, we now invoke the hypothesis that B
is T -indefinite, so that strong approximation [17, Chapter 28] applies.

Lemma 5.4. Suppose that B is T -indefinite. Then for all but finitely many inte-
grally closed quadratic R-orders S we have S ↪→ O if and only if S(p) ↪→ O(p) for
all primes p of R.

Proof. Let L be the set of integrally closed quadratic orders S (up to isomorphism)
such that S(p) ↪→ O(p) for all p. We refer to Voight [17, Main Theorem 31.1.7]: under
the hypothesis that B is T -indefinite, there exists a finite extension L := HGN(O) ⊇
F with the property that S ∈ L embeds in O whenever K := Frac(S) is not a
subfield of L. As there are only finitely many subfields K ⊆ L, only finitely many
S ∈ L will not embed in O. �

Lemma 5.5. Suppose that B is T -indefinite, and suppose O(p) is basic for every
prime p of R. Then O contains infinitely many nonisomorphic integrally closed
quadratic R-orders.

Proof. Suppose that O(p) is basic for every prime p of R. Then, O(p) contains a
maximal commutative R(p)-order for every prime p. By Lemma 5.1, there exist

infinitely many d ∈ R/R×2 such that the corresponding quadratic order Sd is
integrally closed and (Sd)(p) ↪→ O(p) for all p. For all but finitely many such
choices of d, we have an embedding Sd ↪→ O. �

Proof of theorem. With these lemmas in hand, we now prove Theorem 1.2 under
the hypothesis that B is T -indefinite and #T <∞.

Proof of Theorem 1.2, B is T -indefinite and #T <∞. First, part (a). If O(p) is
basic for every prime p of R, then O contains an integrally closed quadratic R-order
by Lemma 5.5. Conversely, if O is basic, then it contains a maximal commutative
R-order S. Then, the localization S(p) := S ⊗ R(p) at every prime p is a maximal
R(p)-order in O(p) by the local-global dictionary for lattices, so O(p) is basic for
every prime p of R. Being Bass is a local property, and local orders are basic if and
only if they are Bass by Theorem 3.12, so (b) follows from (a). �

This proof gives in fact a bit more.

Corollary 5.6. Suppose that B is T -indefinite. If O is basic, then O contains
infinitely many nonisomorphic integrally closed quadratic R-orders.

Proof. Combine Theorem 1.2(a) with Lemma 5.5. �

6. Basic orders and definite ternary theta series

In this section, we finish the proof of Theorem 1.2 in the remaining case of a
T -definite quaternion algebra under some hypotheses. For this purpose, we replace
the application of strong approximation with a statement on representations of
ternary quadratic forms.
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Ternary representations. As above, let F be a global field, let T be a nonempty
finite set of places of F containing the archimedean places, and let R = R(T ) ⊆ F
be the ring of T -integers in F . For nonzero a ∈ R, we write N(a) := #(R/aR) for
the absolute norm of a.

Conjecture 6.1 (Ternary representation). Let Q : M → R be a nondegenerate
ternary quadratic form over R = R(T ) such that Qv is anisotropic for all v ∈ T .
Then there exists cQ ∈ R>0 such that every squarefree a ∈ R with N(a) ≥ cQ is
represented by Q if and only if a is represented by the completion Qv for all places
v of F .

For further reading, see Schulze–Pillot [15] and Cogdell [6]. We now present
results in the cases where the conjecture holds.

Theorem 6.2 (Blomer–Harcos). When F is a number field, the ternary represen-
tation conjecture (Conjecture 6.1) holds for T = {v : v | ∞} the set of archimedean
places with an ineffective constant cQ.

Proof. This is almost the statement given by Blomer–Harcos [3, Corollary 2], but
where it is assumed that Q is positive definite: we recover the result for Q definite
by multiplying Q by two different prime elements with appropriate signs. �

Remark 6.3. Using Theorem 6.2, one can show that Conjecture 6.1 holds for all
(finite sets) T , but we do not need this result in what follows.

In the case where F is a function field, we know of the following partial result.

Theorem 6.4 (Altuǧ–Tsimerman [1, Corollary 1.1]). The ternary representation
conjecture holds with an effective constant cQ when F = Fp(t) and p ≡ 1 (mod 4)
and T = {∞}.

Discriminants. Define the discriminant quadratic form on O by

(6.5)
disc : O → R

α 7→ trd(α)2 − 4 nrd(α).

We define similarly discp : O(p) → R(p) for each prime p.

Lemma 6.6. Let p ⊆ R be prime with S(p) = R(p)[αp] an integrally closed qua-

dratic order. Let f ∈ Z≥0 be such that p2f | discp(αp). Then there exists a submod-
ule M ⊆ O such that

(i) disc(β) ∈ p2f for all β ∈M ;
(ii) M(q) = O(q) for q 6= p; and
(iii) S(p) ⊆M(p).

Proof. First, we have that O(p) contains S(p), which is necessarily integrally closed.
Then, O(p) ' S(p)+S(p)γ is an S(p)-module. Moreover, pR(p) = πR(p) is principal.

Define M(p) := S(p) + S(p)πfγ. For any β ∈ M(p), we have disc(β) ∈ p2fR(p).

Then, we define M := M(p) ∩ O ⊆ O. Since (πfR(p) ∩ R)(q) = R(q) for all q 6= p,
we have M(q) = O(q), and (M(p))(p) = M(p). Also, S(p) ⊆ M(p), so in particular,
we have S(p) ⊆M(p). �

Lemma 6.7. Suppose O(p) is basic for all primes p. Then there exists an R-lattice
M ⊆ O, a totally negative a ∈ R, and for every prime p elements αp ∈ M(p) such
that R(p)[αp] is integrally closed and the following conditions hold:
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(i) a−1 disc |M : M → R is a positive definite quadratic form;
(ii) (a−1 discp)(αp) ∈ R(p) is squarefree for every prime p; and

(iii) disc(αp) ∈ R×(p) for all but finitely many p.

Proof. For p | 2R, let αp ∈ Op be such that vp(αp) is minimal and let fp be the

largest integer such that p2fp | discp(αp). Similarly, for p | 2R, let M (p) ⊆ O be as

in Lemma 6.6 with disc(β) ∈ p2fpR(p) for all β ∈M (p). Define

b :=
∏
p|2R

p2fp .

By the Chebotarev density theorem applied to the narrow class field, there exists
a prime q - 2 discrd(O) such that bq = aR is principal and a is totally negative.
Since q - discrd(O), we have O(q) ' M2(R(q)), so there exists αq ∈ O(q) with
vq(disc(αq)) = 1. Let % be a uniformizer for R(q), define M(q) ⊆ O(q) to be the
R(q)-suborder with basis(

1 0
0 1

)
,

(
% 0
0 −%

)
,

(
0 1
% 0

)
,

(
0 −1
% 0

)
all of whose discriminants are divisible by %. Define M (q) := M(q) ∩ O. Then
disc(M (q)) ⊆ q. We also have that (M (q))p ' O(p) for all p 6= q since %O ⊆M (q).

For the remaining primes p - 2aR, let αp ∈ Op be such that vp(αp) is minimal

and let M (p) := O. Define

M :=
⋂
p

M (p).

By construction we have αp ∈ M(p) for all p. Checking locally we have a | disc(β)

for all β ∈ M . We also have that M(p) = M (p) for all p | aR and M(p) = O(p) for

all p - aR. Now, a−1 disc |M : M → R is positive definite (because disc was negative
definite and a was totally negative), so (i) holds.

To conclude, we check (ii) and (iii). Let ep = vp(a−1 discp(αp)) for a prime p. If
p | 2R, then p | b so ep ≤ 1 by construction (we removed the square part). If p = q,
by construction eq = 0. Otherwise, since Op is basic and p - 2aR, we have ep ≤ 1.
In particular, ep = 0 for all but finitely many p, so (iii) holds. �

We give a final lemma before proving the theorem.

Lemma 6.8. Suppose B is T -definite and that Conjecture 6.1 holds over R. Let
O ⊆ B an R-order such that O(p) is basic for every prime p of R. Then O contains
infinitely many nonisomorphic integrally closed free quadratic R-orders.

Proof. By Lemma 6.7, we obtain the following: an R-lattice M ⊆ O, a totally
negative a ∈ R, and for every prime p elements αp ∈ M(p) such that R(p)[αp] is
integrally closed and the conditions (i)–(iii) hold.

For each p, let dp := disc(αp) and ep := vp(dp). Define d :=
∏

p p
ep . Note that if

pe | aR then pe | dp, so pe | d. Therefore, aR | d.
By the Chebotarev density theorem applied to the narrow Hilbert class field,

there exists a prime q - 2d such that dq = mR is principal and m is totally negative.
In particular, a | m. Define tp as in (5.2) and n as in (5.3). Applying the Chebotarev
density theorem again, this time to the ray class field with conductor n, there exist
totally positive prime elements π - m with arbitrarily large absolute norm such that
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π ≡ m−1dp (mod ptp) for all p | 2d. Let d := πm. Then a−1d is totally positive
and squarefree by construction, and there are infinitely many such choices.

Let d be such a discriminant. We claim that d is locally represented by disc |M .
Indeed, we have αp ∈ M(p) for all p by construction. For p 6= q, πR, we have

d = u2pdp ∈ R×(p) for some up ∈ R×(p), so discp(upαp) = d ∈ R(p)/R
×2
(p). For p = q, πR,

we have p - 2 discrd(O), so M(p) = O(p) ' M2(R(p)), so discp : O(p) → R(p) is
surjective; in particular discp represents d.

Therefore a−1d is locally represented by a−1 disc |M . Therefore, if the conclusion
of Conjecture 6.1 holds, taking d to be of sufficiently large norm, there is an element
α ∈M ⊆ O with a−1 disc(α) = a−1d, so disc(α) = d.

Finally, let Sd := R[α] ⊆ O. For p | discrd(O), we have that (Sd)(p) = R(p)[α] =
R(p)[αp] is maximal in its field of fractions by construction. For p - discrd(O),
we have vp(d) ≤ 1, so again (Sd)(p) = R(p)[α] is maximal in its field of fractions.
Therefore, Sd is maximal in its field of fractions and so O is basic. �

We now prove Theorem 1.2 in the definite case for R the ring of integers of a
number field.

Proof of Theorem 1.2, B definite, R the ring of integers of a number field. For part
(a), if O(p) is basic for every prime p of R, then O contains an integrally closed
quadratic R-order by Lemma 6.8 using Theorem 6.2. The converse is exactly as in
the proof of Theorem 1.2 in the indefinite case, as given in Section 5.

Being Bass is a local property, and local orders are basic if and only if they are
Bass by Theorem 3.12, so (b) follows from (a). �

Corollary 6.9. Suppose that B is T -definite and let O ⊆ B be an R-order. If O
is basic, then O contains infinitely many nonisomorphic integrally closed quadratic
R-orders.

Proof. Combine Theorem 1.2 in the definite case with Lemma 6.8. �

7. Localizations

We conclude the proof of Theorem 1.2 by deducing the basic property of an
order over a Dedekind domain from that of its localizations. Throughout, let R be
a Dedekind domain with F = FracR and let O be a quaternion R-order.

Lemma 7.1. Let R′ ⊆ R be Dedekind domains such that F := Frac(R) = Frac(R′)
is a global field. Let O be an R-order. Then there is an R′-order O′ ⊆ O such that
O = O′R and

• O′(p) = O(p) for every prime p of R′ with pR 6= R,

• O′(p) is a maximal order for every prime p of R′ with pR = R.

In particular, if O Bass, then O′ is Bass.

Proof. Since R and R′ are necessarily overrings of a global ring, their class groups
are finite. It follows that there exists a multiplicative set S ⊆ R′ such that R =
S−1R′ [9, Theorem 5.5]. Let α1, . . . , αm be generators for the R-module O. There
exists (a common denominator) d ∈ S such that

(7.2) dαiαj ∈ R′α1 + · · ·+R′αm for all i, j = 1, . . . ,m.

This implies (dαi)(dαj) ∈ R′dα1 + · · · + R′dαm. Thus dα1, . . . , dαm generate an
R′-order O′′ ⊆ O with RO′′ = O. In particular, O′′(p) = O(p) for every prime p
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of R′ with p ∩ S = ∅. Let P be the set of prime ideals p of R′ with p ∩ S 6= ∅
for which O′′(p) is not maximal. Since any p ∈ P has p | discrd(O′′), the set P is

finite. By the local–global dictionary for lattices, there exists an R′-order O′ with
O′′ ⊆ O′ such that O(p′) = O(p′′) for all p 6∈ P and O′(p) is maximal for p ∈ P. Since

O(p′) = O(p′′) ⊆ O(p) for all primes p of R with p ∩ S = ∅, we still have O′ ⊆ O.
Since being Bass is a local property, and at all p of R we have either O′(p) maximal

or equal to O(p), the order O′ is Bass. �

Lemma 7.3. Suppose F = Frac(R) is a global field, and let T be the (nonempty)
set of places of F such that R = R(T ). Suppose #T =∞. If O is Bass, there exist
infinitely many nonisomorphic maximal quadratic R-orders S that embed into O.

Proof. Since T is infinite, there exists a place v ∈ T such that Bv is unramified.
Let T ′ be a finite set of places containing v and all archimedean places of F . By
Lemma 7.1 there exists an R(T ′)-order O′ such that O′R = O and O′ is Bass. Thus
O′ is locally Bass and hence locally basic by Theorem 1.1. Since O′ is T -indefinite,
Lemma 5.5 implies that there are infinitely many nonisomorphic maximal quadratic
R′-orders S′ ↪→ O′, with each S := RS′ a maximal, quadratic R-order that embeds
in O. Thus there are infinitely many nonisomorphic such orders S. �

Lemma 7.4. Let R′ ⊆ R be Dedekind domains with Frac(R′) = Frac(R) a global
field. Suppose that every R′-order that is Bass is basic. Then every R-order that is
Bass is basic.

Proof. As in Lemma 7.3. �

Theorem 7.5. Suppose that F = Frac(R) is a global field. Let T be the nonempty
(possibly infinite) set of places such that R = R(T ). Let O be an R-order. Suppose
that one of the following conditions holds:

(i) F is a number field;
(ii) #T <∞ and B is T -indefinite; or
(iii) #T =∞.

Then the following statements hold.

(a) O is basic if and only if the localization O(p) is basic for all primes p of R.
(b) O is Bass if and only if O is basic.

Proof. Being Bass is a local property, and local orders are basic if and only if they
are Bass by Theorem 3.12. Thus it suffices to show (b). Basic orders are Bass by
Proposition 3.4, and we are left to show that an R-order O that is Bass is basic.

Suppose first that #T < ∞. If B is T -indefinite, the claim follows from Theo-
rem 1.2 in the indefinite case, as proved in Section 5. Suppose that F is a number
field and B is T -definite. Let T ′ be the set of all archimedean places of F . Then
R(T ′) is the ring of integers of F , and the claim holds by the proof of Theorem 1.2
for the definite case in Section 6 together with Theorem 6.2. Lemma 7.4 shows that
the result also holds for R(T ).

Finally, if #T =∞, apply Lemma 7.3. �

Proof of Theorem 1.2. Restrict Theorem 7.5 to the case F is a number field. �

Corollary 7.6. If one of the conditions in Theorem 7.5(i)–(iii) holds, and O is
basic, then O contains infinitely many nonisomorphic integrally closed free quadratic
R-orders.
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Proof. Corollaries 5.6 and 6.9 for #T <∞ and Lemma 7.3 for #T =∞. �
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